Color and Shape efficiency for outlier detection from automated to user evaluation

The design of efficient representations is well established as a fruitful way to explore and analyze complex or large data. In these representations, data are encoded with various visual attributes depending on the needs of the representation itself. To make coherent design choices about visual attr...

Full description

Saved in:
Bibliographic Details
Published inVisual informatics (Online) Vol. 6; no. 2; pp. 25 - 40
Main Authors Giovannangeli, Loann, Bourqui, Romain, Giot, Romain, Auber, David
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The design of efficient representations is well established as a fruitful way to explore and analyze complex or large data. In these representations, data are encoded with various visual attributes depending on the needs of the representation itself. To make coherent design choices about visual attributes, the visual search field proposes guidelines based on the human brain’s perception of features. However, information visualization representations frequently need to depict more data than the amount these guidelines have been validated on. Since, the information visualization community has extended these guidelines to a wider parameter space. This paper contributes to this theme by extending visual search theories to an information visualization context. We consider a visual search task where subjects are asked to find an unknown outlier in a grid of randomly laid out distractors. Stimuli are defined by color and shape features for the purpose of visually encoding categorical data. The experimental protocol is made of a parameters space reduction step (i.e., sub-sampling) based on a machine learning model, and a user evaluation to validate hypotheses and measure capacity limits. The results show that the major difficulty factor is the number of visual attributes that are used to encode the outlier. When redundantly encoded, the display heterogeneity has no effect on the task. When encoded with one attribute, the difficulty depends on that attribute heterogeneity until its capacity limit (7 for color, 5 for shape) is reached. Finally, when encoded with two attributes simultaneously, performances drop drastically even with minor heterogeneity.
AbstractList The design of efficient representations is well established as a fruitful way to explore and analyze complex or large data. In these representations, data are encoded with various visual attributes depending on the needs of the representation itself. To make coherent design choices about visual attributes, the visual search field proposes guidelines based on the human brain’s perception of features. However, information visualization representations frequently need to depict more data than the amount these guidelines have been validated on. Since, the information visualization community has extended these guidelines to a wider parameter space.This paper contributes to this theme by extending visual search theories to an information visualization context. We consider a visual search task where subjects are asked to find an unknown outlier in a grid of randomly laid out distractors. Stimuli are defined by color and shape features for the purpose of visually encoding categorical data. The experimental protocol is made of a parameters space reduction step (i.e., sub-sampling) based on a machine learning model, and a user evaluation to validate hypotheses and measure capacity limits. The results show that the major difficulty factor is the number of visual attributes that are used to encode the outlier. When redundantly encoded, the display heterogeneity has no effect on the task. When encoded with one attribute, the difficulty depends on that attribute heterogeneity until its capacity limit (7 for color, 5 for shape) is reached. Finally, when encoded with two attributes simultaneously, performances drop drastically even with minor heterogeneity.
The design of efficient representations is well established as a fruitful way to explore and analyze complex or large data. In these representations, data are encoded with various visual attributes depending on the needs of the representation itself. To make coherent design choices about visual attributes, the visual search field proposes guidelines based on the human brain’s perception of features. However, information visualization representations frequently need to depict more data than the amount these guidelines have been validated on. Since, the information visualization community has extended these guidelines to a wider parameter space. This paper contributes to this theme by extending visual search theories to an information visualization context. We consider a visual search task where subjects are asked to find an unknown outlier in a grid of randomly laid out distractors. Stimuli are defined by color and shape features for the purpose of visually encoding categorical data. The experimental protocol is made of a parameters space reduction step (i.e., sub-sampling) based on a machine learning model, and a user evaluation to validate hypotheses and measure capacity limits. The results show that the major difficulty factor is the number of visual attributes that are used to encode the outlier. When redundantly encoded, the display heterogeneity has no effect on the task. When encoded with one attribute, the difficulty depends on that attribute heterogeneity until its capacity limit (7 for color, 5 for shape) is reached. Finally, when encoded with two attributes simultaneously, performances drop drastically even with minor heterogeneity.
Author Auber, David
Bourqui, Romain
Giot, Romain
Giovannangeli, Loann
Author_xml – sequence: 1
  givenname: Loann
  surname: Giovannangeli
  fullname: Giovannangeli, Loann
  email: loann.giovannangeli@labri.fr
– sequence: 2
  givenname: Romain
  surname: Bourqui
  fullname: Bourqui, Romain
  email: romain.bourqui@labri.fr
– sequence: 3
  givenname: Romain
  orcidid: 0000-0002-0638-7504
  surname: Giot
  fullname: Giot, Romain
  email: romain.giot@labri.fr
– sequence: 4
  givenname: David
  orcidid: 0000-0002-1114-8612
  surname: Auber
  fullname: Auber, David
  email: david.auber@labri.fr
BackLink https://hal.science/hal-03617222$$DView record in HAL
BookMark eNqFkV9rFDEUxYO0YG37DXyYVx92zJ9JJuODUBa1hQXBVvAt3CQ3NsvspGSyC_32ZncU1Ad9Sjg551xufq_I2ZQmJOQ1oy2jTL3dtoc4xym0nHLeUtFSyl6QC94pvZKUfzv77f6SXM_zllLKdc0ydkG-rNOYcgOTb-4f4QkbDCG6iJN7bkJ9SPsyRsyNx4KuxDQ1IaddA_uSdlDQNyU1-7ka8ADjHo6OK3IeYJzx-ud5Sb5-_PCwvl1tPn-6W99sVq6TvKyg7xGs9eAtaDbQIFCAcIOqcqclVQ4Fty4ooamyTqteaYsKdRdEr4dBXJK7pdcn2JqnHHeQn02CaE5Cyt8N5BLdiEZK76VmEoOU3eAlhMH2wXYD5cgHZmvXm6XrEcY_qm5vNuaoUaFYzzk_sOp9t3hdTvOcMRgXy2nzkiGOhlFzBGO2ZgFjjmBqgalgarj7K_xr2n9i75cY1g89VCBmPkFCH3PlUjeO_y74AWEcrGM
CitedBy_id crossref_primary_10_1109_TIV_2023_3288907
crossref_primary_10_1109_TVCG_2022_3209430
crossref_primary_10_1109_TVCG_2022_3209468
crossref_primary_10_1007_s12650_023_00909_3
Cites_doi 10.1145/22949.22950
10.1037/0033-295X.96.3.433
10.1037/h0043158
10.1109/CVPR.2016.90
10.1016/0042-6989(95)00207-3
10.1109/TVCG.2011.127
10.1016/j.visinf.2020.04.002
10.1038/s41562-017-0058
10.1002/col.10214
10.1080/01621459.1973.10482434
10.1109/TVCG.2016.2598918
10.1093/bioinformatics/16.5.412
10.3389/fncom.2016.00092
10.1080/01621459.1952.10483441
10.1038/sdata.2019.12
10.1109/TVCG.2004.1272729
10.1007/s11263-015-0816-y
10.1038/s41467-021-22078-3
10.3758/BF03208800
10.1016/j.cviu.2017.03.001
10.1109/TVCG.2018.2865138
10.1109/TVCG.2012.233
10.3758/BF03207581
10.3758/BF03206074
10.1109/5.726791
10.1109/TVCG.2013.183
10.3758/BF03203039
10.1109/TVCG.2014.2346983
10.1057/palgrave.ivs.9500092
10.1167/7.14.4
10.1109/TBME.2009.2033804
10.1214/09-SS054
10.1093/acprof:oso/9780195189193.003.0008
10.1080/01621459.1984.10478080
10.3758/s13414-019-01966-3
10.1109/TVCG.2014.2346978
10.1109/MCG.2018.2881501
10.1179/000870403235002042
10.1002/col.10051
10.1016/0010-0285(80)90005-5
10.1109/CVPR.2019.01045
10.1177/001872088803000201
10.3758/s13414-020-02022-1
ContentType Journal Article
Copyright 2022 The Author(s)
Attribution - NonCommercial
Copyright_xml – notice: 2022 The Author(s)
– notice: Attribution - NonCommercial
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.1016/j.visinf.2022.03.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2468-502X
EndPage 40
ExternalDocumentID oai_doaj_org_article_55dd5815ef5549d5af9b7fb4902e291b
oai_HAL_hal_03617222v1
10_1016_j_visinf_2022_03_001
S2468502X22000146
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M~E
NCXOZ
OK1
ROL
SSZ
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c452t-a77eabbdadba8190f3e3a3c967ea48506ce32bcf63806bc86768be6e84f378993
IEDL.DBID DOA
ISSN 2468-502X
2543-2656
IngestDate Wed Aug 27 01:02:54 EDT 2025
Tue May 27 06:21:37 EDT 2025
Thu Apr 24 23:06:52 EDT 2025
Tue Jul 01 03:37:20 EDT 2025
Wed May 17 00:25:49 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Outlier detection
Automated evaluation
User evaluation
Visual search
Language English
License This is an open access article under the CC BY-NC-ND license.
Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-a77eabbdadba8190f3e3a3c967ea48506ce32bcf63806bc86768be6e84f378993
ORCID 0000-0002-0638-7504
0000-0002-1114-8612
0000-0002-9395-6495
0000-0002-1847-2589
OpenAccessLink https://doaj.org/article/55dd5815ef5549d5af9b7fb4902e291b
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_55dd5815ef5549d5af9b7fb4902e291b
hal_primary_oai_HAL_hal_03617222v1
crossref_citationtrail_10_1016_j_visinf_2022_03_001
crossref_primary_10_1016_j_visinf_2022_03_001
elsevier_sciencedirect_doi_10_1016_j_visinf_2022_03_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Visual informatics (Online)
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Baldi, Brunak, Chauvin, Andersen, Nielsen (b3) 2000; 16
Tatler (b49) 2007; 7
Kheradpisheh, Ghodrati, Ganjtabesh, Masquelier (b34) 2016; 10
Chernoff (b10) 1973; 68
Wolfe, Gray (b56) 2007
Huber, Healey (b31) 2005
Ware, Beatty (b53) 1988; 30
Camgöz, Yener, Güvenç (b9) 2004; 29
Treisman, Gelade (b51) 1980; 12
Wolfe (b54) 2020; 82
LeCun, Bottou, Bengio, Haffner (b36) 1998; 86
Haehn, Tompkin, Pfister (b22) 2018; 25
Chollet (b11) 2015
Quinlan, Humphreys (b46) 1987; 41
Okoe, Jianu, Kobourov (b40) 2018
Kruskal, Wallis (b35) 1952; 47
Purchase (b44) 2012
de San Roman, Benois-Pineau, Domenger, Paclet, Cataert, De Rugy (b13) 2017; 164
Itoh, Yamaguchi, Ikehata, Kajinaga (b32) 2004; 10
Gleicher, Correll, Nothelfer, Franconeri (b19) 2013; 19
Callaghan, Lasaga, Garner (b7) 1986; 39
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b47) 2015; 115
Post, van Walsum, Post, Silver (b42) 1995
Miller (b38) 1956; 63
Cleveland, McGill (b12) 1984; 79
He, S., Tavakoli, H.R., Borji, A., Mi, Y., Pugeault, N., 2019. Understanding and Visualizing Deep Visual Saliency Models. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 10198–10207.
Bauer, Jolicoeur, Cowan (b4) 1996; 36
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 770–778.
Ware (b52) 2012
Bertin (b6) 1983
Nothelfer, Gleicher, Franconeri (b39) 2017; 43
Simonyan, Zisserman (b48) 2014
Giovannangeli, Bourqui, Giot, Auber (b17) 2020
Gramazio, Laidlaw, Schloss (b20) 2016; 23
Gramazio, Schloss, Laidlaw (b21) 2014; 20
Camgöz, Yener, Güvenç (b8) 2002; 27
Demiralp (b14) 2014; 20
Healey (b28) 1996
Arlot, Celisse (b2) 2010; 4
Duncan, Humphreys (b15) 1989; 96
Zhou, Yuan, Qu, Cui, Chen (b58) 2008
Wolfe, Horowitz (b57) 2017; 1
Jacob, Pramod, Katti, Arun (b33) 2021; 12
Haleem, Wang, Puri, Wadhwa, Qu (b23) 2019; 39
Harrower, Brewer (b25) 2003; 40
Giovannangeli, Giot, Auber, Benois-Pineau, Bourqui (b18) 2021
Purchase (b43) 1997
Purchase, Cohen, James (b45) 1995
Behrisch, Blumenschein, Kim, Shao, El-Assady, Fuchs, Seebacher, Diehl, Brandes, Pfister (b5) 2018
Haroz, Whitney (b24) 2012; 18
Pashler (b41) 1988; 43
Ghoniem, Fekete, Castagliola (b16) 2005; 4
Healey, Enns (b29) 2012; 18
Wolfe (b55) 2020; 82
Zwillinger, Kokoska (b59) 1999
Mackinlay (b37) 1986; 5
Altunbay, Cigir, Sokmensuer, Gunduz-Demir (b1) 2009; 57
Horikawa, Aoki, Tsukamoto, Kamitani (b30) 2019; 6
Treisman (b50) 1977; 22
Kruskal (10.1016/j.visinf.2022.03.001_b35) 1952; 47
Chollet (10.1016/j.visinf.2022.03.001_b11) 2015
Purchase (10.1016/j.visinf.2022.03.001_b44) 2012
Chernoff (10.1016/j.visinf.2022.03.001_b10) 1973; 68
Altunbay (10.1016/j.visinf.2022.03.001_b1) 2009; 57
Huber (10.1016/j.visinf.2022.03.001_b31) 2005
Arlot (10.1016/j.visinf.2022.03.001_b2) 2010; 4
Giovannangeli (10.1016/j.visinf.2022.03.001_b17) 2020
Wolfe (10.1016/j.visinf.2022.03.001_b55) 2020; 82
Wolfe (10.1016/j.visinf.2022.03.001_b57) 2017; 1
Purchase (10.1016/j.visinf.2022.03.001_b43) 1997
Wolfe (10.1016/j.visinf.2022.03.001_b56) 2007
Nothelfer (10.1016/j.visinf.2022.03.001_b39) 2017; 43
Ware (10.1016/j.visinf.2022.03.001_b52) 2012
Camgöz (10.1016/j.visinf.2022.03.001_b9) 2004; 29
Miller (10.1016/j.visinf.2022.03.001_b38) 1956; 63
Harrower (10.1016/j.visinf.2022.03.001_b25) 2003; 40
Healey (10.1016/j.visinf.2022.03.001_b28) 1996
Ghoniem (10.1016/j.visinf.2022.03.001_b16) 2005; 4
Itoh (10.1016/j.visinf.2022.03.001_b32) 2004; 10
Jacob (10.1016/j.visinf.2022.03.001_b33) 2021; 12
LeCun (10.1016/j.visinf.2022.03.001_b36) 1998; 86
Simonyan (10.1016/j.visinf.2022.03.001_b48) 2014
Wolfe (10.1016/j.visinf.2022.03.001_b54) 2020; 82
Zwillinger (10.1016/j.visinf.2022.03.001_b59) 1999
Haleem (10.1016/j.visinf.2022.03.001_b23) 2019; 39
Horikawa (10.1016/j.visinf.2022.03.001_b30) 2019; 6
Post (10.1016/j.visinf.2022.03.001_b42) 1995
Treisman (10.1016/j.visinf.2022.03.001_b50) 1977; 22
Treisman (10.1016/j.visinf.2022.03.001_b51) 1980; 12
Okoe (10.1016/j.visinf.2022.03.001_b40) 2018
Kheradpisheh (10.1016/j.visinf.2022.03.001_b34) 2016; 10
Behrisch (10.1016/j.visinf.2022.03.001_b5) 2018
Gramazio (10.1016/j.visinf.2022.03.001_b20) 2016; 23
Purchase (10.1016/j.visinf.2022.03.001_b45) 1995
Pashler (10.1016/j.visinf.2022.03.001_b41) 1988; 43
10.1016/j.visinf.2022.03.001_b27
10.1016/j.visinf.2022.03.001_b26
Baldi (10.1016/j.visinf.2022.03.001_b3) 2000; 16
Gleicher (10.1016/j.visinf.2022.03.001_b19) 2013; 19
Demiralp (10.1016/j.visinf.2022.03.001_b14) 2014; 20
Callaghan (10.1016/j.visinf.2022.03.001_b7) 1986; 39
Ware (10.1016/j.visinf.2022.03.001_b53) 1988; 30
Quinlan (10.1016/j.visinf.2022.03.001_b46) 1987; 41
Gramazio (10.1016/j.visinf.2022.03.001_b21) 2014; 20
Cleveland (10.1016/j.visinf.2022.03.001_b12) 1984; 79
de San Roman (10.1016/j.visinf.2022.03.001_b13) 2017; 164
Camgöz (10.1016/j.visinf.2022.03.001_b8) 2002; 27
Duncan (10.1016/j.visinf.2022.03.001_b15) 1989; 96
Haroz (10.1016/j.visinf.2022.03.001_b24) 2012; 18
Healey (10.1016/j.visinf.2022.03.001_b29) 2012; 18
Zhou (10.1016/j.visinf.2022.03.001_b58) 2008
Giovannangeli (10.1016/j.visinf.2022.03.001_b18) 2021
Russakovsky (10.1016/j.visinf.2022.03.001_b47) 2015; 115
Bertin (10.1016/j.visinf.2022.03.001_b6) 1983
Haehn (10.1016/j.visinf.2022.03.001_b22) 2018; 25
Bauer (10.1016/j.visinf.2022.03.001_b4) 1996; 36
Mackinlay (10.1016/j.visinf.2022.03.001_b37) 1986; 5
Tatler (10.1016/j.visinf.2022.03.001_b49) 2007; 7
References_xml – volume: 29
  start-page: 20
  year: 2004
  end-page: 28
  ident: b9
  article-title: Effects of hue, saturation, and brightness: Part 2: Attention
  publication-title: Color Res. Appl.
– volume: 7
  start-page: 4
  year: 2007
  ident: b49
  article-title: The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions
  publication-title: J. Vis.
– volume: 36
  start-page: 1439
  year: 1996
  end-page: 1466
  ident: b4
  article-title: Visual search for colour targets that are or are not linearly separable from distractors
  publication-title: Vis. Res.
– start-page: 625
  year: 2018
  end-page: 662
  ident: b5
  article-title: Quality metrics for information visualization
  publication-title: Computer Graphics Forum, Vol. 37
– start-page: 248
  year: 1997
  end-page: 261
  ident: b43
  article-title: Which aesthetic has the greatest effect on human understanding?
  publication-title: International Symposium on Graph Drawing
– volume: 43
  start-page: 307
  year: 1988
  end-page: 318
  ident: b41
  article-title: Cross-dimensional interaction and texture segregation
  publication-title: Percept. Psychophys.
– start-page: 99
  year: 2007
  end-page: 119
  ident: b56
  article-title: Guided search 4.0
  publication-title: Integr. Models Cogn. Syst.
– start-page: 288
  year: 1995
  end-page: 295
  ident: b42
  article-title: Iconic techniques for feature visualization
  publication-title: Proceedings Visualization’95
– volume: 18
  start-page: 2402
  year: 2012
  end-page: 2410
  ident: b24
  article-title: How capacity limits of attention influence information visualization effectiveness
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 79
  start-page: 531
  year: 1984
  end-page: 554
  ident: b12
  article-title: Graphical perception: Theory, experimentation, and application to the development of graphical methods
  publication-title: J. Am. Stat. Assoc.
– volume: 18
  start-page: 1170
  year: 2012
  end-page: 1188
  ident: b29
  article-title: Attention and visual memory in visualization and computer graphics
  publication-title: IEEE Trans. Vis. Comput. Graphics
– year: 2014
  ident: b48
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 19
  start-page: 2316
  year: 2013
  end-page: 2325
  ident: b19
  article-title: Perception of average value in multiclass scatterplots
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 39
  start-page: 40
  year: 2019
  end-page: 53
  ident: b23
  article-title: Evaluating the readability of force directed graph layouts: A deep learning approach
  publication-title: IEEE Comput. Graph. Appl.
– volume: 20
  start-page: 1933
  year: 2014
  end-page: 1942
  ident: b14
  article-title: Learning perceptual kernels for visualization design
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 82
  start-page: 383
  year: 2020
  end-page: 393
  ident: b55
  article-title: Major issues in the study of visual search: Part 2 of “40 years of feature integration: Special issue in memory of anne treisman”
  publication-title: Atten. Percept. Psychophys.
– year: 2020
  ident: b17
  article-title: Toward automatic comparison of visualization techniques: Application to graph visualization
  publication-title: Vis. Inform.
– start-page: 527
  year: 2005
  end-page: 534
  ident: b31
  article-title: Visualizing data with motion
  publication-title: VIS 05. IEEE Visualization, 2005
– volume: 30
  start-page: 127
  year: 1988
  end-page: 142
  ident: b53
  article-title: Using color dimensions to display data dimensions
  publication-title: Human Factors
– volume: 57
  start-page: 665
  year: 2009
  end-page: 674
  ident: b1
  article-title: Color graphs for automated cancer diagnosis and grading
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 82
  start-page: 1
  year: 2020
  end-page: 6
  ident: b54
  article-title: Forty years after feature integration theory: An introduction to the special issue in honor of the contributions of anne treisman
  publication-title: Atten. Percept. Psychophys.
– volume: 4
  start-page: 114
  year: 2005
  end-page: 135
  ident: b16
  article-title: On the readability of graphs using node-link and matrix-based representations: A controlled experiment and statistical analysis
  publication-title: Inf. Vis.
– volume: 23
  start-page: 521
  year: 2016
  end-page: 530
  ident: b20
  article-title: Colorgorical: Creating discriminable and preferable color palettes for information visualization
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 5
  start-page: 110
  year: 1986
  end-page: -141
  ident: b37
  article-title: Automating the design of graphical presentations of relational information
  publication-title: ACM Trans. Graph.
– volume: 6
  start-page: 1
  year: 2019
  end-page: 12
  ident: b30
  article-title: Characterization of deep neural network features by decodability from human brain activity
  publication-title: Sci. Data
– reference: He, S., Tavakoli, H.R., Borji, A., Mi, Y., Pugeault, N., 2019. Understanding and Visualizing Deep Visual Saliency Models. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 10198–10207.
– start-page: 435
  year: 1995
  end-page: 446
  ident: b45
  article-title: Validating graph drawing aesthetics
  publication-title: International Symposium on Graph Drawing
– volume: 47
  start-page: 583
  year: 1952
  end-page: 621
  ident: b35
  article-title: Use of ranks in one-criterion variance analysis
  publication-title: J. Amer. Statist. Assoc.
– year: 1999
  ident: b59
  article-title: CRC Standard Probability and Statistics Tables and Formulae
– volume: 164
  start-page: 82
  year: 2017
  end-page: 91
  ident: b13
  article-title: Saliency driven object recognition in egocentric videos with deep CNN: toward application in assistance to neuroprostheses
  publication-title: Comput. Vis. Image Underst.
– start-page: 263
  year: 1996
  end-page: 270
  ident: b28
  article-title: Choosing effective colours for data visualization
  publication-title: Proceedings of Seventh Annual IEEE Visualization’96
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b36
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 22
  start-page: 1
  year: 1977
  end-page: 11
  ident: b50
  article-title: Focused attention in the perception and retrieval of multidimensional stimuli
  publication-title: Percept. Psychophys.
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: b47
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– volume: 40
  start-page: 27
  year: 2003
  end-page: 37
  ident: b25
  article-title: ColorBrewer. Org: an online tool for selecting colour schemes for maps
  publication-title: Cartogr. J.
– start-page: 129
  year: 2021
  end-page: 136
  ident: b18
  article-title: Analysis of deep neural networks correlations with human subjects on a perception task
  publication-title: 2021 25th International Conference Information Visualisation (IV)
– volume: 41
  start-page: 455
  year: 1987
  end-page: 472
  ident: b46
  article-title: Visual search for targets defined by combinations of color, shape, and size: An examination of the task constraints on feature and conjunction searches
  publication-title: Percept. Psychophys.
– year: 2015
  ident: b11
  article-title: Keras
– year: 2012
  ident: b52
  article-title: Information Visualization: Perception for Design
– volume: 10
  start-page: 302
  year: 2004
  end-page: 313
  ident: b32
  article-title: Hierarchical data visualization using a fast rectangle-packing algorithm
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 96
  start-page: 433
  year: 1989
  end-page: 458
  ident: b15
  article-title: Visual search and stimulus similarity
  publication-title: Psychol. Rev.
– volume: 20
  start-page: 1953
  year: 2014
  end-page: 1962
  ident: b21
  article-title: The relation between visualization size, grouping, and user performance
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 10
  start-page: 92
  year: 2016
  ident: b34
  article-title: Humans and deep networks largely agree on which kinds of variation make object recognition harder
  publication-title: Front. Comput. Neurosci.
– volume: 1
  start-page: 1
  year: 2017
  end-page: 8
  ident: b57
  article-title: Five factors that guide attention in visual search
  publication-title: Nat. Hum. Behav.
– volume: 68
  start-page: 361
  year: 1973
  end-page: 368
  ident: b10
  article-title: The use of faces to represent points in k-dimensional space graphically
  publication-title: J. Amer. Statist. Assoc.
– volume: 27
  start-page: 199
  year: 2002
  end-page: 207
  ident: b8
  article-title: Effects of hue, saturation, and brightness on preference
  publication-title: Color Res. Appl.
– start-page: 1047
  year: 2008
  end-page: 1054
  ident: b58
  article-title: Visual clustering in parallel coordinates
  publication-title: Computer Graphics Forum, Vol. 27
– volume: 43
  start-page: 1667
  year: 2017
  ident: b39
  article-title: Redundant encoding strengthens segmentation and grouping in visual displays of data
  publication-title: J. Exp. Psychol.: Hum. Percept. Perform.
– volume: 39
  start-page: 32
  year: 1986
  end-page: 38
  ident: b7
  article-title: Visual texture segregation based on orientation and hue
  publication-title: Percept. Psychophys.
– volume: 12
  start-page: 1
  year: 2021
  end-page: 14
  ident: b33
  article-title: Qualitative similarities and differences in visual object representations between brains and deep networks
  publication-title: Nat. Commun.
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 770–778.
– volume: 25
  start-page: 641
  year: 2018
  end-page: 650
  ident: b22
  article-title: Evaluating ‘graphical perception’with CNNs
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 4
  start-page: 40
  year: 2010
  end-page: 79
  ident: b2
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
– year: 2018
  ident: b40
  article-title: Node-link or adjacency matrices: Old question, new insights
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 12
  start-page: 97
  year: 1980
  end-page: 136
  ident: b51
  article-title: A feature-integration theory of attention
  publication-title: Cogn. Psychol.
– year: 1983
  ident: b6
  article-title: Semiology of Graphics: Diagrams, Networks, Maps
– year: 2012
  ident: b44
  article-title: Experimental Human-Computer Interaction: A Practical Guide with Visual Examples
– volume: 16
  start-page: 412
  year: 2000
  end-page: 424
  ident: b3
  article-title: Assessing the accuracy of prediction algorithms for classification: An overview
  publication-title: Bioinformatics
– volume: 63
  start-page: 81
  year: 1956
  ident: b38
  article-title: The magical number seven, plus or minus two: Some limits on our capacity for processing information.
  publication-title: Psychol. Rev.
– volume: 5
  start-page: 110
  issue: 2
  year: 1986
  ident: 10.1016/j.visinf.2022.03.001_b37
  article-title: Automating the design of graphical presentations of relational information
  publication-title: ACM Trans. Graph.
  doi: 10.1145/22949.22950
– volume: 96
  start-page: 433
  issue: 3
  year: 1989
  ident: 10.1016/j.visinf.2022.03.001_b15
  article-title: Visual search and stimulus similarity
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.96.3.433
– volume: 63
  start-page: 81
  issue: 2
  year: 1956
  ident: 10.1016/j.visinf.2022.03.001_b38
  article-title: The magical number seven, plus or minus two: Some limits on our capacity for processing information.
  publication-title: Psychol. Rev.
  doi: 10.1037/h0043158
– year: 2012
  ident: 10.1016/j.visinf.2022.03.001_b52
– ident: 10.1016/j.visinf.2022.03.001_b27
  doi: 10.1109/CVPR.2016.90
– volume: 36
  start-page: 1439
  issue: 10
  year: 1996
  ident: 10.1016/j.visinf.2022.03.001_b4
  article-title: Visual search for colour targets that are or are not linearly separable from distractors
  publication-title: Vis. Res.
  doi: 10.1016/0042-6989(95)00207-3
– volume: 18
  start-page: 1170
  issue: 7
  year: 2012
  ident: 10.1016/j.visinf.2022.03.001_b29
  article-title: Attention and visual memory in visualization and computer graphics
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2011.127
– year: 2020
  ident: 10.1016/j.visinf.2022.03.001_b17
  article-title: Toward automatic comparison of visualization techniques: Application to graph visualization
  publication-title: Vis. Inform.
  doi: 10.1016/j.visinf.2020.04.002
– volume: 1
  start-page: 1
  issue: 3
  year: 2017
  ident: 10.1016/j.visinf.2022.03.001_b57
  article-title: Five factors that guide attention in visual search
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-017-0058
– volume: 29
  start-page: 20
  issue: 1
  year: 2004
  ident: 10.1016/j.visinf.2022.03.001_b9
  article-title: Effects of hue, saturation, and brightness: Part 2: Attention
  publication-title: Color Res. Appl.
  doi: 10.1002/col.10214
– volume: 68
  start-page: 361
  issue: 342
  year: 1973
  ident: 10.1016/j.visinf.2022.03.001_b10
  article-title: The use of faces to represent points in k-dimensional space graphically
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1973.10482434
– volume: 23
  start-page: 521
  issue: 1
  year: 2016
  ident: 10.1016/j.visinf.2022.03.001_b20
  article-title: Colorgorical: Creating discriminable and preferable color palettes for information visualization
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2016.2598918
– year: 2012
  ident: 10.1016/j.visinf.2022.03.001_b44
– volume: 16
  start-page: 412
  issue: 5
  year: 2000
  ident: 10.1016/j.visinf.2022.03.001_b3
  article-title: Assessing the accuracy of prediction algorithms for classification: An overview
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.5.412
– volume: 10
  start-page: 92
  year: 2016
  ident: 10.1016/j.visinf.2022.03.001_b34
  article-title: Humans and deep networks largely agree on which kinds of variation make object recognition harder
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2016.00092
– start-page: 435
  year: 1995
  ident: 10.1016/j.visinf.2022.03.001_b45
  article-title: Validating graph drawing aesthetics
– volume: 43
  start-page: 1667
  issue: 9
  year: 2017
  ident: 10.1016/j.visinf.2022.03.001_b39
  article-title: Redundant encoding strengthens segmentation and grouping in visual displays of data
  publication-title: J. Exp. Psychol.: Hum. Percept. Perform.
– volume: 47
  start-page: 583
  issue: 260
  year: 1952
  ident: 10.1016/j.visinf.2022.03.001_b35
  article-title: Use of ranks in one-criterion variance analysis
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1952.10483441
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.visinf.2022.03.001_b30
  article-title: Characterization of deep neural network features by decodability from human brain activity
  publication-title: Sci. Data
  doi: 10.1038/sdata.2019.12
– start-page: 248
  year: 1997
  ident: 10.1016/j.visinf.2022.03.001_b43
  article-title: Which aesthetic has the greatest effect on human understanding?
– start-page: 129
  year: 2021
  ident: 10.1016/j.visinf.2022.03.001_b18
  article-title: Analysis of deep neural networks correlations with human subjects on a perception task
– start-page: 527
  year: 2005
  ident: 10.1016/j.visinf.2022.03.001_b31
  article-title: Visualizing data with motion
– volume: 10
  start-page: 302
  issue: 3
  year: 2004
  ident: 10.1016/j.visinf.2022.03.001_b32
  article-title: Hierarchical data visualization using a fast rectangle-packing algorithm
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2004.1272729
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.visinf.2022.03.001_b47
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– start-page: 625
  year: 2018
  ident: 10.1016/j.visinf.2022.03.001_b5
  article-title: Quality metrics for information visualization
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.visinf.2022.03.001_b33
  article-title: Qualitative similarities and differences in visual object representations between brains and deep networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22078-3
– volume: 43
  start-page: 307
  issue: 4
  year: 1988
  ident: 10.1016/j.visinf.2022.03.001_b41
  article-title: Cross-dimensional interaction and texture segregation
  publication-title: Percept. Psychophys.
  doi: 10.3758/BF03208800
– volume: 164
  start-page: 82
  year: 2017
  ident: 10.1016/j.visinf.2022.03.001_b13
  article-title: Saliency driven object recognition in egocentric videos with deep CNN: toward application in assistance to neuroprostheses
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2017.03.001
– volume: 25
  start-page: 641
  issue: 1
  year: 2018
  ident: 10.1016/j.visinf.2022.03.001_b22
  article-title: Evaluating ‘graphical perception’with CNNs
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2018.2865138
– volume: 18
  start-page: 2402
  issue: 12
  year: 2012
  ident: 10.1016/j.visinf.2022.03.001_b24
  article-title: How capacity limits of attention influence information visualization effectiveness
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2012.233
– volume: 39
  start-page: 32
  issue: 1
  year: 1986
  ident: 10.1016/j.visinf.2022.03.001_b7
  article-title: Visual texture segregation based on orientation and hue
  publication-title: Percept. Psychophys.
  doi: 10.3758/BF03207581
– volume: 22
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.visinf.2022.03.001_b50
  article-title: Focused attention in the perception and retrieval of multidimensional stimuli
  publication-title: Percept. Psychophys.
  doi: 10.3758/BF03206074
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.visinf.2022.03.001_b36
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 19
  start-page: 2316
  issue: 12
  year: 2013
  ident: 10.1016/j.visinf.2022.03.001_b19
  article-title: Perception of average value in multiclass scatterplots
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2013.183
– volume: 41
  start-page: 455
  issue: 5
  year: 1987
  ident: 10.1016/j.visinf.2022.03.001_b46
  article-title: Visual search for targets defined by combinations of color, shape, and size: An examination of the task constraints on feature and conjunction searches
  publication-title: Percept. Psychophys.
  doi: 10.3758/BF03203039
– volume: 20
  start-page: 1953
  issue: 12
  year: 2014
  ident: 10.1016/j.visinf.2022.03.001_b21
  article-title: The relation between visualization size, grouping, and user performance
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2014.2346983
– volume: 4
  start-page: 114
  issue: 2
  year: 2005
  ident: 10.1016/j.visinf.2022.03.001_b16
  article-title: On the readability of graphs using node-link and matrix-based representations: A controlled experiment and statistical analysis
  publication-title: Inf. Vis.
  doi: 10.1057/palgrave.ivs.9500092
– year: 2018
  ident: 10.1016/j.visinf.2022.03.001_b40
  article-title: Node-link or adjacency matrices: Old question, new insights
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 7
  start-page: 4
  issue: 14
  year: 2007
  ident: 10.1016/j.visinf.2022.03.001_b49
  article-title: The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions
  publication-title: J. Vis.
  doi: 10.1167/7.14.4
– volume: 57
  start-page: 665
  issue: 3
  year: 2009
  ident: 10.1016/j.visinf.2022.03.001_b1
  article-title: Color graphs for automated cancer diagnosis and grading
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2033804
– volume: 4
  start-page: 40
  year: 2010
  ident: 10.1016/j.visinf.2022.03.001_b2
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
  doi: 10.1214/09-SS054
– start-page: 99
  year: 2007
  ident: 10.1016/j.visinf.2022.03.001_b56
  article-title: Guided search 4.0
  publication-title: Integr. Models Cogn. Syst.
  doi: 10.1093/acprof:oso/9780195189193.003.0008
– year: 2014
  ident: 10.1016/j.visinf.2022.03.001_b48
– volume: 79
  start-page: 531
  issue: 387
  year: 1984
  ident: 10.1016/j.visinf.2022.03.001_b12
  article-title: Graphical perception: Theory, experimentation, and application to the development of graphical methods
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1984.10478080
– volume: 82
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.visinf.2022.03.001_b54
  article-title: Forty years after feature integration theory: An introduction to the special issue in honor of the contributions of anne treisman
  publication-title: Atten. Percept. Psychophys.
  doi: 10.3758/s13414-019-01966-3
– volume: 20
  start-page: 1933
  issue: 12
  year: 2014
  ident: 10.1016/j.visinf.2022.03.001_b14
  article-title: Learning perceptual kernels for visualization design
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2014.2346978
– start-page: 263
  year: 1996
  ident: 10.1016/j.visinf.2022.03.001_b28
  article-title: Choosing effective colours for data visualization
– year: 1999
  ident: 10.1016/j.visinf.2022.03.001_b59
– volume: 39
  start-page: 40
  issue: 4
  year: 2019
  ident: 10.1016/j.visinf.2022.03.001_b23
  article-title: Evaluating the readability of force directed graph layouts: A deep learning approach
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/MCG.2018.2881501
– start-page: 1047
  year: 2008
  ident: 10.1016/j.visinf.2022.03.001_b58
  article-title: Visual clustering in parallel coordinates
– year: 2015
  ident: 10.1016/j.visinf.2022.03.001_b11
– volume: 40
  start-page: 27
  issue: 1
  year: 2003
  ident: 10.1016/j.visinf.2022.03.001_b25
  article-title: ColorBrewer. Org: an online tool for selecting colour schemes for maps
  publication-title: Cartogr. J.
  doi: 10.1179/000870403235002042
– volume: 27
  start-page: 199
  issue: 3
  year: 2002
  ident: 10.1016/j.visinf.2022.03.001_b8
  article-title: Effects of hue, saturation, and brightness on preference
  publication-title: Color Res. Appl.
  doi: 10.1002/col.10051
– volume: 12
  start-page: 97
  issue: 1
  year: 1980
  ident: 10.1016/j.visinf.2022.03.001_b51
  article-title: A feature-integration theory of attention
  publication-title: Cogn. Psychol.
  doi: 10.1016/0010-0285(80)90005-5
– ident: 10.1016/j.visinf.2022.03.001_b26
  doi: 10.1109/CVPR.2019.01045
– start-page: 288
  year: 1995
  ident: 10.1016/j.visinf.2022.03.001_b42
  article-title: Iconic techniques for feature visualization
– year: 1983
  ident: 10.1016/j.visinf.2022.03.001_b6
– volume: 30
  start-page: 127
  issue: 2
  year: 1988
  ident: 10.1016/j.visinf.2022.03.001_b53
  article-title: Using color dimensions to display data dimensions
  publication-title: Human Factors
  doi: 10.1177/001872088803000201
– volume: 82
  start-page: 383
  issue: 2
  year: 2020
  ident: 10.1016/j.visinf.2022.03.001_b55
  article-title: Major issues in the study of visual search: Part 2 of “40 years of feature integration: Special issue in memory of anne treisman”
  publication-title: Atten. Percept. Psychophys.
  doi: 10.3758/s13414-020-02022-1
SSID ssj0002810111
ssib052855627
Score 2.219906
Snippet The design of efficient representations is well established as a fruitful way to explore and analyze complex or large data. In these representations, data are...
SourceID doaj
hal
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 25
SubjectTerms Artificial Intelligence
Automated evaluation
Computer Science
Computer Vision and Pattern Recognition
Deep learning
Machine Learning
Outlier detection
User evaluation
Visual search
Title Color and Shape efficiency for outlier detection from automated to user evaluation
URI https://dx.doi.org/10.1016/j.visinf.2022.03.001
https://hal.science/hal-03617222
https://doaj.org/article/55dd5815ef5549d5af9b7fb4902e291b
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7qyYsoKq4vgngtNknTbI8qyiLqwQfsLeQxRUW6Il1_vzNpq-5pL15DmpSZab8vYeYbxk4haAQFH7LShzortNNZhUCZudIYakCFJJYKnO_uy8lzcTPV0z-tvignrJMH7gx3pnWMeiw01Ah8VdSurrypfVHlEmQlPP19EfP-HKbe0pWRoCbq1FkulRblcjrUzaXkLircbkjBU8pO41Qs4FKS71-Ap9WX4aI1Ac_1JtvoGSM_7950i61As80e8MA_--SuifzxxX0AhyQFQXWUHGkopzwfXJFHaFOuVcOpjoS7eTtDigqRtzNO9xP8V-17hz1fXz1dTrK-PUIWCi3bzBkDzvvooneE67UC5VSoShwuSIgugJLoAfzCcvTEuMSThYcSxkWtDB6z1C5ba2YN7DEugvMqryIYAYUKYuxxcVeXUZgSgpcjpgbj2NBrh1MLi3c7JIm92c6klkxqc0W5ciOW_Tz10WlnLJl_QXb_mUvK12kA48H28WCXxcOImcFrticRHTnApV6XbH-CTl7YfXJ-a2kMYR6JnpRfYv8_3vGArdO-XcbZIVtrP-dwhNym9ccpjL8Bj5T2Nw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Color+and+Shape+efficiency+for+outlier+detection+from+automated+to+user+evaluation&rft.jtitle=Visual+informatics+%28Online%29&rft.au=Loann+Giovannangeli&rft.au=Romain+Bourqui&rft.au=Romain+Giot&rft.au=David+Auber&rft.date=2022-06-01&rft.pub=Elsevier&rft.issn=2468-502X&rft.eissn=2468-502X&rft.volume=6&rft.issue=2&rft.spage=25&rft.epage=40&rft_id=info:doi/10.1016%2Fj.visinf.2022.03.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_55dd5815ef5549d5af9b7fb4902e291b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-502X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-502X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-502X&client=summon