Color and Shape efficiency for outlier detection from automated to user evaluation
The design of efficient representations is well established as a fruitful way to explore and analyze complex or large data. In these representations, data are encoded with various visual attributes depending on the needs of the representation itself. To make coherent design choices about visual attr...
Saved in:
Published in | Visual informatics (Online) Vol. 6; no. 2; pp. 25 - 40 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The design of efficient representations is well established as a fruitful way to explore and analyze complex or large data. In these representations, data are encoded with various visual attributes depending on the needs of the representation itself. To make coherent design choices about visual attributes, the visual search field proposes guidelines based on the human brain’s perception of features. However, information visualization representations frequently need to depict more data than the amount these guidelines have been validated on. Since, the information visualization community has extended these guidelines to a wider parameter space.
This paper contributes to this theme by extending visual search theories to an information visualization context. We consider a visual search task where subjects are asked to find an unknown outlier in a grid of randomly laid out distractors. Stimuli are defined by color and shape features for the purpose of visually encoding categorical data. The experimental protocol is made of a parameters space reduction step (i.e., sub-sampling) based on a machine learning model, and a user evaluation to validate hypotheses and measure capacity limits. The results show that the major difficulty factor is the number of visual attributes that are used to encode the outlier. When redundantly encoded, the display heterogeneity has no effect on the task. When encoded with one attribute, the difficulty depends on that attribute heterogeneity until its capacity limit (7 for color, 5 for shape) is reached. Finally, when encoded with two attributes simultaneously, performances drop drastically even with minor heterogeneity. |
---|---|
AbstractList | The design of efficient representations is well established as a fruitful way to explore and analyze complex or large data. In these representations, data are encoded with various visual attributes depending on the needs of the representation itself. To make coherent design choices about visual attributes, the visual search field proposes guidelines based on the human brain’s perception of features. However, information visualization representations frequently need to depict more data than the amount these guidelines have been validated on. Since, the information visualization community has extended these guidelines to a wider parameter space.This paper contributes to this theme by extending visual search theories to an information visualization context. We consider a visual search task where subjects are asked to find an unknown outlier in a grid of randomly laid out distractors. Stimuli are defined by color and shape features for the purpose of visually encoding categorical data. The experimental protocol is made of a parameters space reduction step (i.e., sub-sampling) based on a machine learning model, and a user evaluation to validate hypotheses and measure capacity limits. The results show that the major difficulty factor is the number of visual attributes that are used to encode the outlier. When redundantly encoded, the display heterogeneity has no effect on the task. When encoded with one attribute, the difficulty depends on that attribute heterogeneity until its capacity limit (7 for color, 5 for shape) is reached. Finally, when encoded with two attributes simultaneously, performances drop drastically even with minor heterogeneity. The design of efficient representations is well established as a fruitful way to explore and analyze complex or large data. In these representations, data are encoded with various visual attributes depending on the needs of the representation itself. To make coherent design choices about visual attributes, the visual search field proposes guidelines based on the human brain’s perception of features. However, information visualization representations frequently need to depict more data than the amount these guidelines have been validated on. Since, the information visualization community has extended these guidelines to a wider parameter space. This paper contributes to this theme by extending visual search theories to an information visualization context. We consider a visual search task where subjects are asked to find an unknown outlier in a grid of randomly laid out distractors. Stimuli are defined by color and shape features for the purpose of visually encoding categorical data. The experimental protocol is made of a parameters space reduction step (i.e., sub-sampling) based on a machine learning model, and a user evaluation to validate hypotheses and measure capacity limits. The results show that the major difficulty factor is the number of visual attributes that are used to encode the outlier. When redundantly encoded, the display heterogeneity has no effect on the task. When encoded with one attribute, the difficulty depends on that attribute heterogeneity until its capacity limit (7 for color, 5 for shape) is reached. Finally, when encoded with two attributes simultaneously, performances drop drastically even with minor heterogeneity. |
Author | Auber, David Bourqui, Romain Giot, Romain Giovannangeli, Loann |
Author_xml | – sequence: 1 givenname: Loann surname: Giovannangeli fullname: Giovannangeli, Loann email: loann.giovannangeli@labri.fr – sequence: 2 givenname: Romain surname: Bourqui fullname: Bourqui, Romain email: romain.bourqui@labri.fr – sequence: 3 givenname: Romain orcidid: 0000-0002-0638-7504 surname: Giot fullname: Giot, Romain email: romain.giot@labri.fr – sequence: 4 givenname: David orcidid: 0000-0002-1114-8612 surname: Auber fullname: Auber, David email: david.auber@labri.fr |
BackLink | https://hal.science/hal-03617222$$DView record in HAL |
BookMark | eNqFkV9rFDEUxYO0YG37DXyYVx92zJ9JJuODUBa1hQXBVvAt3CQ3NsvspGSyC_32ZncU1Ad9Sjg551xufq_I2ZQmJOQ1oy2jTL3dtoc4xym0nHLeUtFSyl6QC94pvZKUfzv77f6SXM_zllLKdc0ydkG-rNOYcgOTb-4f4QkbDCG6iJN7bkJ9SPsyRsyNx4KuxDQ1IaddA_uSdlDQNyU1-7ka8ADjHo6OK3IeYJzx-ud5Sb5-_PCwvl1tPn-6W99sVq6TvKyg7xGs9eAtaDbQIFCAcIOqcqclVQ4Fty4ooamyTqteaYsKdRdEr4dBXJK7pdcn2JqnHHeQn02CaE5Cyt8N5BLdiEZK76VmEoOU3eAlhMH2wXYD5cgHZmvXm6XrEcY_qm5vNuaoUaFYzzk_sOp9t3hdTvOcMRgXy2nzkiGOhlFzBGO2ZgFjjmBqgalgarj7K_xr2n9i75cY1g89VCBmPkFCH3PlUjeO_y74AWEcrGM |
CitedBy_id | crossref_primary_10_1109_TIV_2023_3288907 crossref_primary_10_1109_TVCG_2022_3209430 crossref_primary_10_1109_TVCG_2022_3209468 crossref_primary_10_1007_s12650_023_00909_3 |
Cites_doi | 10.1145/22949.22950 10.1037/0033-295X.96.3.433 10.1037/h0043158 10.1109/CVPR.2016.90 10.1016/0042-6989(95)00207-3 10.1109/TVCG.2011.127 10.1016/j.visinf.2020.04.002 10.1038/s41562-017-0058 10.1002/col.10214 10.1080/01621459.1973.10482434 10.1109/TVCG.2016.2598918 10.1093/bioinformatics/16.5.412 10.3389/fncom.2016.00092 10.1080/01621459.1952.10483441 10.1038/sdata.2019.12 10.1109/TVCG.2004.1272729 10.1007/s11263-015-0816-y 10.1038/s41467-021-22078-3 10.3758/BF03208800 10.1016/j.cviu.2017.03.001 10.1109/TVCG.2018.2865138 10.1109/TVCG.2012.233 10.3758/BF03207581 10.3758/BF03206074 10.1109/5.726791 10.1109/TVCG.2013.183 10.3758/BF03203039 10.1109/TVCG.2014.2346983 10.1057/palgrave.ivs.9500092 10.1167/7.14.4 10.1109/TBME.2009.2033804 10.1214/09-SS054 10.1093/acprof:oso/9780195189193.003.0008 10.1080/01621459.1984.10478080 10.3758/s13414-019-01966-3 10.1109/TVCG.2014.2346978 10.1109/MCG.2018.2881501 10.1179/000870403235002042 10.1002/col.10051 10.1016/0010-0285(80)90005-5 10.1109/CVPR.2019.01045 10.1177/001872088803000201 10.3758/s13414-020-02022-1 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) Attribution - NonCommercial |
Copyright_xml | – notice: 2022 The Author(s) – notice: Attribution - NonCommercial |
DBID | 6I. AAFTH AAYXX CITATION 1XC VOOES DOA |
DOI | 10.1016/j.visinf.2022.03.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2468-502X |
EndPage | 40 |
ExternalDocumentID | oai_doaj_org_article_55dd5815ef5549d5af9b7fb4902e291b oai_HAL_hal_03617222v1 10_1016_j_visinf_2022_03_001 S2468502X22000146 |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ M~E NCXOZ OK1 ROL SSZ 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION 1XC VOOES |
ID | FETCH-LOGICAL-c452t-a77eabbdadba8190f3e3a3c967ea48506ce32bcf63806bc86768be6e84f378993 |
IEDL.DBID | DOA |
ISSN | 2468-502X 2543-2656 |
IngestDate | Wed Aug 27 01:02:54 EDT 2025 Tue May 27 06:21:37 EDT 2025 Thu Apr 24 23:06:52 EDT 2025 Tue Jul 01 03:37:20 EDT 2025 Wed May 17 00:25:49 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Deep learning Outlier detection Automated evaluation User evaluation Visual search |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-a77eabbdadba8190f3e3a3c967ea48506ce32bcf63806bc86768be6e84f378993 |
ORCID | 0000-0002-0638-7504 0000-0002-1114-8612 0000-0002-9395-6495 0000-0002-1847-2589 |
OpenAccessLink | https://doaj.org/article/55dd5815ef5549d5af9b7fb4902e291b |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_55dd5815ef5549d5af9b7fb4902e291b hal_primary_oai_HAL_hal_03617222v1 crossref_citationtrail_10_1016_j_visinf_2022_03_001 crossref_primary_10_1016_j_visinf_2022_03_001 elsevier_sciencedirect_doi_10_1016_j_visinf_2022_03_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Visual informatics (Online) |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Baldi, Brunak, Chauvin, Andersen, Nielsen (b3) 2000; 16 Tatler (b49) 2007; 7 Kheradpisheh, Ghodrati, Ganjtabesh, Masquelier (b34) 2016; 10 Chernoff (b10) 1973; 68 Wolfe, Gray (b56) 2007 Huber, Healey (b31) 2005 Ware, Beatty (b53) 1988; 30 Camgöz, Yener, Güvenç (b9) 2004; 29 Treisman, Gelade (b51) 1980; 12 Wolfe (b54) 2020; 82 LeCun, Bottou, Bengio, Haffner (b36) 1998; 86 Haehn, Tompkin, Pfister (b22) 2018; 25 Chollet (b11) 2015 Quinlan, Humphreys (b46) 1987; 41 Okoe, Jianu, Kobourov (b40) 2018 Kruskal, Wallis (b35) 1952; 47 Purchase (b44) 2012 de San Roman, Benois-Pineau, Domenger, Paclet, Cataert, De Rugy (b13) 2017; 164 Itoh, Yamaguchi, Ikehata, Kajinaga (b32) 2004; 10 Gleicher, Correll, Nothelfer, Franconeri (b19) 2013; 19 Callaghan, Lasaga, Garner (b7) 1986; 39 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b47) 2015; 115 Post, van Walsum, Post, Silver (b42) 1995 Miller (b38) 1956; 63 Cleveland, McGill (b12) 1984; 79 He, S., Tavakoli, H.R., Borji, A., Mi, Y., Pugeault, N., 2019. Understanding and Visualizing Deep Visual Saliency Models. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 10198–10207. Bauer, Jolicoeur, Cowan (b4) 1996; 36 He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 770–778. Ware (b52) 2012 Bertin (b6) 1983 Nothelfer, Gleicher, Franconeri (b39) 2017; 43 Simonyan, Zisserman (b48) 2014 Giovannangeli, Bourqui, Giot, Auber (b17) 2020 Gramazio, Laidlaw, Schloss (b20) 2016; 23 Gramazio, Schloss, Laidlaw (b21) 2014; 20 Camgöz, Yener, Güvenç (b8) 2002; 27 Demiralp (b14) 2014; 20 Healey (b28) 1996 Arlot, Celisse (b2) 2010; 4 Duncan, Humphreys (b15) 1989; 96 Zhou, Yuan, Qu, Cui, Chen (b58) 2008 Wolfe, Horowitz (b57) 2017; 1 Jacob, Pramod, Katti, Arun (b33) 2021; 12 Haleem, Wang, Puri, Wadhwa, Qu (b23) 2019; 39 Harrower, Brewer (b25) 2003; 40 Giovannangeli, Giot, Auber, Benois-Pineau, Bourqui (b18) 2021 Purchase (b43) 1997 Purchase, Cohen, James (b45) 1995 Behrisch, Blumenschein, Kim, Shao, El-Assady, Fuchs, Seebacher, Diehl, Brandes, Pfister (b5) 2018 Haroz, Whitney (b24) 2012; 18 Pashler (b41) 1988; 43 Ghoniem, Fekete, Castagliola (b16) 2005; 4 Healey, Enns (b29) 2012; 18 Wolfe (b55) 2020; 82 Zwillinger, Kokoska (b59) 1999 Mackinlay (b37) 1986; 5 Altunbay, Cigir, Sokmensuer, Gunduz-Demir (b1) 2009; 57 Horikawa, Aoki, Tsukamoto, Kamitani (b30) 2019; 6 Treisman (b50) 1977; 22 Kruskal (10.1016/j.visinf.2022.03.001_b35) 1952; 47 Chollet (10.1016/j.visinf.2022.03.001_b11) 2015 Purchase (10.1016/j.visinf.2022.03.001_b44) 2012 Chernoff (10.1016/j.visinf.2022.03.001_b10) 1973; 68 Altunbay (10.1016/j.visinf.2022.03.001_b1) 2009; 57 Huber (10.1016/j.visinf.2022.03.001_b31) 2005 Arlot (10.1016/j.visinf.2022.03.001_b2) 2010; 4 Giovannangeli (10.1016/j.visinf.2022.03.001_b17) 2020 Wolfe (10.1016/j.visinf.2022.03.001_b55) 2020; 82 Wolfe (10.1016/j.visinf.2022.03.001_b57) 2017; 1 Purchase (10.1016/j.visinf.2022.03.001_b43) 1997 Wolfe (10.1016/j.visinf.2022.03.001_b56) 2007 Nothelfer (10.1016/j.visinf.2022.03.001_b39) 2017; 43 Ware (10.1016/j.visinf.2022.03.001_b52) 2012 Camgöz (10.1016/j.visinf.2022.03.001_b9) 2004; 29 Miller (10.1016/j.visinf.2022.03.001_b38) 1956; 63 Harrower (10.1016/j.visinf.2022.03.001_b25) 2003; 40 Healey (10.1016/j.visinf.2022.03.001_b28) 1996 Ghoniem (10.1016/j.visinf.2022.03.001_b16) 2005; 4 Itoh (10.1016/j.visinf.2022.03.001_b32) 2004; 10 Jacob (10.1016/j.visinf.2022.03.001_b33) 2021; 12 LeCun (10.1016/j.visinf.2022.03.001_b36) 1998; 86 Simonyan (10.1016/j.visinf.2022.03.001_b48) 2014 Wolfe (10.1016/j.visinf.2022.03.001_b54) 2020; 82 Zwillinger (10.1016/j.visinf.2022.03.001_b59) 1999 Haleem (10.1016/j.visinf.2022.03.001_b23) 2019; 39 Horikawa (10.1016/j.visinf.2022.03.001_b30) 2019; 6 Post (10.1016/j.visinf.2022.03.001_b42) 1995 Treisman (10.1016/j.visinf.2022.03.001_b50) 1977; 22 Treisman (10.1016/j.visinf.2022.03.001_b51) 1980; 12 Okoe (10.1016/j.visinf.2022.03.001_b40) 2018 Kheradpisheh (10.1016/j.visinf.2022.03.001_b34) 2016; 10 Behrisch (10.1016/j.visinf.2022.03.001_b5) 2018 Gramazio (10.1016/j.visinf.2022.03.001_b20) 2016; 23 Purchase (10.1016/j.visinf.2022.03.001_b45) 1995 Pashler (10.1016/j.visinf.2022.03.001_b41) 1988; 43 10.1016/j.visinf.2022.03.001_b27 10.1016/j.visinf.2022.03.001_b26 Baldi (10.1016/j.visinf.2022.03.001_b3) 2000; 16 Gleicher (10.1016/j.visinf.2022.03.001_b19) 2013; 19 Demiralp (10.1016/j.visinf.2022.03.001_b14) 2014; 20 Callaghan (10.1016/j.visinf.2022.03.001_b7) 1986; 39 Ware (10.1016/j.visinf.2022.03.001_b53) 1988; 30 Quinlan (10.1016/j.visinf.2022.03.001_b46) 1987; 41 Gramazio (10.1016/j.visinf.2022.03.001_b21) 2014; 20 Cleveland (10.1016/j.visinf.2022.03.001_b12) 1984; 79 de San Roman (10.1016/j.visinf.2022.03.001_b13) 2017; 164 Camgöz (10.1016/j.visinf.2022.03.001_b8) 2002; 27 Duncan (10.1016/j.visinf.2022.03.001_b15) 1989; 96 Haroz (10.1016/j.visinf.2022.03.001_b24) 2012; 18 Healey (10.1016/j.visinf.2022.03.001_b29) 2012; 18 Zhou (10.1016/j.visinf.2022.03.001_b58) 2008 Giovannangeli (10.1016/j.visinf.2022.03.001_b18) 2021 Russakovsky (10.1016/j.visinf.2022.03.001_b47) 2015; 115 Bertin (10.1016/j.visinf.2022.03.001_b6) 1983 Haehn (10.1016/j.visinf.2022.03.001_b22) 2018; 25 Bauer (10.1016/j.visinf.2022.03.001_b4) 1996; 36 Mackinlay (10.1016/j.visinf.2022.03.001_b37) 1986; 5 Tatler (10.1016/j.visinf.2022.03.001_b49) 2007; 7 |
References_xml | – volume: 29 start-page: 20 year: 2004 end-page: 28 ident: b9 article-title: Effects of hue, saturation, and brightness: Part 2: Attention publication-title: Color Res. Appl. – volume: 7 start-page: 4 year: 2007 ident: b49 article-title: The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions publication-title: J. Vis. – volume: 36 start-page: 1439 year: 1996 end-page: 1466 ident: b4 article-title: Visual search for colour targets that are or are not linearly separable from distractors publication-title: Vis. Res. – start-page: 625 year: 2018 end-page: 662 ident: b5 article-title: Quality metrics for information visualization publication-title: Computer Graphics Forum, Vol. 37 – start-page: 248 year: 1997 end-page: 261 ident: b43 article-title: Which aesthetic has the greatest effect on human understanding? publication-title: International Symposium on Graph Drawing – volume: 43 start-page: 307 year: 1988 end-page: 318 ident: b41 article-title: Cross-dimensional interaction and texture segregation publication-title: Percept. Psychophys. – start-page: 99 year: 2007 end-page: 119 ident: b56 article-title: Guided search 4.0 publication-title: Integr. Models Cogn. Syst. – start-page: 288 year: 1995 end-page: 295 ident: b42 article-title: Iconic techniques for feature visualization publication-title: Proceedings Visualization’95 – volume: 18 start-page: 2402 year: 2012 end-page: 2410 ident: b24 article-title: How capacity limits of attention influence information visualization effectiveness publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 79 start-page: 531 year: 1984 end-page: 554 ident: b12 article-title: Graphical perception: Theory, experimentation, and application to the development of graphical methods publication-title: J. Am. Stat. Assoc. – volume: 18 start-page: 1170 year: 2012 end-page: 1188 ident: b29 article-title: Attention and visual memory in visualization and computer graphics publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2014 ident: b48 article-title: Very deep convolutional networks for large-scale image recognition – volume: 19 start-page: 2316 year: 2013 end-page: 2325 ident: b19 article-title: Perception of average value in multiclass scatterplots publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 39 start-page: 40 year: 2019 end-page: 53 ident: b23 article-title: Evaluating the readability of force directed graph layouts: A deep learning approach publication-title: IEEE Comput. Graph. Appl. – volume: 20 start-page: 1933 year: 2014 end-page: 1942 ident: b14 article-title: Learning perceptual kernels for visualization design publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 82 start-page: 383 year: 2020 end-page: 393 ident: b55 article-title: Major issues in the study of visual search: Part 2 of “40 years of feature integration: Special issue in memory of anne treisman” publication-title: Atten. Percept. Psychophys. – year: 2020 ident: b17 article-title: Toward automatic comparison of visualization techniques: Application to graph visualization publication-title: Vis. Inform. – start-page: 527 year: 2005 end-page: 534 ident: b31 article-title: Visualizing data with motion publication-title: VIS 05. IEEE Visualization, 2005 – volume: 30 start-page: 127 year: 1988 end-page: 142 ident: b53 article-title: Using color dimensions to display data dimensions publication-title: Human Factors – volume: 57 start-page: 665 year: 2009 end-page: 674 ident: b1 article-title: Color graphs for automated cancer diagnosis and grading publication-title: IEEE Trans. Biomed. Eng. – volume: 82 start-page: 1 year: 2020 end-page: 6 ident: b54 article-title: Forty years after feature integration theory: An introduction to the special issue in honor of the contributions of anne treisman publication-title: Atten. Percept. Psychophys. – volume: 4 start-page: 114 year: 2005 end-page: 135 ident: b16 article-title: On the readability of graphs using node-link and matrix-based representations: A controlled experiment and statistical analysis publication-title: Inf. Vis. – volume: 23 start-page: 521 year: 2016 end-page: 530 ident: b20 article-title: Colorgorical: Creating discriminable and preferable color palettes for information visualization publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 5 start-page: 110 year: 1986 end-page: -141 ident: b37 article-title: Automating the design of graphical presentations of relational information publication-title: ACM Trans. Graph. – volume: 6 start-page: 1 year: 2019 end-page: 12 ident: b30 article-title: Characterization of deep neural network features by decodability from human brain activity publication-title: Sci. Data – reference: He, S., Tavakoli, H.R., Borji, A., Mi, Y., Pugeault, N., 2019. Understanding and Visualizing Deep Visual Saliency Models. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 10198–10207. – start-page: 435 year: 1995 end-page: 446 ident: b45 article-title: Validating graph drawing aesthetics publication-title: International Symposium on Graph Drawing – volume: 47 start-page: 583 year: 1952 end-page: 621 ident: b35 article-title: Use of ranks in one-criterion variance analysis publication-title: J. Amer. Statist. Assoc. – year: 1999 ident: b59 article-title: CRC Standard Probability and Statistics Tables and Formulae – volume: 164 start-page: 82 year: 2017 end-page: 91 ident: b13 article-title: Saliency driven object recognition in egocentric videos with deep CNN: toward application in assistance to neuroprostheses publication-title: Comput. Vis. Image Underst. – start-page: 263 year: 1996 end-page: 270 ident: b28 article-title: Choosing effective colours for data visualization publication-title: Proceedings of Seventh Annual IEEE Visualization’96 – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b36 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 22 start-page: 1 year: 1977 end-page: 11 ident: b50 article-title: Focused attention in the perception and retrieval of multidimensional stimuli publication-title: Percept. Psychophys. – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: b47 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – volume: 40 start-page: 27 year: 2003 end-page: 37 ident: b25 article-title: ColorBrewer. Org: an online tool for selecting colour schemes for maps publication-title: Cartogr. J. – start-page: 129 year: 2021 end-page: 136 ident: b18 article-title: Analysis of deep neural networks correlations with human subjects on a perception task publication-title: 2021 25th International Conference Information Visualisation (IV) – volume: 41 start-page: 455 year: 1987 end-page: 472 ident: b46 article-title: Visual search for targets defined by combinations of color, shape, and size: An examination of the task constraints on feature and conjunction searches publication-title: Percept. Psychophys. – year: 2015 ident: b11 article-title: Keras – year: 2012 ident: b52 article-title: Information Visualization: Perception for Design – volume: 10 start-page: 302 year: 2004 end-page: 313 ident: b32 article-title: Hierarchical data visualization using a fast rectangle-packing algorithm publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 96 start-page: 433 year: 1989 end-page: 458 ident: b15 article-title: Visual search and stimulus similarity publication-title: Psychol. Rev. – volume: 20 start-page: 1953 year: 2014 end-page: 1962 ident: b21 article-title: The relation between visualization size, grouping, and user performance publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 10 start-page: 92 year: 2016 ident: b34 article-title: Humans and deep networks largely agree on which kinds of variation make object recognition harder publication-title: Front. Comput. Neurosci. – volume: 1 start-page: 1 year: 2017 end-page: 8 ident: b57 article-title: Five factors that guide attention in visual search publication-title: Nat. Hum. Behav. – volume: 68 start-page: 361 year: 1973 end-page: 368 ident: b10 article-title: The use of faces to represent points in k-dimensional space graphically publication-title: J. Amer. Statist. Assoc. – volume: 27 start-page: 199 year: 2002 end-page: 207 ident: b8 article-title: Effects of hue, saturation, and brightness on preference publication-title: Color Res. Appl. – start-page: 1047 year: 2008 end-page: 1054 ident: b58 article-title: Visual clustering in parallel coordinates publication-title: Computer Graphics Forum, Vol. 27 – volume: 43 start-page: 1667 year: 2017 ident: b39 article-title: Redundant encoding strengthens segmentation and grouping in visual displays of data publication-title: J. Exp. Psychol.: Hum. Percept. Perform. – volume: 39 start-page: 32 year: 1986 end-page: 38 ident: b7 article-title: Visual texture segregation based on orientation and hue publication-title: Percept. Psychophys. – volume: 12 start-page: 1 year: 2021 end-page: 14 ident: b33 article-title: Qualitative similarities and differences in visual object representations between brains and deep networks publication-title: Nat. Commun. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 770–778. – volume: 25 start-page: 641 year: 2018 end-page: 650 ident: b22 article-title: Evaluating ‘graphical perception’with CNNs publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 4 start-page: 40 year: 2010 end-page: 79 ident: b2 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. – year: 2018 ident: b40 article-title: Node-link or adjacency matrices: Old question, new insights publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 12 start-page: 97 year: 1980 end-page: 136 ident: b51 article-title: A feature-integration theory of attention publication-title: Cogn. Psychol. – year: 1983 ident: b6 article-title: Semiology of Graphics: Diagrams, Networks, Maps – year: 2012 ident: b44 article-title: Experimental Human-Computer Interaction: A Practical Guide with Visual Examples – volume: 16 start-page: 412 year: 2000 end-page: 424 ident: b3 article-title: Assessing the accuracy of prediction algorithms for classification: An overview publication-title: Bioinformatics – volume: 63 start-page: 81 year: 1956 ident: b38 article-title: The magical number seven, plus or minus two: Some limits on our capacity for processing information. publication-title: Psychol. Rev. – volume: 5 start-page: 110 issue: 2 year: 1986 ident: 10.1016/j.visinf.2022.03.001_b37 article-title: Automating the design of graphical presentations of relational information publication-title: ACM Trans. Graph. doi: 10.1145/22949.22950 – volume: 96 start-page: 433 issue: 3 year: 1989 ident: 10.1016/j.visinf.2022.03.001_b15 article-title: Visual search and stimulus similarity publication-title: Psychol. Rev. doi: 10.1037/0033-295X.96.3.433 – volume: 63 start-page: 81 issue: 2 year: 1956 ident: 10.1016/j.visinf.2022.03.001_b38 article-title: The magical number seven, plus or minus two: Some limits on our capacity for processing information. publication-title: Psychol. Rev. doi: 10.1037/h0043158 – year: 2012 ident: 10.1016/j.visinf.2022.03.001_b52 – ident: 10.1016/j.visinf.2022.03.001_b27 doi: 10.1109/CVPR.2016.90 – volume: 36 start-page: 1439 issue: 10 year: 1996 ident: 10.1016/j.visinf.2022.03.001_b4 article-title: Visual search for colour targets that are or are not linearly separable from distractors publication-title: Vis. Res. doi: 10.1016/0042-6989(95)00207-3 – volume: 18 start-page: 1170 issue: 7 year: 2012 ident: 10.1016/j.visinf.2022.03.001_b29 article-title: Attention and visual memory in visualization and computer graphics publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2011.127 – year: 2020 ident: 10.1016/j.visinf.2022.03.001_b17 article-title: Toward automatic comparison of visualization techniques: Application to graph visualization publication-title: Vis. Inform. doi: 10.1016/j.visinf.2020.04.002 – volume: 1 start-page: 1 issue: 3 year: 2017 ident: 10.1016/j.visinf.2022.03.001_b57 article-title: Five factors that guide attention in visual search publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-017-0058 – volume: 29 start-page: 20 issue: 1 year: 2004 ident: 10.1016/j.visinf.2022.03.001_b9 article-title: Effects of hue, saturation, and brightness: Part 2: Attention publication-title: Color Res. Appl. doi: 10.1002/col.10214 – volume: 68 start-page: 361 issue: 342 year: 1973 ident: 10.1016/j.visinf.2022.03.001_b10 article-title: The use of faces to represent points in k-dimensional space graphically publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1973.10482434 – volume: 23 start-page: 521 issue: 1 year: 2016 ident: 10.1016/j.visinf.2022.03.001_b20 article-title: Colorgorical: Creating discriminable and preferable color palettes for information visualization publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2016.2598918 – year: 2012 ident: 10.1016/j.visinf.2022.03.001_b44 – volume: 16 start-page: 412 issue: 5 year: 2000 ident: 10.1016/j.visinf.2022.03.001_b3 article-title: Assessing the accuracy of prediction algorithms for classification: An overview publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.5.412 – volume: 10 start-page: 92 year: 2016 ident: 10.1016/j.visinf.2022.03.001_b34 article-title: Humans and deep networks largely agree on which kinds of variation make object recognition harder publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2016.00092 – start-page: 435 year: 1995 ident: 10.1016/j.visinf.2022.03.001_b45 article-title: Validating graph drawing aesthetics – volume: 43 start-page: 1667 issue: 9 year: 2017 ident: 10.1016/j.visinf.2022.03.001_b39 article-title: Redundant encoding strengthens segmentation and grouping in visual displays of data publication-title: J. Exp. Psychol.: Hum. Percept. Perform. – volume: 47 start-page: 583 issue: 260 year: 1952 ident: 10.1016/j.visinf.2022.03.001_b35 article-title: Use of ranks in one-criterion variance analysis publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1952.10483441 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.visinf.2022.03.001_b30 article-title: Characterization of deep neural network features by decodability from human brain activity publication-title: Sci. Data doi: 10.1038/sdata.2019.12 – start-page: 248 year: 1997 ident: 10.1016/j.visinf.2022.03.001_b43 article-title: Which aesthetic has the greatest effect on human understanding? – start-page: 129 year: 2021 ident: 10.1016/j.visinf.2022.03.001_b18 article-title: Analysis of deep neural networks correlations with human subjects on a perception task – start-page: 527 year: 2005 ident: 10.1016/j.visinf.2022.03.001_b31 article-title: Visualizing data with motion – volume: 10 start-page: 302 issue: 3 year: 2004 ident: 10.1016/j.visinf.2022.03.001_b32 article-title: Hierarchical data visualization using a fast rectangle-packing algorithm publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2004.1272729 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.visinf.2022.03.001_b47 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – start-page: 625 year: 2018 ident: 10.1016/j.visinf.2022.03.001_b5 article-title: Quality metrics for information visualization – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.visinf.2022.03.001_b33 article-title: Qualitative similarities and differences in visual object representations between brains and deep networks publication-title: Nat. Commun. doi: 10.1038/s41467-021-22078-3 – volume: 43 start-page: 307 issue: 4 year: 1988 ident: 10.1016/j.visinf.2022.03.001_b41 article-title: Cross-dimensional interaction and texture segregation publication-title: Percept. Psychophys. doi: 10.3758/BF03208800 – volume: 164 start-page: 82 year: 2017 ident: 10.1016/j.visinf.2022.03.001_b13 article-title: Saliency driven object recognition in egocentric videos with deep CNN: toward application in assistance to neuroprostheses publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2017.03.001 – volume: 25 start-page: 641 issue: 1 year: 2018 ident: 10.1016/j.visinf.2022.03.001_b22 article-title: Evaluating ‘graphical perception’with CNNs publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2018.2865138 – volume: 18 start-page: 2402 issue: 12 year: 2012 ident: 10.1016/j.visinf.2022.03.001_b24 article-title: How capacity limits of attention influence information visualization effectiveness publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2012.233 – volume: 39 start-page: 32 issue: 1 year: 1986 ident: 10.1016/j.visinf.2022.03.001_b7 article-title: Visual texture segregation based on orientation and hue publication-title: Percept. Psychophys. doi: 10.3758/BF03207581 – volume: 22 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.visinf.2022.03.001_b50 article-title: Focused attention in the perception and retrieval of multidimensional stimuli publication-title: Percept. Psychophys. doi: 10.3758/BF03206074 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.visinf.2022.03.001_b36 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 19 start-page: 2316 issue: 12 year: 2013 ident: 10.1016/j.visinf.2022.03.001_b19 article-title: Perception of average value in multiclass scatterplots publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2013.183 – volume: 41 start-page: 455 issue: 5 year: 1987 ident: 10.1016/j.visinf.2022.03.001_b46 article-title: Visual search for targets defined by combinations of color, shape, and size: An examination of the task constraints on feature and conjunction searches publication-title: Percept. Psychophys. doi: 10.3758/BF03203039 – volume: 20 start-page: 1953 issue: 12 year: 2014 ident: 10.1016/j.visinf.2022.03.001_b21 article-title: The relation between visualization size, grouping, and user performance publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2014.2346983 – volume: 4 start-page: 114 issue: 2 year: 2005 ident: 10.1016/j.visinf.2022.03.001_b16 article-title: On the readability of graphs using node-link and matrix-based representations: A controlled experiment and statistical analysis publication-title: Inf. Vis. doi: 10.1057/palgrave.ivs.9500092 – year: 2018 ident: 10.1016/j.visinf.2022.03.001_b40 article-title: Node-link or adjacency matrices: Old question, new insights publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 7 start-page: 4 issue: 14 year: 2007 ident: 10.1016/j.visinf.2022.03.001_b49 article-title: The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions publication-title: J. Vis. doi: 10.1167/7.14.4 – volume: 57 start-page: 665 issue: 3 year: 2009 ident: 10.1016/j.visinf.2022.03.001_b1 article-title: Color graphs for automated cancer diagnosis and grading publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2033804 – volume: 4 start-page: 40 year: 2010 ident: 10.1016/j.visinf.2022.03.001_b2 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. doi: 10.1214/09-SS054 – start-page: 99 year: 2007 ident: 10.1016/j.visinf.2022.03.001_b56 article-title: Guided search 4.0 publication-title: Integr. Models Cogn. Syst. doi: 10.1093/acprof:oso/9780195189193.003.0008 – year: 2014 ident: 10.1016/j.visinf.2022.03.001_b48 – volume: 79 start-page: 531 issue: 387 year: 1984 ident: 10.1016/j.visinf.2022.03.001_b12 article-title: Graphical perception: Theory, experimentation, and application to the development of graphical methods publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1984.10478080 – volume: 82 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.visinf.2022.03.001_b54 article-title: Forty years after feature integration theory: An introduction to the special issue in honor of the contributions of anne treisman publication-title: Atten. Percept. Psychophys. doi: 10.3758/s13414-019-01966-3 – volume: 20 start-page: 1933 issue: 12 year: 2014 ident: 10.1016/j.visinf.2022.03.001_b14 article-title: Learning perceptual kernels for visualization design publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2014.2346978 – start-page: 263 year: 1996 ident: 10.1016/j.visinf.2022.03.001_b28 article-title: Choosing effective colours for data visualization – year: 1999 ident: 10.1016/j.visinf.2022.03.001_b59 – volume: 39 start-page: 40 issue: 4 year: 2019 ident: 10.1016/j.visinf.2022.03.001_b23 article-title: Evaluating the readability of force directed graph layouts: A deep learning approach publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/MCG.2018.2881501 – start-page: 1047 year: 2008 ident: 10.1016/j.visinf.2022.03.001_b58 article-title: Visual clustering in parallel coordinates – year: 2015 ident: 10.1016/j.visinf.2022.03.001_b11 – volume: 40 start-page: 27 issue: 1 year: 2003 ident: 10.1016/j.visinf.2022.03.001_b25 article-title: ColorBrewer. Org: an online tool for selecting colour schemes for maps publication-title: Cartogr. J. doi: 10.1179/000870403235002042 – volume: 27 start-page: 199 issue: 3 year: 2002 ident: 10.1016/j.visinf.2022.03.001_b8 article-title: Effects of hue, saturation, and brightness on preference publication-title: Color Res. Appl. doi: 10.1002/col.10051 – volume: 12 start-page: 97 issue: 1 year: 1980 ident: 10.1016/j.visinf.2022.03.001_b51 article-title: A feature-integration theory of attention publication-title: Cogn. Psychol. doi: 10.1016/0010-0285(80)90005-5 – ident: 10.1016/j.visinf.2022.03.001_b26 doi: 10.1109/CVPR.2019.01045 – start-page: 288 year: 1995 ident: 10.1016/j.visinf.2022.03.001_b42 article-title: Iconic techniques for feature visualization – year: 1983 ident: 10.1016/j.visinf.2022.03.001_b6 – volume: 30 start-page: 127 issue: 2 year: 1988 ident: 10.1016/j.visinf.2022.03.001_b53 article-title: Using color dimensions to display data dimensions publication-title: Human Factors doi: 10.1177/001872088803000201 – volume: 82 start-page: 383 issue: 2 year: 2020 ident: 10.1016/j.visinf.2022.03.001_b55 article-title: Major issues in the study of visual search: Part 2 of “40 years of feature integration: Special issue in memory of anne treisman” publication-title: Atten. Percept. Psychophys. doi: 10.3758/s13414-020-02022-1 |
SSID | ssj0002810111 ssib052855627 |
Score | 2.219906 |
Snippet | The design of efficient representations is well established as a fruitful way to explore and analyze complex or large data. In these representations, data are... |
SourceID | doaj hal crossref elsevier |
SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 25 |
SubjectTerms | Artificial Intelligence Automated evaluation Computer Science Computer Vision and Pattern Recognition Deep learning Machine Learning Outlier detection User evaluation Visual search |
Title | Color and Shape efficiency for outlier detection from automated to user evaluation |
URI | https://dx.doi.org/10.1016/j.visinf.2022.03.001 https://hal.science/hal-03617222 https://doaj.org/article/55dd5815ef5549d5af9b7fb4902e291b |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7qyYsoKq4vgngtNknTbI8qyiLqwQfsLeQxRUW6Il1_vzNpq-5pL15DmpSZab8vYeYbxk4haAQFH7LShzortNNZhUCZudIYakCFJJYKnO_uy8lzcTPV0z-tvignrJMH7gx3pnWMeiw01Ah8VdSurrypfVHlEmQlPP19EfP-HKbe0pWRoCbq1FkulRblcjrUzaXkLircbkjBU8pO41Qs4FKS71-Ap9WX4aI1Ac_1JtvoGSM_7950i61As80e8MA_--SuifzxxX0AhyQFQXWUHGkopzwfXJFHaFOuVcOpjoS7eTtDigqRtzNO9xP8V-17hz1fXz1dTrK-PUIWCi3bzBkDzvvooneE67UC5VSoShwuSIgugJLoAfzCcvTEuMSThYcSxkWtDB6z1C5ba2YN7DEugvMqryIYAYUKYuxxcVeXUZgSgpcjpgbj2NBrh1MLi3c7JIm92c6klkxqc0W5ciOW_Tz10WlnLJl_QXb_mUvK12kA48H28WCXxcOImcFrticRHTnApV6XbH-CTl7YfXJ-a2kMYR6JnpRfYv8_3vGArdO-XcbZIVtrP-dwhNym9ccpjL8Bj5T2Nw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Color+and+Shape+efficiency+for+outlier+detection+from+automated+to+user+evaluation&rft.jtitle=Visual+informatics+%28Online%29&rft.au=Loann+Giovannangeli&rft.au=Romain+Bourqui&rft.au=Romain+Giot&rft.au=David+Auber&rft.date=2022-06-01&rft.pub=Elsevier&rft.issn=2468-502X&rft.eissn=2468-502X&rft.volume=6&rft.issue=2&rft.spage=25&rft.epage=40&rft_id=info:doi/10.1016%2Fj.visinf.2022.03.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_55dd5815ef5549d5af9b7fb4902e291b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-502X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-502X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-502X&client=summon |