Melatonin protects against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice

The apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin protects against cardiac dysfunction during sepsis. In addition, silent information regulator 1 (SIRT1) is a therapeutic target for sepsis-i...

Full description

Saved in:
Bibliographic Details
Published inLife sciences (1973) Vol. 217; pp. 8 - 15
Main Authors Zhang, Wen-xuan, He, Bai-mei, Wu, Ying, Qiao, Jian-feng, Peng, Zhen-yu
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 15.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin protects against cardiac dysfunction during sepsis. In addition, silent information regulator 1 (SIRT1) is a therapeutic target for sepsis-induced myocardial dysfunction. The aims of this study were to investigate whether SIRT1 was involved in melatonin's cardioprotection during sepsis and the mechanisms. In this study, twenty-four male C57BL/6 mice were randomly assigned to four groups: Control group, LPS group, LPS + Melatonin group and LPS + Melatonin + EX527 group. Mice were treated with lipopolysaccharide for 8 h with or without melatonin or EX527. The cardiac function, myocardial injury biomarkers, cardiac histopathology, cardiomyocyte apoptosis, autophagosome as well as the protein expressions of SIRT1, cleaved caspase-3, LC3-II/LC3-I ratio and p62 in the myocardium were assayed. The results demonstrated that melatonin significantly improved cardiac function, decreased creatine kinase (CK) and creatine kinase-MB (CK-MB) levels, attenuated myocardial architecture destruction, inhibited cardiomyocyte apoptosis and increased cardiac autophagy as compared with the LPS group. In addition, melatonin significantly increased SIRT1 protein expression in the myocardium of mice with sepsis, while inhibition of SIRT1 by EX527 abolished melatonin's cardioprotection during sepsis. In this study, we found that melatonin protected against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice. The proposed mechanisms of melatonin's cardioprotection against cardiac dysfunction during sepsis. Melatonin activates SIRT1 signaling pathway and then regulates apoptosis and autophagy in the myocardium of mice with sepsis, which contributes to improving sepsis-induced cardiac dysfunction. [Display omitted]
AbstractList The apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin protects against cardiac dysfunction during sepsis. In addition, silent information regulator 1 (SIRT1) is a therapeutic target for sepsis-induced myocardial dysfunction. The aims of this study were to investigate whether SIRT1 was involved in melatonin's cardioprotection during sepsis and the mechanisms.In this study, twenty-four male C57BL/6 mice were randomly assigned to four groups: Control group, LPS group, LPS + Melatonin group and LPS + Melatonin + EX527 group. Mice were treated with lipopolysaccharide for 8 h with or without melatonin or EX527. The cardiac function, myocardial injury biomarkers, cardiac histopathology, cardiomyocyte apoptosis, autophagosome as well as the protein expressions of SIRT1, cleaved caspase-3, LC3-II/LC3-I ratio and p62 in the myocardium were assayed.The results demonstrated that melatonin significantly improved cardiac function, decreased creatine kinase (CK) and creatine kinase-MB (CK-MB) levels, attenuated myocardial architecture destruction, inhibited cardiomyocyte apoptosis and increased cardiac autophagy as compared with the LPS group. In addition, melatonin significantly increased SIRT1 protein expression in the myocardium of mice with sepsis, while inhibition of SIRT1 by EX527 abolished melatonin's cardioprotection during sepsis.In this study, we found that melatonin protected against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice.
The apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin protects against cardiac dysfunction during sepsis. In addition, silent information regulator 1 (SIRT1) is a therapeutic target for sepsis-induced myocardial dysfunction. The aims of this study were to investigate whether SIRT1 was involved in melatonin's cardioprotection during sepsis and the mechanisms. In this study, twenty-four male C57BL/6 mice were randomly assigned to four groups: Control group, LPS group, LPS + Melatonin group and LPS + Melatonin + EX527 group. Mice were treated with lipopolysaccharide for 8 h with or without melatonin or EX527. The cardiac function, myocardial injury biomarkers, cardiac histopathology, cardiomyocyte apoptosis, autophagosome as well as the protein expressions of SIRT1, cleaved caspase-3, LC3-II/LC3-I ratio and p62 in the myocardium were assayed. The results demonstrated that melatonin significantly improved cardiac function, decreased creatine kinase (CK) and creatine kinase-MB (CK-MB) levels, attenuated myocardial architecture destruction, inhibited cardiomyocyte apoptosis and increased cardiac autophagy as compared with the LPS group. In addition, melatonin significantly increased SIRT1 protein expression in the myocardium of mice with sepsis, while inhibition of SIRT1 by EX527 abolished melatonin's cardioprotection during sepsis. In this study, we found that melatonin protected against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice. The proposed mechanisms of melatonin's cardioprotection against cardiac dysfunction during sepsis. Melatonin activates SIRT1 signaling pathway and then regulates apoptosis and autophagy in the myocardium of mice with sepsis, which contributes to improving sepsis-induced cardiac dysfunction. [Display omitted]
The apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin protects against cardiac dysfunction during sepsis. In addition, silent information regulator 1 (SIRT1) is a therapeutic target for sepsis-induced myocardial dysfunction. The aims of this study were to investigate whether SIRT1 was involved in melatonin's cardioprotection during sepsis and the mechanisms. In this study, twenty-four male C57BL/6 mice were randomly assigned to four groups: Control group, LPS group, LPS + Melatonin group and LPS + Melatonin + EX527 group. Mice were treated with lipopolysaccharide for 8 h with or without melatonin or EX527. The cardiac function, myocardial injury biomarkers, cardiac histopathology, cardiomyocyte apoptosis, autophagosome as well as the protein expressions of SIRT1, cleaved caspase-3, LC3-II/LC3-I ratio and p62 in the myocardium were assayed. The results demonstrated that melatonin significantly improved cardiac function, decreased creatine kinase (CK) and creatine kinase-MB (CK-MB) levels, attenuated myocardial architecture destruction, inhibited cardiomyocyte apoptosis and increased cardiac autophagy as compared with the LPS group. In addition, melatonin significantly increased SIRT1 protein expression in the myocardium of mice with sepsis, while inhibition of SIRT1 by EX527 abolished melatonin's cardioprotection during sepsis. In this study, we found that melatonin protected against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice.
The apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin protects against cardiac dysfunction during sepsis. In addition, silent information regulator 1 (SIRT1) is a therapeutic target for sepsis-induced myocardial dysfunction. The aims of this study were to investigate whether SIRT1 was involved in melatonin's cardioprotection during sepsis and the mechanisms.AIMSThe apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin protects against cardiac dysfunction during sepsis. In addition, silent information regulator 1 (SIRT1) is a therapeutic target for sepsis-induced myocardial dysfunction. The aims of this study were to investigate whether SIRT1 was involved in melatonin's cardioprotection during sepsis and the mechanisms.In this study, twenty-four male C57BL/6 mice were randomly assigned to four groups: Control group, LPS group, LPS + Melatonin group and LPS + Melatonin + EX527 group. Mice were treated with lipopolysaccharide for 8 h with or without melatonin or EX527. The cardiac function, myocardial injury biomarkers, cardiac histopathology, cardiomyocyte apoptosis, autophagosome as well as the protein expressions of SIRT1, cleaved caspase-3, LC3-II/LC3-I ratio and p62 in the myocardium were assayed.MATERIALS AND METHODSIn this study, twenty-four male C57BL/6 mice were randomly assigned to four groups: Control group, LPS group, LPS + Melatonin group and LPS + Melatonin + EX527 group. Mice were treated with lipopolysaccharide for 8 h with or without melatonin or EX527. The cardiac function, myocardial injury biomarkers, cardiac histopathology, cardiomyocyte apoptosis, autophagosome as well as the protein expressions of SIRT1, cleaved caspase-3, LC3-II/LC3-I ratio and p62 in the myocardium were assayed.The results demonstrated that melatonin significantly improved cardiac function, decreased creatine kinase (CK) and creatine kinase-MB (CK-MB) levels, attenuated myocardial architecture destruction, inhibited cardiomyocyte apoptosis and increased cardiac autophagy as compared with the LPS group. In addition, melatonin significantly increased SIRT1 protein expression in the myocardium of mice with sepsis, while inhibition of SIRT1 by EX527 abolished melatonin's cardioprotection during sepsis.KEY FINDINGSThe results demonstrated that melatonin significantly improved cardiac function, decreased creatine kinase (CK) and creatine kinase-MB (CK-MB) levels, attenuated myocardial architecture destruction, inhibited cardiomyocyte apoptosis and increased cardiac autophagy as compared with the LPS group. In addition, melatonin significantly increased SIRT1 protein expression in the myocardium of mice with sepsis, while inhibition of SIRT1 by EX527 abolished melatonin's cardioprotection during sepsis.In this study, we found that melatonin protected against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice.SIGNIFICANCEIn this study, we found that melatonin protected against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice.
Author Wu, Ying
Qiao, Jian-feng
Zhang, Wen-xuan
Peng, Zhen-yu
He, Bai-mei
Author_xml – sequence: 1
  givenname: Wen-xuan
  surname: Zhang
  fullname: Zhang, Wen-xuan
  organization: Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
– sequence: 2
  givenname: Bai-mei
  surname: He
  fullname: He, Bai-mei
  organization: Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
– sequence: 3
  givenname: Ying
  surname: Wu
  fullname: Wu, Ying
  organization: Department of Intensive Care Unit, Second Xiangya Hospital, Central South University, Changsha 410011, China
– sequence: 4
  givenname: Jian-feng
  surname: Qiao
  fullname: Qiao, Jian-feng
  organization: Clinical Nursing Teaching and Research Section, Second Xiangya Hospital, Central South University, Changsha, 410011, China
– sequence: 5
  givenname: Zhen-yu
  surname: Peng
  fullname: Peng, Zhen-yu
  email: pengzhenyu1999@csu.edu.cn
  organization: Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30500551$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAURkVJSSZpfkA3Rctu7OhhjW26KqGPQEohSdfi6uGpBo_kSvLArPvHK2fSLLpIV5LgnCvu952jEx-8RegtJTUldH21rcch1YzQrqa0JkK8QivatX1F1pyeoBUhrKk4I-IMnae0JaQgLT9FZ5yI5U5X6Pc3O0IO3nk8xZCtzgnDBpxPGSc7JZcq582srcEaonGgsTmkYfY6u-CxOuBoN3MZ4fwGwxSmHIqDwRsMcw7TT9gc8N4BhiLs4VEKA76_uXuguHy6c9q-Qa8HGJO9fDov0I_Pnx6uv1a337_cXH-8rXQjWK46onpqREeAdUxBM5RXw6FXtFdcMbYWHXSDUEooYwwHzo1tO6GgWxtCzMAv0Pvj3LLpr9mmLHcuaTuO4G2Yk2SMt0Is0fwfpU1PCt8v6LsndFY7a-QU3Q7iQf7NuAD0COgYUop2eEYokUuPcitLj3LpUVIqi1Sc9h9Hu_yYXo7gxhfND0fTliT3zkaZtLO-FOhiaVea4F6w_wDkbrk_
CitedBy_id crossref_primary_10_1186_s12950_021_00296_2
crossref_primary_10_3389_fphar_2022_881320
crossref_primary_10_3389_fphar_2020_590652
crossref_primary_10_1097_FJC_0000000000001487
crossref_primary_10_1016_j_lfs_2023_122008
crossref_primary_10_1007_s11010_024_05002_3
crossref_primary_10_1016_j_lfs_2020_117327
crossref_primary_10_1097_CM9_0000000000002010
crossref_primary_10_1186_s12933_023_02078_x
crossref_primary_10_1016_j_ejphar_2021_174186
crossref_primary_10_3389_fcvm_2023_1076093
crossref_primary_10_1038_s41401_024_01398_2
crossref_primary_10_1074_jbc_RA119_008925
crossref_primary_10_1016_j_intimp_2022_108545
crossref_primary_10_1016_j_intimp_2023_110978
crossref_primary_10_1002_iid3_1039
crossref_primary_10_1096_fj_202002718RR
crossref_primary_10_1016_j_jddst_2023_104711
crossref_primary_10_1038_s41392_021_00745_7
crossref_primary_10_1016_j_lfs_2019_116613
crossref_primary_10_4110_in_2022_22_e21
crossref_primary_10_1177_08853282231194317
crossref_primary_10_1590_fst_36720
crossref_primary_10_3389_fphar_2022_1038802
crossref_primary_10_18632_aging_103078
crossref_primary_10_3389_fvets_2021_756534
crossref_primary_10_1002_iid3_829
crossref_primary_10_1007_s00204_023_03647_5
crossref_primary_10_18632_aging_204740
crossref_primary_10_18632_aging_205312
crossref_primary_10_1186_s12917_021_03125_z
crossref_primary_10_3389_fimmu_2021_625627
crossref_primary_10_1038_s44323_024_00007_z
crossref_primary_10_1002_med_21733
crossref_primary_10_1016_j_jare_2023_11_008
crossref_primary_10_3390_molecules24173084
crossref_primary_10_1111_fcp_12589
crossref_primary_10_1111_apha_14184
crossref_primary_10_1016_j_lfs_2020_117431
crossref_primary_10_1016_j_biopha_2019_109150
crossref_primary_10_3389_fgene_2022_1056405
crossref_primary_10_3892_ijmm_2019_4442
crossref_primary_10_3390_antiox10111658
crossref_primary_10_1016_j_lfs_2024_122611
crossref_primary_10_3389_fimmu_2022_831168
crossref_primary_10_1007_s10753_023_01833_2
crossref_primary_10_18632_aging_203639
crossref_primary_10_1007_s10529_020_02939_5
crossref_primary_10_1016_j_taap_2022_116173
crossref_primary_10_1007_s11356_022_24546_9
crossref_primary_10_1097_CM9_0000000000001772
crossref_primary_10_1007_s10753_023_01954_8
crossref_primary_10_1016_j_biopha_2022_114209
crossref_primary_10_1016_j_lfs_2019_04_057
crossref_primary_10_1038_s41598_024_55923_8
crossref_primary_10_3389_fcvm_2023_1291450
crossref_primary_10_1007_s11033_023_08670_4
crossref_primary_10_3390_molecules28134940
crossref_primary_10_1016_j_lfs_2023_121875
crossref_primary_10_1002_jbt_23330
crossref_primary_10_1016_j_arr_2020_101129
crossref_primary_10_1016_j_biopha_2022_113135
crossref_primary_10_1637_aviandiseases_D_23_00036
crossref_primary_10_1155_2021_1530445
crossref_primary_10_1538_expanim_22_0072
crossref_primary_10_1007_s00011_021_01447_0
crossref_primary_10_1152_ajpendo_00227_2021
crossref_primary_10_1016_j_biopha_2020_110260
crossref_primary_10_3389_fphys_2020_00514
crossref_primary_10_1007_s10753_021_01413_2
crossref_primary_10_2147_JIR_S374117
crossref_primary_10_1111_1440_1681_13470
crossref_primary_10_1155_2021_8120403
crossref_primary_10_1016_j_fct_2023_113813
crossref_primary_10_3389_fcell_2021_650666
crossref_primary_10_1016_j_placenta_2024_01_014
crossref_primary_10_3390_ijms242115963
crossref_primary_10_2147_DDDT_S509735
crossref_primary_10_1016_j_ijbiomac_2024_134853
crossref_primary_10_1089_ars_2021_0275
crossref_primary_10_1016_j_biopha_2023_115305
crossref_primary_10_1016_j_peptides_2021_170612
crossref_primary_10_1590_acb370208
crossref_primary_10_1155_2021_6308255
crossref_primary_10_1002_iid3_860
crossref_primary_10_1007_s10741_021_10171_0
crossref_primary_10_6061_clinics_2021_e2863
crossref_primary_10_3389_fimmu_2024_1394925
crossref_primary_10_1155_2022_9415694
crossref_primary_10_1042_BSR20194030
crossref_primary_10_1002_prp2_904
crossref_primary_10_1002_ptr_7471
crossref_primary_10_1016_j_biopha_2022_113556
crossref_primary_10_1186_s12950_021_00269_5
crossref_primary_10_1038_s41401_024_01356_y
crossref_primary_10_1016_j_ejphar_2020_173276
crossref_primary_10_1016_j_intimp_2019_106041
crossref_primary_10_3389_fphar_2020_01220
crossref_primary_10_1016_j_pharmthera_2021_107983
crossref_primary_10_3389_fimmu_2019_01371
crossref_primary_10_1016_j_eti_2024_103923
crossref_primary_10_1536_ihj_20_512
crossref_primary_10_31083_j_fbl2902054
crossref_primary_10_1016_j_intimp_2025_114292
crossref_primary_10_18632_aging_205735
crossref_primary_10_3389_fcvm_2022_888319
Cites_doi 10.1007/s11010-011-0731-7
10.1038/s41556-018-0201-5
10.1161/CIRCRESAHA.117.311082
10.1111/jpi.12254
10.3892/mmr.2014.2382
10.1016/j.freeradbiomed.2018.08.032
10.1161/CIRCULATIONAHA.106.678359
10.1016/j.pneurobio.2018.01.001
10.1097/CCM.0b013e318174db05
10.1111/bph.12496
10.1016/j.biopha.2018.01.165
10.1155/2017/8326749
10.1016/j.freeradbiomed.2013.03.015
10.1080/19420889.2018.1467189
10.1016/j.yjmcc.2016.02.002
10.1016/j.phrs.2018.01.022
10.1002/pros.23483
10.1016/j.freeradbiomed.2017.10.005
10.1016/j.ccm.2016.01.014
10.1111/jpi.12410
10.1111/jpi.12161
10.1159/000491887
10.1161/CIRCRESAHA.118.312910
10.3389/fphys.2018.00589
10.1186/s13054-018-2113-y
10.1097/ACO.0000000000000572
10.1038/srep32199
10.1097/SLA.0b013e318214b67e
10.1016/j.taap.2016.11.012
10.1152/ajpheart.01051.2008
10.1007/s00395-015-0526-1
10.1001/jama.2016.0287
10.1111/bph.13386
10.1016/j.intimp.2018.06.033
10.1155/2016/5380319
10.1097/MOL.0000000000000314
10.2174/1570159X14666161228122115
10.1189/jlb.3MA0114-034RR
10.3390/molecules23030675
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.lfs.2018.11.055
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1879-0631
EndPage 15
ExternalDocumentID 30500551
10_1016_j_lfs_2018_11_055
S0024320518307768
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5RE
5VS
6TJ
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
C45
CNWQP
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IH2
IHE
J1W
K-O
KOM
L7B
LCYCR
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSH
SSP
SSZ
T5K
TEORI
YZZ
~G-
.55
.GJ
29L
3O-
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACIEU
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HMG
HMT
HVGLF
HZ~
H~9
J5H
MVM
R2-
SEW
SIN
SPT
WUQ
X7M
Y6R
YYP
ZGI
ZKB
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c452t-80b91d580a282ba4f91d43a9b19b3b22658a8f5bb5bddd3a33de785ba86d00df3
IEDL.DBID .~1
ISSN 0024-3205
1879-0631
IngestDate Fri Jul 11 05:09:51 EDT 2025
Mon Jul 21 11:29:23 EDT 2025
Wed Feb 19 02:36:12 EST 2025
Tue Jul 01 04:29:47 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Fri Feb 23 02:47:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sepsis
Melatonin
Autophagy
SIRT1
Cardiac dysfunction
Apoptosis
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-80b91d580a282ba4f91d43a9b19b3b22658a8f5bb5bddd3a33de785ba86d00df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30500551
PQID 2149022390
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2237550500
proquest_miscellaneous_2149022390
pubmed_primary_30500551
crossref_primary_10_1016_j_lfs_2018_11_055
crossref_citationtrail_10_1016_j_lfs_2018_11_055
elsevier_sciencedirect_doi_10_1016_j_lfs_2018_11_055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-15
PublicationDateYYYYMMDD 2019-01-15
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Life sciences (1973)
PublicationTitleAlternate Life Sci
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mao, Chen, Li, Guo, Zhang (bb0175) 2018; 9
An, Zhao, Xi, Li, Shen, Liu, Zhang, Sun (bb0100) 2016; 111
Liu, Ma, Di, Yang, Yang, Xu, Reiter, Qiao, Yuan (bb0090) 2018; 129
Xu, Lin, Wang, Zhang, Liu, Lu (bb0030) 2018; 48
Li, Lang, Zhang, Xu, Wang, Hao (bb0075) 2016; 2016
Vachharajani, Liu, Brown, Wang, Buechler, Wells, Yoza, McCall (bb0120) 2014; 96
Doherty, Baehrecke (bb0040) 2018; 20
Ben Salem, Boussabbeh, Pires Da Silva, Guilbert, Bacha, Abid-Essefi, Lemaire (bb0215) 2017; 314
Zhao, An, Yang, Yang, Liu, Yue, Li, Lin, Reiter, Qu (bb0200) 2015; 59
Hwang, Yao, Caito, Sundar, Rahman (bb0115) 2013; 61
Bansal, Moharir, Swarup (bb0045) 2018; 11
Dalton, Shahul (bb0025) 2018; 31
Tordjman, Chokron, Delorme, Charrier, Bellissant, Jaafari, Fougerou (bb0080) 2017
Vieillard-Baron, Caille, Charron, Belliard, Page, Jardin (bb0010) 2008; 36
Bravo-San Pedro, Kroemer, Galluzzi (bb0055) 2017; 120
Zhao, An, Yang, Yang, Liu, Yue, Li, Lin, Reiter, Qu (bb0140) 2015; 59
Wang, Shao, Deng, Chen, Yue, Miao (bb0060) 2018; 163-164
Fenton, Parker (bb0020) 2016; 37
Sun, Gusdon, Qu (bb0085) 2016; 27
Singer, Deutschman, Seymour, Shankar-Hari, Annane, Bauer, Bellomo, Bernard, Chiche, Coopersmith, Hotchkiss, Levy, Marshall, Martin, Opal, Rubenfeld, van der Poll, Vincent, Angus (bb0005) 2016; 315
Han, Li, Li, Su, Fan, Fan, Qiao, Chen, Fan, Li, Wang, Ma, Qiu, Tian, Cao (bb0130) 2017; 113
Peng, Zhang, Qiao, He (bb0160) 2018; 62
Liu, Hong, Shao, Chen, Wang (bb0095) 2014; 10
Sanfilippo, Corredor, Fletcher, Tritapepe, Lorini, Arcadipane, Vieillard-Baron, Cecconi (bb0185) 2018; 22
Peng, Xu, Ruan, Li, Xiao (bb0035) 2017; 2017
Bai, He, Gao, Liu, Liu, Han, Li, Shi, Han, Tao, Xie, Wang, Hu (bb0135) 2016; 6
Yuan, Perry, Huang, Iwai-Kanai, Carreira, Glembotski, Gottlieb (bb0205) 2009; 296
Ren, Xu, Wang, Ren, Dong, Zhang (bb0070) 2016; 93
Qiu, Li, Liu (bb0125) 2018; 100
Chen, Lai, Yang, Ruan, Chaugai, Ning, Chen, Wang (bb0150) 2016; 173
Jia, Wang, Wang, Ma, Shen, Fu, Wu, Su, Zhang, Cai, Wang, Xiang (bb0165) 2018; 122
Wang, Kim, Wise, Shi, Zhang, DiPaola (bb0050) 2018; 78
Roohbakhsh, Shamsizadeh, Hayes, Reiter, Karimi (bb0210) 2018; 133
Hsieh, Pai, Hsueh, Yuan, Hsieh (bb0065) 2011; 253
Rahim, Djerdjouri, Sayed, Fernández-Ortiz, Fernández-Gil, Hidalgo-Gutiérrez, López, Escames, Reiter, Acuña-Castroviejo (bb0155) 2017; 63
Pan, Zhang, Su, Wang, Liu (bb0105) 2018; 23
Lorente, Martín, Abreu-González, de la Cruz, Ferreres, Solé-Violán, Labarta, Díaz, Jiménez, Borreguero-León (bb0190) 2015; 30
Peng, Zhao, He, Peng, Hu (bb0180) 2011; 351
Chen, Chang, Lin, Sung, Chai, Zhen, Chen, Wu, Leu, Tsai, Chen, Chang, Yip (bb0195) 2014; 6
Merx, Weber (bb0015) 2007; 116
Arunachalam, Samuel, Marei, Ding, Triggle (bb0110) 2014; 171
Yu, Sun, Cheng, Jin, Yang, Zhai, Pei, Wang, Zhang, Meng, Zhang, Yu, Duan (bb0145) 2014; 57
Chen, Luo, Sun, Xu, Yu, Liu, Zhang, Wang, Wang, Bao, Meng (bb0170) 2018; 19
Wang (10.1016/j.lfs.2018.11.055_bb0050) 2018; 78
Li (10.1016/j.lfs.2018.11.055_bb0075) 2016; 2016
Han (10.1016/j.lfs.2018.11.055_bb0130) 2017; 113
Peng (10.1016/j.lfs.2018.11.055_bb0035) 2017; 2017
Lorente (10.1016/j.lfs.2018.11.055_bb0190) 2015; 30
Mao (10.1016/j.lfs.2018.11.055_bb0175) 2018; 9
Chen (10.1016/j.lfs.2018.11.055_bb0170) 2018; 19
Chen (10.1016/j.lfs.2018.11.055_bb0195) 2014; 6
Liu (10.1016/j.lfs.2018.11.055_bb0095) 2014; 10
Jia (10.1016/j.lfs.2018.11.055_bb0165) 2018; 122
Bravo-San Pedro (10.1016/j.lfs.2018.11.055_bb0055) 2017; 120
Chen (10.1016/j.lfs.2018.11.055_bb0150) 2016; 173
Peng (10.1016/j.lfs.2018.11.055_bb0160) 2018; 62
Arunachalam (10.1016/j.lfs.2018.11.055_bb0110) 2014; 171
Sanfilippo (10.1016/j.lfs.2018.11.055_bb0185) 2018; 22
Ren (10.1016/j.lfs.2018.11.055_bb0070) 2016; 93
Yuan (10.1016/j.lfs.2018.11.055_bb0205) 2009; 296
Pan (10.1016/j.lfs.2018.11.055_bb0105) 2018; 23
Peng (10.1016/j.lfs.2018.11.055_bb0180) 2011; 351
Hwang (10.1016/j.lfs.2018.11.055_bb0115) 2013; 61
An (10.1016/j.lfs.2018.11.055_bb0100) 2016; 111
Liu (10.1016/j.lfs.2018.11.055_bb0090) 2018; 129
Dalton (10.1016/j.lfs.2018.11.055_bb0025) 2018; 31
Fenton (10.1016/j.lfs.2018.11.055_bb0020) 2016; 37
Wang (10.1016/j.lfs.2018.11.055_bb0060) 2018; 163-164
Vieillard-Baron (10.1016/j.lfs.2018.11.055_bb0010) 2008; 36
Ben Salem (10.1016/j.lfs.2018.11.055_bb0215) 2017; 314
Rahim (10.1016/j.lfs.2018.11.055_bb0155) 2017; 63
Doherty (10.1016/j.lfs.2018.11.055_bb0040) 2018; 20
Singer (10.1016/j.lfs.2018.11.055_bb0005) 2016; 315
Zhao (10.1016/j.lfs.2018.11.055_bb0140) 2015; 59
Vachharajani (10.1016/j.lfs.2018.11.055_bb0120) 2014; 96
Zhao (10.1016/j.lfs.2018.11.055_bb0200) 2015; 59
Qiu (10.1016/j.lfs.2018.11.055_bb0125) 2018; 100
Roohbakhsh (10.1016/j.lfs.2018.11.055_bb0210) 2018; 133
Bansal (10.1016/j.lfs.2018.11.055_bb0045) 2018; 11
Hsieh (10.1016/j.lfs.2018.11.055_bb0065) 2011; 253
Yu (10.1016/j.lfs.2018.11.055_bb0145) 2014; 57
Merx (10.1016/j.lfs.2018.11.055_bb0015) 2007; 116
Bai (10.1016/j.lfs.2018.11.055_bb0135) 2016; 6
Xu (10.1016/j.lfs.2018.11.055_bb0030) 2018; 48
Tordjman (10.1016/j.lfs.2018.11.055_bb0080) 2017
Sun (10.1016/j.lfs.2018.11.055_bb0085) 2016; 27
References_xml – volume: 315
  start-page: 801
  year: 2016
  end-page: 810
  ident: bb0005
  article-title: The third international consensus definitions for sepsis and septic shock (Sepsis-3)
  publication-title: JAMA
– volume: 253
  start-page: 1190
  year: 2011
  end-page: 1200
  ident: bb0065
  article-title: Complete induction of autophagy is essential for cardioprotection in sepsis
  publication-title: Ann. Surg.
– volume: 296
  start-page: H470
  year: 2009
  end-page: H479
  ident: bb0205
  article-title: LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 314
  start-page: 82
  year: 2017
  end-page: 90
  ident: bb0215
  article-title: SIRT1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites α- and β-zearalenol through an autophagy-dependent pathway
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 59
  start-page: 230
  year: 2015
  end-page: 239
  ident: bb0200
  article-title: Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling
  publication-title: J. Pineal Res.
– start-page: 434
  year: 2017
  end-page: 443
  ident: bb0080
  article-title: Melatonin: pharmacology, functions and therapeutic benefits
  publication-title: Curr. Neuropharmacol.
– volume: 111
  start-page: 8
  year: 2016
  ident: bb0100
  article-title: Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism
  publication-title: Basic Res. Cardiol.
– volume: 37
  start-page: 289
  year: 2016
  end-page: 298
  ident: bb0020
  article-title: Cardiac function and dysfunction in sepsis
  publication-title: Clin. Chest Med.
– volume: 57
  start-page: 228
  year: 2014
  end-page: 238
  ident: bb0145
  article-title: Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: role of SIRT1
  publication-title: J. Pineal Res.
– volume: 48
  start-page: 583
  year: 2018
  end-page: 592
  ident: bb0030
  article-title: Ergosterol attenuates LPS-induced myocardial injury by modulating oxidative stress and apoptosis in rats
  publication-title: Cell. Physiol. Biochem.
– volume: 78
  start-page: 390
  year: 2018
  end-page: 400
  ident: bb0050
  article-title: p62 as a therapeutic target for inhibition of autophagy in prostate cancer
  publication-title: Prostate
– volume: 6
  start-page: 439
  year: 2014
  end-page: 458
  ident: bb0195
  article-title: Melatonin augments apoptotic adipose-derived mesenchymal stem cell treatment against sepsis-induced acute lunginjury
  publication-title: Am. J. Transl. Res.
– volume: 2016
  year: 2016
  ident: bb0075
  article-title: Role of TFEB mediated autophagy, oxidative stress, inflammation, and cell death in endotoxin induced myocardial toxicity of young and aged mice
  publication-title: Oxidative Med. Cell. Longev.
– volume: 59
  start-page: 230
  year: 2015
  end-page: 239
  ident: bb0140
  article-title: Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling
  publication-title: J. Pineal Res.
– volume: 133
  start-page: 265
  year: 2018
  end-page: 276
  ident: bb0210
  article-title: Melatonin as an endogenous regulator of diseases: the role of autophagy
  publication-title: Pharmacol. Res.
– volume: 100
  start-page: 15
  year: 2018
  end-page: 19
  ident: bb0125
  article-title: MicroRNA-204 protects H9C2 cells against hypoxia/reoxygenation-induced injury through regulating SIRT1-mediated autophagy
  publication-title: Biomed. Pharmacother.
– volume: 171
  start-page: 523
  year: 2014
  end-page: 535
  ident: bb0110
  article-title: Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1
  publication-title: Br. J. Pharmacol.
– volume: 96
  start-page: 785
  year: 2014
  end-page: 796
  ident: bb0120
  article-title: SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome
  publication-title: J. Leukoc. Biol.
– volume: 163-164
  start-page: 98
  year: 2018
  end-page: 117
  ident: bb0060
  article-title: Autophagy in ischemic stroke
  publication-title: Prog. Neurobiol.
– volume: 19
  year: 2018
  ident: bb0170
  article-title: Dihydromyricetin attenuates myocardial hypertrophy induced by transverse aortic constriction via oxidative stress inhibition and SIRT3 pathway enhancement
  publication-title: Int. J. Mol. Sci.
– volume: 122
  start-page: 1532
  year: 2018
  end-page: 1544
  ident: bb0165
  article-title: Heme oxygenase-1 in macrophages drives septic cardiac dysfunction via suppressing lysosomal degradation of inducible nitric oxide synthase
  publication-title: Circ. Res.
– volume: 36
  start-page: 1701
  year: 2008
  end-page: 1706
  ident: bb0010
  article-title: Actual incidence of global left ventricular hypokinesia in adult septic shock
  publication-title: Crit. Care Med.
– volume: 11
  start-page: 1
  year: 2018
  end-page: 4
  ident: bb0045
  article-title: Autophagy receptor optineurin promotes autophagosome formation by potentiating LC3-II production and phagophore maturation
  publication-title: Commun. Integr. Biol.
– volume: 20
  start-page: 1110
  year: 2018
  end-page: 1117
  ident: bb0040
  article-title: Life, death and autophagy
  publication-title: Nat. Cell Biol.
– volume: 113
  start-page: 291
  year: 2017
  end-page: 303
  ident: bb0130
  article-title: Reduced silent information regulator 1 signaling exacerbates sepsis-induced myocardial injury and mitigates the protective effect of a liver X receptor agonist
  publication-title: Free Radic. Biol. Med.
– volume: 6
  year: 2016
  ident: bb0135
  article-title: Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1
  publication-title: Sci. Rep.
– volume: 2017
  year: 2017
  ident: bb0035
  article-title: PPAR-γ activation prevents septic cardiac dysfunction via inhibition of apoptosis and necroptosis
  publication-title: Oxidative Med. Cell. Longev.
– volume: 23
  year: 2018
  ident: bb0105
  article-title: Melatonin balance the autophagy and apoptosis by regulating UCP2 in the LPS-induced cardiomyopathy
  publication-title: Molecules
– volume: 61
  start-page: 95
  year: 2013
  end-page: 110
  ident: bb0115
  article-title: Redox regulation of SIRT1 in inflammation and cellular senescence
  publication-title: Free Radic. Biol. Med.
– volume: 22
  start-page: 183
  year: 2018
  ident: bb0185
  article-title: Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock: a systematic review and meta-analysis
  publication-title: Crit. Care
– volume: 30
  year: 2015
  ident: bb0190
  article-title: Serum melatonin levels are associated with mortality in severe septic patients
  publication-title: J. Crit. Care
– volume: 120
  start-page: 1812
  year: 2017
  end-page: 1824
  ident: bb0055
  article-title: Autophagy and mitophagy in cardiovascular disease
  publication-title: Circ. Res.
– volume: 351
  start-page: 243
  year: 2011
  end-page: 249
  ident: bb0180
  article-title: Protective effect of HDL on endothelial NO production: the role of DDAH/ADMA pathway
  publication-title: Mol. Cell. Biochem.
– volume: 63
  year: 2017
  ident: bb0155
  article-title: Melatonin administration to wild-type mice and nontreated NLRP3 mutant mice share similar inhibition of the inflammatory response during sepsis
  publication-title: J. Pineal Res.
– volume: 31
  start-page: 158
  year: 2018
  end-page: 164
  ident: bb0025
  article-title: Cardiac dysfunction in critical illness
  publication-title: Curr. Opin. Anaesthesiol.
– volume: 93
  start-page: 18
  year: 2016
  end-page: 31
  ident: bb0070
  article-title: Permissive role of AMPK and autophagy in adiponectin deficiency-accentuated myocardial injury and inflammation in endotoxemia
  publication-title: J. Mol. Cell. Cardiol.
– volume: 10
  start-page: 1323
  year: 2014
  end-page: 1328
  ident: bb0095
  article-title: Melatonin synergized with cyclosporine A improves cardiac allograft survival by suppressing inflammation and apoptosis
  publication-title: Mol. Med. Rep.
– volume: 62
  start-page: 23
  year: 2018
  end-page: 28
  ident: bb0160
  article-title: Melatonin attenuates airway inflammation via SIRT1 dependent inhibition of NLRP3 inflammasome and IL-1β in rats with COPD
  publication-title: Int. Immunopharmacol.
– volume: 27
  start-page: 408
  year: 2016
  end-page: 413
  ident: bb0085
  article-title: Effects of melatonin on cardiovascular diseases: progress in the past year
  publication-title: Curr. Opin. Lipidol.
– volume: 129
  start-page: 59
  year: 2018
  end-page: 72
  ident: bb0090
  article-title: AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis
  publication-title: Free Radic. Biol. Med.
– volume: 116
  start-page: 793
  year: 2007
  end-page: 802
  ident: bb0015
  article-title: Sepsis and the heart
  publication-title: Circulation
– volume: 173
  start-page: 545
  year: 2016
  end-page: 661
  ident: bb0150
  article-title: Trimetazidine prevents macrophage-mediated septic myocardial dysfunction via activation of the histone deacetylase sirtuin 1
  publication-title: Br. J. Pharmacol.
– volume: 9
  start-page: 589
  year: 2018
  ident: bb0175
  article-title: Tongguan capsule mitigates post-myocardial infarction remodeling by promoting autophagy and inhibiting apoptosis: role of Sirt1
  publication-title: Front. Physiol.
– volume: 351
  start-page: 243
  year: 2011
  ident: 10.1016/j.lfs.2018.11.055_bb0180
  article-title: Protective effect of HDL on endothelial NO production: the role of DDAH/ADMA pathway
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-011-0731-7
– volume: 6
  start-page: 439
  year: 2014
  ident: 10.1016/j.lfs.2018.11.055_bb0195
  article-title: Melatonin augments apoptotic adipose-derived mesenchymal stem cell treatment against sepsis-induced acute lunginjury
  publication-title: Am. J. Transl. Res.
– volume: 20
  start-page: 1110
  year: 2018
  ident: 10.1016/j.lfs.2018.11.055_bb0040
  article-title: Life, death and autophagy
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0201-5
– volume: 120
  start-page: 1812
  year: 2017
  ident: 10.1016/j.lfs.2018.11.055_bb0055
  article-title: Autophagy and mitophagy in cardiovascular disease
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.117.311082
– volume: 59
  start-page: 230
  year: 2015
  ident: 10.1016/j.lfs.2018.11.055_bb0200
  article-title: Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12254
– volume: 10
  start-page: 1323
  year: 2014
  ident: 10.1016/j.lfs.2018.11.055_bb0095
  article-title: Melatonin synergized with cyclosporine A improves cardiac allograft survival by suppressing inflammation and apoptosis
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2014.2382
– volume: 129
  start-page: 59
  year: 2018
  ident: 10.1016/j.lfs.2018.11.055_bb0090
  article-title: AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.08.032
– volume: 116
  start-page: 793
  year: 2007
  ident: 10.1016/j.lfs.2018.11.055_bb0015
  article-title: Sepsis and the heart
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.678359
– volume: 163-164
  start-page: 98
  year: 2018
  ident: 10.1016/j.lfs.2018.11.055_bb0060
  article-title: Autophagy in ischemic stroke
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2018.01.001
– volume: 36
  start-page: 1701
  year: 2008
  ident: 10.1016/j.lfs.2018.11.055_bb0010
  article-title: Actual incidence of global left ventricular hypokinesia in adult septic shock
  publication-title: Crit. Care Med.
  doi: 10.1097/CCM.0b013e318174db05
– volume: 171
  start-page: 523
  year: 2014
  ident: 10.1016/j.lfs.2018.11.055_bb0110
  article-title: Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.12496
– volume: 100
  start-page: 15
  year: 2018
  ident: 10.1016/j.lfs.2018.11.055_bb0125
  article-title: MicroRNA-204 protects H9C2 cells against hypoxia/reoxygenation-induced injury through regulating SIRT1-mediated autophagy
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.01.165
– volume: 19
  year: 2018
  ident: 10.1016/j.lfs.2018.11.055_bb0170
  article-title: Dihydromyricetin attenuates myocardial hypertrophy induced by transverse aortic constriction via oxidative stress inhibition and SIRT3 pathway enhancement
  publication-title: Int. J. Mol. Sci.
– volume: 2017
  year: 2017
  ident: 10.1016/j.lfs.2018.11.055_bb0035
  article-title: PPAR-γ activation prevents septic cardiac dysfunction via inhibition of apoptosis and necroptosis
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2017/8326749
– volume: 59
  start-page: 230
  year: 2015
  ident: 10.1016/j.lfs.2018.11.055_bb0140
  article-title: Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12254
– volume: 61
  start-page: 95
  year: 2013
  ident: 10.1016/j.lfs.2018.11.055_bb0115
  article-title: Redox regulation of SIRT1 in inflammation and cellular senescence
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.03.015
– volume: 11
  start-page: 1
  year: 2018
  ident: 10.1016/j.lfs.2018.11.055_bb0045
  article-title: Autophagy receptor optineurin promotes autophagosome formation by potentiating LC3-II production and phagophore maturation
  publication-title: Commun. Integr. Biol.
  doi: 10.1080/19420889.2018.1467189
– volume: 93
  start-page: 18
  year: 2016
  ident: 10.1016/j.lfs.2018.11.055_bb0070
  article-title: Permissive role of AMPK and autophagy in adiponectin deficiency-accentuated myocardial injury and inflammation in endotoxemia
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2016.02.002
– volume: 133
  start-page: 265
  year: 2018
  ident: 10.1016/j.lfs.2018.11.055_bb0210
  article-title: Melatonin as an endogenous regulator of diseases: the role of autophagy
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2018.01.022
– volume: 78
  start-page: 390
  year: 2018
  ident: 10.1016/j.lfs.2018.11.055_bb0050
  article-title: p62 as a therapeutic target for inhibition of autophagy in prostate cancer
  publication-title: Prostate
  doi: 10.1002/pros.23483
– volume: 113
  start-page: 291
  year: 2017
  ident: 10.1016/j.lfs.2018.11.055_bb0130
  article-title: Reduced silent information regulator 1 signaling exacerbates sepsis-induced myocardial injury and mitigates the protective effect of a liver X receptor agonist
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2017.10.005
– volume: 37
  start-page: 289
  year: 2016
  ident: 10.1016/j.lfs.2018.11.055_bb0020
  article-title: Cardiac function and dysfunction in sepsis
  publication-title: Clin. Chest Med.
  doi: 10.1016/j.ccm.2016.01.014
– volume: 63
  year: 2017
  ident: 10.1016/j.lfs.2018.11.055_bb0155
  article-title: Melatonin administration to wild-type mice and nontreated NLRP3 mutant mice share similar inhibition of the inflammatory response during sepsis
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12410
– volume: 57
  start-page: 228
  year: 2014
  ident: 10.1016/j.lfs.2018.11.055_bb0145
  article-title: Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: role of SIRT1
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12161
– volume: 48
  start-page: 583
  year: 2018
  ident: 10.1016/j.lfs.2018.11.055_bb0030
  article-title: Ergosterol attenuates LPS-induced myocardial injury by modulating oxidative stress and apoptosis in rats
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000491887
– volume: 122
  start-page: 1532
  year: 2018
  ident: 10.1016/j.lfs.2018.11.055_bb0165
  article-title: Heme oxygenase-1 in macrophages drives septic cardiac dysfunction via suppressing lysosomal degradation of inducible nitric oxide synthase
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.118.312910
– volume: 9
  start-page: 589
  year: 2018
  ident: 10.1016/j.lfs.2018.11.055_bb0175
  article-title: Tongguan capsule mitigates post-myocardial infarction remodeling by promoting autophagy and inhibiting apoptosis: role of Sirt1
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00589
– volume: 22
  start-page: 183
  year: 2018
  ident: 10.1016/j.lfs.2018.11.055_bb0185
  article-title: Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock: a systematic review and meta-analysis
  publication-title: Crit. Care
  doi: 10.1186/s13054-018-2113-y
– volume: 31
  start-page: 158
  year: 2018
  ident: 10.1016/j.lfs.2018.11.055_bb0025
  article-title: Cardiac dysfunction in critical illness
  publication-title: Curr. Opin. Anaesthesiol.
  doi: 10.1097/ACO.0000000000000572
– volume: 6
  year: 2016
  ident: 10.1016/j.lfs.2018.11.055_bb0135
  article-title: Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1
  publication-title: Sci. Rep.
  doi: 10.1038/srep32199
– volume: 253
  start-page: 1190
  year: 2011
  ident: 10.1016/j.lfs.2018.11.055_bb0065
  article-title: Complete induction of autophagy is essential for cardioprotection in sepsis
  publication-title: Ann. Surg.
  doi: 10.1097/SLA.0b013e318214b67e
– volume: 314
  start-page: 82
  year: 2017
  ident: 10.1016/j.lfs.2018.11.055_bb0215
  article-title: SIRT1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites α- and β-zearalenol through an autophagy-dependent pathway
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2016.11.012
– volume: 296
  start-page: H470
  year: 2009
  ident: 10.1016/j.lfs.2018.11.055_bb0205
  article-title: LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.01051.2008
– volume: 30
  year: 2015
  ident: 10.1016/j.lfs.2018.11.055_bb0190
  article-title: Serum melatonin levels are associated with mortality in severe septic patients
  publication-title: J. Crit. Care
– volume: 111
  start-page: 8
  year: 2016
  ident: 10.1016/j.lfs.2018.11.055_bb0100
  article-title: Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism
  publication-title: Basic Res. Cardiol.
  doi: 10.1007/s00395-015-0526-1
– volume: 315
  start-page: 801
  year: 2016
  ident: 10.1016/j.lfs.2018.11.055_bb0005
  article-title: The third international consensus definitions for sepsis and septic shock (Sepsis-3)
  publication-title: JAMA
  doi: 10.1001/jama.2016.0287
– volume: 173
  start-page: 545
  year: 2016
  ident: 10.1016/j.lfs.2018.11.055_bb0150
  article-title: Trimetazidine prevents macrophage-mediated septic myocardial dysfunction via activation of the histone deacetylase sirtuin 1
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.13386
– volume: 62
  start-page: 23
  year: 2018
  ident: 10.1016/j.lfs.2018.11.055_bb0160
  article-title: Melatonin attenuates airway inflammation via SIRT1 dependent inhibition of NLRP3 inflammasome and IL-1β in rats with COPD
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2018.06.033
– volume: 2016
  year: 2016
  ident: 10.1016/j.lfs.2018.11.055_bb0075
  article-title: Role of TFEB mediated autophagy, oxidative stress, inflammation, and cell death in endotoxin induced myocardial toxicity of young and aged mice
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2016/5380319
– volume: 27
  start-page: 408
  year: 2016
  ident: 10.1016/j.lfs.2018.11.055_bb0085
  article-title: Effects of melatonin on cardiovascular diseases: progress in the past year
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0000000000000314
– start-page: 434
  year: 2017
  ident: 10.1016/j.lfs.2018.11.055_bb0080
  article-title: Melatonin: pharmacology, functions and therapeutic benefits
  publication-title: Curr. Neuropharmacol.
  doi: 10.2174/1570159X14666161228122115
– volume: 96
  start-page: 785
  year: 2014
  ident: 10.1016/j.lfs.2018.11.055_bb0120
  article-title: SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.3MA0114-034RR
– volume: 23
  year: 2018
  ident: 10.1016/j.lfs.2018.11.055_bb0105
  article-title: Melatonin balance the autophagy and apoptosis by regulating UCP2 in the LPS-induced cardiomyopathy
  publication-title: Molecules
  doi: 10.3390/molecules23030675
SSID ssj0005573
Score 2.5786455
Snippet The apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8
SubjectTerms Animals
Apoptosis
Apoptosis - drug effects
Autophagy
Autophagy - drug effects
biomarkers
Cardiac dysfunction
cardiac output
cardiomyocytes
cardioprotective effect
Cardiotonic Agents - therapeutic use
caspase-3
creatine kinase
Heart - drug effects
Heart - physiopathology
Heart Diseases - etiology
Heart Diseases - metabolism
Heart Diseases - physiopathology
Heart Diseases - prevention & control
histopathology
lipopolysaccharides
Male
males
Melatonin
Melatonin - therapeutic use
mice
Mice, Inbred C57BL
Myocardium - metabolism
Myocardium - pathology
pathogenesis
protein synthesis
Sepsis
sepsis (infection)
Sepsis - complications
Sepsis - metabolism
Sepsis - physiopathology
SIRT1
Sirtuin 1 - analysis
Sirtuin 1 - metabolism
therapeutics
Title Melatonin protects against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice
URI https://dx.doi.org/10.1016/j.lfs.2018.11.055
https://www.ncbi.nlm.nih.gov/pubmed/30500551
https://www.proquest.com/docview/2149022390
https://www.proquest.com/docview/2237550500
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT90wDI8Q06RdpsG-GAN50g7bpEBbJ7Q9IjT02ASHDSRuVdKkqBNqK_repHfhwj-O3aaISds77NjIadPYie3E_lmIj4n2Pta2lNZpKxVmWhqLiTSmImXt0eZDHvfp2cHsQn271Jdr4mjKheGwyrD3j3v6sFuHlv0wm_tdXXOOb6IwIaHKkDFpOOFXqZSlfO_2UZiHDrfMiZJMPd1sDjFe1xUjdsfZHgN5crbf33XTv2zPQQcdvxDPg_EIh-P4NsSabzbF07Gc5HJTbISF2sOngCb9-aW4O-VwNz50hYDJ0IO5MjWZhdD7rq97SW45MdhBOUhLCW7Zs7pjloFdws1Yrp50HJiu7eYt9QHTODALRiUwV0v4XRvgDInxfBfaCn6e_DiPgT7K5e5fiYvjr-dHMxkqL8hS6WROasvmsdNZZMgjs0ZV9KTQ5DbOLVqy2HRmskpbq61zDg2i82mmrckOXBS5Cl-L9aZt_FsBqCOsyIkrfYaqsrRdKHqxQZfQj6VluiWiac6LMsCSc3WM62KKP_tVEJsKZhO5KwWxaUt8eejSjZgcq4jVxMjiD8EqSGes6vZhYnpBC45vUUzj2wURkU9Jhg_m0QqaBFN2_SKieTNKzMNIkZvJTn33fwPbFs_oiWPcZKzfi_X5zcLvkF00t7uD4O-KJ4cn32dn93jzDZA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0CpFCC4VLVBaXoPEAZDcJrHddY6ootpCtwfYSr1ZduxUQVUSNbtIe-HCjzOTOBVIsAeOccaJk3nb82DsTaZCSJUruPPKcSm04taJjFtborIOwuV9Hvfs_Gh6IT9dqssNdjzmwlBYZZT9g0zvpXUcOYx_87CtKsrxzaTIkKi0oJo0-g67K5F9qY3BwY_f4jxUPGbOJCfw8WizD_K6Lqlkd6oPqJInpfv9XTn9y_jsldDJQ7YVrUf4MCxwm22EeofdG_pJrnbYduTUDt7GctLvHrGfM4p3o11XiEUZOrBXtkK7ELrQdlXH0S9HDHsoenIpwK860neEM3AruBn61aOSA9s27aLBOWBrD3ZJZQns1Qq-VxYoRWLY4IWmhK-nX-Yp4Eup3_1jdnHycX485bH1Ai-kyhaot1yeeqUTiy6Zs7LEKyls7tLcCYcmm9JWl8o55bz3wgrhw0QrZ_WRTxJfiidss27q8JSBUIko0YsrghaydCgvJD7YCp_hh02KyR5Lxn9uiliXnNpjXJsxAO2bQTQZQhP6KwbRtMfe305ph6Ic64DliEjzB2UZVBrrpr0ekW6Q4-gYxdahWSIQOpVo-Yg8WQOTiQn5fgnC7A4Uc7tSQcNoqO7_38JesfvT-ezMnJ2ef37GHuAdCnjjqXrONhc3y_ACjaSFe9kzwS-BIA8e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+protects+against+sepsis-induced+cardiac+dysfunction+by+regulating+apoptosis+and+autophagy+via+activation+of+SIRT1+in+mice&rft.jtitle=Life+sciences+%281973%29&rft.au=Zhang%2C+Wen-xuan&rft.au=He%2C+Bai-mei&rft.au=Wu%2C+Ying&rft.au=Qiao%2C+Jian-feng&rft.date=2019-01-15&rft.issn=0024-3205&rft.volume=217&rft.spage=8&rft.epage=15&rft_id=info:doi/10.1016%2Fj.lfs.2018.11.055&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_lfs_2018_11_055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3205&client=summon