Melatonin protects against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice
The apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin protects against cardiac dysfunction during sepsis. In addition, silent information regulator 1 (SIRT1) is a therapeutic target for sepsis-i...
Saved in:
Published in | Life sciences (1973) Vol. 217; pp. 8 - 15 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
15.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin protects against cardiac dysfunction during sepsis. In addition, silent information regulator 1 (SIRT1) is a therapeutic target for sepsis-induced myocardial dysfunction. The aims of this study were to investigate whether SIRT1 was involved in melatonin's cardioprotection during sepsis and the mechanisms.
In this study, twenty-four male C57BL/6 mice were randomly assigned to four groups: Control group, LPS group, LPS + Melatonin group and LPS + Melatonin + EX527 group. Mice were treated with lipopolysaccharide for 8 h with or without melatonin or EX527. The cardiac function, myocardial injury biomarkers, cardiac histopathology, cardiomyocyte apoptosis, autophagosome as well as the protein expressions of SIRT1, cleaved caspase-3, LC3-II/LC3-I ratio and p62 in the myocardium were assayed.
The results demonstrated that melatonin significantly improved cardiac function, decreased creatine kinase (CK) and creatine kinase-MB (CK-MB) levels, attenuated myocardial architecture destruction, inhibited cardiomyocyte apoptosis and increased cardiac autophagy as compared with the LPS group. In addition, melatonin significantly increased SIRT1 protein expression in the myocardium of mice with sepsis, while inhibition of SIRT1 by EX527 abolished melatonin's cardioprotection during sepsis.
In this study, we found that melatonin protected against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice.
The proposed mechanisms of melatonin's cardioprotection against cardiac dysfunction during sepsis. Melatonin activates SIRT1 signaling pathway and then regulates apoptosis and autophagy in the myocardium of mice with sepsis, which contributes to improving sepsis-induced cardiac dysfunction. [Display omitted] |
---|---|
AbstractList | The apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin protects against cardiac dysfunction during sepsis. In addition, silent information regulator 1 (SIRT1) is a therapeutic target for sepsis-induced myocardial dysfunction. The aims of this study were to investigate whether SIRT1 was involved in melatonin's cardioprotection during sepsis and the mechanisms.In this study, twenty-four male C57BL/6 mice were randomly assigned to four groups: Control group, LPS group, LPS + Melatonin group and LPS + Melatonin + EX527 group. Mice were treated with lipopolysaccharide for 8 h with or without melatonin or EX527. The cardiac function, myocardial injury biomarkers, cardiac histopathology, cardiomyocyte apoptosis, autophagosome as well as the protein expressions of SIRT1, cleaved caspase-3, LC3-II/LC3-I ratio and p62 in the myocardium were assayed.The results demonstrated that melatonin significantly improved cardiac function, decreased creatine kinase (CK) and creatine kinase-MB (CK-MB) levels, attenuated myocardial architecture destruction, inhibited cardiomyocyte apoptosis and increased cardiac autophagy as compared with the LPS group. In addition, melatonin significantly increased SIRT1 protein expression in the myocardium of mice with sepsis, while inhibition of SIRT1 by EX527 abolished melatonin's cardioprotection during sepsis.In this study, we found that melatonin protected against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice. The apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin protects against cardiac dysfunction during sepsis. In addition, silent information regulator 1 (SIRT1) is a therapeutic target for sepsis-induced myocardial dysfunction. The aims of this study were to investigate whether SIRT1 was involved in melatonin's cardioprotection during sepsis and the mechanisms. In this study, twenty-four male C57BL/6 mice were randomly assigned to four groups: Control group, LPS group, LPS + Melatonin group and LPS + Melatonin + EX527 group. Mice were treated with lipopolysaccharide for 8 h with or without melatonin or EX527. The cardiac function, myocardial injury biomarkers, cardiac histopathology, cardiomyocyte apoptosis, autophagosome as well as the protein expressions of SIRT1, cleaved caspase-3, LC3-II/LC3-I ratio and p62 in the myocardium were assayed. The results demonstrated that melatonin significantly improved cardiac function, decreased creatine kinase (CK) and creatine kinase-MB (CK-MB) levels, attenuated myocardial architecture destruction, inhibited cardiomyocyte apoptosis and increased cardiac autophagy as compared with the LPS group. In addition, melatonin significantly increased SIRT1 protein expression in the myocardium of mice with sepsis, while inhibition of SIRT1 by EX527 abolished melatonin's cardioprotection during sepsis. In this study, we found that melatonin protected against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice. The proposed mechanisms of melatonin's cardioprotection against cardiac dysfunction during sepsis. Melatonin activates SIRT1 signaling pathway and then regulates apoptosis and autophagy in the myocardium of mice with sepsis, which contributes to improving sepsis-induced cardiac dysfunction. [Display omitted] The apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin protects against cardiac dysfunction during sepsis. In addition, silent information regulator 1 (SIRT1) is a therapeutic target for sepsis-induced myocardial dysfunction. The aims of this study were to investigate whether SIRT1 was involved in melatonin's cardioprotection during sepsis and the mechanisms. In this study, twenty-four male C57BL/6 mice were randomly assigned to four groups: Control group, LPS group, LPS + Melatonin group and LPS + Melatonin + EX527 group. Mice were treated with lipopolysaccharide for 8 h with or without melatonin or EX527. The cardiac function, myocardial injury biomarkers, cardiac histopathology, cardiomyocyte apoptosis, autophagosome as well as the protein expressions of SIRT1, cleaved caspase-3, LC3-II/LC3-I ratio and p62 in the myocardium were assayed. The results demonstrated that melatonin significantly improved cardiac function, decreased creatine kinase (CK) and creatine kinase-MB (CK-MB) levels, attenuated myocardial architecture destruction, inhibited cardiomyocyte apoptosis and increased cardiac autophagy as compared with the LPS group. In addition, melatonin significantly increased SIRT1 protein expression in the myocardium of mice with sepsis, while inhibition of SIRT1 by EX527 abolished melatonin's cardioprotection during sepsis. In this study, we found that melatonin protected against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice. The apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin protects against cardiac dysfunction during sepsis. In addition, silent information regulator 1 (SIRT1) is a therapeutic target for sepsis-induced myocardial dysfunction. The aims of this study were to investigate whether SIRT1 was involved in melatonin's cardioprotection during sepsis and the mechanisms.AIMSThe apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin protects against cardiac dysfunction during sepsis. In addition, silent information regulator 1 (SIRT1) is a therapeutic target for sepsis-induced myocardial dysfunction. The aims of this study were to investigate whether SIRT1 was involved in melatonin's cardioprotection during sepsis and the mechanisms.In this study, twenty-four male C57BL/6 mice were randomly assigned to four groups: Control group, LPS group, LPS + Melatonin group and LPS + Melatonin + EX527 group. Mice were treated with lipopolysaccharide for 8 h with or without melatonin or EX527. The cardiac function, myocardial injury biomarkers, cardiac histopathology, cardiomyocyte apoptosis, autophagosome as well as the protein expressions of SIRT1, cleaved caspase-3, LC3-II/LC3-I ratio and p62 in the myocardium were assayed.MATERIALS AND METHODSIn this study, twenty-four male C57BL/6 mice were randomly assigned to four groups: Control group, LPS group, LPS + Melatonin group and LPS + Melatonin + EX527 group. Mice were treated with lipopolysaccharide for 8 h with or without melatonin or EX527. The cardiac function, myocardial injury biomarkers, cardiac histopathology, cardiomyocyte apoptosis, autophagosome as well as the protein expressions of SIRT1, cleaved caspase-3, LC3-II/LC3-I ratio and p62 in the myocardium were assayed.The results demonstrated that melatonin significantly improved cardiac function, decreased creatine kinase (CK) and creatine kinase-MB (CK-MB) levels, attenuated myocardial architecture destruction, inhibited cardiomyocyte apoptosis and increased cardiac autophagy as compared with the LPS group. In addition, melatonin significantly increased SIRT1 protein expression in the myocardium of mice with sepsis, while inhibition of SIRT1 by EX527 abolished melatonin's cardioprotection during sepsis.KEY FINDINGSThe results demonstrated that melatonin significantly improved cardiac function, decreased creatine kinase (CK) and creatine kinase-MB (CK-MB) levels, attenuated myocardial architecture destruction, inhibited cardiomyocyte apoptosis and increased cardiac autophagy as compared with the LPS group. In addition, melatonin significantly increased SIRT1 protein expression in the myocardium of mice with sepsis, while inhibition of SIRT1 by EX527 abolished melatonin's cardioprotection during sepsis.In this study, we found that melatonin protected against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice.SIGNIFICANCEIn this study, we found that melatonin protected against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice. |
Author | Wu, Ying Qiao, Jian-feng Zhang, Wen-xuan Peng, Zhen-yu He, Bai-mei |
Author_xml | – sequence: 1 givenname: Wen-xuan surname: Zhang fullname: Zhang, Wen-xuan organization: Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China – sequence: 2 givenname: Bai-mei surname: He fullname: He, Bai-mei organization: Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China – sequence: 3 givenname: Ying surname: Wu fullname: Wu, Ying organization: Department of Intensive Care Unit, Second Xiangya Hospital, Central South University, Changsha 410011, China – sequence: 4 givenname: Jian-feng surname: Qiao fullname: Qiao, Jian-feng organization: Clinical Nursing Teaching and Research Section, Second Xiangya Hospital, Central South University, Changsha, 410011, China – sequence: 5 givenname: Zhen-yu surname: Peng fullname: Peng, Zhen-yu email: pengzhenyu1999@csu.edu.cn organization: Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30500551$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAURkVJSSZpfkA3Rctu7OhhjW26KqGPQEohSdfi6uGpBo_kSvLArPvHK2fSLLpIV5LgnCvu952jEx-8RegtJTUldH21rcch1YzQrqa0JkK8QivatX1F1pyeoBUhrKk4I-IMnae0JaQgLT9FZ5yI5U5X6Pc3O0IO3nk8xZCtzgnDBpxPGSc7JZcq582srcEaonGgsTmkYfY6u-CxOuBoN3MZ4fwGwxSmHIqDwRsMcw7TT9gc8N4BhiLs4VEKA76_uXuguHy6c9q-Qa8HGJO9fDov0I_Pnx6uv1a337_cXH-8rXQjWK46onpqREeAdUxBM5RXw6FXtFdcMbYWHXSDUEooYwwHzo1tO6GgWxtCzMAv0Pvj3LLpr9mmLHcuaTuO4G2Yk2SMt0Is0fwfpU1PCt8v6LsndFY7a-QU3Q7iQf7NuAD0COgYUop2eEYokUuPcitLj3LpUVIqi1Sc9h9Hu_yYXo7gxhfND0fTliT3zkaZtLO-FOhiaVea4F6w_wDkbrk_ |
CitedBy_id | crossref_primary_10_1186_s12950_021_00296_2 crossref_primary_10_3389_fphar_2022_881320 crossref_primary_10_3389_fphar_2020_590652 crossref_primary_10_1097_FJC_0000000000001487 crossref_primary_10_1016_j_lfs_2023_122008 crossref_primary_10_1007_s11010_024_05002_3 crossref_primary_10_1016_j_lfs_2020_117327 crossref_primary_10_1097_CM9_0000000000002010 crossref_primary_10_1186_s12933_023_02078_x crossref_primary_10_1016_j_ejphar_2021_174186 crossref_primary_10_3389_fcvm_2023_1076093 crossref_primary_10_1038_s41401_024_01398_2 crossref_primary_10_1074_jbc_RA119_008925 crossref_primary_10_1016_j_intimp_2022_108545 crossref_primary_10_1016_j_intimp_2023_110978 crossref_primary_10_1002_iid3_1039 crossref_primary_10_1096_fj_202002718RR crossref_primary_10_1016_j_jddst_2023_104711 crossref_primary_10_1038_s41392_021_00745_7 crossref_primary_10_1016_j_lfs_2019_116613 crossref_primary_10_4110_in_2022_22_e21 crossref_primary_10_1177_08853282231194317 crossref_primary_10_1590_fst_36720 crossref_primary_10_3389_fphar_2022_1038802 crossref_primary_10_18632_aging_103078 crossref_primary_10_3389_fvets_2021_756534 crossref_primary_10_1002_iid3_829 crossref_primary_10_1007_s00204_023_03647_5 crossref_primary_10_18632_aging_204740 crossref_primary_10_18632_aging_205312 crossref_primary_10_1186_s12917_021_03125_z crossref_primary_10_3389_fimmu_2021_625627 crossref_primary_10_1038_s44323_024_00007_z crossref_primary_10_1002_med_21733 crossref_primary_10_1016_j_jare_2023_11_008 crossref_primary_10_3390_molecules24173084 crossref_primary_10_1111_fcp_12589 crossref_primary_10_1111_apha_14184 crossref_primary_10_1016_j_lfs_2020_117431 crossref_primary_10_1016_j_biopha_2019_109150 crossref_primary_10_3389_fgene_2022_1056405 crossref_primary_10_3892_ijmm_2019_4442 crossref_primary_10_3390_antiox10111658 crossref_primary_10_1016_j_lfs_2024_122611 crossref_primary_10_3389_fimmu_2022_831168 crossref_primary_10_1007_s10753_023_01833_2 crossref_primary_10_18632_aging_203639 crossref_primary_10_1007_s10529_020_02939_5 crossref_primary_10_1016_j_taap_2022_116173 crossref_primary_10_1007_s11356_022_24546_9 crossref_primary_10_1097_CM9_0000000000001772 crossref_primary_10_1007_s10753_023_01954_8 crossref_primary_10_1016_j_biopha_2022_114209 crossref_primary_10_1016_j_lfs_2019_04_057 crossref_primary_10_1038_s41598_024_55923_8 crossref_primary_10_3389_fcvm_2023_1291450 crossref_primary_10_1007_s11033_023_08670_4 crossref_primary_10_3390_molecules28134940 crossref_primary_10_1016_j_lfs_2023_121875 crossref_primary_10_1002_jbt_23330 crossref_primary_10_1016_j_arr_2020_101129 crossref_primary_10_1016_j_biopha_2022_113135 crossref_primary_10_1637_aviandiseases_D_23_00036 crossref_primary_10_1155_2021_1530445 crossref_primary_10_1538_expanim_22_0072 crossref_primary_10_1007_s00011_021_01447_0 crossref_primary_10_1152_ajpendo_00227_2021 crossref_primary_10_1016_j_biopha_2020_110260 crossref_primary_10_3389_fphys_2020_00514 crossref_primary_10_1007_s10753_021_01413_2 crossref_primary_10_2147_JIR_S374117 crossref_primary_10_1111_1440_1681_13470 crossref_primary_10_1155_2021_8120403 crossref_primary_10_1016_j_fct_2023_113813 crossref_primary_10_3389_fcell_2021_650666 crossref_primary_10_1016_j_placenta_2024_01_014 crossref_primary_10_3390_ijms242115963 crossref_primary_10_2147_DDDT_S509735 crossref_primary_10_1016_j_ijbiomac_2024_134853 crossref_primary_10_1089_ars_2021_0275 crossref_primary_10_1016_j_biopha_2023_115305 crossref_primary_10_1016_j_peptides_2021_170612 crossref_primary_10_1590_acb370208 crossref_primary_10_1155_2021_6308255 crossref_primary_10_1002_iid3_860 crossref_primary_10_1007_s10741_021_10171_0 crossref_primary_10_6061_clinics_2021_e2863 crossref_primary_10_3389_fimmu_2024_1394925 crossref_primary_10_1155_2022_9415694 crossref_primary_10_1042_BSR20194030 crossref_primary_10_1002_prp2_904 crossref_primary_10_1002_ptr_7471 crossref_primary_10_1016_j_biopha_2022_113556 crossref_primary_10_1186_s12950_021_00269_5 crossref_primary_10_1038_s41401_024_01356_y crossref_primary_10_1016_j_ejphar_2020_173276 crossref_primary_10_1016_j_intimp_2019_106041 crossref_primary_10_3389_fphar_2020_01220 crossref_primary_10_1016_j_pharmthera_2021_107983 crossref_primary_10_3389_fimmu_2019_01371 crossref_primary_10_1016_j_eti_2024_103923 crossref_primary_10_1536_ihj_20_512 crossref_primary_10_31083_j_fbl2902054 crossref_primary_10_1016_j_intimp_2025_114292 crossref_primary_10_18632_aging_205735 crossref_primary_10_3389_fcvm_2022_888319 |
Cites_doi | 10.1007/s11010-011-0731-7 10.1038/s41556-018-0201-5 10.1161/CIRCRESAHA.117.311082 10.1111/jpi.12254 10.3892/mmr.2014.2382 10.1016/j.freeradbiomed.2018.08.032 10.1161/CIRCULATIONAHA.106.678359 10.1016/j.pneurobio.2018.01.001 10.1097/CCM.0b013e318174db05 10.1111/bph.12496 10.1016/j.biopha.2018.01.165 10.1155/2017/8326749 10.1016/j.freeradbiomed.2013.03.015 10.1080/19420889.2018.1467189 10.1016/j.yjmcc.2016.02.002 10.1016/j.phrs.2018.01.022 10.1002/pros.23483 10.1016/j.freeradbiomed.2017.10.005 10.1016/j.ccm.2016.01.014 10.1111/jpi.12410 10.1111/jpi.12161 10.1159/000491887 10.1161/CIRCRESAHA.118.312910 10.3389/fphys.2018.00589 10.1186/s13054-018-2113-y 10.1097/ACO.0000000000000572 10.1038/srep32199 10.1097/SLA.0b013e318214b67e 10.1016/j.taap.2016.11.012 10.1152/ajpheart.01051.2008 10.1007/s00395-015-0526-1 10.1001/jama.2016.0287 10.1111/bph.13386 10.1016/j.intimp.2018.06.033 10.1155/2016/5380319 10.1097/MOL.0000000000000314 10.2174/1570159X14666161228122115 10.1189/jlb.3MA0114-034RR 10.3390/molecules23030675 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.lfs.2018.11.055 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1879-0631 |
EndPage | 15 |
ExternalDocumentID | 30500551 10_1016_j_lfs_2018_11_055 S0024320518307768 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5RE 5VS 6TJ 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABFRF ABJNI ABLJU ABLVK ABMAC ABMZM ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJRQY ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV C45 CNWQP CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IH2 IHE J1W K-O KOM L7B LCYCR M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPCBC SSH SSP SSZ T5K TEORI YZZ ~G- .55 .GJ 29L 3O- 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACIEU ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HMG HMT HVGLF HZ~ H~9 J5H MVM R2- SEW SIN SPT WUQ X7M Y6R YYP ZGI ZKB ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c452t-80b91d580a282ba4f91d43a9b19b3b22658a8f5bb5bddd3a33de785ba86d00df3 |
IEDL.DBID | .~1 |
ISSN | 0024-3205 1879-0631 |
IngestDate | Fri Jul 11 05:09:51 EDT 2025 Mon Jul 21 11:29:23 EDT 2025 Wed Feb 19 02:36:12 EST 2025 Tue Jul 01 04:29:47 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Fri Feb 23 02:47:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sepsis Melatonin Autophagy SIRT1 Cardiac dysfunction Apoptosis |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-80b91d580a282ba4f91d43a9b19b3b22658a8f5bb5bddd3a33de785ba86d00df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30500551 |
PQID | 2149022390 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2237550500 proquest_miscellaneous_2149022390 pubmed_primary_30500551 crossref_primary_10_1016_j_lfs_2018_11_055 crossref_citationtrail_10_1016_j_lfs_2018_11_055 elsevier_sciencedirect_doi_10_1016_j_lfs_2018_11_055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-15 |
PublicationDateYYYYMMDD | 2019-01-15 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Life sciences (1973) |
PublicationTitleAlternate | Life Sci |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Mao, Chen, Li, Guo, Zhang (bb0175) 2018; 9 An, Zhao, Xi, Li, Shen, Liu, Zhang, Sun (bb0100) 2016; 111 Liu, Ma, Di, Yang, Yang, Xu, Reiter, Qiao, Yuan (bb0090) 2018; 129 Xu, Lin, Wang, Zhang, Liu, Lu (bb0030) 2018; 48 Li, Lang, Zhang, Xu, Wang, Hao (bb0075) 2016; 2016 Vachharajani, Liu, Brown, Wang, Buechler, Wells, Yoza, McCall (bb0120) 2014; 96 Doherty, Baehrecke (bb0040) 2018; 20 Ben Salem, Boussabbeh, Pires Da Silva, Guilbert, Bacha, Abid-Essefi, Lemaire (bb0215) 2017; 314 Zhao, An, Yang, Yang, Liu, Yue, Li, Lin, Reiter, Qu (bb0200) 2015; 59 Hwang, Yao, Caito, Sundar, Rahman (bb0115) 2013; 61 Bansal, Moharir, Swarup (bb0045) 2018; 11 Dalton, Shahul (bb0025) 2018; 31 Tordjman, Chokron, Delorme, Charrier, Bellissant, Jaafari, Fougerou (bb0080) 2017 Vieillard-Baron, Caille, Charron, Belliard, Page, Jardin (bb0010) 2008; 36 Bravo-San Pedro, Kroemer, Galluzzi (bb0055) 2017; 120 Zhao, An, Yang, Yang, Liu, Yue, Li, Lin, Reiter, Qu (bb0140) 2015; 59 Wang, Shao, Deng, Chen, Yue, Miao (bb0060) 2018; 163-164 Fenton, Parker (bb0020) 2016; 37 Sun, Gusdon, Qu (bb0085) 2016; 27 Singer, Deutschman, Seymour, Shankar-Hari, Annane, Bauer, Bellomo, Bernard, Chiche, Coopersmith, Hotchkiss, Levy, Marshall, Martin, Opal, Rubenfeld, van der Poll, Vincent, Angus (bb0005) 2016; 315 Han, Li, Li, Su, Fan, Fan, Qiao, Chen, Fan, Li, Wang, Ma, Qiu, Tian, Cao (bb0130) 2017; 113 Peng, Zhang, Qiao, He (bb0160) 2018; 62 Liu, Hong, Shao, Chen, Wang (bb0095) 2014; 10 Sanfilippo, Corredor, Fletcher, Tritapepe, Lorini, Arcadipane, Vieillard-Baron, Cecconi (bb0185) 2018; 22 Peng, Xu, Ruan, Li, Xiao (bb0035) 2017; 2017 Bai, He, Gao, Liu, Liu, Han, Li, Shi, Han, Tao, Xie, Wang, Hu (bb0135) 2016; 6 Yuan, Perry, Huang, Iwai-Kanai, Carreira, Glembotski, Gottlieb (bb0205) 2009; 296 Ren, Xu, Wang, Ren, Dong, Zhang (bb0070) 2016; 93 Qiu, Li, Liu (bb0125) 2018; 100 Chen, Lai, Yang, Ruan, Chaugai, Ning, Chen, Wang (bb0150) 2016; 173 Jia, Wang, Wang, Ma, Shen, Fu, Wu, Su, Zhang, Cai, Wang, Xiang (bb0165) 2018; 122 Wang, Kim, Wise, Shi, Zhang, DiPaola (bb0050) 2018; 78 Roohbakhsh, Shamsizadeh, Hayes, Reiter, Karimi (bb0210) 2018; 133 Hsieh, Pai, Hsueh, Yuan, Hsieh (bb0065) 2011; 253 Rahim, Djerdjouri, Sayed, Fernández-Ortiz, Fernández-Gil, Hidalgo-Gutiérrez, López, Escames, Reiter, Acuña-Castroviejo (bb0155) 2017; 63 Pan, Zhang, Su, Wang, Liu (bb0105) 2018; 23 Lorente, Martín, Abreu-González, de la Cruz, Ferreres, Solé-Violán, Labarta, Díaz, Jiménez, Borreguero-León (bb0190) 2015; 30 Peng, Zhao, He, Peng, Hu (bb0180) 2011; 351 Chen, Chang, Lin, Sung, Chai, Zhen, Chen, Wu, Leu, Tsai, Chen, Chang, Yip (bb0195) 2014; 6 Merx, Weber (bb0015) 2007; 116 Arunachalam, Samuel, Marei, Ding, Triggle (bb0110) 2014; 171 Yu, Sun, Cheng, Jin, Yang, Zhai, Pei, Wang, Zhang, Meng, Zhang, Yu, Duan (bb0145) 2014; 57 Chen, Luo, Sun, Xu, Yu, Liu, Zhang, Wang, Wang, Bao, Meng (bb0170) 2018; 19 Wang (10.1016/j.lfs.2018.11.055_bb0050) 2018; 78 Li (10.1016/j.lfs.2018.11.055_bb0075) 2016; 2016 Han (10.1016/j.lfs.2018.11.055_bb0130) 2017; 113 Peng (10.1016/j.lfs.2018.11.055_bb0035) 2017; 2017 Lorente (10.1016/j.lfs.2018.11.055_bb0190) 2015; 30 Mao (10.1016/j.lfs.2018.11.055_bb0175) 2018; 9 Chen (10.1016/j.lfs.2018.11.055_bb0170) 2018; 19 Chen (10.1016/j.lfs.2018.11.055_bb0195) 2014; 6 Liu (10.1016/j.lfs.2018.11.055_bb0095) 2014; 10 Jia (10.1016/j.lfs.2018.11.055_bb0165) 2018; 122 Bravo-San Pedro (10.1016/j.lfs.2018.11.055_bb0055) 2017; 120 Chen (10.1016/j.lfs.2018.11.055_bb0150) 2016; 173 Peng (10.1016/j.lfs.2018.11.055_bb0160) 2018; 62 Arunachalam (10.1016/j.lfs.2018.11.055_bb0110) 2014; 171 Sanfilippo (10.1016/j.lfs.2018.11.055_bb0185) 2018; 22 Ren (10.1016/j.lfs.2018.11.055_bb0070) 2016; 93 Yuan (10.1016/j.lfs.2018.11.055_bb0205) 2009; 296 Pan (10.1016/j.lfs.2018.11.055_bb0105) 2018; 23 Peng (10.1016/j.lfs.2018.11.055_bb0180) 2011; 351 Hwang (10.1016/j.lfs.2018.11.055_bb0115) 2013; 61 An (10.1016/j.lfs.2018.11.055_bb0100) 2016; 111 Liu (10.1016/j.lfs.2018.11.055_bb0090) 2018; 129 Dalton (10.1016/j.lfs.2018.11.055_bb0025) 2018; 31 Fenton (10.1016/j.lfs.2018.11.055_bb0020) 2016; 37 Wang (10.1016/j.lfs.2018.11.055_bb0060) 2018; 163-164 Vieillard-Baron (10.1016/j.lfs.2018.11.055_bb0010) 2008; 36 Ben Salem (10.1016/j.lfs.2018.11.055_bb0215) 2017; 314 Rahim (10.1016/j.lfs.2018.11.055_bb0155) 2017; 63 Doherty (10.1016/j.lfs.2018.11.055_bb0040) 2018; 20 Singer (10.1016/j.lfs.2018.11.055_bb0005) 2016; 315 Zhao (10.1016/j.lfs.2018.11.055_bb0140) 2015; 59 Vachharajani (10.1016/j.lfs.2018.11.055_bb0120) 2014; 96 Zhao (10.1016/j.lfs.2018.11.055_bb0200) 2015; 59 Qiu (10.1016/j.lfs.2018.11.055_bb0125) 2018; 100 Roohbakhsh (10.1016/j.lfs.2018.11.055_bb0210) 2018; 133 Bansal (10.1016/j.lfs.2018.11.055_bb0045) 2018; 11 Hsieh (10.1016/j.lfs.2018.11.055_bb0065) 2011; 253 Yu (10.1016/j.lfs.2018.11.055_bb0145) 2014; 57 Merx (10.1016/j.lfs.2018.11.055_bb0015) 2007; 116 Bai (10.1016/j.lfs.2018.11.055_bb0135) 2016; 6 Xu (10.1016/j.lfs.2018.11.055_bb0030) 2018; 48 Tordjman (10.1016/j.lfs.2018.11.055_bb0080) 2017 Sun (10.1016/j.lfs.2018.11.055_bb0085) 2016; 27 |
References_xml | – volume: 315 start-page: 801 year: 2016 end-page: 810 ident: bb0005 article-title: The third international consensus definitions for sepsis and septic shock (Sepsis-3) publication-title: JAMA – volume: 253 start-page: 1190 year: 2011 end-page: 1200 ident: bb0065 article-title: Complete induction of autophagy is essential for cardioprotection in sepsis publication-title: Ann. Surg. – volume: 296 start-page: H470 year: 2009 end-page: H479 ident: bb0205 article-title: LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 314 start-page: 82 year: 2017 end-page: 90 ident: bb0215 article-title: SIRT1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites α- and β-zearalenol through an autophagy-dependent pathway publication-title: Toxicol. Appl. Pharmacol. – volume: 59 start-page: 230 year: 2015 end-page: 239 ident: bb0200 article-title: Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling publication-title: J. Pineal Res. – start-page: 434 year: 2017 end-page: 443 ident: bb0080 article-title: Melatonin: pharmacology, functions and therapeutic benefits publication-title: Curr. Neuropharmacol. – volume: 111 start-page: 8 year: 2016 ident: bb0100 article-title: Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism publication-title: Basic Res. Cardiol. – volume: 37 start-page: 289 year: 2016 end-page: 298 ident: bb0020 article-title: Cardiac function and dysfunction in sepsis publication-title: Clin. Chest Med. – volume: 57 start-page: 228 year: 2014 end-page: 238 ident: bb0145 article-title: Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: role of SIRT1 publication-title: J. Pineal Res. – volume: 48 start-page: 583 year: 2018 end-page: 592 ident: bb0030 article-title: Ergosterol attenuates LPS-induced myocardial injury by modulating oxidative stress and apoptosis in rats publication-title: Cell. Physiol. Biochem. – volume: 78 start-page: 390 year: 2018 end-page: 400 ident: bb0050 article-title: p62 as a therapeutic target for inhibition of autophagy in prostate cancer publication-title: Prostate – volume: 6 start-page: 439 year: 2014 end-page: 458 ident: bb0195 article-title: Melatonin augments apoptotic adipose-derived mesenchymal stem cell treatment against sepsis-induced acute lunginjury publication-title: Am. J. Transl. Res. – volume: 2016 year: 2016 ident: bb0075 article-title: Role of TFEB mediated autophagy, oxidative stress, inflammation, and cell death in endotoxin induced myocardial toxicity of young and aged mice publication-title: Oxidative Med. Cell. Longev. – volume: 59 start-page: 230 year: 2015 end-page: 239 ident: bb0140 article-title: Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling publication-title: J. Pineal Res. – volume: 133 start-page: 265 year: 2018 end-page: 276 ident: bb0210 article-title: Melatonin as an endogenous regulator of diseases: the role of autophagy publication-title: Pharmacol. Res. – volume: 100 start-page: 15 year: 2018 end-page: 19 ident: bb0125 article-title: MicroRNA-204 protects H9C2 cells against hypoxia/reoxygenation-induced injury through regulating SIRT1-mediated autophagy publication-title: Biomed. Pharmacother. – volume: 171 start-page: 523 year: 2014 end-page: 535 ident: bb0110 article-title: Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1 publication-title: Br. J. Pharmacol. – volume: 96 start-page: 785 year: 2014 end-page: 796 ident: bb0120 article-title: SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome publication-title: J. Leukoc. Biol. – volume: 163-164 start-page: 98 year: 2018 end-page: 117 ident: bb0060 article-title: Autophagy in ischemic stroke publication-title: Prog. Neurobiol. – volume: 19 year: 2018 ident: bb0170 article-title: Dihydromyricetin attenuates myocardial hypertrophy induced by transverse aortic constriction via oxidative stress inhibition and SIRT3 pathway enhancement publication-title: Int. J. Mol. Sci. – volume: 122 start-page: 1532 year: 2018 end-page: 1544 ident: bb0165 article-title: Heme oxygenase-1 in macrophages drives septic cardiac dysfunction via suppressing lysosomal degradation of inducible nitric oxide synthase publication-title: Circ. Res. – volume: 36 start-page: 1701 year: 2008 end-page: 1706 ident: bb0010 article-title: Actual incidence of global left ventricular hypokinesia in adult septic shock publication-title: Crit. Care Med. – volume: 11 start-page: 1 year: 2018 end-page: 4 ident: bb0045 article-title: Autophagy receptor optineurin promotes autophagosome formation by potentiating LC3-II production and phagophore maturation publication-title: Commun. Integr. Biol. – volume: 20 start-page: 1110 year: 2018 end-page: 1117 ident: bb0040 article-title: Life, death and autophagy publication-title: Nat. Cell Biol. – volume: 113 start-page: 291 year: 2017 end-page: 303 ident: bb0130 article-title: Reduced silent information regulator 1 signaling exacerbates sepsis-induced myocardial injury and mitigates the protective effect of a liver X receptor agonist publication-title: Free Radic. Biol. Med. – volume: 6 year: 2016 ident: bb0135 article-title: Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1 publication-title: Sci. Rep. – volume: 2017 year: 2017 ident: bb0035 article-title: PPAR-γ activation prevents septic cardiac dysfunction via inhibition of apoptosis and necroptosis publication-title: Oxidative Med. Cell. Longev. – volume: 23 year: 2018 ident: bb0105 article-title: Melatonin balance the autophagy and apoptosis by regulating UCP2 in the LPS-induced cardiomyopathy publication-title: Molecules – volume: 61 start-page: 95 year: 2013 end-page: 110 ident: bb0115 article-title: Redox regulation of SIRT1 in inflammation and cellular senescence publication-title: Free Radic. Biol. Med. – volume: 22 start-page: 183 year: 2018 ident: bb0185 article-title: Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock: a systematic review and meta-analysis publication-title: Crit. Care – volume: 30 year: 2015 ident: bb0190 article-title: Serum melatonin levels are associated with mortality in severe septic patients publication-title: J. Crit. Care – volume: 120 start-page: 1812 year: 2017 end-page: 1824 ident: bb0055 article-title: Autophagy and mitophagy in cardiovascular disease publication-title: Circ. Res. – volume: 351 start-page: 243 year: 2011 end-page: 249 ident: bb0180 article-title: Protective effect of HDL on endothelial NO production: the role of DDAH/ADMA pathway publication-title: Mol. Cell. Biochem. – volume: 63 year: 2017 ident: bb0155 article-title: Melatonin administration to wild-type mice and nontreated NLRP3 mutant mice share similar inhibition of the inflammatory response during sepsis publication-title: J. Pineal Res. – volume: 31 start-page: 158 year: 2018 end-page: 164 ident: bb0025 article-title: Cardiac dysfunction in critical illness publication-title: Curr. Opin. Anaesthesiol. – volume: 93 start-page: 18 year: 2016 end-page: 31 ident: bb0070 article-title: Permissive role of AMPK and autophagy in adiponectin deficiency-accentuated myocardial injury and inflammation in endotoxemia publication-title: J. Mol. Cell. Cardiol. – volume: 10 start-page: 1323 year: 2014 end-page: 1328 ident: bb0095 article-title: Melatonin synergized with cyclosporine A improves cardiac allograft survival by suppressing inflammation and apoptosis publication-title: Mol. Med. Rep. – volume: 62 start-page: 23 year: 2018 end-page: 28 ident: bb0160 article-title: Melatonin attenuates airway inflammation via SIRT1 dependent inhibition of NLRP3 inflammasome and IL-1β in rats with COPD publication-title: Int. Immunopharmacol. – volume: 27 start-page: 408 year: 2016 end-page: 413 ident: bb0085 article-title: Effects of melatonin on cardiovascular diseases: progress in the past year publication-title: Curr. Opin. Lipidol. – volume: 129 start-page: 59 year: 2018 end-page: 72 ident: bb0090 article-title: AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis publication-title: Free Radic. Biol. Med. – volume: 116 start-page: 793 year: 2007 end-page: 802 ident: bb0015 article-title: Sepsis and the heart publication-title: Circulation – volume: 173 start-page: 545 year: 2016 end-page: 661 ident: bb0150 article-title: Trimetazidine prevents macrophage-mediated septic myocardial dysfunction via activation of the histone deacetylase sirtuin 1 publication-title: Br. J. Pharmacol. – volume: 9 start-page: 589 year: 2018 ident: bb0175 article-title: Tongguan capsule mitigates post-myocardial infarction remodeling by promoting autophagy and inhibiting apoptosis: role of Sirt1 publication-title: Front. Physiol. – volume: 351 start-page: 243 year: 2011 ident: 10.1016/j.lfs.2018.11.055_bb0180 article-title: Protective effect of HDL on endothelial NO production: the role of DDAH/ADMA pathway publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-011-0731-7 – volume: 6 start-page: 439 year: 2014 ident: 10.1016/j.lfs.2018.11.055_bb0195 article-title: Melatonin augments apoptotic adipose-derived mesenchymal stem cell treatment against sepsis-induced acute lunginjury publication-title: Am. J. Transl. Res. – volume: 20 start-page: 1110 year: 2018 ident: 10.1016/j.lfs.2018.11.055_bb0040 article-title: Life, death and autophagy publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0201-5 – volume: 120 start-page: 1812 year: 2017 ident: 10.1016/j.lfs.2018.11.055_bb0055 article-title: Autophagy and mitophagy in cardiovascular disease publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.311082 – volume: 59 start-page: 230 year: 2015 ident: 10.1016/j.lfs.2018.11.055_bb0200 article-title: Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling publication-title: J. Pineal Res. doi: 10.1111/jpi.12254 – volume: 10 start-page: 1323 year: 2014 ident: 10.1016/j.lfs.2018.11.055_bb0095 article-title: Melatonin synergized with cyclosporine A improves cardiac allograft survival by suppressing inflammation and apoptosis publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2014.2382 – volume: 129 start-page: 59 year: 2018 ident: 10.1016/j.lfs.2018.11.055_bb0090 article-title: AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.08.032 – volume: 116 start-page: 793 year: 2007 ident: 10.1016/j.lfs.2018.11.055_bb0015 article-title: Sepsis and the heart publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.678359 – volume: 163-164 start-page: 98 year: 2018 ident: 10.1016/j.lfs.2018.11.055_bb0060 article-title: Autophagy in ischemic stroke publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2018.01.001 – volume: 36 start-page: 1701 year: 2008 ident: 10.1016/j.lfs.2018.11.055_bb0010 article-title: Actual incidence of global left ventricular hypokinesia in adult septic shock publication-title: Crit. Care Med. doi: 10.1097/CCM.0b013e318174db05 – volume: 171 start-page: 523 year: 2014 ident: 10.1016/j.lfs.2018.11.055_bb0110 article-title: Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1 publication-title: Br. J. Pharmacol. doi: 10.1111/bph.12496 – volume: 100 start-page: 15 year: 2018 ident: 10.1016/j.lfs.2018.11.055_bb0125 article-title: MicroRNA-204 protects H9C2 cells against hypoxia/reoxygenation-induced injury through regulating SIRT1-mediated autophagy publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.01.165 – volume: 19 year: 2018 ident: 10.1016/j.lfs.2018.11.055_bb0170 article-title: Dihydromyricetin attenuates myocardial hypertrophy induced by transverse aortic constriction via oxidative stress inhibition and SIRT3 pathway enhancement publication-title: Int. J. Mol. Sci. – volume: 2017 year: 2017 ident: 10.1016/j.lfs.2018.11.055_bb0035 article-title: PPAR-γ activation prevents septic cardiac dysfunction via inhibition of apoptosis and necroptosis publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2017/8326749 – volume: 59 start-page: 230 year: 2015 ident: 10.1016/j.lfs.2018.11.055_bb0140 article-title: Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling publication-title: J. Pineal Res. doi: 10.1111/jpi.12254 – volume: 61 start-page: 95 year: 2013 ident: 10.1016/j.lfs.2018.11.055_bb0115 article-title: Redox regulation of SIRT1 in inflammation and cellular senescence publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.03.015 – volume: 11 start-page: 1 year: 2018 ident: 10.1016/j.lfs.2018.11.055_bb0045 article-title: Autophagy receptor optineurin promotes autophagosome formation by potentiating LC3-II production and phagophore maturation publication-title: Commun. Integr. Biol. doi: 10.1080/19420889.2018.1467189 – volume: 93 start-page: 18 year: 2016 ident: 10.1016/j.lfs.2018.11.055_bb0070 article-title: Permissive role of AMPK and autophagy in adiponectin deficiency-accentuated myocardial injury and inflammation in endotoxemia publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2016.02.002 – volume: 133 start-page: 265 year: 2018 ident: 10.1016/j.lfs.2018.11.055_bb0210 article-title: Melatonin as an endogenous regulator of diseases: the role of autophagy publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2018.01.022 – volume: 78 start-page: 390 year: 2018 ident: 10.1016/j.lfs.2018.11.055_bb0050 article-title: p62 as a therapeutic target for inhibition of autophagy in prostate cancer publication-title: Prostate doi: 10.1002/pros.23483 – volume: 113 start-page: 291 year: 2017 ident: 10.1016/j.lfs.2018.11.055_bb0130 article-title: Reduced silent information regulator 1 signaling exacerbates sepsis-induced myocardial injury and mitigates the protective effect of a liver X receptor agonist publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2017.10.005 – volume: 37 start-page: 289 year: 2016 ident: 10.1016/j.lfs.2018.11.055_bb0020 article-title: Cardiac function and dysfunction in sepsis publication-title: Clin. Chest Med. doi: 10.1016/j.ccm.2016.01.014 – volume: 63 year: 2017 ident: 10.1016/j.lfs.2018.11.055_bb0155 article-title: Melatonin administration to wild-type mice and nontreated NLRP3 mutant mice share similar inhibition of the inflammatory response during sepsis publication-title: J. Pineal Res. doi: 10.1111/jpi.12410 – volume: 57 start-page: 228 year: 2014 ident: 10.1016/j.lfs.2018.11.055_bb0145 article-title: Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: role of SIRT1 publication-title: J. Pineal Res. doi: 10.1111/jpi.12161 – volume: 48 start-page: 583 year: 2018 ident: 10.1016/j.lfs.2018.11.055_bb0030 article-title: Ergosterol attenuates LPS-induced myocardial injury by modulating oxidative stress and apoptosis in rats publication-title: Cell. Physiol. Biochem. doi: 10.1159/000491887 – volume: 122 start-page: 1532 year: 2018 ident: 10.1016/j.lfs.2018.11.055_bb0165 article-title: Heme oxygenase-1 in macrophages drives septic cardiac dysfunction via suppressing lysosomal degradation of inducible nitric oxide synthase publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.118.312910 – volume: 9 start-page: 589 year: 2018 ident: 10.1016/j.lfs.2018.11.055_bb0175 article-title: Tongguan capsule mitigates post-myocardial infarction remodeling by promoting autophagy and inhibiting apoptosis: role of Sirt1 publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00589 – volume: 22 start-page: 183 year: 2018 ident: 10.1016/j.lfs.2018.11.055_bb0185 article-title: Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock: a systematic review and meta-analysis publication-title: Crit. Care doi: 10.1186/s13054-018-2113-y – volume: 31 start-page: 158 year: 2018 ident: 10.1016/j.lfs.2018.11.055_bb0025 article-title: Cardiac dysfunction in critical illness publication-title: Curr. Opin. Anaesthesiol. doi: 10.1097/ACO.0000000000000572 – volume: 6 year: 2016 ident: 10.1016/j.lfs.2018.11.055_bb0135 article-title: Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1 publication-title: Sci. Rep. doi: 10.1038/srep32199 – volume: 253 start-page: 1190 year: 2011 ident: 10.1016/j.lfs.2018.11.055_bb0065 article-title: Complete induction of autophagy is essential for cardioprotection in sepsis publication-title: Ann. Surg. doi: 10.1097/SLA.0b013e318214b67e – volume: 314 start-page: 82 year: 2017 ident: 10.1016/j.lfs.2018.11.055_bb0215 article-title: SIRT1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites α- and β-zearalenol through an autophagy-dependent pathway publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2016.11.012 – volume: 296 start-page: H470 year: 2009 ident: 10.1016/j.lfs.2018.11.055_bb0205 article-title: LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.01051.2008 – volume: 30 year: 2015 ident: 10.1016/j.lfs.2018.11.055_bb0190 article-title: Serum melatonin levels are associated with mortality in severe septic patients publication-title: J. Crit. Care – volume: 111 start-page: 8 year: 2016 ident: 10.1016/j.lfs.2018.11.055_bb0100 article-title: Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism publication-title: Basic Res. Cardiol. doi: 10.1007/s00395-015-0526-1 – volume: 315 start-page: 801 year: 2016 ident: 10.1016/j.lfs.2018.11.055_bb0005 article-title: The third international consensus definitions for sepsis and septic shock (Sepsis-3) publication-title: JAMA doi: 10.1001/jama.2016.0287 – volume: 173 start-page: 545 year: 2016 ident: 10.1016/j.lfs.2018.11.055_bb0150 article-title: Trimetazidine prevents macrophage-mediated septic myocardial dysfunction via activation of the histone deacetylase sirtuin 1 publication-title: Br. J. Pharmacol. doi: 10.1111/bph.13386 – volume: 62 start-page: 23 year: 2018 ident: 10.1016/j.lfs.2018.11.055_bb0160 article-title: Melatonin attenuates airway inflammation via SIRT1 dependent inhibition of NLRP3 inflammasome and IL-1β in rats with COPD publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2018.06.033 – volume: 2016 year: 2016 ident: 10.1016/j.lfs.2018.11.055_bb0075 article-title: Role of TFEB mediated autophagy, oxidative stress, inflammation, and cell death in endotoxin induced myocardial toxicity of young and aged mice publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2016/5380319 – volume: 27 start-page: 408 year: 2016 ident: 10.1016/j.lfs.2018.11.055_bb0085 article-title: Effects of melatonin on cardiovascular diseases: progress in the past year publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0000000000000314 – start-page: 434 year: 2017 ident: 10.1016/j.lfs.2018.11.055_bb0080 article-title: Melatonin: pharmacology, functions and therapeutic benefits publication-title: Curr. Neuropharmacol. doi: 10.2174/1570159X14666161228122115 – volume: 96 start-page: 785 year: 2014 ident: 10.1016/j.lfs.2018.11.055_bb0120 article-title: SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.3MA0114-034RR – volume: 23 year: 2018 ident: 10.1016/j.lfs.2018.11.055_bb0105 article-title: Melatonin balance the autophagy and apoptosis by regulating UCP2 in the LPS-induced cardiomyopathy publication-title: Molecules doi: 10.3390/molecules23030675 |
SSID | ssj0005573 |
Score | 2.5786455 |
Snippet | The apoptosis and autophagy play an important role in the pathogenesis of sepsis-induced cardiac dysfunction. Previous studies have demonstrated that melatonin... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8 |
SubjectTerms | Animals Apoptosis Apoptosis - drug effects Autophagy Autophagy - drug effects biomarkers Cardiac dysfunction cardiac output cardiomyocytes cardioprotective effect Cardiotonic Agents - therapeutic use caspase-3 creatine kinase Heart - drug effects Heart - physiopathology Heart Diseases - etiology Heart Diseases - metabolism Heart Diseases - physiopathology Heart Diseases - prevention & control histopathology lipopolysaccharides Male males Melatonin Melatonin - therapeutic use mice Mice, Inbred C57BL Myocardium - metabolism Myocardium - pathology pathogenesis protein synthesis Sepsis sepsis (infection) Sepsis - complications Sepsis - metabolism Sepsis - physiopathology SIRT1 Sirtuin 1 - analysis Sirtuin 1 - metabolism therapeutics |
Title | Melatonin protects against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice |
URI | https://dx.doi.org/10.1016/j.lfs.2018.11.055 https://www.ncbi.nlm.nih.gov/pubmed/30500551 https://www.proquest.com/docview/2149022390 https://www.proquest.com/docview/2237550500 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT90wDI8Q06RdpsG-GAN50g7bpEBbJ7Q9IjT02ASHDSRuVdKkqBNqK_repHfhwj-O3aaISds77NjIadPYie3E_lmIj4n2Pta2lNZpKxVmWhqLiTSmImXt0eZDHvfp2cHsQn271Jdr4mjKheGwyrD3j3v6sFuHlv0wm_tdXXOOb6IwIaHKkDFpOOFXqZSlfO_2UZiHDrfMiZJMPd1sDjFe1xUjdsfZHgN5crbf33XTv2zPQQcdvxDPg_EIh-P4NsSabzbF07Gc5HJTbISF2sOngCb9-aW4O-VwNz50hYDJ0IO5MjWZhdD7rq97SW45MdhBOUhLCW7Zs7pjloFdws1Yrp50HJiu7eYt9QHTODALRiUwV0v4XRvgDInxfBfaCn6e_DiPgT7K5e5fiYvjr-dHMxkqL8hS6WROasvmsdNZZMgjs0ZV9KTQ5DbOLVqy2HRmskpbq61zDg2i82mmrckOXBS5Cl-L9aZt_FsBqCOsyIkrfYaqsrRdKHqxQZfQj6VluiWiac6LMsCSc3WM62KKP_tVEJsKZhO5KwWxaUt8eejSjZgcq4jVxMjiD8EqSGes6vZhYnpBC45vUUzj2wURkU9Jhg_m0QqaBFN2_SKieTNKzMNIkZvJTn33fwPbFs_oiWPcZKzfi_X5zcLvkF00t7uD4O-KJ4cn32dn93jzDZA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0CpFCC4VLVBaXoPEAZDcJrHddY6ootpCtwfYSr1ZduxUQVUSNbtIe-HCjzOTOBVIsAeOccaJk3nb82DsTaZCSJUruPPKcSm04taJjFtborIOwuV9Hvfs_Gh6IT9dqssNdjzmwlBYZZT9g0zvpXUcOYx_87CtKsrxzaTIkKi0oJo0-g67K5F9qY3BwY_f4jxUPGbOJCfw8WizD_K6Lqlkd6oPqJInpfv9XTn9y_jsldDJQ7YVrUf4MCxwm22EeofdG_pJrnbYduTUDt7GctLvHrGfM4p3o11XiEUZOrBXtkK7ELrQdlXH0S9HDHsoenIpwK860neEM3AruBn61aOSA9s27aLBOWBrD3ZJZQns1Qq-VxYoRWLY4IWmhK-nX-Yp4Eup3_1jdnHycX485bH1Ai-kyhaot1yeeqUTiy6Zs7LEKyls7tLcCYcmm9JWl8o55bz3wgrhw0QrZ_WRTxJfiidss27q8JSBUIko0YsrghaydCgvJD7YCp_hh02KyR5Lxn9uiliXnNpjXJsxAO2bQTQZQhP6KwbRtMfe305ph6Ic64DliEjzB2UZVBrrpr0ekW6Q4-gYxdahWSIQOpVo-Yg8WQOTiQn5fgnC7A4Uc7tSQcNoqO7_38JesfvT-ezMnJ2ef37GHuAdCnjjqXrONhc3y_ACjaSFe9kzwS-BIA8e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+protects+against+sepsis-induced+cardiac+dysfunction+by+regulating+apoptosis+and+autophagy+via+activation+of+SIRT1+in+mice&rft.jtitle=Life+sciences+%281973%29&rft.au=Zhang%2C+Wen-xuan&rft.au=He%2C+Bai-mei&rft.au=Wu%2C+Ying&rft.au=Qiao%2C+Jian-feng&rft.date=2019-01-15&rft.issn=0024-3205&rft.volume=217&rft.spage=8&rft.epage=15&rft_id=info:doi/10.1016%2Fj.lfs.2018.11.055&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_lfs_2018_11_055 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3205&client=summon |