Multifunctional Antibodies Are Induced by the RTS,S Malaria Vaccine and Associated With Protection in a Phase 1/2a Trial

Abstract Background RTS,S is the leading malaria vaccine candidate but only confers partial efficacy against malaria in children. RTS,S is based on the major Plasmodium falciparum sporozoite surface antigen, circumsporozoite protein (CSP). The induction of anti-CSP antibodies is important for protec...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of infectious diseases Vol. 224; no. 7; pp. 1128 - 1138
Main Authors Kurtovic, Liriye, Atre, Tanmaya, Feng, Gaoqian, Wines, Bruce D, Chan, Jo-Anne, Boyle, Michelle J, Drew, Damien R, Hogarth, P Mark, Fowkes, Freya J I, Bergmann-Leitner, Elke S, Beeson, James G
Format Journal Article
LanguageEnglish
Published US Oxford University Press 13.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Background RTS,S is the leading malaria vaccine candidate but only confers partial efficacy against malaria in children. RTS,S is based on the major Plasmodium falciparum sporozoite surface antigen, circumsporozoite protein (CSP). The induction of anti-CSP antibodies is important for protection; however, it is unclear how these protective antibodies function. Methods We quantified the induction of functional anti-CSP antibody responses in healthy malaria-naive adults (N = 45) vaccinated with RTS,S/AS01. This included the ability to mediate effector functions via the fragment crystallizable (Fc) region, such as interacting with human complement proteins and Fcγ-receptors (FcγRs) that are expressed on immune cells, which promote various immunological functions. Results Our major findings were (1) RTS,S-induced antibodies mediated Fc-dependent effector functions, (2) functional antibodies were generally highest after the second vaccine dose, (3) functional antibodies targeted multiple regions of CSP, (4) participants with higher levels of functional antibodies had a reduced probability of developing parasitemia following homologous challenge (P < .05), and (5) nonprotected subjects had higher levels of anti-CSP IgM. Conclusions Our data suggest a role for Fc-dependent antibody effector functions in RTS,S-induced immunity. Enhancing the induction of these functional activities may be a strategy to improve the protective efficacy of RTS,S or other malaria vaccines. Clinical Trials Registration NCT00075049 The leading malaria vaccine, RTS,S, induced antibodies that mediate various Fc-dependent effector functions. High levels of antibodies with multiple functional activities were associated with protection against homologous malaria challenge. This provides valuable insights for improving RTS,S or future malaria vaccines.
AbstractList Abstract Background RTS,S is the leading malaria vaccine candidate but only confers partial efficacy against malaria in children. RTS,S is based on the major Plasmodium falciparum sporozoite surface antigen, circumsporozoite protein (CSP). The induction of anti-CSP antibodies is important for protection; however, it is unclear how these protective antibodies function. Methods We quantified the induction of functional anti-CSP antibody responses in healthy malaria-naive adults (N = 45) vaccinated with RTS,S/AS01. This included the ability to mediate effector functions via the fragment crystallizable (Fc) region, such as interacting with human complement proteins and Fcγ-receptors (FcγRs) that are expressed on immune cells, which promote various immunological functions. Results Our major findings were (1) RTS,S-induced antibodies mediated Fc-dependent effector functions, (2) functional antibodies were generally highest after the second vaccine dose, (3) functional antibodies targeted multiple regions of CSP, (4) participants with higher levels of functional antibodies had a reduced probability of developing parasitemia following homologous challenge (P < .05), and (5) nonprotected subjects had higher levels of anti-CSP IgM. Conclusions Our data suggest a role for Fc-dependent antibody effector functions in RTS,S-induced immunity. Enhancing the induction of these functional activities may be a strategy to improve the protective efficacy of RTS,S or other malaria vaccines. Clinical Trials Registration NCT00075049 The leading malaria vaccine, RTS,S, induced antibodies that mediate various Fc-dependent effector functions. High levels of antibodies with multiple functional activities were associated with protection against homologous malaria challenge. This provides valuable insights for improving RTS,S or future malaria vaccines.
RTS,S is the leading malaria vaccine candidate but only confers partial efficacy against malaria in children. RTS,S is based on the major Plasmodium falciparum sporozoite surface antigen, circumsporozoite protein (CSP). The induction of anti-CSP antibodies is important for protection; however, it is unclear how these protective antibodies function. We quantified the induction of functional anti-CSP antibody responses in healthy malaria-naive adults (N = 45) vaccinated with RTS,S/AS01. This included the ability to mediate effector functions via the fragment crystallizable (Fc) region, such as interacting with human complement proteins and Fcγ-receptors (FcγRs) that are expressed on immune cells, which promote various immunological functions. Our major findings were (1) RTS,S-induced antibodies mediated Fc-dependent effector functions, (2) functional antibodies were generally highest after the second vaccine dose, (3) functional antibodies targeted multiple regions of CSP, (4) participants with higher levels of functional antibodies had a reduced probability of developing parasitemia following homologous challenge (P < .05), and (5) nonprotected subjects had higher levels of anti-CSP IgM. Our data suggest a role for Fc-dependent antibody effector functions in RTS,S-induced immunity. Enhancing the induction of these functional activities may be a strategy to improve the protective efficacy of RTS,S or other malaria vaccines. NCT00075049.
The leading malaria vaccine, RTS,S, induced antibodies that mediate various Fc-dependent effector functions. High levels of antibodies with multiple functional activities were associated with protection against homologous malaria challenge. This provides valuable insights for improving RTS,S or future malaria vaccines.
Background RTS,S is the leading malaria vaccine candidate but only confers partial efficacy against malaria in children. RTS,S is based on the major Plasmodium falciparum sporozoite surface antigen, circumsporozoite protein (CSP). The induction of anti-CSP antibodies is important for protection; however, it is unclear how these protective antibodies function. Methods We quantified the induction of functional anti-CSP antibody responses in healthy malaria-naive adults (N = 45) vaccinated with RTS,S/AS01. This included the ability to mediate effector functions via the fragment crystallizable (Fc) region, such as interacting with human complement proteins and Fcγ-receptors (FcγRs) that are expressed on immune cells, which promote various immunological functions. Results Our major findings were (1) RTS,S-induced antibodies mediated Fc-dependent effector functions, (2) functional antibodies were generally highest after the second vaccine dose, (3) functional antibodies targeted multiple regions of CSP, (4) participants with higher levels of functional antibodies had a reduced probability of developing parasitemia following homologous challenge (P < .05), and (5) nonprotected subjects had higher levels of anti-CSP IgM. Conclusions Our data suggest a role for Fc-dependent antibody effector functions in RTS,S-induced immunity. Enhancing the induction of these functional activities may be a strategy to improve the protective efficacy of RTS,S or other malaria vaccines. Clinical Trials Registration NCT00075049
RTS,S is the leading malaria vaccine candidate but only confers partial efficacy against malaria in children. RTS,S is based on the major Plasmodium falciparum sporozoite surface antigen, circumsporozoite protein (CSP). The induction of anti-CSP antibodies is important for protection; however, it is unclear how these protective antibodies function.BACKGROUNDRTS,S is the leading malaria vaccine candidate but only confers partial efficacy against malaria in children. RTS,S is based on the major Plasmodium falciparum sporozoite surface antigen, circumsporozoite protein (CSP). The induction of anti-CSP antibodies is important for protection; however, it is unclear how these protective antibodies function.We quantified the induction of functional anti-CSP antibody responses in healthy malaria-naive adults (N = 45) vaccinated with RTS,S/AS01. This included the ability to mediate effector functions via the fragment crystallizable (Fc) region, such as interacting with human complement proteins and Fcγ-receptors (FcγRs) that are expressed on immune cells, which promote various immunological functions.METHODSWe quantified the induction of functional anti-CSP antibody responses in healthy malaria-naive adults (N = 45) vaccinated with RTS,S/AS01. This included the ability to mediate effector functions via the fragment crystallizable (Fc) region, such as interacting with human complement proteins and Fcγ-receptors (FcγRs) that are expressed on immune cells, which promote various immunological functions.Our major findings were (1) RTS,S-induced antibodies mediated Fc-dependent effector functions, (2) functional antibodies were generally highest after the second vaccine dose, (3) functional antibodies targeted multiple regions of CSP, (4) participants with higher levels of functional antibodies had a reduced probability of developing parasitemia following homologous challenge (P < .05), and (5) nonprotected subjects had higher levels of anti-CSP IgM.RESULTSOur major findings were (1) RTS,S-induced antibodies mediated Fc-dependent effector functions, (2) functional antibodies were generally highest after the second vaccine dose, (3) functional antibodies targeted multiple regions of CSP, (4) participants with higher levels of functional antibodies had a reduced probability of developing parasitemia following homologous challenge (P < .05), and (5) nonprotected subjects had higher levels of anti-CSP IgM.Our data suggest a role for Fc-dependent antibody effector functions in RTS,S-induced immunity. Enhancing the induction of these functional activities may be a strategy to improve the protective efficacy of RTS,S or other malaria vaccines.CONCLUSIONSOur data suggest a role for Fc-dependent antibody effector functions in RTS,S-induced immunity. Enhancing the induction of these functional activities may be a strategy to improve the protective efficacy of RTS,S or other malaria vaccines.NCT00075049.CLINICAL TRIALS REGISTRATIONNCT00075049.
Author Boyle, Michelle J
Drew, Damien R
Bergmann-Leitner, Elke S
Atre, Tanmaya
Chan, Jo-Anne
Beeson, James G
Fowkes, Freya J I
Kurtovic, Liriye
Feng, Gaoqian
Wines, Bruce D
Hogarth, P Mark
AuthorAffiliation 5 Department of Clinical Pathology, University of Melbourne, Melbourne, Australia
6 QIMR Berghofer , Herston, Australia
9 Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne , Melbourne, Australia
2 Department of Immunology and Pathology, Monash University, Melbourne, Australia
4 Department of Medicine, University of Melbourne , Parkville, Australia
8 Department of Infectious Diseases, Monash University , Melbourne, Australia
7 Department of Epidemiology and Preventative Medicine, Monash University , Melbourne, Australia
1 Burnet Institute, Melbourne, Australia
3 Malaria Vaccine Branch, US Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
10 Department of Microbiology, Monash University , Clayton, Australia
AuthorAffiliation_xml – name: 7 Department of Epidemiology and Preventative Medicine, Monash University , Melbourne, Australia
– name: 2 Department of Immunology and Pathology, Monash University, Melbourne, Australia
– name: 6 QIMR Berghofer , Herston, Australia
– name: 8 Department of Infectious Diseases, Monash University , Melbourne, Australia
– name: 9 Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne , Melbourne, Australia
– name: 4 Department of Medicine, University of Melbourne , Parkville, Australia
– name: 3 Malaria Vaccine Branch, US Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
– name: 1 Burnet Institute, Melbourne, Australia
– name: 10 Department of Microbiology, Monash University , Clayton, Australia
– name: 5 Department of Clinical Pathology, University of Melbourne, Melbourne, Australia
Author_xml – sequence: 1
  givenname: Liriye
  surname: Kurtovic
  fullname: Kurtovic, Liriye
  organization: Burnet Institute, Melbourne, Australia
– sequence: 2
  givenname: Tanmaya
  surname: Atre
  fullname: Atre, Tanmaya
  organization: Malaria Vaccine Branch, US Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
– sequence: 3
  givenname: Gaoqian
  surname: Feng
  fullname: Feng, Gaoqian
  organization: Burnet Institute, Melbourne, Australia
– sequence: 4
  givenname: Bruce D
  surname: Wines
  fullname: Wines, Bruce D
  organization: Burnet Institute, Melbourne, Australia
– sequence: 5
  givenname: Jo-Anne
  surname: Chan
  fullname: Chan, Jo-Anne
  organization: Burnet Institute, Melbourne, Australia
– sequence: 6
  givenname: Michelle J
  surname: Boyle
  fullname: Boyle, Michelle J
  organization: Burnet Institute, Melbourne, Australia
– sequence: 7
  givenname: Damien R
  surname: Drew
  fullname: Drew, Damien R
  organization: Burnet Institute, Melbourne, Australia
– sequence: 8
  givenname: P Mark
  surname: Hogarth
  fullname: Hogarth, P Mark
  organization: Burnet Institute, Melbourne, Australia
– sequence: 9
  givenname: Freya J I
  surname: Fowkes
  fullname: Fowkes, Freya J I
  organization: Burnet Institute, Melbourne, Australia
– sequence: 10
  givenname: Elke S
  surname: Bergmann-Leitner
  fullname: Bergmann-Leitner, Elke S
  organization: Malaria Vaccine Branch, US Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
– sequence: 11
  givenname: James G
  orcidid: 0000-0002-1018-7898
  surname: Beeson
  fullname: Beeson, James G
  email: beeson@burnet.edu.au
  organization: Burnet Institute, Melbourne, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32236404$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rVDEUxYNU7LS6dSkBNwqdTvKSvJe3EYbiR6HFYkddhkxy42R4k4xJntj_3rQzFS2Ii8td3N85HO45QgchBkDoOSWnlPRs5oOzPs_WXmvK-SM0oYJ107al7ABNCGmaKZV9f4iOcl4TQjhruyfokDUNaznhE_TzchyKd2MwxcegBzwPxS-j9ZDxPAE-D3Y0YPHyBpcV4E-L65NrfKkHnbzGX7QxPgDWweJ5ztF4XSr71ZcVvkqxwJ0p9gFrfLXSGTCdNRovqnZ4ih47PWR4tt_H6PO7t4uzD9OLj-_Pz-YXU8NFU6adFY0w3AC3jPWUcuuI5s4KtpQCmGCNIcQ5JxzvwHQMZD0yWoe1zHLGjtGbne92XG7AGggl6UFtk9_odKOi9urvS_Ar9S3-UFJQTiWtBq_2Bil-HyEXtfHZwDDoAHHMqmFSdERSTir68gG6jmOqX62U6DvJZS_bSr34M9HvKPelVIDvAJNizgmcMr7o21fWgH5QlKjb7tWue7XvvspOH8junf8peL0TxHH7P_YXbBjCXQ
CitedBy_id crossref_primary_10_1016_j_lanmic_2024_101001
crossref_primary_10_1080_21645515_2021_1985891
crossref_primary_10_1080_21505594_2022_2150456
crossref_primary_10_1016_j_ijpharm_2024_124746
crossref_primary_10_1016_j_vaccine_2020_09_069
crossref_primary_10_1093_cid_ciab1017
crossref_primary_10_1080_14760584_2023_2274479
crossref_primary_10_1016_j_medj_2021_10_003
crossref_primary_10_1080_14760584_2021_1882309
crossref_primary_10_1016_j_pt_2022_08_013
crossref_primary_10_1038_s41591_023_02659_z
crossref_primary_10_1080_14728222_2021_1907343
crossref_primary_10_1128_spectrum_03791_22
crossref_primary_10_1016_j_ijpara_2021_01_006
crossref_primary_10_1186_s11671_023_03849_x
crossref_primary_10_1186_s12936_023_04549_8
crossref_primary_10_1016_S2666_5247_24_00130_7
crossref_primary_10_1038_s41467_021_22236_7
crossref_primary_10_1002_cti2_70005
crossref_primary_10_3389_fimmu_2021_683404
crossref_primary_10_1016_j_molimm_2022_08_017
crossref_primary_10_1186_s12916_024_03604_8
crossref_primary_10_3389_fimmu_2023_1183727
crossref_primary_10_1093_infdis_jiad115
crossref_primary_10_1172_JCI169060
crossref_primary_10_1111_imcb_12415
crossref_primary_10_1186_s13071_023_06071_x
crossref_primary_10_1186_s12916_022_02466_2
crossref_primary_10_1186_s12936_024_04846_w
crossref_primary_10_1080_14760584_2021_1981864
crossref_primary_10_1038_s41541_025_01078_0
crossref_primary_10_1038_s41467_024_51701_2
crossref_primary_10_1084_jem_20200942
Cites_doi 10.1371/journal.pone.0111020
10.1002/jlb.49.6.556
10.1186/s12916-018-1186-4
10.1016/j.vaccine.2007.07.010
10.1056/NEJMoa1515257
10.1086/600120
10.1128/JVI.00700-17
10.1371/journal.pone.0001278
10.4049/jimmunol.143.5.1716
10.1056/NEJMoa1505819
10.1016/S0264-410X(02)00770-3
10.1128/JVI.00285-16
10.1126/sciadv.aax4489
10.30875/f309483f-en
10.1186/1475-2875-12-11
10.3389/fimmu.2017.00280
10.1186/s12916-018-1054-2
10.1128/IAI.00920-17
10.1371/journal.pmed.1001685
10.1086/656190
10.1016/j.vaccine.2007.05.005
10.1016/S0140-6736(04)17223-1
10.1046/j.1365-3024.2003.00495.x
10.1186/s12936-016-1596-8
10.1016/S1473-3099(15)00239-X
10.1038/s41467-019-10195-z
10.1186/s12916-019-1277-x
10.1126/scitranslmed.3007730
10.3389/fimmu.2015.00262
10.1016/j.vaccine.2010.05.033
10.1038/s41467-019-08528-z
10.1086/318534
10.1186/s12936-016-1348-9
10.1056/NEJMoa1102287
10.4049/jimmunol.132.2.909
10.1126/scitranslmed.aau1458
10.1016/S0140-6736(15)60721-8
10.1093/infdis/jiw237
10.1371/journal.pone.0025786
10.1016/S1473-3099(11)70100-1
10.1080/21645515.2018.1442996
10.1016/S0140-6736(07)61542-6
10.1371/journal.pone.0007302
10.4161/hv.6.1.9677
10.1189/jlb.0313144
10.1128/IAI.00533-10
10.4049/jimmunol.1602161
10.4049/jimmunol.1502551
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. 2020
The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. 2020
– notice: The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
5PM
DOI 10.1093/infdis/jiaa144
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList
MEDLINE

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1537-6613
EndPage 1138
ExternalDocumentID PMC8514181
32236404
10_1093_infdis_jiaa144
10.1093/infdis/jiaa144
Genre Clinical Trial, Phase II
Clinical Trial, Phase I
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: ;
GroupedDBID ---
-DZ
-~X
..I
.2P
.55
.GJ
.I3
.XZ
.ZR
08P
0R~
123
1KJ
1TH
29K
2AX
2WC
36B
3O-
4.4
41~
48X
53G
5GY
5RE
5VS
5WD
6.Y
70D
85S
AABZA
AACGO
AACZT
AAHBH
AAHTB
AAJKP
AAJQQ
AAMVS
AANCE
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWDT
AAWTL
AAYOK
ABBHK
ABEUO
ABIXL
ABJNI
ABKDP
ABLJU
ABNHQ
ABNKS
ABOCM
ABPEJ
ABPLY
ABPPZ
ABPTD
ABQLI
ABQNK
ABSAR
ABSMQ
ABTLG
ABWST
ABXSQ
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACMRT
ACPQN
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ACZBC
ADACV
ADBBV
ADEYI
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AEXZC
AFFNX
AFFZL
AFHKK
AFIYH
AFOFC
AFSHK
AFXAL
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APJGH
APWMN
AQDSO
AQKUS
AQVQM
ATGXG
AVNTJ
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BR6
BTRTY
BVRKM
BZKNY
C45
CDBKE
CS3
CZ4
D-I
DAKXR
DCCCD
DIK
DILTD
DOOOF
DU5
D~K
EBS
ECGQY
EE~
EIHJH
EJD
EMOBN
ENERS
ESX
F5P
F9B
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
G8K
GAUVT
GJXCC
GX1
H13
H5~
HAR
HQ3
HTVGU
HW0
HZ~
IH2
IOX
IPSME
J21
J5H
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
LSO
LU7
M49
MBLQV
MHKGH
MJL
ML0
MVM
N4W
N9A
NEJ
NGC
NOMLY
NOYVH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P0-
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QBD
RD5
ROX
ROZ
RUSNO
RW1
RXO
SA0
SJN
TCURE
TEORI
TJX
TMA
TOX
TR2
VH1
W2D
W8F
WH7
X7H
X7M
Y6R
YAYTL
YKOAZ
YXANX
ZE2
ZGI
ZKG
ZXP
~91
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ADNBA
AEMQT
AGORE
AHGBF
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
5PM
ID FETCH-LOGICAL-c452t-7d525c4ce4d339114df0a4fd53b85e3532c00fff5f47ec73e84fd31fd3363d433
IEDL.DBID TOX
ISSN 0022-1899
1537-6613
IngestDate Thu Aug 21 17:52:35 EDT 2025
Fri Jul 11 04:41:59 EDT 2025
Mon Jun 30 10:36:24 EDT 2025
Mon Jul 21 06:03:03 EDT 2025
Tue Jul 01 01:31:22 EDT 2025
Thu Apr 24 22:53:17 EDT 2025
Wed Aug 28 03:17:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords circumsporozoite protein
opsonic phagocytosis
vaccines
antibodies
Fcγ-receptor
complement
malaria
Plasmodium falciparum
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc-nd/4.0
The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-7d525c4ce4d339114df0a4fd53b85e3532c00fff5f47ec73e84fd31fd3363d433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-1018-7898
OpenAccessLink https://dx.doi.org/10.1093/infdis/jiaa144
PMID 32236404
PQID 2597848986
PQPubID 41591
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8514181
proquest_miscellaneous_2385708140
proquest_journals_2597848986
pubmed_primary_32236404
crossref_citationtrail_10_1093_infdis_jiaa144
crossref_primary_10_1093_infdis_jiaa144
oup_primary_10_1093_infdis_jiaa144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-13
PublicationDateYYYYMMDD 2021-10-13
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-13
  day: 13
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
– name: United States
– name: Oxford
PublicationTitle The Journal of infectious diseases
PublicationTitleAlternate J Infect Dis
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Mahajan (2021101318473275400_CIT0024) 2010; 78
Ubillos (2021101318473275400_CIT0050) 2018; 16
Hollingdale (2021101318473275400_CIT0023) 1984; 132
Kester (2021101318473275400_CIT0038) 2007; 25
Kristensen (2021101318473275400_CIT0044) 2016; 90
Okitsu (2021101318473275400_CIT0022) 2007; 2
Kurtovic (2021101318473275400_CIT0027) 2019; 17
Owusu-Agyei (2021101318473275400_CIT0039) 2009; 4
Fleit (2021101318473275400_CIT0043) 1991; 49
Cohen (2021101318473275400_CIT0014) 2010; 6
Seguin (2021101318473275400_CIT0048) 1989; 143
White (2021101318473275400_CIT0017) 2015; 15
Rosales (2021101318473275400_CIT0021) 2017; 8
Radin (2021101318473275400_CIT0049) 2016; 15
Behet (2021101318473275400_CIT0025) 2018; 86
Wines (2021101318473275400_CIT0028) 2016; 197
McLean (2021101318473275400_CIT0029) 2017; 199
Boyle (2021101318473275400_CIT0033) 2019; 5
Dobaño (2021101318473275400_CIT0019) 2019; 10
Madhavi (2021101318473275400_CIT0045) 2017; 91
Valéa (2021101318473275400_CIT0013) 2018; 14
Casares (2021101318473275400_CIT0015) 2010; 28
Li X- (2021101318473275400_CIT0046) 2016; 37
Schwenk (2021101318473275400_CIT0034) 2003; 25
Schwenk (2021101318473275400_CIT0031) 2014; 9
Kester (2021101318473275400_CIT0030) 2009; 200
Asante (2021101318473275400_CIT0041) 2011; 11
Beeson (2021101318473275400_CIT0009) 2019; 11
Jefferson (2021101318473275400_CIT0006) 2003; 21
Agnandji (2021101318473275400_CIT0012) 2010; 202
World Health Organization (2021101318473275400_CIT0001) 2018
Merle (2021101318473275400_CIT0020) 2015; 6
RTSS Clinical Trial Partnerships (2021101318473275400_CIT0004) 2015; 386
Aponte (2021101318473275400_CIT0010) 2007; 370
Ikarashi (2021101318473275400_CIT0047) 2013; 94
Kester (2021101318473275400_CIT0037) 2001; 183
Yates (2021101318473275400_CIT0036) 2014; 6
Chaudhury (2021101318473275400_CIT0035) 2016; 15
Reiling (2021101318473275400_CIT0032) 2019; 10
Alonso (2021101318473275400_CIT0018) 2004; 364
RTSS Clinical Trials Partnership (2021101318473275400_CIT0005) 2014; 11
Bayer (2021101318473275400_CIT0007) 2007; 25
Abdulla (2021101318473275400_CIT0011) 2013; 12
Olotu (2021101318473275400_CIT0003) 2016; 374
Regules (2021101318473275400_CIT0040) 2016; 214
Olotu (2021101318473275400_CIT0016) 2011; 6
Kurtovic (2021101318473275400_CIT0026) 2018; 16
Neafsey (2021101318473275400_CIT0042) 2015; 373
RTS,S Clinical Trials Partnership (2021101318473275400_CIT0002) 2011; 365
Malaria Funding Partners (2021101318473275400_CIT0008) 2013
References_xml – volume: 9
  start-page: e111020
  year: 2014
  ident: 2021101318473275400_CIT0031
  article-title: IgG2 antibodies against a clinical grade Plasmodium falciparum CSP vaccine antigen associate with protection against transgenic sporozoite challenge in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0111020
– volume: 49
  start-page: 556
  year: 1991
  ident: 2021101318473275400_CIT0043
  article-title: The human monocyte-like cell line THP-1 expresses FcγRI and FCγRII
  publication-title: J Leukoc Biol
  doi: 10.1002/jlb.49.6.556
– volume: 16
  start-page: 197
  year: 2018
  ident: 2021101318473275400_CIT0050
  article-title: Baseline exposure, antibody subclass, and hepatitis B response differentially affect malaria protective immunity following RTS,S/AS01E vaccination in African children
  publication-title: BMC Med
  doi: 10.1186/s12916-018-1186-4
– volume: 25
  start-page: 6655
  year: 2007
  ident: 2021101318473275400_CIT0007
  article-title: Metaanalysis of vaccine effectiveness in varicella outbreaks
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2007.07.010
– volume: 374
  start-page: 2519
  year: 2016
  ident: 2021101318473275400_CIT0003
  article-title: Seven-year efficacy of RTS,S/AS01 malaria vaccine among young African children
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1515257
– volume: 200
  start-page: 337
  year: 2009
  ident: 2021101318473275400_CIT0030
  article-title: Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: safety, efficacy, and immunologic associates of protection
  publication-title: J Infect Dis
  doi: 10.1086/600120
– volume: 91
  start-page: e00700
  year: 2017
  ident: 2021101318473275400_CIT0045
  article-title: HIV-1 Env- and Vpu-specific antibody-dependent cellular cytotoxicity responses associated with elite control of HIV
  publication-title: J Virol
  doi: 10.1128/JVI.00700-17
– volume: 2
  start-page: e1278
  year: 2007
  ident: 2021101318473275400_CIT0022
  article-title: A virosomal malaria peptide vaccine elicits a long-lasting sporozoite-inhibitory antibody response in a phase 1a clinical trial
  publication-title: PloS One
  doi: 10.1371/journal.pone.0001278
– volume: 143
  start-page: 1716
  year: 1989
  ident: 2021101318473275400_CIT0048
  article-title: Interactions of Plasmodium berghei sporozoites and murine Kupffer cells in vitro
  publication-title: J Immunol
  doi: 10.4049/jimmunol.143.5.1716
– volume: 373
  start-page: 2025
  year: 2015
  ident: 2021101318473275400_CIT0042
  article-title: Genetic diversity and protective efficacy of the RTS,S/AS01 malaria vaccine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1505819
– volume: 21
  start-page: 2003
  year: 2003
  ident: 2021101318473275400_CIT0006
  article-title: Systematic review of the effects of pertussis vaccines in children
  publication-title: Vaccine
  doi: 10.1016/S0264-410X(02)00770-3
– volume: 90
  start-page: 5724
  year: 2016
  ident: 2021101318473275400_CIT0044
  article-title: Antibody responses with Fc-mediated functions after vaccination of HIV-infected subjects with trivalent influenza vaccine
  publication-title: J Virol
  doi: 10.1128/JVI.00285-16
– volume: 5
  start-page: eaax4489
  year: 2019
  ident: 2021101318473275400_CIT0033
  article-title: IgM in human immunity to Plasmodium falciparum malaria
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aax4489
– volume-title: World malaria report 2018
  year: 2018
  ident: 2021101318473275400_CIT0001
  doi: 10.30875/f309483f-en
– volume: 12
  start-page: 11
  year: 2013
  ident: 2021101318473275400_CIT0011
  article-title: Randomized, controlled trial of the long term safety, immunogenicity and efficacy of RTS,S/AS02 D malaria vaccine in infants living in a malaria-endemic region
  publication-title: Malar J
  doi: 10.1186/1475-2875-12-11
– volume: 8
  start-page: 280
  year: 2017
  ident: 2021101318473275400_CIT0021
  article-title: Fcγ receptor heterogeneity in leukocyte functional responses
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.00280
– volume: 16
  start-page: 61
  year: 2018
  ident: 2021101318473275400_CIT0026
  article-title: Human antibodies activate complement against Plasmodium falciparum sporozoites, and are associated with protection against malaria in children
  publication-title: BMC Med
  doi: 10.1186/s12916-018-1054-2
– volume: 86
  start-page: e00920-17
  year: 2018
  ident: 2021101318473275400_CIT0025
  article-title: The complement system contributes to functional antibody-mediated responses induced by immunization with Plasmodium falciparum malaria sporozoites
  publication-title: Infect Immun
  doi: 10.1128/IAI.00920-17
– volume: 11
  start-page: e1001685
  year: 2014
  ident: 2021101318473275400_CIT0005
  article-title: Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001685
– volume: 202
  start-page: 1076
  year: 2010
  ident: 2021101318473275400_CIT0012
  article-title: Evaluation of the safety and immunogenicity of the RTS,S/AS01E malaria candidate vaccine when integrated in the expanded program of immunization
  publication-title: J Infect Dis
  doi: 10.1086/656190
– volume: 25
  start-page: 5359
  year: 2007
  ident: 2021101318473275400_CIT0038
  article-title: A phase I/IIa safety, immunogenicity, and efficacy bridging randomized study of a two-dose regimen of liquid and lyophilized formulations of the candidate malaria vaccine RTS,S/AS02A in malaria-naive adults
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2007.05.005
– volume: 364
  start-page: 1411
  year: 2004
  ident: 2021101318473275400_CIT0018
  article-title: Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(04)17223-1
– volume: 25
  start-page: 17
  year: 2003
  ident: 2021101318473275400_CIT0034
  article-title: Opsonization by antigen-specific antibodies as a mechanism of protective immunity induced by Plasmodium falciparum circumsporozoite protein-based vaccine
  publication-title: Parasite Immunol
  doi: 10.1046/j.1365-3024.2003.00495.x
– volume: 15
  start-page: 543
  year: 2016
  ident: 2021101318473275400_CIT0049
  article-title: A monoclonal antibody-based immunoassay to measure the antibody response against the repeat region of the circumsporozoite protein of Plasmodium falciparum
  publication-title: Malar J
  doi: 10.1186/s12936-016-1596-8
– volume: 15
  start-page: 1450
  year: 2015
  ident: 2021101318473275400_CIT0017
  article-title: Immunogenicity of the RTS,S/AS01 malaria vaccine and implications for duration of vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(15)00239-X
– volume: 10
  start-page: 2174
  year: 2019
  ident: 2021101318473275400_CIT0019
  article-title: Concentration and avidity of antibodies to different circumsporozoite epitopes correlate with RTS,S/AS01E malaria vaccine efficacy
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10195-z
– volume: 17
  start-page: 45
  year: 2019
  ident: 2021101318473275400_CIT0027
  article-title: Induction and decay of functional complement-fixing antibodies by the RTS,S malaria vaccine in children, and a negative impact of malaria exposure
  publication-title: BMC Med
  doi: 10.1186/s12916-019-1277-x
– volume: 6
  start-page: 228ra39
  year: 2014
  ident: 2021101318473275400_CIT0036
  article-title: Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3007730
– volume: 6
  start-page: 262
  year: 2015
  ident: 2021101318473275400_CIT0020
  article-title: Complement system part I - molecular mechanisms of activation and regulation
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2015.00262
– volume: 37
  start-page: 1465
  year: 2016
  ident: 2021101318473275400_CIT0046
  article-title: Effect of CD16a, the surface receptor of Kupffer cells, on the growth of hepatocellular carcinoma cells
  publication-title: Int J Parasitol
– volume: 28
  start-page: 4880
  year: 2010
  ident: 2021101318473275400_CIT0015
  article-title: The RTS,S malaria vaccine
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2010.05.033
– volume: 10
  start-page: 610
  year: 2019
  ident: 2021101318473275400_CIT0032
  article-title: Targets of complement-fixing antibodies in protective immunity against malaria in children
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08528-z
– volume: 183
  start-page: 640
  year: 2001
  ident: 2021101318473275400_CIT0037
  article-title: Efficacy of recombinant circumsporozoite protein vaccine regimens against experimental Plasmodium falciparum malaria
  publication-title: J Infect Dis
  doi: 10.1086/318534
– volume: 15
  start-page: 301
  year: 2016
  ident: 2021101318473275400_CIT0035
  article-title: The biological function of antibodies induced by the RTS,S/AS01 malaria vaccine candidate is determined by their fine specificity
  publication-title: Malar J
  doi: 10.1186/s12936-016-1348-9
– volume: 365
  start-page: 1863
  year: 2011
  ident: 2021101318473275400_CIT0002
  article-title: First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1102287
– volume: 132
  start-page: 909
  year: 1984
  ident: 2021101318473275400_CIT0023
  article-title: Inhibition of entry of Plasmodium falciparum and P. vivax
  publication-title: J Immunol
  doi: 10.4049/jimmunol.132.2.909
– volume: 11
  start-page: eaau1458
  year: 2019
  ident: 2021101318473275400_CIT0009
  article-title: Challenges and strategies for developing efficacious and long-lasting malaria vaccines
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aau1458
– volume: 386
  start-page: 31
  year: 2015
  ident: 2021101318473275400_CIT0004
  article-title: Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)60721-8
– volume: 214
  start-page: 762
  year: 2016
  ident: 2021101318473275400_CIT0040
  article-title: Fractional third and fourth dose of RTS,S/AS01 malaria candidate vaccine: a phase 2a controlled human malaria parasite infection and immunogenicity study
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiw237
– volume: 6
  start-page: e25786
  year: 2011
  ident: 2021101318473275400_CIT0016
  article-title: Circumsporozoite-specific T cell responses in children vaccinated with RTS,S/AS01 E and protection against P falciparum clinical malaria
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0025786
– volume: 11
  start-page: 741
  year: 2011
  ident: 2021101318473275400_CIT0041
  article-title: Safety and efficacy of the RTS,S/AS01E candidate malaria vaccine given with expanded-programme-on-immunisation vaccines: 19 month follow-up of a randomised, open-label, phase 2 trial
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(11)70100-1
– volume: 14
  start-page: 1489
  year: 2018
  ident: 2021101318473275400_CIT0013
  article-title: Immune response to the hepatitis B antigen in the RTS,S/AS01 malaria vaccine, and co-administration with pneumococcal conjugate and rotavirus vaccines in African children: a randomized controlled trial
  publication-title: Hum Vaccin Immunother
  doi: 10.1080/21645515.2018.1442996
– volume: 370
  start-page: 1543
  year: 2007
  ident: 2021101318473275400_CIT0010
  article-title: Safety of the RTS,S/AS02D candidate malaria vaccine in infants living in a highly endemic area of Mozambique: a double blind randomised controlled phase I/IIb trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)61542-6
– volume: 4
  start-page: e7302
  year: 2009
  ident: 2021101318473275400_CIT0039
  article-title: Randomized controlled trial of RTS,S/AS02D and RTS,S/AS01E malaria candidate vaccines given according to different schedules in Ghanaian children
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0007302
– volume-title: Malaria vaccine technology roadmap
  year: 2013
  ident: 2021101318473275400_CIT0008
– volume: 6
  start-page: 90
  year: 2010
  ident: 2021101318473275400_CIT0014
  article-title: From the circumsporozoite protein to the RTS,S/AS candidate vaccine
  publication-title: Hum Vaccin
  doi: 10.4161/hv.6.1.9677
– volume: 94
  start-page: 1325
  year: 2013
  ident: 2021101318473275400_CIT0047
  article-title: Distinct development and functions of resident and recruited liver Kupffer cells/macrophages
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.0313144
– volume: 78
  start-page: 4613
  year: 2010
  ident: 2021101318473275400_CIT0024
  article-title: Multiple antigen peptide vaccines against Plasmodium falciparum malaria
  publication-title: Infect Immun
  doi: 10.1128/IAI.00533-10
– volume: 199
  start-page: 816
  year: 2017
  ident: 2021101318473275400_CIT0029
  article-title: Dimeric Fcγ receptor enzyme-linked immunosorbent assay to study HIV-specific antibodies: A new look into breadth of Fcγ receptor antibodies induced by the RV144 vaccine trial
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1602161
– volume: 197
  start-page: 1507
  year: 2016
  ident: 2021101318473275400_CIT0028
  article-title: Dimeric FcγR ectodomains as probes of the Fc receptor function of anti-influenza virus IgG
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1502551
SSID ssj0004367
Score 2.5328746
Snippet Abstract Background RTS,S is the leading malaria vaccine candidate but only confers partial efficacy against malaria in children. RTS,S is based on the major...
RTS,S is the leading malaria vaccine candidate but only confers partial efficacy against malaria in children. RTS,S is based on the major Plasmodium falciparum...
Background RTS,S is the leading malaria vaccine candidate but only confers partial efficacy against malaria in children. RTS,S is based on the major Plasmodium...
The leading malaria vaccine, RTS,S, induced antibodies that mediate various Fc-dependent effector functions. High levels of antibodies with multiple functional...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1128
SubjectTerms Antibodies
Antibodies, Protozoan - blood
Antigens, Protozoan
Circumsporozoite protein
Clinical trials
Humans
Immunoglobulin M
Major and Brief Reports
Malaria
Malaria - blood
Malaria - prevention & control
Malaria Vaccines - administration & dosage
Malaria Vaccines - immunology
Parasitemia
Plasmodium falciparum
Protozoan Proteins
Vaccine Efficacy
Vaccines
Title Multifunctional Antibodies Are Induced by the RTS,S Malaria Vaccine and Associated With Protection in a Phase 1/2a Trial
URI https://www.ncbi.nlm.nih.gov/pubmed/32236404
https://www.proquest.com/docview/2597848986
https://www.proquest.com/docview/2385708140
https://pubmed.ncbi.nlm.nih.gov/PMC8514181
Volume 224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBejsLGXsXVbl_WD2xj0pSa272Qrj6Ws9INsZU3bvBlZkonLcEbjQPvf9xQ7XlNatgc_6SQbn3T3O530OyG-hblmGGA4UlVJGJDK2Q6qQRQw0jdE2vIi8VsDwx_J0QWdjOW4JYuePZHCH2Cf_7QtZ_3rUmtG_2xt2QN7lvzRz_HfG5CYpEte8IhDiI6e8XH3FfezcqXtAbJ8fEDygcc5fCvetFAR9hvdvhMvXLUuXjbFI-_WxathmxZ_L24X12i9i2p29mC_qst86g8IcncHvj6HcRbyO2C8B79G53vnMNQc1JYaLrXxo4CuLCyVxbJXZT2Bs4bFgQeFsgINZxN2ehD1Yw0jP3M_iIvD76ODo6AtqRAYknEdpFbG0pBxZBHZzpEtQk2FlZgr6VBibMKwKApZUOpMik5xI0b8YIKWED-KtWpauU8CpJNGOpJsFRyRSwaFKtjbp2lO3CuKeiJY_unMtHzjvuzF76zJe2PWaCZrNdMTu538n4Zp41nJr6y4fwptLfWatctylnGslypSA5X0xJeumReUz5Loyk3nLIOe898TgfXERjMNulex9cOEQh48XZkgnYAn615tqcrJgrSbkS0xmvr8P9--KV7H_uiMPziDW2Ktvpm7bcY-db7DqP_4dGcx-e8BCB4DmA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Antibodies+Are+Induced+by+the+RTS%2CS+Malaria+Vaccine+and+Associated+With+Protection+in+a+Phase+1%2F2a+Trial&rft.jtitle=The+Journal+of+infectious+diseases&rft.au=Kurtovic%2C+Liriye&rft.au=Atre%2C+Tanmaya&rft.au=Feng%2C+Gaoqian&rft.au=Wines%2C+Bruce+D&rft.date=2021-10-13&rft.pub=Oxford+University+Press&rft.issn=0022-1899&rft.eissn=1537-6613&rft.volume=224&rft.issue=7&rft.spage=1128&rft.epage=1138&rft_id=info:doi/10.1093%2Finfdis%2Fjiaa144&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1899&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1899&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1899&client=summon