Estimating evapotranspiration by coupling Bayesian model averaging methods with machine learning algorithms

Evapotranspiration (ET) is one of the most important components of global hydrologic cycle and has significant impacts on energy exchange and climate change. Numerous models have been developed to estimate ET so far; however, great uncertainties in models still require considerations. The aim of thi...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental monitoring and assessment Vol. 193; no. 3; p. 156
Main Authors Yang, Yong, Sun, Huaiwei, Xue, Jie, Liu, Yi, Liu, Luguang, Yan, Dong, Gui, Dongwei
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Evapotranspiration (ET) is one of the most important components of global hydrologic cycle and has significant impacts on energy exchange and climate change. Numerous models have been developed to estimate ET so far; however, great uncertainties in models still require considerations. The aim of this study is to reduce model errors and uncertainties among multi-models to improve daily ET estimate. The Bayesian model averaging (BMA) method is used to assemble eight ET models to produce ET with Landsat 8 satellite data, including four surface energy balance models (i.e., SEBS, SEBAL, SEBI, and SSEB) and four machine learning algorithms (i.e., polymars, random forest, ridge regression, and support vector machine). Performances of each model and BMA method were validated through in situ measurements of semi-arid region. Results indicated that the BMA method outperformed all eight single models. The four most important models obtained by the BMA method were ranked by random forest, SVM, SEBS, and SEBAL. The BMA method coupled with machine learning can significantly improve the accuracy of daily ET estimate, reducing uncertainties among models, and taking different intrinsic benefits of empirically and physically based models to obtain a more reliable ET estimate.
AbstractList Evapotranspiration (ET) is one of the most important components of global hydrologic cycle and has significant impacts on energy exchange and climate change. Numerous models have been developed to estimate ET so far; however, great uncertainties in models still require considerations. The aim of this study is to reduce model errors and uncertainties among multi-models to improve daily ET estimate. The Bayesian model averaging (BMA) method is used to assemble eight ET models to produce ET with Landsat 8 satellite data, including four surface energy balance models (i.e., SEBS, SEBAL, SEBI, and SSEB) and four machine learning algorithms (i.e., polymars, random forest, ridge regression, and support vector machine). Performances of each model and BMA method were validated through in situ measurements of semi-arid region. Results indicated that the BMA method outperformed all eight single models. The four most important models obtained by the BMA method were ranked by random forest, SVM, SEBS, and SEBAL. The BMA method coupled with machine learning can significantly improve the accuracy of daily ET estimate, reducing uncertainties among models, and taking different intrinsic benefits of empirically and physically based models to obtain a more reliable ET estimate.Evapotranspiration (ET) is one of the most important components of global hydrologic cycle and has significant impacts on energy exchange and climate change. Numerous models have been developed to estimate ET so far; however, great uncertainties in models still require considerations. The aim of this study is to reduce model errors and uncertainties among multi-models to improve daily ET estimate. The Bayesian model averaging (BMA) method is used to assemble eight ET models to produce ET with Landsat 8 satellite data, including four surface energy balance models (i.e., SEBS, SEBAL, SEBI, and SSEB) and four machine learning algorithms (i.e., polymars, random forest, ridge regression, and support vector machine). Performances of each model and BMA method were validated through in situ measurements of semi-arid region. Results indicated that the BMA method outperformed all eight single models. The four most important models obtained by the BMA method were ranked by random forest, SVM, SEBS, and SEBAL. The BMA method coupled with machine learning can significantly improve the accuracy of daily ET estimate, reducing uncertainties among models, and taking different intrinsic benefits of empirically and physically based models to obtain a more reliable ET estimate.
Evapotranspiration (ET) is one of the most important components of global hydrologic cycle and has significant impacts on energy exchange and climate change. Numerous models have been developed to estimate ET so far; however, great uncertainties in models still require considerations. The aim of this study is to reduce model errors and uncertainties among multi-models to improve daily ET estimate. The Bayesian model averaging (BMA) method is used to assemble eight ET models to produce ET with Landsat 8 satellite data, including four surface energy balance models (i.e., SEBS, SEBAL, SEBI, and SSEB) and four machine learning algorithms (i.e., polymars, random forest, ridge regression, and support vector machine). Performances of each model and BMA method were validated through in situ measurements of semi-arid region. Results indicated that the BMA method outperformed all eight single models. The four most important models obtained by the BMA method were ranked by random forest, SVM, SEBS, and SEBAL. The BMA method coupled with machine learning can significantly improve the accuracy of daily ET estimate, reducing uncertainties among models, and taking different intrinsic benefits of empirically and physically based models to obtain a more reliable ET estimate.
ArticleNumber 156
Author Liu, Luguang
Sun, Huaiwei
Liu, Yi
Gui, Dongwei
Yan, Dong
Yang, Yong
Xue, Jie
Author_xml – sequence: 1
  givenname: Yong
  surname: Yang
  fullname: Yang, Yong
  organization: School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology
– sequence: 2
  givenname: Huaiwei
  orcidid: 0000-0003-4873-0697
  surname: Sun
  fullname: Sun, Huaiwei
  email: hsun@hust.edu.cn
  organization: School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology
– sequence: 3
  givenname: Jie
  surname: Xue
  fullname: Xue, Jie
  organization: State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences
– sequence: 4
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
  organization: State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences
– sequence: 5
  givenname: Luguang
  surname: Liu
  fullname: Liu, Luguang
  organization: Hubei Water Resources Research Institute
– sequence: 6
  givenname: Dong
  surname: Yan
  fullname: Yan, Dong
  organization: School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology
– sequence: 7
  givenname: Dongwei
  surname: Gui
  fullname: Gui, Dongwei
  organization: State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33655353$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFL8ABReLCJWDH_-IjVKVFqsQFzpbXHu-6JHawk6L99jjdAlIP5TCyNO_3xva8M3QSUwSEXhP8nmAsPxSChSAt7mr1irKWPEMbwiVtO8XVCdpgImQrqFCn6KyUW4yxkky9QKeUCs4ppxv047LMYTRziLsG7syU5mximUKurRSb7aGxaZmGVf5kDlCCic2YHAyNuYNsdqswwrxPrjS_wrxvRmP3IUIzgMlxVc2wS7kqY3mJnnszFHj1cJ6j758vv11ctzdfr75cfLxpLePd3ErrQfTgewrEEY8xeGeVc54wbp3gzArHvLJbRznZdqz3noveEUak7BWW9By9O86dcvq5QJn1GIqFYTAR0lJ0xzlRShLC_48yJTrGFGYVffsIvU1LjvUjK1UndpL2lXrzQC3bEZyect1uPug_G69AdwRsTqVk8H8RgvUaqz7Gqmus-j5WTaqpf2SyYb5PqMYVhqet9Ggt9Z64g_zv2U-4fgOmGbfS
CitedBy_id crossref_primary_10_3389_frwa_2025_1553732
crossref_primary_10_1016_j_jafr_2023_100640
crossref_primary_10_1016_j_ejrh_2023_101575
crossref_primary_10_1016_j_scitotenv_2023_167718
crossref_primary_10_1007_s10661_022_10110_y
crossref_primary_10_1016_j_ecoinf_2022_101933
crossref_primary_10_3390_rs15122985
crossref_primary_10_1029_2022WR034012
crossref_primary_10_1061_JHYEFF_HEENG_6315
crossref_primary_10_3390_w16233349
crossref_primary_10_1016_j_ejrh_2022_101248
crossref_primary_10_1016_j_jhydrol_2023_129205
crossref_primary_10_3389_fenvs_2022_887323
crossref_primary_10_1002_joc_7732
crossref_primary_10_1016_j_engappai_2022_105124
crossref_primary_10_1016_j_jclepro_2024_141228
crossref_primary_10_1080_02626667_2021_1981544
crossref_primary_10_26833_ijeg_1344679
crossref_primary_10_3390_rs16111927
crossref_primary_10_1007_s12145_025_01786_0
crossref_primary_10_3390_rs16142676
crossref_primary_10_1016_j_atmosres_2023_106856
crossref_primary_10_11922_11_6035_csd_2022_0053_zh
crossref_primary_10_3390_ijerph20042795
crossref_primary_10_1016_j_jhydrol_2025_132691
crossref_primary_10_1016_j_asej_2022_101724
crossref_primary_10_1002_eco_2604
crossref_primary_10_1016_j_jclepro_2022_131414
crossref_primary_10_1016_j_ejrh_2021_100968
crossref_primary_10_1016_j_agwat_2022_107881
crossref_primary_10_1016_j_jhydrol_2022_128639
Cites_doi 10.1080/19942060.2020.1715845
10.1029/2011RG000373
10.1061/(ASCE)0733-9437(2007)133:4(380)
10.1038/nature09396
10.1111/jawr.12057
10.1007/s10661-018-6955-1
10.5194/hess-6-85-2002
10.3390/atmos10040188
10.1214/ss/1009212519
10.1007/s10661-014-4260-1
10.1109/TPAMI.2014.2345390
10.1016/j.rse.2010.04.001
10.5089/9781451873498.001
10.1080/19942060.2019.1645045
10.1016/j.jhydrol.2015.06.059
10.1016/j.rse.2007.04.015
10.1016/j.rse.2007.06.025
10.1016/S0022-1694(98)00253-4
10.1007/s00704-018-2390-z
10.1175/BAMS-87-10-1381
10.1016/S1464-1909(99)00128-8
10.1016/j.agrformet.2012.05.011
10.1371/journal.pone.0097295
10.1016/j.rse.2011.02.019
10.1002/hyp.10832
10.1016/S0304-4076(00)00076-2
10.1093/biomet/87.4.731
10.1061/(ASCE)HE.1943-5584.0000493
10.1016/j.rse.2014.11.003
10.1175/1520-0450(1996)035<2091:RARSDS>2.0.CO;2
10.1198/016214507000001337
10.1029/2007WR006562
10.5194/bg-6-2001-2009
10.1016/j.agwat.2018.06.018
10.1029/1998WR900018
10.13031/2013.22056
10.1175/MWR2906.1
10.1002/2013JD020864
10.1071/FP02084
10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
10.1016/j.rse.2007.02.038
10.1023/A:1010933404324
10.1016/j.compag.2019.105041
10.1080/01621459.1997.10473608
10.1080/19942060.2019.1647879
10.1007/s11269-012-0007-3
10.1007/s10661-013-3424-8
10.1016/j.agrformet.2017.04.011
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QH
7QL
7SN
7ST
7T7
7TG
7TN
7U7
7UA
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
H97
HCIFZ
K60
K6~
K9.
KL.
L.-
L.G
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7X8
7S9
L.6
DOI 10.1007/s10661-021-08934-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aqualine
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Toxicology Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medicine (ProQuest)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
Meteorological & Geoastrophysical Abstracts - Academic
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ABI/INFORM Global
ProQuest Health & Medical Collection
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
Aqualine
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Oceanic Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Business Collection (Alumni Edition)
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Environmental Sciences
EISSN 1573-2959
EndPage 156
ExternalDocumentID 33655353
10_1007_s10661_021_08934_1
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52011530128
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 51879110
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: 52079055
  funderid: http://dx.doi.org/10.13039/100014718
– fundername: National Natural Science Foundation of China
  grantid: 52011530128
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: 52079055
– fundername: National Natural Science Foundation of China
  grantid: 51879110
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-XX
-Y2
-~C
..I
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5QI
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
EMB
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L8X
LAK
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZCA
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7SN
7ST
7T7
7TG
7TN
7U7
7UA
7XB
8FD
8FK
ABRTQ
C1K
F1W
FR3
H97
K9.
KL.
L.-
L.G
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PUEGO
Q9U
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c452t-7cfe68ef83e1d1f00efdc9ddf145cd654c6d4f9cbd351b248ff568d1417789073
IEDL.DBID 7X7
ISSN 0167-6369
1573-2959
IngestDate Fri Jul 11 05:58:55 EDT 2025
Sun Aug 24 03:52:18 EDT 2025
Sat Aug 23 14:14:20 EDT 2025
Wed Feb 19 02:28:58 EST 2025
Tue Jul 01 02:51:57 EDT 2025
Thu Apr 24 22:55:24 EDT 2025
Fri Feb 21 02:48:04 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Surface energy balance
Bayesian model averaging (BMA)
Evapotranspiration
Machine learning
Landsat
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-7cfe68ef83e1d1f00efdc9ddf145cd654c6d4f9cbd351b248ff568d1417789073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4873-0697
OpenAccessLink https://hdl.handle.net/10072/430842
PMID 33655353
PQID 2495192738
PQPubID 54151
PageCount 1
ParticipantIDs proquest_miscellaneous_2551997115
proquest_miscellaneous_2496244904
proquest_journals_2495192738
pubmed_primary_33655353
crossref_primary_10_1007_s10661_021_08934_1
crossref_citationtrail_10_1007_s10661_021_08934_1
springer_journals_10_1007_s10661_021_08934_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Netherlands
– name: Dordrecht
PublicationSubtitle An International Journal Devoted to Progress in the Use of Monitoring Data in Assessing Environmental Risks to Man and the Environment
PublicationTitle Environmental monitoring and assessment
PublicationTitleAbbrev Environ Monit Assess
PublicationTitleAlternate Environ Monit Assess
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Su (CR42) 2002; 6
Colaizzi, Evett, Howell (CR8) 2006; 49
Roerink, Su, Menenti (CR36) 2000; 25
Fernández, Ley, Steel (CR12) 2001; 100
Fisher, Tu, Baldocchi (CR13) 2008; 112
Yang, Shang, Jiang (CR48) 2012; 164
Sanikhani, Kisi, Maroufpoor, Yaseen (CR39) 2018; 135
Chen, Yuan, Xia (CR7) 2015; 528
Legates, McCabe (CR25) 1999; 35
Sakine, Eyüp (CR37) 2018; 190
Watras, Morrow, Morrison, Scannell, Yaziciaglu, Read (CR46) 2014; 186
Raftery, Gneiting, Balabdaoui (CR35) 2005; 133
Hai, Lamine, Ansoumana, Koffi, Malick, Mundher (CR18) 2018; 208
George, Foster (CR16) 2000; 87
Henriques, Caseiro, Martins (CR19) 2015; 37
Liang, Wang, Guo (CR28) 2013; 18
Yao (CR49) 2014; 119
CR3
CR5
CR47
CR45
Mu, Zhao, Running (CR32) 2011; 115
Priestley, Taylor (CR34) 1972; 100
CR43
Dirmeyer, Gao, Zhao (CR9) 2006; 87
Friedl (CR15) 1996; 35
Jung, Reichstein, Ciais (CR23) 2010; 467
Allen, Tasumi, Trezza (CR2) 2007; 133
Pipunic, Walker, Western (CR33) 2008; 112
CR17
CR11
Charles, Smarajit, Charles (CR6) 1997; 92
Zhu, Li, Zhang (CR52) 2016; 30
Lu, Zhuang (CR29) 2010; 114
Yuan, Liu, Liang, Tan, Liu, Young (CR51) 2012; 26
Hoeting, Madigan, Volinsky (CR20) 1999; 14
Mu, Heinsch, Zhao (CR31) 2007; 111
Yao, Liang, Li, Chen, Liu (CR50) 2017; 242
Eamus (CR10) 2003; 30
Vapnik (CR44) 1998
Malik, Kumar, Kim, Kashani, Karimi, Sharafati, Chau (CR30) 2020; 14
Bastiaanssen, Menenti, Feddes, Holtslag (CR4) 1998; 212
Jung, Reichstein, Bondeau (CR22) 2009; 6
Shrestha, Shukla (CR41) 2013; 128
CR26
Abrahao, García-Garizábal, Merchán, Causapé (CR1) 2015; 187
CR24
Liang, Paulo, Molina, Clyde, Berger (CR27) 2008; 103
Salih, Allawi, Yousif, Armanuos, Yaseen (CR38) 2019; 13
French, Hunsaker, Thorp (CR14) 2015; 158
Senay, Bohms, Singh, Gowda, Velpuri, Alemu, Verdin (CR40) 2013; 49
Jing, Yaseen, Shahid, Saggi, Tao, Kisi, Chau (CR21) 2019; 13
A Malik (8934_CR30) 2020; 14
WGM Bastiaanssen (8934_CR4) 1998; 212
RG Allen (8934_CR2) 2007; 133
C Fernández (8934_CR12) 2001; 100
8934_CR3
Q Mu (8934_CR32) 2011; 115
JF Henriques (8934_CR19) 2015; 37
PD Colaizzi (8934_CR8) 2006; 49
AE Raftery (8934_CR35) 2005; 133
MA Friedl (8934_CR15) 1996; 35
8934_CR5
M Jung (8934_CR22) 2009; 6
JB Fisher (8934_CR13) 2008; 112
DR Legates (8934_CR25) 1999; 35
SQ Salih (8934_CR38) 2019; 13
8934_CR47
8934_CR45
F Liang (8934_CR27) 2008; 103
8934_CR43
W Yuan (8934_CR51) 2012; 26
Q Mu (8934_CR31) 2007; 111
W Jing (8934_CR21) 2019; 13
PA Dirmeyer (8934_CR9) 2006; 87
C Priestley (8934_CR34) 1972; 100
RC Pipunic (8934_CR33) 2008; 112
Z Su (8934_CR42) 2002; 6
8934_CR11
Y Yang (8934_CR48) 2012; 164
G Zhu (8934_CR52) 2016; 30
E George (8934_CR16) 2000; 87
R Abrahao (8934_CR1) 2015; 187
D Eamus (8934_CR10) 2003; 30
Y Chen (8934_CR7) 2015; 528
AN French (8934_CR14) 2015; 158
NK Shrestha (8934_CR41) 2013; 128
C Sakine (8934_CR37) 2018; 190
8934_CR17
GJ Roerink (8934_CR36) 2000; 25
JA Hoeting (8934_CR20) 1999; 14
8934_CR24
M Jung (8934_CR23) 2010; 467
Z Liang (8934_CR28) 2013; 18
H Sanikhani (8934_CR39) 2018; 135
K Charles (8934_CR6) 1997; 92
X Lu (8934_CR29) 2010; 114
VN Vapnik (8934_CR44) 1998
Y Yao (8934_CR49) 2014; 119
GB Senay (8934_CR40) 2013; 49
Y Yao (8934_CR50) 2017; 242
T Hai (8934_CR18) 2018; 208
CJ Watras (8934_CR46) 2014; 186
8934_CR26
33755827 - Environ Monit Assess. 2021 Mar 23;193(4):207
References_xml – ident: CR45
– volume: 26
  start-page: 2147
  issue: 8
  year: 2012
  end-page: 2157
  ident: CR51
  article-title: Estimations of evapotranspiration and water balance with uncertainty over the yukon river basin
  publication-title: Water Resources Management
– volume: 37
  start-page: 583
  issue: 3
  year: 2015
  end-page: 596
  ident: CR19
  article-title: High-speed tracking with kernelized correlation filters
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 186
  start-page: 919
  issue: 2
  year: 2014
  end-page: 934
  ident: CR46
  article-title: Evaluation of wireless sensor networks (wsns) for remote wetland monitoring: design and initial results
  publication-title: Environmental Monitoring and Assessment
– volume: 87
  start-page: 1381
  issue: 10
  year: 2006
  end-page: 1397
  ident: CR9
  article-title: GSWP-2: multimodel analysis and implications for our perception of the land surface
  publication-title: Bulletin of the American Meteorological Society
– volume: 164
  start-page: 112
  year: 2012
  end-page: 122
  ident: CR48
  article-title: Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China
  publication-title: Agricultural and Forest Meteorology
– volume: 119
  start-page: 4521
  year: 2014
  end-page: 4545
  ident: CR49
  article-title: Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 13
  start-page: 878
  issue: 1
  year: 2019
  end-page: 891
  ident: CR38
  article-title: Viability of the advanced adaptive neuro-fuzzy inference system model on reservoir evaporation process simulation: case study of nasser lake in egypt
  publication-title: Engineering Applications of Computational Fluid Mechanics
– volume: 528
  start-page: 537
  year: 2015
  end-page: 549
  ident: CR7
  article-title: Using Bayesian model averaging to estimate terrestrial evapotranspiration in China
  publication-title: Journal of Hydrology
– volume: 92
  start-page: 117
  year: 1997
  end-page: 127
  ident: CR6
  article-title: Polychotomous regression
  publication-title: Journal of the American Statistical Association
– volume: 208
  start-page: 140
  year: 2018
  end-page: 151
  ident: CR18
  article-title: Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: regional case study in burkina faso
  publication-title: Agricultural Water Management
– volume: 49
  start-page: 1409
  issue: 5
  year: 2006
  end-page: 1417
  ident: CR8
  article-title: Comparison of five models to scale daily evapotranspiration from one-time-of-day measurements
  publication-title: Transactions of the ASABE
– volume: 133
  start-page: 380
  issue: 4
  year: 2007
  end-page: 394
  ident: CR2
  article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 115
  start-page: 1781
  issue: 8
  year: 2011
  end-page: 1800
  ident: CR32
  article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm
  publication-title: Remote Sensing of Environment
– ident: CR11
– volume: 49
  start-page: 577
  issue: 3
  year: 2013
  end-page: 591
  ident: CR40
  article-title: Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach
  publication-title: JAWRA Journal of the American Water Resources Association
– start-page: 401
  year: 1998
  end-page: 441
  ident: CR44
  publication-title: Statistical learning theory
– volume: 13
  start-page: 811
  issue: 1
  year: 2019
  end-page: 823
  ident: CR21
  article-title: Implementation of evolutionary computing models for reference evapotranspiration modeling: Short review, assessment and possible future research directions
  publication-title: Engineering Applications of Computational Fluid Mechanics
– volume: 100
  start-page: 381
  year: 2001
  end-page: 427
  ident: CR12
  article-title: Benchmark priors for Bayesian model averaging
  publication-title: Journal of Econometrics
– ident: CR5
– volume: 112
  start-page: 1295
  issue: 4
  year: 2008
  end-page: 1305
  ident: CR33
  article-title: Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study
  publication-title: Remote Sensing of Environment
– ident: CR26
– volume: 135
  start-page: 449
  year: 2018
  end-page: 462
  ident: CR39
  article-title: Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: Application of different modeling scenarios
  publication-title: Theoretical & Applied Climatology
– volume: 114
  start-page: 1924
  year: 2010
  end-page: 1939
  ident: CR29
  article-title: Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data
  publication-title: Remote Sensing of Environment
– volume: 103
  start-page: 410
  year: 2008
  end-page: 423
  ident: CR27
  article-title: Mixtures of g priors for Bayesian variable selection
  publication-title: Journal of the American Statistical Association
– ident: CR43
– volume: 128
  start-page: 351
  issue: 2
  year: 2013
  end-page: 358
  ident: CR41
  article-title: Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment[J]
  publication-title: Bioresource Technology
– ident: CR47
– volume: 158
  start-page: 281
  year: 2015
  end-page: 294
  ident: CR14
  article-title: Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models
  publication-title: Remote Sensing of Environment
– volume: 190
  start-page: 601
  year: 2018
  ident: CR37
  article-title: Potential use of remote sensing techniques in evapotranspiration estimations at watershed level
  publication-title: Environmental Monitoring & Assessment
– volume: 242
  start-page: 55
  year: 2017
  end-page: 74
  ident: CR50
  article-title: Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms
  publication-title: Agricultural and Forest Meteorology
– volume: 112
  start-page: 901
  issue: 3
  year: 2008
  end-page: 919
  ident: CR13
  article-title: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites
  publication-title: Remote Sensing of Environment
– volume: 35
  start-page: 2091
  issue: 11
  year: 1996
  end-page: 2103
  ident: CR15
  article-title: Relationships among remotely sensed data, surface energy balance, and area-averaged fluxes over partially vegetated land surfaces
  publication-title: Journal of Applied Meteorology
– volume: 111
  start-page: 519
  issue: 4
  year: 2007
  end-page: 536
  ident: CR31
  article-title: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data
  publication-title: Remote Sensing of Environment
– volume: 14
  start-page: 323
  issue: 1
  year: 2020
  end-page: 338
  ident: CR30
  article-title: Modeling monthly pan evaporation process over the Indian central Himalayas: application of multiple learning artificial intelligence model
  publication-title: Engineering Applications of Computational Fluid Mechanics
– volume: 35
  start-page: 233
  year: 1999
  end-page: 241
  ident: CR25
  article-title: Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resources Research
– volume: 187
  start-page: 22
  issue: 2
  year: 2015
  ident: CR1
  article-title: Climate change and the water cycle in newly irrigated areas
  publication-title: Environmental Monitoring & Assessment
– volume: 30
  start-page: 2861
  issue: 16
  year: 2016
  end-page: 2879
  ident: CR52
  article-title: MULTI-model ensemble prediction of terrestrial evapotranspiration across north China using Bayesian model averaging
  publication-title: Hydrological Processes
– volume: 25
  start-page: 147
  issue: 2
  year: 2000
  end-page: 157
  ident: CR36
  article-title: S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance
  publication-title: Physics & Chemistry of the Earth Part B Hydrology Oceans & Atmosphere
– ident: CR3
– volume: 467
  start-page: 951
  issue: 7318
  year: 2010
  end-page: 954
  ident: CR23
  article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply
  publication-title: Nature
– ident: CR17
– volume: 133
  start-page: 1155
  issue: 5
  year: 2005
  end-page: 1174
  ident: CR35
  article-title: Using Bayesian Model Averaging to Calibrate Forecast Ensembles
  publication-title: Monthly Weather Review
– volume: 6
  start-page: 2001
  issue: 10
  year: 2009
  end-page: 2013
  ident: CR22
  article-title: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model
  publication-title: Biogeosciences
– volume: 30
  start-page: 187
  issue: 2
  year: 2003
  end-page: 205
  ident: CR10
  article-title: How does ecosystem water balance affect net primary productivity of woody ecosystems?
  publication-title: Functional Plant Biology
– volume: 100
  start-page: 81
  year: 1972
  end-page: 92
  ident: CR34
  article-title: On the assessment of surface heat flux and evaporationusing large-scale parameters
  publication-title: Monthly Weather Review
– volume: 6
  start-page: 85
  year: 2002
  end-page: 99
  ident: CR42
  article-title: The surface energy balance system (SEBS) for stimation of turbulent fluxes
  publication-title: Hydrology and Earth System Sciences
– volume: 18
  start-page: 1426
  issue: 11
  year: 2013
  end-page: 1436
  ident: CR28
  article-title: Application of Bayesian model averaging approach to multimodel ensemble hydrologic forecasting
  publication-title: Journal of Hydrologic Engineering
– volume: 212
  start-page: 198
  issue: 1
  year: 1998
  end-page: 212
  ident: CR4
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL) – 1 Formulation
  publication-title: Journal of Hydrology
– volume: 14
  start-page: 382
  issue: 4
  year: 1999
  end-page: 401
  ident: CR20
  article-title: Bayesian model averaging: a tutorial
  publication-title: Statistical Science
– volume: 87
  start-page: 731
  issue: 4
  year: 2000
  end-page: 747
  ident: CR16
  article-title: Calibration and empirical Bayes variable selection
  publication-title: Biometrika
– ident: CR24
– volume: 14
  start-page: 323
  issue: 1
  year: 2020
  ident: 8934_CR30
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2020.1715845
– ident: 8934_CR45
  doi: 10.1029/2011RG000373
– volume: 133
  start-page: 380
  issue: 4
  year: 2007
  ident: 8934_CR2
  publication-title: Journal of Irrigation and Drainage Engineering
  doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)
– volume: 467
  start-page: 951
  issue: 7318
  year: 2010
  ident: 8934_CR23
  publication-title: Nature
  doi: 10.1038/nature09396
– volume: 49
  start-page: 577
  issue: 3
  year: 2013
  ident: 8934_CR40
  publication-title: JAWRA Journal of the American Water Resources Association
  doi: 10.1111/jawr.12057
– volume: 190
  start-page: 601
  year: 2018
  ident: 8934_CR37
  publication-title: Environmental Monitoring & Assessment
  doi: 10.1007/s10661-018-6955-1
– volume: 6
  start-page: 85
  year: 2002
  ident: 8934_CR42
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-6-85-2002
– start-page: 401
  volume-title: Statistical learning theory
  year: 1998
  ident: 8934_CR44
– ident: 8934_CR43
  doi: 10.3390/atmos10040188
– volume: 14
  start-page: 382
  issue: 4
  year: 1999
  ident: 8934_CR20
  publication-title: Statistical Science
  doi: 10.1214/ss/1009212519
– volume: 187
  start-page: 22
  issue: 2
  year: 2015
  ident: 8934_CR1
  publication-title: Environmental Monitoring & Assessment
  doi: 10.1007/s10661-014-4260-1
– volume: 37
  start-page: 583
  issue: 3
  year: 2015
  ident: 8934_CR19
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2014.2345390
– volume: 114
  start-page: 1924
  year: 2010
  ident: 8934_CR29
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2010.04.001
– ident: 8934_CR11
  doi: 10.5089/9781451873498.001
– volume: 13
  start-page: 811
  issue: 1
  year: 2019
  ident: 8934_CR21
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2019.1645045
– volume: 528
  start-page: 537
  year: 2015
  ident: 8934_CR7
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2015.06.059
– volume: 111
  start-page: 519
  issue: 4
  year: 2007
  ident: 8934_CR31
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.04.015
– volume: 112
  start-page: 901
  issue: 3
  year: 2008
  ident: 8934_CR13
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.06.025
– ident: 8934_CR3
– volume: 212
  start-page: 198
  issue: 1
  year: 1998
  ident: 8934_CR4
  publication-title: Journal of Hydrology
  doi: 10.1016/S0022-1694(98)00253-4
– volume: 135
  start-page: 449
  year: 2018
  ident: 8934_CR39
  publication-title: Theoretical & Applied Climatology
  doi: 10.1007/s00704-018-2390-z
– volume: 87
  start-page: 1381
  issue: 10
  year: 2006
  ident: 8934_CR9
  publication-title: Bulletin of the American Meteorological Society
  doi: 10.1175/BAMS-87-10-1381
– volume: 25
  start-page: 147
  issue: 2
  year: 2000
  ident: 8934_CR36
  publication-title: Physics & Chemistry of the Earth Part B Hydrology Oceans & Atmosphere
  doi: 10.1016/S1464-1909(99)00128-8
– volume: 164
  start-page: 112
  year: 2012
  ident: 8934_CR48
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2012.05.011
– ident: 8934_CR17
– ident: 8934_CR47
  doi: 10.1371/journal.pone.0097295
– volume: 115
  start-page: 1781
  issue: 8
  year: 2011
  ident: 8934_CR32
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.02.019
– volume: 30
  start-page: 2861
  issue: 16
  year: 2016
  ident: 8934_CR52
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.10832
– volume: 100
  start-page: 381
  year: 2001
  ident: 8934_CR12
  publication-title: Journal of Econometrics
  doi: 10.1016/S0304-4076(00)00076-2
– volume: 87
  start-page: 731
  issue: 4
  year: 2000
  ident: 8934_CR16
  publication-title: Biometrika
  doi: 10.1093/biomet/87.4.731
– volume: 18
  start-page: 1426
  issue: 11
  year: 2013
  ident: 8934_CR28
  publication-title: Journal of Hydrologic Engineering
  doi: 10.1061/(ASCE)HE.1943-5584.0000493
– volume: 158
  start-page: 281
  year: 2015
  ident: 8934_CR14
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2014.11.003
– volume: 35
  start-page: 2091
  issue: 11
  year: 1996
  ident: 8934_CR15
  publication-title: Journal of Applied Meteorology
  doi: 10.1175/1520-0450(1996)035<2091:RARSDS>2.0.CO;2
– volume: 103
  start-page: 410
  year: 2008
  ident: 8934_CR27
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214507000001337
– ident: 8934_CR26
  doi: 10.1029/2007WR006562
– volume: 6
  start-page: 2001
  issue: 10
  year: 2009
  ident: 8934_CR22
  publication-title: Biogeosciences
  doi: 10.5194/bg-6-2001-2009
– volume: 208
  start-page: 140
  year: 2018
  ident: 8934_CR18
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2018.06.018
– volume: 35
  start-page: 233
  year: 1999
  ident: 8934_CR25
  publication-title: Water Resources Research
  doi: 10.1029/1998WR900018
– volume: 49
  start-page: 1409
  issue: 5
  year: 2006
  ident: 8934_CR8
  publication-title: Transactions of the ASABE
  doi: 10.13031/2013.22056
– volume: 133
  start-page: 1155
  issue: 5
  year: 2005
  ident: 8934_CR35
  publication-title: Monthly Weather Review
  doi: 10.1175/MWR2906.1
– volume: 119
  start-page: 4521
  year: 2014
  ident: 8934_CR49
  publication-title: Journal of Geophysical Research: Atmospheres
  doi: 10.1002/2013JD020864
– volume: 30
  start-page: 187
  issue: 2
  year: 2003
  ident: 8934_CR10
  publication-title: Functional Plant Biology
  doi: 10.1071/FP02084
– volume: 100
  start-page: 81
  year: 1972
  ident: 8934_CR34
  publication-title: Monthly Weather Review
  doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
– volume: 112
  start-page: 1295
  issue: 4
  year: 2008
  ident: 8934_CR33
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.02.038
– ident: 8934_CR5
  doi: 10.1023/A:1010933404324
– ident: 8934_CR24
  doi: 10.1016/j.compag.2019.105041
– volume: 92
  start-page: 117
  year: 1997
  ident: 8934_CR6
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1997.10473608
– volume: 13
  start-page: 878
  issue: 1
  year: 2019
  ident: 8934_CR38
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2019.1647879
– volume: 26
  start-page: 2147
  issue: 8
  year: 2012
  ident: 8934_CR51
  publication-title: Water Resources Management
  doi: 10.1007/s11269-012-0007-3
– volume: 186
  start-page: 919
  issue: 2
  year: 2014
  ident: 8934_CR46
  publication-title: Environmental Monitoring and Assessment
  doi: 10.1007/s10661-013-3424-8
– volume: 128
  start-page: 351
  issue: 2
  year: 2013
  ident: 8934_CR41
  publication-title: Bioresource Technology
– volume: 242
  start-page: 55
  year: 2017
  ident: 8934_CR50
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2017.04.011
– reference: 33755827 - Environ Monit Assess. 2021 Mar 23;193(4):207
SSID ssj0009749
Score 2.4848816
Snippet Evapotranspiration (ET) is one of the most important components of global hydrologic cycle and has significant impacts on energy exchange and climate change....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 156
SubjectTerms Algorithms
Arid regions
Arid zones
Atmospheric Protection/Air Quality Control/Air Pollution
Bayes Theorem
Bayesian analysis
Bayesian theory
Climate change
Climate models
Earth and Environmental Science
Ecology
Ecotoxicology
Energy balance
Energy balance models
Energy transfer
Environment
Environmental Management
Environmental Monitoring
Environmental science
Evapotranspiration
Evapotranspiration estimates
Evapotranspiration models
Hydrologic cycle
Hydrological cycle
Hydrology
In situ measurement
Landsat
Landsat satellites
Learning algorithms
Machine Learning
Mathematical models
Monitoring/Environmental Analysis
Probability theory
Remote sensing
Satellite data
Semi arid areas
Semiarid zones
Support Vector Machine
Support vector machines
Surface energy
Surface energy balance
Surface properties
Uncertainty
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-KpaAPUs-vqC0r-GYXkuxX8mjLiQjtUw98C8l-HKImYu6E---d3SR3V64V-rybZclvJvPb7MxvAC6cldzEylFnXUm5MJqWGFhpamSZOacqFnos_fwlbyb89k7c9UVh7ZDtPlxJhi_1WrEbxhLqUwpiDLKc4pnno8Czu0_kmqRXK6ld1ZFer-gtmcz7Upm_r_FnONrgmBv3oyHsXH-G3Z4vkqsO4D34YOsRfBoHrenFCHbW9ARHcDhela3hQ73ftvvwMEZP9ty0nhL7Wj43s6Bpft_BT6oF0c3c1-ZOyfdyYX1hJQk9ckiJph4aGZGu13RL_J9b8hRyMC3pm05MSfk4bV5w5Kk9gMn1-PePG9q3WaCai3RGlUbAMusyZhOTuDi2zujcGJdwoY0UXEvDXa4rw0RSpRwhFDIzCU-Ur6JV7BC26qa2x0BszgzXTPLKGG7SFOm7UDEuH2s81tgqgmR424XuNch9K4zHYqWe7BEqEKEiIFQkEVwun3nuFDjenX02gFj03tgWvr82MlnFsgjOl8PoR_5ypKxtMw9zJFKdPObvzEF6mecKSXQER52BLLfEmBSCCRbBt8FiVhv4935P_m_6KWynwXp9EtwZbM1e5vYLsqJZ9TU4wRvU2QSN
  priority: 102
  providerName: Springer Nature
Title Estimating evapotranspiration by coupling Bayesian model averaging methods with machine learning algorithms
URI https://link.springer.com/article/10.1007/s10661-021-08934-1
https://www.ncbi.nlm.nih.gov/pubmed/33655353
https://www.proquest.com/docview/2495192738
https://www.proquest.com/docview/2496244904
https://www.proquest.com/docview/2551997115
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0fdEH0Wo1WssKvuliNvuVPMm1pBbFIuLB-RSS_TjFNjlNTuh_7-xm76IU7yWBZBKGnZnML7s780PopbOSm1Q54qyrCRdGkxoSK8mMrHPnVMMCx9LHC3k-5-8XYhEn3Pq4rXLzTQwfatNpP0f-xnMkAxpRLH-7-kk8a5RfXY0UGrfRvm9d5r1aLdTUdFeN8Nf39pZMFrFoJpbOQWYifoNCCimbE_pvYrqBNm-slIYEdHYf3YvIEc9GUz9At2x7gO7-1U_wAB2WU9kaiMa47R-iHyVEssem7RLb3_WqG0JP8--j-XFzjXW39rW5S3xSX1tfWIkDRw6uwdUDkREeuaZ77Gdu8VXYg2lxJJ1Y4vpyCaM1fLvqH6H5Wfnl9JxEmgWiucgGojQYLLcuZ5Ya6tLUOqMLYxzlQhspuJaGu0I3hgnaZBxMKGRuKKfKV9Eqdoj22q61TxC2BTNcM8kbY7jJMoDvQqXw-lTDb41tEkQ3Y1zp2IPcU2FcVlP3ZG-XCuxSBbtUNEGvts-sxg4cO6WPNqarYjT21eQ7CXqxvQ1x5BdH6tZ26yAjAeoUKd8hA_CyKBSA6AQ9Ht1iqxJjUggmWIJeb_xkUuD_-j7dre8zdCcLPuo3vR2hveHX2j4HFDQ0x8HV4Zif0mO0P3v39UMJ55Py4tNnuDrPZn8AK2UJtA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOCAqFQAEjwQkskviR5IAQlK229HFqpd5C4seCaJOFZEH7p_iNjJ1kA6rYW8-ZWKPMw5_jmfkAXlgjuQ4TS62xBeVCK1rgxkpjLYvU2qRknmPp6FhOT_mnM3G2Ab-HXhhXVjnkRJ-oda3cP_I3jiMZ0UjC0nfz79SxRrnb1YFCo3OLA7P8hUe25u3-R7Tvyzjem5zsTmnPKkAVF3FLE4X6pcamzEQ6smForFaZ1jbiQmkpuJKa20yVmomojDlqLGSqIx4lrmk0YbjuNbjOGYam60zfHUtKEJtnwyxxyWTWN-n0rXq4E1JXEBEiROA0-ncjvIRuL93M-g1v7w7c7pEqed-51l3YMNUW3PprfuEWbE_GNjkU7fNEcw--TTBzOCxczYj5Wczr1s9Q_9q5GymXRNUL1ws8Ix-KpXGNnMRz8pACQ8sTJ5GO27oh7k8xufA1n4b0JBczUpzP0Drtl4vmPpxeiQG2YbOqK_MQiMmY5opJXmrNdRzjcUEkIS4fKjxGmTKAaPjGuepnnjvqjfN8nNbs7JKjXXJvlzwK4NXqnXk38WOt9M5guryP_iYffTWA56vHGLfuMqaoTL3wMhKhVRbyNTIIZ7MsQdAewIPOLVYqMSaFYIIF8Hrwk1GB_-v7aL2-z-DG9OToMD_cPz54DDdj76-u4G4HNtsfC_MEEVhbPvVuT-DzVcfZHxYyQp8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4ICgUAgWMBCeImsSv5IAQtLtqKVQcqNRbSPxYEG2ykCxo_xq_jrGTbEAVe-s5E2uUefhzPDMfwDNrBNORtKE1tggZ1yoscGMNEy2K1FpZUs-x9OFYHJywd6f8dAN-D70wrqxyyIk-UetauX_ku44jGdGIpOmu7csiPu5PX8-_h45Byt20DnQanYscmeUvPL41rw730dbPk2Q6-bR3EPYMA6FiPGlDqVDX1NiUmljHNoqM1SrT2saMKy04U0Izm6lSUx6XCUPtuUh1zGLpGkglxXWvwFVJZepiLN0by0sQp2fDXHFBRdY37PRte7grhq44IkK4wML4303xAtK9cEvrN7_pLbjZo1bypnOz27Bhqi248dcswy3Ynowtcyja54zmDnybYBZxuLiaEfOzmNetn6f-tXM9Ui6JqheuL3hG3hZL45o6iefnIQWGmSdRIh3PdUPcX2Ny7us_DekJL2akOJuhddov581dOLkUA2zDZlVX5j4Qk1HNFBWs1JrpJMGjA5cRLh8pPFKZMoB4-Ma56uefOxqOs3yc3OzskqNdcm-XPA7gxeqdeTf9Y630zmC6vM8ETT76bQBPV48xht3FTFGZeuFlBMKsLGJrZBDaZplEAB_Avc4tVipRKjinnAbwcvCTUYH_6_tgvb5P4BpGWP7-8PjoIVxPvLu62rsd2Gx_LMwjBGNt-dh7PYHPlx1mfwAelkbV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+evapotranspiration+by+coupling+Bayesian+model+averaging+methods+with+machine+learning+algorithms&rft.jtitle=Environmental+monitoring+and+assessment&rft.au=Yang%2C+Yong&rft.au=Sun%2C+Huaiwei&rft.au=Xue%2C+Jie&rft.au=Liu%2C+Yi&rft.date=2021-03-01&rft.eissn=1573-2959&rft.volume=193&rft.issue=3&rft.spage=156&rft_id=info:doi/10.1007%2Fs10661-021-08934-1&rft_id=info%3Apmid%2F33655353&rft.externalDocID=33655353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6369&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6369&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6369&client=summon