Estimating evapotranspiration by coupling Bayesian model averaging methods with machine learning algorithms
Evapotranspiration (ET) is one of the most important components of global hydrologic cycle and has significant impacts on energy exchange and climate change. Numerous models have been developed to estimate ET so far; however, great uncertainties in models still require considerations. The aim of thi...
Saved in:
Published in | Environmental monitoring and assessment Vol. 193; no. 3; p. 156 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Evapotranspiration (ET) is one of the most important components of global hydrologic cycle and has significant impacts on energy exchange and climate change. Numerous models have been developed to estimate ET so far; however, great uncertainties in models still require considerations. The aim of this study is to reduce model errors and uncertainties among multi-models to improve daily ET estimate. The Bayesian model averaging (BMA) method is used to assemble eight ET models to produce ET with Landsat 8 satellite data, including four surface energy balance models (i.e., SEBS, SEBAL, SEBI, and SSEB) and four machine learning algorithms (i.e., polymars, random forest, ridge regression, and support vector machine). Performances of each model and BMA method were validated through in situ measurements of semi-arid region. Results indicated that the BMA method outperformed all eight single models. The four most important models obtained by the BMA method were ranked by random forest, SVM, SEBS, and SEBAL. The BMA method coupled with machine learning can significantly improve the accuracy of daily ET estimate, reducing uncertainties among models, and taking different intrinsic benefits of empirically and physically based models to obtain a more reliable ET estimate. |
---|---|
AbstractList | Evapotranspiration (ET) is one of the most important components of global hydrologic cycle and has significant impacts on energy exchange and climate change. Numerous models have been developed to estimate ET so far; however, great uncertainties in models still require considerations. The aim of this study is to reduce model errors and uncertainties among multi-models to improve daily ET estimate. The Bayesian model averaging (BMA) method is used to assemble eight ET models to produce ET with Landsat 8 satellite data, including four surface energy balance models (i.e., SEBS, SEBAL, SEBI, and SSEB) and four machine learning algorithms (i.e., polymars, random forest, ridge regression, and support vector machine). Performances of each model and BMA method were validated through in situ measurements of semi-arid region. Results indicated that the BMA method outperformed all eight single models. The four most important models obtained by the BMA method were ranked by random forest, SVM, SEBS, and SEBAL. The BMA method coupled with machine learning can significantly improve the accuracy of daily ET estimate, reducing uncertainties among models, and taking different intrinsic benefits of empirically and physically based models to obtain a more reliable ET estimate.Evapotranspiration (ET) is one of the most important components of global hydrologic cycle and has significant impacts on energy exchange and climate change. Numerous models have been developed to estimate ET so far; however, great uncertainties in models still require considerations. The aim of this study is to reduce model errors and uncertainties among multi-models to improve daily ET estimate. The Bayesian model averaging (BMA) method is used to assemble eight ET models to produce ET with Landsat 8 satellite data, including four surface energy balance models (i.e., SEBS, SEBAL, SEBI, and SSEB) and four machine learning algorithms (i.e., polymars, random forest, ridge regression, and support vector machine). Performances of each model and BMA method were validated through in situ measurements of semi-arid region. Results indicated that the BMA method outperformed all eight single models. The four most important models obtained by the BMA method were ranked by random forest, SVM, SEBS, and SEBAL. The BMA method coupled with machine learning can significantly improve the accuracy of daily ET estimate, reducing uncertainties among models, and taking different intrinsic benefits of empirically and physically based models to obtain a more reliable ET estimate. Evapotranspiration (ET) is one of the most important components of global hydrologic cycle and has significant impacts on energy exchange and climate change. Numerous models have been developed to estimate ET so far; however, great uncertainties in models still require considerations. The aim of this study is to reduce model errors and uncertainties among multi-models to improve daily ET estimate. The Bayesian model averaging (BMA) method is used to assemble eight ET models to produce ET with Landsat 8 satellite data, including four surface energy balance models (i.e., SEBS, SEBAL, SEBI, and SSEB) and four machine learning algorithms (i.e., polymars, random forest, ridge regression, and support vector machine). Performances of each model and BMA method were validated through in situ measurements of semi-arid region. Results indicated that the BMA method outperformed all eight single models. The four most important models obtained by the BMA method were ranked by random forest, SVM, SEBS, and SEBAL. The BMA method coupled with machine learning can significantly improve the accuracy of daily ET estimate, reducing uncertainties among models, and taking different intrinsic benefits of empirically and physically based models to obtain a more reliable ET estimate. |
ArticleNumber | 156 |
Author | Liu, Luguang Sun, Huaiwei Liu, Yi Gui, Dongwei Yan, Dong Yang, Yong Xue, Jie |
Author_xml | – sequence: 1 givenname: Yong surname: Yang fullname: Yang, Yong organization: School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology – sequence: 2 givenname: Huaiwei orcidid: 0000-0003-4873-0697 surname: Sun fullname: Sun, Huaiwei email: hsun@hust.edu.cn organization: School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology – sequence: 3 givenname: Jie surname: Xue fullname: Xue, Jie organization: State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences – sequence: 4 givenname: Yi surname: Liu fullname: Liu, Yi organization: State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences – sequence: 5 givenname: Luguang surname: Liu fullname: Liu, Luguang organization: Hubei Water Resources Research Institute – sequence: 6 givenname: Dong surname: Yan fullname: Yan, Dong organization: School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology – sequence: 7 givenname: Dongwei surname: Gui fullname: Gui, Dongwei organization: State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33655353$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URLeFL8ABReLCJWDH_-IjVKVFqsQFzpbXHu-6JHawk6L99jjdAlIP5TCyNO_3xva8M3QSUwSEXhP8nmAsPxSChSAt7mr1irKWPEMbwiVtO8XVCdpgImQrqFCn6KyUW4yxkky9QKeUCs4ppxv047LMYTRziLsG7syU5mximUKurRSb7aGxaZmGVf5kDlCCic2YHAyNuYNsdqswwrxPrjS_wrxvRmP3IUIzgMlxVc2wS7kqY3mJnnszFHj1cJ6j758vv11ctzdfr75cfLxpLePd3ErrQfTgewrEEY8xeGeVc54wbp3gzArHvLJbRznZdqz3noveEUak7BWW9By9O86dcvq5QJn1GIqFYTAR0lJ0xzlRShLC_48yJTrGFGYVffsIvU1LjvUjK1UndpL2lXrzQC3bEZyect1uPug_G69AdwRsTqVk8H8RgvUaqz7Gqmus-j5WTaqpf2SyYb5PqMYVhqet9Ggt9Z64g_zv2U-4fgOmGbfS |
CitedBy_id | crossref_primary_10_3389_frwa_2025_1553732 crossref_primary_10_1016_j_jafr_2023_100640 crossref_primary_10_1016_j_ejrh_2023_101575 crossref_primary_10_1016_j_scitotenv_2023_167718 crossref_primary_10_1007_s10661_022_10110_y crossref_primary_10_1016_j_ecoinf_2022_101933 crossref_primary_10_3390_rs15122985 crossref_primary_10_1029_2022WR034012 crossref_primary_10_1061_JHYEFF_HEENG_6315 crossref_primary_10_3390_w16233349 crossref_primary_10_1016_j_ejrh_2022_101248 crossref_primary_10_1016_j_jhydrol_2023_129205 crossref_primary_10_3389_fenvs_2022_887323 crossref_primary_10_1002_joc_7732 crossref_primary_10_1016_j_engappai_2022_105124 crossref_primary_10_1016_j_jclepro_2024_141228 crossref_primary_10_1080_02626667_2021_1981544 crossref_primary_10_26833_ijeg_1344679 crossref_primary_10_3390_rs16111927 crossref_primary_10_1007_s12145_025_01786_0 crossref_primary_10_3390_rs16142676 crossref_primary_10_1016_j_atmosres_2023_106856 crossref_primary_10_11922_11_6035_csd_2022_0053_zh crossref_primary_10_3390_ijerph20042795 crossref_primary_10_1016_j_jhydrol_2025_132691 crossref_primary_10_1016_j_asej_2022_101724 crossref_primary_10_1002_eco_2604 crossref_primary_10_1016_j_jclepro_2022_131414 crossref_primary_10_1016_j_ejrh_2021_100968 crossref_primary_10_1016_j_agwat_2022_107881 crossref_primary_10_1016_j_jhydrol_2022_128639 |
Cites_doi | 10.1080/19942060.2020.1715845 10.1029/2011RG000373 10.1061/(ASCE)0733-9437(2007)133:4(380) 10.1038/nature09396 10.1111/jawr.12057 10.1007/s10661-018-6955-1 10.5194/hess-6-85-2002 10.3390/atmos10040188 10.1214/ss/1009212519 10.1007/s10661-014-4260-1 10.1109/TPAMI.2014.2345390 10.1016/j.rse.2010.04.001 10.5089/9781451873498.001 10.1080/19942060.2019.1645045 10.1016/j.jhydrol.2015.06.059 10.1016/j.rse.2007.04.015 10.1016/j.rse.2007.06.025 10.1016/S0022-1694(98)00253-4 10.1007/s00704-018-2390-z 10.1175/BAMS-87-10-1381 10.1016/S1464-1909(99)00128-8 10.1016/j.agrformet.2012.05.011 10.1371/journal.pone.0097295 10.1016/j.rse.2011.02.019 10.1002/hyp.10832 10.1016/S0304-4076(00)00076-2 10.1093/biomet/87.4.731 10.1061/(ASCE)HE.1943-5584.0000493 10.1016/j.rse.2014.11.003 10.1175/1520-0450(1996)035<2091:RARSDS>2.0.CO;2 10.1198/016214507000001337 10.1029/2007WR006562 10.5194/bg-6-2001-2009 10.1016/j.agwat.2018.06.018 10.1029/1998WR900018 10.13031/2013.22056 10.1175/MWR2906.1 10.1002/2013JD020864 10.1071/FP02084 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 10.1016/j.rse.2007.02.038 10.1023/A:1010933404324 10.1016/j.compag.2019.105041 10.1080/01621459.1997.10473608 10.1080/19942060.2019.1647879 10.1007/s11269-012-0007-3 10.1007/s10661-013-3424-8 10.1016/j.agrformet.2017.04.011 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QH 7QL 7SN 7ST 7T7 7TG 7TN 7U7 7UA 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO F1W FR3 FRNLG FYUFA F~G GHDGH GNUQQ H97 HCIFZ K60 K6~ K9. KL. L.- L.G M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U SOI 7X8 7S9 L.6 |
DOI | 10.1007/s10661-021-08934-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aqualine Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Toxicology Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medicine (ProQuest) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ABI/INFORM Global ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts Aqualine ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Oceanic Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Business Collection (Alumni Edition) MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Ecology Environmental Sciences |
EISSN | 1573-2959 |
EndPage | 156 |
ExternalDocumentID | 33655353 10_1007_s10661_021_08934_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52011530128 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 51879110 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Innovative Research Group Project of the National Natural Science Foundation of China grantid: 52079055 funderid: http://dx.doi.org/10.13039/100014718 – fundername: National Natural Science Foundation of China grantid: 52011530128 – fundername: Innovative Research Group Project of the National Natural Science Foundation of China grantid: 52079055 – fundername: National Natural Science Foundation of China grantid: 51879110 |
GroupedDBID | --- -5A -5G -5~ -BR -EM -XX -Y2 -~C ..I .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD EMB EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L8X LAK LLZTM M0C M1P M2P M4Y MA- ML. N2Q NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z8M Z8N Z8O Z8P Z8Q Z8S Z8T Z8U Z8W Z8Z Z92 ZCA ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QH 7QL 7SN 7ST 7T7 7TG 7TN 7U7 7UA 7XB 8FD 8FK ABRTQ C1K F1W FR3 H97 K9. KL. L.- L.G M7N P64 PJZUB PKEHL PPXIY PQEST PQUKI PUEGO Q9U SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c452t-7cfe68ef83e1d1f00efdc9ddf145cd654c6d4f9cbd351b248ff568d1417789073 |
IEDL.DBID | 7X7 |
ISSN | 0167-6369 1573-2959 |
IngestDate | Fri Jul 11 05:58:55 EDT 2025 Sun Aug 24 03:52:18 EDT 2025 Sat Aug 23 14:14:20 EDT 2025 Wed Feb 19 02:28:58 EST 2025 Tue Jul 01 02:51:57 EDT 2025 Thu Apr 24 22:55:24 EDT 2025 Fri Feb 21 02:48:04 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Surface energy balance Bayesian model averaging (BMA) Evapotranspiration Machine learning Landsat |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-7cfe68ef83e1d1f00efdc9ddf145cd654c6d4f9cbd351b248ff568d1417789073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4873-0697 |
OpenAccessLink | https://hdl.handle.net/10072/430842 |
PMID | 33655353 |
PQID | 2495192738 |
PQPubID | 54151 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2551997115 proquest_miscellaneous_2496244904 proquest_journals_2495192738 pubmed_primary_33655353 crossref_primary_10_1007_s10661_021_08934_1 crossref_citationtrail_10_1007_s10661_021_08934_1 springer_journals_10_1007_s10661_021_08934_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to Progress in the Use of Monitoring Data in Assessing Environmental Risks to Man and the Environment |
PublicationTitle | Environmental monitoring and assessment |
PublicationTitleAbbrev | Environ Monit Assess |
PublicationTitleAlternate | Environ Monit Assess |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Su (CR42) 2002; 6 Colaizzi, Evett, Howell (CR8) 2006; 49 Roerink, Su, Menenti (CR36) 2000; 25 Fernández, Ley, Steel (CR12) 2001; 100 Fisher, Tu, Baldocchi (CR13) 2008; 112 Yang, Shang, Jiang (CR48) 2012; 164 Sanikhani, Kisi, Maroufpoor, Yaseen (CR39) 2018; 135 Chen, Yuan, Xia (CR7) 2015; 528 Legates, McCabe (CR25) 1999; 35 Sakine, Eyüp (CR37) 2018; 190 Watras, Morrow, Morrison, Scannell, Yaziciaglu, Read (CR46) 2014; 186 Raftery, Gneiting, Balabdaoui (CR35) 2005; 133 Hai, Lamine, Ansoumana, Koffi, Malick, Mundher (CR18) 2018; 208 George, Foster (CR16) 2000; 87 Henriques, Caseiro, Martins (CR19) 2015; 37 Liang, Wang, Guo (CR28) 2013; 18 Yao (CR49) 2014; 119 CR3 CR5 CR47 CR45 Mu, Zhao, Running (CR32) 2011; 115 Priestley, Taylor (CR34) 1972; 100 CR43 Dirmeyer, Gao, Zhao (CR9) 2006; 87 Friedl (CR15) 1996; 35 Jung, Reichstein, Ciais (CR23) 2010; 467 Allen, Tasumi, Trezza (CR2) 2007; 133 Pipunic, Walker, Western (CR33) 2008; 112 CR17 CR11 Charles, Smarajit, Charles (CR6) 1997; 92 Zhu, Li, Zhang (CR52) 2016; 30 Lu, Zhuang (CR29) 2010; 114 Yuan, Liu, Liang, Tan, Liu, Young (CR51) 2012; 26 Hoeting, Madigan, Volinsky (CR20) 1999; 14 Mu, Heinsch, Zhao (CR31) 2007; 111 Yao, Liang, Li, Chen, Liu (CR50) 2017; 242 Eamus (CR10) 2003; 30 Vapnik (CR44) 1998 Malik, Kumar, Kim, Kashani, Karimi, Sharafati, Chau (CR30) 2020; 14 Bastiaanssen, Menenti, Feddes, Holtslag (CR4) 1998; 212 Jung, Reichstein, Bondeau (CR22) 2009; 6 Shrestha, Shukla (CR41) 2013; 128 CR26 Abrahao, García-Garizábal, Merchán, Causapé (CR1) 2015; 187 CR24 Liang, Paulo, Molina, Clyde, Berger (CR27) 2008; 103 Salih, Allawi, Yousif, Armanuos, Yaseen (CR38) 2019; 13 French, Hunsaker, Thorp (CR14) 2015; 158 Senay, Bohms, Singh, Gowda, Velpuri, Alemu, Verdin (CR40) 2013; 49 Jing, Yaseen, Shahid, Saggi, Tao, Kisi, Chau (CR21) 2019; 13 A Malik (8934_CR30) 2020; 14 WGM Bastiaanssen (8934_CR4) 1998; 212 RG Allen (8934_CR2) 2007; 133 C Fernández (8934_CR12) 2001; 100 8934_CR3 Q Mu (8934_CR32) 2011; 115 JF Henriques (8934_CR19) 2015; 37 PD Colaizzi (8934_CR8) 2006; 49 AE Raftery (8934_CR35) 2005; 133 MA Friedl (8934_CR15) 1996; 35 8934_CR5 M Jung (8934_CR22) 2009; 6 JB Fisher (8934_CR13) 2008; 112 DR Legates (8934_CR25) 1999; 35 SQ Salih (8934_CR38) 2019; 13 8934_CR47 8934_CR45 F Liang (8934_CR27) 2008; 103 8934_CR43 W Yuan (8934_CR51) 2012; 26 Q Mu (8934_CR31) 2007; 111 W Jing (8934_CR21) 2019; 13 PA Dirmeyer (8934_CR9) 2006; 87 C Priestley (8934_CR34) 1972; 100 RC Pipunic (8934_CR33) 2008; 112 Z Su (8934_CR42) 2002; 6 8934_CR11 Y Yang (8934_CR48) 2012; 164 G Zhu (8934_CR52) 2016; 30 E George (8934_CR16) 2000; 87 R Abrahao (8934_CR1) 2015; 187 D Eamus (8934_CR10) 2003; 30 Y Chen (8934_CR7) 2015; 528 AN French (8934_CR14) 2015; 158 NK Shrestha (8934_CR41) 2013; 128 C Sakine (8934_CR37) 2018; 190 8934_CR17 GJ Roerink (8934_CR36) 2000; 25 JA Hoeting (8934_CR20) 1999; 14 8934_CR24 M Jung (8934_CR23) 2010; 467 Z Liang (8934_CR28) 2013; 18 H Sanikhani (8934_CR39) 2018; 135 K Charles (8934_CR6) 1997; 92 X Lu (8934_CR29) 2010; 114 VN Vapnik (8934_CR44) 1998 Y Yao (8934_CR49) 2014; 119 GB Senay (8934_CR40) 2013; 49 Y Yao (8934_CR50) 2017; 242 T Hai (8934_CR18) 2018; 208 CJ Watras (8934_CR46) 2014; 186 8934_CR26 33755827 - Environ Monit Assess. 2021 Mar 23;193(4):207 |
References_xml | – ident: CR45 – volume: 26 start-page: 2147 issue: 8 year: 2012 end-page: 2157 ident: CR51 article-title: Estimations of evapotranspiration and water balance with uncertainty over the yukon river basin publication-title: Water Resources Management – volume: 37 start-page: 583 issue: 3 year: 2015 end-page: 596 ident: CR19 article-title: High-speed tracking with kernelized correlation filters publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 186 start-page: 919 issue: 2 year: 2014 end-page: 934 ident: CR46 article-title: Evaluation of wireless sensor networks (wsns) for remote wetland monitoring: design and initial results publication-title: Environmental Monitoring and Assessment – volume: 87 start-page: 1381 issue: 10 year: 2006 end-page: 1397 ident: CR9 article-title: GSWP-2: multimodel analysis and implications for our perception of the land surface publication-title: Bulletin of the American Meteorological Society – volume: 164 start-page: 112 year: 2012 end-page: 122 ident: CR48 article-title: Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China publication-title: Agricultural and Forest Meteorology – volume: 119 start-page: 4521 year: 2014 end-page: 4545 ident: CR49 article-title: Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations publication-title: Journal of Geophysical Research: Atmospheres – volume: 13 start-page: 878 issue: 1 year: 2019 end-page: 891 ident: CR38 article-title: Viability of the advanced adaptive neuro-fuzzy inference system model on reservoir evaporation process simulation: case study of nasser lake in egypt publication-title: Engineering Applications of Computational Fluid Mechanics – volume: 528 start-page: 537 year: 2015 end-page: 549 ident: CR7 article-title: Using Bayesian model averaging to estimate terrestrial evapotranspiration in China publication-title: Journal of Hydrology – volume: 92 start-page: 117 year: 1997 end-page: 127 ident: CR6 article-title: Polychotomous regression publication-title: Journal of the American Statistical Association – volume: 208 start-page: 140 year: 2018 end-page: 151 ident: CR18 article-title: Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: regional case study in burkina faso publication-title: Agricultural Water Management – volume: 49 start-page: 1409 issue: 5 year: 2006 end-page: 1417 ident: CR8 article-title: Comparison of five models to scale daily evapotranspiration from one-time-of-day measurements publication-title: Transactions of the ASABE – volume: 133 start-page: 380 issue: 4 year: 2007 end-page: 394 ident: CR2 article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model publication-title: Journal of Irrigation and Drainage Engineering – volume: 115 start-page: 1781 issue: 8 year: 2011 end-page: 1800 ident: CR32 article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm publication-title: Remote Sensing of Environment – ident: CR11 – volume: 49 start-page: 577 issue: 3 year: 2013 end-page: 591 ident: CR40 article-title: Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach publication-title: JAWRA Journal of the American Water Resources Association – start-page: 401 year: 1998 end-page: 441 ident: CR44 publication-title: Statistical learning theory – volume: 13 start-page: 811 issue: 1 year: 2019 end-page: 823 ident: CR21 article-title: Implementation of evolutionary computing models for reference evapotranspiration modeling: Short review, assessment and possible future research directions publication-title: Engineering Applications of Computational Fluid Mechanics – volume: 100 start-page: 381 year: 2001 end-page: 427 ident: CR12 article-title: Benchmark priors for Bayesian model averaging publication-title: Journal of Econometrics – ident: CR5 – volume: 112 start-page: 1295 issue: 4 year: 2008 end-page: 1305 ident: CR33 article-title: Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study publication-title: Remote Sensing of Environment – ident: CR26 – volume: 135 start-page: 449 year: 2018 end-page: 462 ident: CR39 article-title: Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: Application of different modeling scenarios publication-title: Theoretical & Applied Climatology – volume: 114 start-page: 1924 year: 2010 end-page: 1939 ident: CR29 article-title: Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data publication-title: Remote Sensing of Environment – volume: 103 start-page: 410 year: 2008 end-page: 423 ident: CR27 article-title: Mixtures of g priors for Bayesian variable selection publication-title: Journal of the American Statistical Association – ident: CR43 – volume: 128 start-page: 351 issue: 2 year: 2013 end-page: 358 ident: CR41 article-title: Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment[J] publication-title: Bioresource Technology – ident: CR47 – volume: 158 start-page: 281 year: 2015 end-page: 294 ident: CR14 article-title: Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models publication-title: Remote Sensing of Environment – volume: 190 start-page: 601 year: 2018 ident: CR37 article-title: Potential use of remote sensing techniques in evapotranspiration estimations at watershed level publication-title: Environmental Monitoring & Assessment – volume: 242 start-page: 55 year: 2017 end-page: 74 ident: CR50 article-title: Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms publication-title: Agricultural and Forest Meteorology – volume: 112 start-page: 901 issue: 3 year: 2008 end-page: 919 ident: CR13 article-title: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites publication-title: Remote Sensing of Environment – volume: 35 start-page: 2091 issue: 11 year: 1996 end-page: 2103 ident: CR15 article-title: Relationships among remotely sensed data, surface energy balance, and area-averaged fluxes over partially vegetated land surfaces publication-title: Journal of Applied Meteorology – volume: 111 start-page: 519 issue: 4 year: 2007 end-page: 536 ident: CR31 article-title: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data publication-title: Remote Sensing of Environment – volume: 14 start-page: 323 issue: 1 year: 2020 end-page: 338 ident: CR30 article-title: Modeling monthly pan evaporation process over the Indian central Himalayas: application of multiple learning artificial intelligence model publication-title: Engineering Applications of Computational Fluid Mechanics – volume: 35 start-page: 233 year: 1999 end-page: 241 ident: CR25 article-title: Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation publication-title: Water Resources Research – volume: 187 start-page: 22 issue: 2 year: 2015 ident: CR1 article-title: Climate change and the water cycle in newly irrigated areas publication-title: Environmental Monitoring & Assessment – volume: 30 start-page: 2861 issue: 16 year: 2016 end-page: 2879 ident: CR52 article-title: MULTI-model ensemble prediction of terrestrial evapotranspiration across north China using Bayesian model averaging publication-title: Hydrological Processes – volume: 25 start-page: 147 issue: 2 year: 2000 end-page: 157 ident: CR36 article-title: S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance publication-title: Physics & Chemistry of the Earth Part B Hydrology Oceans & Atmosphere – ident: CR3 – volume: 467 start-page: 951 issue: 7318 year: 2010 end-page: 954 ident: CR23 article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply publication-title: Nature – ident: CR17 – volume: 133 start-page: 1155 issue: 5 year: 2005 end-page: 1174 ident: CR35 article-title: Using Bayesian Model Averaging to Calibrate Forecast Ensembles publication-title: Monthly Weather Review – volume: 6 start-page: 2001 issue: 10 year: 2009 end-page: 2013 ident: CR22 article-title: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model publication-title: Biogeosciences – volume: 30 start-page: 187 issue: 2 year: 2003 end-page: 205 ident: CR10 article-title: How does ecosystem water balance affect net primary productivity of woody ecosystems? publication-title: Functional Plant Biology – volume: 100 start-page: 81 year: 1972 end-page: 92 ident: CR34 article-title: On the assessment of surface heat flux and evaporationusing large-scale parameters publication-title: Monthly Weather Review – volume: 6 start-page: 85 year: 2002 end-page: 99 ident: CR42 article-title: The surface energy balance system (SEBS) for stimation of turbulent fluxes publication-title: Hydrology and Earth System Sciences – volume: 18 start-page: 1426 issue: 11 year: 2013 end-page: 1436 ident: CR28 article-title: Application of Bayesian model averaging approach to multimodel ensemble hydrologic forecasting publication-title: Journal of Hydrologic Engineering – volume: 212 start-page: 198 issue: 1 year: 1998 end-page: 212 ident: CR4 article-title: A remote sensing surface energy balance algorithm for land (SEBAL) – 1 Formulation publication-title: Journal of Hydrology – volume: 14 start-page: 382 issue: 4 year: 1999 end-page: 401 ident: CR20 article-title: Bayesian model averaging: a tutorial publication-title: Statistical Science – volume: 87 start-page: 731 issue: 4 year: 2000 end-page: 747 ident: CR16 article-title: Calibration and empirical Bayes variable selection publication-title: Biometrika – ident: CR24 – volume: 14 start-page: 323 issue: 1 year: 2020 ident: 8934_CR30 publication-title: Engineering Applications of Computational Fluid Mechanics doi: 10.1080/19942060.2020.1715845 – ident: 8934_CR45 doi: 10.1029/2011RG000373 – volume: 133 start-page: 380 issue: 4 year: 2007 ident: 8934_CR2 publication-title: Journal of Irrigation and Drainage Engineering doi: 10.1061/(ASCE)0733-9437(2007)133:4(380) – volume: 467 start-page: 951 issue: 7318 year: 2010 ident: 8934_CR23 publication-title: Nature doi: 10.1038/nature09396 – volume: 49 start-page: 577 issue: 3 year: 2013 ident: 8934_CR40 publication-title: JAWRA Journal of the American Water Resources Association doi: 10.1111/jawr.12057 – volume: 190 start-page: 601 year: 2018 ident: 8934_CR37 publication-title: Environmental Monitoring & Assessment doi: 10.1007/s10661-018-6955-1 – volume: 6 start-page: 85 year: 2002 ident: 8934_CR42 publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-6-85-2002 – start-page: 401 volume-title: Statistical learning theory year: 1998 ident: 8934_CR44 – ident: 8934_CR43 doi: 10.3390/atmos10040188 – volume: 14 start-page: 382 issue: 4 year: 1999 ident: 8934_CR20 publication-title: Statistical Science doi: 10.1214/ss/1009212519 – volume: 187 start-page: 22 issue: 2 year: 2015 ident: 8934_CR1 publication-title: Environmental Monitoring & Assessment doi: 10.1007/s10661-014-4260-1 – volume: 37 start-page: 583 issue: 3 year: 2015 ident: 8934_CR19 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2014.2345390 – volume: 114 start-page: 1924 year: 2010 ident: 8934_CR29 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2010.04.001 – ident: 8934_CR11 doi: 10.5089/9781451873498.001 – volume: 13 start-page: 811 issue: 1 year: 2019 ident: 8934_CR21 publication-title: Engineering Applications of Computational Fluid Mechanics doi: 10.1080/19942060.2019.1645045 – volume: 528 start-page: 537 year: 2015 ident: 8934_CR7 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2015.06.059 – volume: 111 start-page: 519 issue: 4 year: 2007 ident: 8934_CR31 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.04.015 – volume: 112 start-page: 901 issue: 3 year: 2008 ident: 8934_CR13 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.06.025 – ident: 8934_CR3 – volume: 212 start-page: 198 issue: 1 year: 1998 ident: 8934_CR4 publication-title: Journal of Hydrology doi: 10.1016/S0022-1694(98)00253-4 – volume: 135 start-page: 449 year: 2018 ident: 8934_CR39 publication-title: Theoretical & Applied Climatology doi: 10.1007/s00704-018-2390-z – volume: 87 start-page: 1381 issue: 10 year: 2006 ident: 8934_CR9 publication-title: Bulletin of the American Meteorological Society doi: 10.1175/BAMS-87-10-1381 – volume: 25 start-page: 147 issue: 2 year: 2000 ident: 8934_CR36 publication-title: Physics & Chemistry of the Earth Part B Hydrology Oceans & Atmosphere doi: 10.1016/S1464-1909(99)00128-8 – volume: 164 start-page: 112 year: 2012 ident: 8934_CR48 publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2012.05.011 – ident: 8934_CR17 – ident: 8934_CR47 doi: 10.1371/journal.pone.0097295 – volume: 115 start-page: 1781 issue: 8 year: 2011 ident: 8934_CR32 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.02.019 – volume: 30 start-page: 2861 issue: 16 year: 2016 ident: 8934_CR52 publication-title: Hydrological Processes doi: 10.1002/hyp.10832 – volume: 100 start-page: 381 year: 2001 ident: 8934_CR12 publication-title: Journal of Econometrics doi: 10.1016/S0304-4076(00)00076-2 – volume: 87 start-page: 731 issue: 4 year: 2000 ident: 8934_CR16 publication-title: Biometrika doi: 10.1093/biomet/87.4.731 – volume: 18 start-page: 1426 issue: 11 year: 2013 ident: 8934_CR28 publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)HE.1943-5584.0000493 – volume: 158 start-page: 281 year: 2015 ident: 8934_CR14 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2014.11.003 – volume: 35 start-page: 2091 issue: 11 year: 1996 ident: 8934_CR15 publication-title: Journal of Applied Meteorology doi: 10.1175/1520-0450(1996)035<2091:RARSDS>2.0.CO;2 – volume: 103 start-page: 410 year: 2008 ident: 8934_CR27 publication-title: Journal of the American Statistical Association doi: 10.1198/016214507000001337 – ident: 8934_CR26 doi: 10.1029/2007WR006562 – volume: 6 start-page: 2001 issue: 10 year: 2009 ident: 8934_CR22 publication-title: Biogeosciences doi: 10.5194/bg-6-2001-2009 – volume: 208 start-page: 140 year: 2018 ident: 8934_CR18 publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2018.06.018 – volume: 35 start-page: 233 year: 1999 ident: 8934_CR25 publication-title: Water Resources Research doi: 10.1029/1998WR900018 – volume: 49 start-page: 1409 issue: 5 year: 2006 ident: 8934_CR8 publication-title: Transactions of the ASABE doi: 10.13031/2013.22056 – volume: 133 start-page: 1155 issue: 5 year: 2005 ident: 8934_CR35 publication-title: Monthly Weather Review doi: 10.1175/MWR2906.1 – volume: 119 start-page: 4521 year: 2014 ident: 8934_CR49 publication-title: Journal of Geophysical Research: Atmospheres doi: 10.1002/2013JD020864 – volume: 30 start-page: 187 issue: 2 year: 2003 ident: 8934_CR10 publication-title: Functional Plant Biology doi: 10.1071/FP02084 – volume: 100 start-page: 81 year: 1972 ident: 8934_CR34 publication-title: Monthly Weather Review doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 – volume: 112 start-page: 1295 issue: 4 year: 2008 ident: 8934_CR33 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.02.038 – ident: 8934_CR5 doi: 10.1023/A:1010933404324 – ident: 8934_CR24 doi: 10.1016/j.compag.2019.105041 – volume: 92 start-page: 117 year: 1997 ident: 8934_CR6 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1997.10473608 – volume: 13 start-page: 878 issue: 1 year: 2019 ident: 8934_CR38 publication-title: Engineering Applications of Computational Fluid Mechanics doi: 10.1080/19942060.2019.1647879 – volume: 26 start-page: 2147 issue: 8 year: 2012 ident: 8934_CR51 publication-title: Water Resources Management doi: 10.1007/s11269-012-0007-3 – volume: 186 start-page: 919 issue: 2 year: 2014 ident: 8934_CR46 publication-title: Environmental Monitoring and Assessment doi: 10.1007/s10661-013-3424-8 – volume: 128 start-page: 351 issue: 2 year: 2013 ident: 8934_CR41 publication-title: Bioresource Technology – volume: 242 start-page: 55 year: 2017 ident: 8934_CR50 publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2017.04.011 – reference: 33755827 - Environ Monit Assess. 2021 Mar 23;193(4):207 |
SSID | ssj0009749 |
Score | 2.4848816 |
Snippet | Evapotranspiration (ET) is one of the most important components of global hydrologic cycle and has significant impacts on energy exchange and climate change.... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 156 |
SubjectTerms | Algorithms Arid regions Arid zones Atmospheric Protection/Air Quality Control/Air Pollution Bayes Theorem Bayesian analysis Bayesian theory Climate change Climate models Earth and Environmental Science Ecology Ecotoxicology Energy balance Energy balance models Energy transfer Environment Environmental Management Environmental Monitoring Environmental science Evapotranspiration Evapotranspiration estimates Evapotranspiration models Hydrologic cycle Hydrological cycle Hydrology In situ measurement Landsat Landsat satellites Learning algorithms Machine Learning Mathematical models Monitoring/Environmental Analysis Probability theory Remote sensing Satellite data Semi arid areas Semiarid zones Support Vector Machine Support vector machines Surface energy Surface energy balance Surface properties Uncertainty |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-KpaAPUs-vqC0r-GYXkuxX8mjLiQjtUw98C8l-HKImYu6E---d3SR3V64V-rybZclvJvPb7MxvAC6cldzEylFnXUm5MJqWGFhpamSZOacqFnos_fwlbyb89k7c9UVh7ZDtPlxJhi_1WrEbxhLqUwpiDLKc4pnno8Czu0_kmqRXK6ld1ZFer-gtmcz7Upm_r_FnONrgmBv3oyHsXH-G3Z4vkqsO4D34YOsRfBoHrenFCHbW9ARHcDhela3hQ73ftvvwMEZP9ty0nhL7Wj43s6Bpft_BT6oF0c3c1-ZOyfdyYX1hJQk9ckiJph4aGZGu13RL_J9b8hRyMC3pm05MSfk4bV5w5Kk9gMn1-PePG9q3WaCai3RGlUbAMusyZhOTuDi2zujcGJdwoY0UXEvDXa4rw0RSpRwhFDIzCU-Ur6JV7BC26qa2x0BszgzXTPLKGG7SFOm7UDEuH2s81tgqgmR424XuNch9K4zHYqWe7BEqEKEiIFQkEVwun3nuFDjenX02gFj03tgWvr82MlnFsgjOl8PoR_5ypKxtMw9zJFKdPObvzEF6mecKSXQER52BLLfEmBSCCRbBt8FiVhv4935P_m_6KWynwXp9EtwZbM1e5vYLsqJZ9TU4wRvU2QSN priority: 102 providerName: Springer Nature |
Title | Estimating evapotranspiration by coupling Bayesian model averaging methods with machine learning algorithms |
URI | https://link.springer.com/article/10.1007/s10661-021-08934-1 https://www.ncbi.nlm.nih.gov/pubmed/33655353 https://www.proquest.com/docview/2495192738 https://www.proquest.com/docview/2496244904 https://www.proquest.com/docview/2551997115 |
Volume | 193 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0fdEH0Wo1WssKvuliNvuVPMm1pBbFIuLB-RSS_TjFNjlNTuh_7-xm76IU7yWBZBKGnZnML7s780PopbOSm1Q54qyrCRdGkxoSK8mMrHPnVMMCx9LHC3k-5-8XYhEn3Pq4rXLzTQwfatNpP0f-xnMkAxpRLH-7-kk8a5RfXY0UGrfRvm9d5r1aLdTUdFeN8Nf39pZMFrFoJpbOQWYifoNCCimbE_pvYrqBNm-slIYEdHYf3YvIEc9GUz9At2x7gO7-1U_wAB2WU9kaiMa47R-iHyVEssem7RLb3_WqG0JP8--j-XFzjXW39rW5S3xSX1tfWIkDRw6uwdUDkREeuaZ77Gdu8VXYg2lxJJ1Y4vpyCaM1fLvqH6H5Wfnl9JxEmgWiucgGojQYLLcuZ5Ya6tLUOqMLYxzlQhspuJaGu0I3hgnaZBxMKGRuKKfKV9Eqdoj22q61TxC2BTNcM8kbY7jJMoDvQqXw-lTDb41tEkQ3Y1zp2IPcU2FcVlP3ZG-XCuxSBbtUNEGvts-sxg4cO6WPNqarYjT21eQ7CXqxvQ1x5BdH6tZ26yAjAeoUKd8hA_CyKBSA6AQ9Ht1iqxJjUggmWIJeb_xkUuD_-j7dre8zdCcLPuo3vR2hveHX2j4HFDQ0x8HV4Zif0mO0P3v39UMJ55Py4tNnuDrPZn8AK2UJtA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOCAqFQAEjwQkskviR5IAQlK229HFqpd5C4seCaJOFZEH7p_iNjJ1kA6rYW8-ZWKPMw5_jmfkAXlgjuQ4TS62xBeVCK1rgxkpjLYvU2qRknmPp6FhOT_mnM3G2Ab-HXhhXVjnkRJ-oda3cP_I3jiMZ0UjC0nfz79SxRrnb1YFCo3OLA7P8hUe25u3-R7Tvyzjem5zsTmnPKkAVF3FLE4X6pcamzEQ6smForFaZ1jbiQmkpuJKa20yVmomojDlqLGSqIx4lrmk0YbjuNbjOGYam60zfHUtKEJtnwyxxyWTWN-n0rXq4E1JXEBEiROA0-ncjvIRuL93M-g1v7w7c7pEqed-51l3YMNUW3PprfuEWbE_GNjkU7fNEcw--TTBzOCxczYj5Wczr1s9Q_9q5GymXRNUL1ws8Ix-KpXGNnMRz8pACQ8sTJ5GO27oh7k8xufA1n4b0JBczUpzP0Drtl4vmPpxeiQG2YbOqK_MQiMmY5opJXmrNdRzjcUEkIS4fKjxGmTKAaPjGuepnnjvqjfN8nNbs7JKjXXJvlzwK4NXqnXk38WOt9M5guryP_iYffTWA56vHGLfuMqaoTL3wMhKhVRbyNTIIZ7MsQdAewIPOLVYqMSaFYIIF8Hrwk1GB_-v7aL2-z-DG9OToMD_cPz54DDdj76-u4G4HNtsfC_MEEVhbPvVuT-DzVcfZHxYyQp8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4ICgUAgWMBCeImsSv5IAQtLtqKVQcqNRbSPxYEG2ykCxo_xq_jrGTbEAVe-s5E2uUefhzPDMfwDNrBNORtKE1tggZ1yoscGMNEy2K1FpZUs-x9OFYHJywd6f8dAN-D70wrqxyyIk-UetauX_ku44jGdGIpOmu7csiPu5PX8-_h45Byt20DnQanYscmeUvPL41rw730dbPk2Q6-bR3EPYMA6FiPGlDqVDX1NiUmljHNoqM1SrT2saMKy04U0Izm6lSUx6XCUPtuUh1zGLpGkglxXWvwFVJZepiLN0by0sQp2fDXHFBRdY37PRte7grhq44IkK4wML4303xAtK9cEvrN7_pLbjZo1bypnOz27Bhqi248dcswy3Ynowtcyja54zmDnybYBZxuLiaEfOzmNetn6f-tXM9Ui6JqheuL3hG3hZL45o6iefnIQWGmSdRIh3PdUPcX2Ny7us_DekJL2akOJuhddov581dOLkUA2zDZlVX5j4Qk1HNFBWs1JrpJMGjA5cRLh8pPFKZMoB4-Ma56uefOxqOs3yc3OzskqNdcm-XPA7gxeqdeTf9Y630zmC6vM8ETT76bQBPV48xht3FTFGZeuFlBMKsLGJrZBDaZplEAB_Avc4tVipRKjinnAbwcvCTUYH_6_tgvb5P4BpGWP7-8PjoIVxPvLu62rsd2Gx_LMwjBGNt-dh7PYHPlx1mfwAelkbV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+evapotranspiration+by+coupling+Bayesian+model+averaging+methods+with+machine+learning+algorithms&rft.jtitle=Environmental+monitoring+and+assessment&rft.au=Yang%2C+Yong&rft.au=Sun%2C+Huaiwei&rft.au=Xue%2C+Jie&rft.au=Liu%2C+Yi&rft.date=2021-03-01&rft.eissn=1573-2959&rft.volume=193&rft.issue=3&rft.spage=156&rft_id=info:doi/10.1007%2Fs10661-021-08934-1&rft_id=info%3Apmid%2F33655353&rft.externalDocID=33655353 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6369&client=summon |