PGE2 inhibits chondrocyte differentiation through PKA and PKC signaling

Prostaglandins are ubiquitous metabolites of arachidonic acid, and cyclooxygenase inhibitors prevent their production and secretion. Animals with loss of cyclooxygenase-2 function have reduced reparative bone formation, but the role of prostaglandins during endochondral bone formation is not defined...

Full description

Saved in:
Bibliographic Details
Published inExperimental cell research Vol. 300; no. 1; pp. 159 - 169
Main Authors Li, Tian-Fang, Zuscik, Michael J., Ionescu, Andreia M., Zhang, Xinping, Rosier, Randy N., Schwarz, Edward M., Drissi, Hicham, O'Keefe, Regis J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.10.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Prostaglandins are ubiquitous metabolites of arachidonic acid, and cyclooxygenase inhibitors prevent their production and secretion. Animals with loss of cyclooxygenase-2 function have reduced reparative bone formation, but the role of prostaglandins during endochondral bone formation is not defined. The role of PGE2 as a regulator of chondrocyte differentiation in chick growth plate chondrocytes (GPCs) was examined. While PGE2, PGD2, PGF2α, and PGJ2 all inhibited colX expression, approximately 80% at 10 −6 M, PGE2 was the most potent activator of cAMP response element (CRE)-mediated transcription. PGE2 dose-dependently inhibited the expression of the differentiation-related genes, colX, VEGF, MMP-13, and alkaline phosphatase gene, and enzyme activity with significant effects at concentrations as low as 10 −10 M. PGE2 induced cyclic AMP response element binding protein (CREB) phosphorylation and increased c-Fos protein levels by 5 min, and activated transcription at CRE-Luc, AP-1-Luc, and c-Fos promoter constructs. The protein kinase A (PKA) inhibitor, H-89, completely blocked PGE2-mediated induction of CRE-Luc and c-Fos promoter-Luc promoters, and partially inhibited induction of AP-1-Luc, while the protein kinase C (PKC) inhibitor Go-6976 partially inhibited all three promoters, demonstrating substantial cross-talk between these signaling pathways. PGE2 inhibition of colX gene expression was dependent upon both PKA and PKC signaling. These observations demonstrate potent prostaglandin regulatory effects on chondrocyte maturation and show a role for both PKA and PKC signaling in PGE2 regulatory events.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0014-4827
1090-2422
DOI:10.1016/j.yexcr.2004.06.019