Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles
Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp. MM11, and their application in chromium remediation have been investigated. Spherical-shaped nanoiron was synthesized by treating the exponentially growing culture of Chlorococcum sp. with 0.1 M iron chloride solution for...
Saved in:
Published in | Journal of applied phycology Vol. 27; no. 5; pp. 1861 - 1869 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.10.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0921-8971 1573-5176 |
DOI | 10.1007/s10811-014-0492-2 |
Cover
Loading…
Abstract | Green synthesis of iron nanoparticles using a soil microalga,
Chlorococcum
sp. MM11, and their application in chromium remediation have been investigated. Spherical-shaped nanoiron was synthesized by treating the exponentially growing culture of
Chlorococcum
sp. with 0.1 M iron chloride solution for 48 h and incubating it under shaking in the dark. The appearance of a yellowish brown colour indicated the biotransformation of bulk iron into nanoiron. Morphological characteristics of nanoparticles with transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the presence of spherical-shaped nanoiron ranging in size from 20 to 50 nm. TEM imaging also revealed the localization of nanoiron on the microalgal cell surface, inside as well as outside the cell. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the involvement of carbonyl and amine bonds from polysaccharides and glycoproteins present in the algal cell wall in the bioreduction as well as capping of nanoiron. Phyco-synthesized iron nanoparticles were tested for their efficiency in reducing Cr(VI), a toxic environmental pollutant. The results showed that nanoiron reduced 92 % of 4 mg L
−1
Cr(VI) to Cr(III) instantaneously, while bulk iron reduced only 25 %. Thus, iron nanoparticles with high reactivity, greater stability and environmentally benign and economically viable properties can be synthesized using phyco-nanofactories like
Chlorococcum
sp. MM11. |
---|---|
AbstractList | Green synthesis of iron nanoparticles using a soil microalga,
Chlorococcum
sp. MM11, and their application in chromium remediation have been investigated. Spherical-shaped nanoiron was synthesized by treating the exponentially growing culture of
Chlorococcum
sp. with 0.1 M iron chloride solution for 48 h and incubating it under shaking in the dark. The appearance of a yellowish brown colour indicated the biotransformation of bulk iron into nanoiron. Morphological characteristics of nanoparticles with transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the presence of spherical-shaped nanoiron ranging in size from 20 to 50 nm. TEM imaging also revealed the localization of nanoiron on the microalgal cell surface, inside as well as outside the cell. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the involvement of carbonyl and amine bonds from polysaccharides and glycoproteins present in the algal cell wall in the bioreduction as well as capping of nanoiron. Phyco-synthesized iron nanoparticles were tested for their efficiency in reducing Cr(VI), a toxic environmental pollutant. The results showed that nanoiron reduced 92 % of 4 mg L
−1
Cr(VI) to Cr(III) instantaneously, while bulk iron reduced only 25 %. Thus, iron nanoparticles with high reactivity, greater stability and environmentally benign and economically viable properties can be synthesized using phyco-nanofactories like
Chlorococcum
sp. MM11. Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp. MM11, and their application in chromium remediation have been investigated. Spherical-shaped nanoiron was synthesized by treating the exponentially growing culture of Chlorococcum sp. with 0.1 M iron chloride solution for 48 h and incubating it under shaking in the dark. The appearance of a yellowish brown colour indicated the biotransformation of bulk iron into nanoiron. Morphological characteristics of nanoparticles with transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the presence of spherical-shaped nanoiron ranging in size from 20 to 50 nm. TEM imaging also revealed the localization of nanoiron on the microalgal cell surface, inside as well as outside the cell. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the involvement of carbonyl and amine bonds from polysaccharides and glycoproteins present in the algal cell wall in the bioreduction as well as capping of nanoiron. Phyco-synthesized iron nanoparticles were tested for their efficiency in reducing Cr(VI), a toxic environmental pollutant. The results showed that nanoiron reduced 92 % of 4 mg L⁻¹ Cr(VI) to Cr(III) instantaneously, while bulk iron reduced only 25 %. Thus, iron nanoparticles with high reactivity, greater stability and environmentally benign and economically viable properties can be synthesized using phyco-nanofactories like Chlorococcum sp. MM11. Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp. MM11, and their application in chromium remediation have been investigated. Spherical-shaped nanoiron was synthesized by treating the exponentially growing culture of Chlorococcum sp. with 0.1 M iron chloride solution for 48 h and incubating it under shaking in the dark. The appearance of a yellowish brown colour indicated the biotransformation of bulk iron into nanoiron. Morphological characteristics of nanoparticles with transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the presence of spherical-shaped nanoiron ranging in size from 20 to 50 nm. TEM imaging also revealed the localization of nanoiron on the microalgal cell surface, inside as well as outside the cell. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the involvement of carbonyl and amine bonds from polysaccharides and glycoproteins present in the algal cell wall in the bioreduction as well as capping of nanoiron. Phyco-synthesized iron nanoparticles were tested for their efficiency in reducing Cr(VI), a toxic environmental pollutant. The results showed that nanoiron reduced 92 % of 4 mg L super(-1) Cr(VI) to Cr(III) instantaneously, while bulk iron reduced only 25 %. Thus, iron nanoparticles with high reactivity, greater stability and environmentally benign and economically viable properties can be synthesized using phyco-nanofactories like Chlorococcum sp. MM11. Issue Title: 5th Congress of the International Society for Applied Phycology Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp. MM11, and their application in chromium remediation have been investigated. Spherical-shaped nanoiron was synthesized by treating the exponentially growing culture of Chlorococcum sp. with 0.1 M iron chloride solution for 48 h and incubating it under shaking in the dark. The appearance of a yellowish brown colour indicated the biotransformation of bulk iron into nanoiron. Morphological characteristics of nanoparticles with transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the presence of spherical-shaped nanoiron ranging in size from 20 to 50 nm. TEM imaging also revealed the localization of nanoiron on the microalgal cell surface, inside as well as outside the cell. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the involvement of carbonyl and amine bonds from polysaccharides and glycoproteins present in the algal cell wall in the bioreduction as well as capping of nanoiron. Phyco-synthesized iron nanoparticles were tested for their efficiency in reducing Cr(VI), a toxic environmental pollutant. The results showed that nanoiron reduced 92 % of 4 mg L^sup -1^ Cr(VI) to Cr(III) instantaneously, while bulk iron reduced only 25 %. Thus, iron nanoparticles with high reactivity, greater stability and environmentally benign and economically viable properties can be synthesized using phyco-nanofactories like Chlorococcum sp. MM11. |
Author | Subramaniyam, Vidhyasri Chen, Zuliang Naidu, Ravi Megharaj, Mallavarapu Subashchandrabose, Suresh Ramraj Thavamani, Palanisami |
Author_xml | – sequence: 1 givenname: Vidhyasri surname: Subramaniyam fullname: Subramaniyam, Vidhyasri email: subvy008@mymail.unisa.edu.au organization: Centre for Environmental Risk Assessment and Remediation, University of South Australia, CRC for Contamination Assessment and Remediation of the Environment – sequence: 2 givenname: Suresh Ramraj surname: Subashchandrabose fullname: Subashchandrabose, Suresh Ramraj organization: Centre for Environmental Risk Assessment and Remediation, University of South Australia, CRC for Contamination Assessment and Remediation of the Environment – sequence: 3 givenname: Palanisami surname: Thavamani fullname: Thavamani, Palanisami organization: Centre for Environmental Risk Assessment and Remediation, University of South Australia, CRC for Contamination Assessment and Remediation of the Environment – sequence: 4 givenname: Mallavarapu surname: Megharaj fullname: Megharaj, Mallavarapu organization: Centre for Environmental Risk Assessment and Remediation, University of South Australia, CRC for Contamination Assessment and Remediation of the Environment – sequence: 5 givenname: Zuliang surname: Chen fullname: Chen, Zuliang organization: Centre for Environmental Risk Assessment and Remediation, University of South Australia, CRC for Contamination Assessment and Remediation of the Environment – sequence: 6 givenname: Ravi surname: Naidu fullname: Naidu, Ravi organization: Centre for Environmental Risk Assessment and Remediation, University of South Australia, CRC for Contamination Assessment and Remediation of the Environment |
BookMark | eNqNkc1OWzEQRq0qSE2gD9CdpW66MXhsxz9LFJW2EhEbWLCyjLGbi27si31TKTsegifkSeooLFCkIlazmHNGM_PN0CTlFBD6CvQUKFVnFagGIBQEocIwwj6hKcwVJ3NQcoKm1DAg2ij4jGa1PlBKjQY9RbeLVZ9L9tn7zRrX4RQvlwAvT88Op_w39HhYbX0myaUcnR9z2eKYCx5XAddtaqV2FeeIu5IT3lGDK2Pn-1BP0FF0fQ1fXusxurn4cb34RS6vfv5enF8SL-ZsJNLc88BN1DFQA14x6dSdVqp1aWTiXkWteYiexiiDkd5wFkEKIcAB43zOj9H3_dyh5MdNqKNdd9WHvncp5E21oIRkxmjJP4AyBu0tcjf12wH6kDcltUMaBVJpZrRolNpTvuRaS4jWd6Mbu5zG4rreArW7dOw-HdvSsbt0LGsmHJhD6daubN912N6pjU1_Qnmz03-lf66Nouw |
CitedBy_id | crossref_primary_10_1016_j_envres_2022_113140 crossref_primary_10_1016_j_ijbiomac_2023_127017 crossref_primary_10_1007_s42535_022_00399_y crossref_primary_10_2174_1389201024666230609102243 crossref_primary_10_1016_j_molstruc_2024_138714 crossref_primary_10_1515_gps_2023_0008 crossref_primary_10_1016_j_algal_2024_103782 crossref_primary_10_1016_j_bcab_2019_101354 crossref_primary_10_1016_j_biotechadv_2022_107914 crossref_primary_10_1039_C6GC02346K crossref_primary_10_2174_2666145417666230714124542 crossref_primary_10_1016_j_micres_2022_127111 crossref_primary_10_3390_ma16020780 crossref_primary_10_5004_dwt_2021_27053 crossref_primary_10_1016_j_jece_2022_107940 crossref_primary_10_1016_j_matpr_2021_03_584 crossref_primary_10_1016_j_gexplo_2023_107283 crossref_primary_10_3389_fenvs_2024_1397850 crossref_primary_10_3390_su17052012 crossref_primary_10_1016_j_rser_2020_110649 crossref_primary_10_3390_agronomy12081788 crossref_primary_10_1016_j_chemosphere_2020_127509 crossref_primary_10_1016_j_mimet_2019_105656 crossref_primary_10_1016_j_chemosphere_2022_136271 crossref_primary_10_1088_1361_6528_acd45a crossref_primary_10_1002_cjce_23854 crossref_primary_10_1016_j_envpol_2018_02_036 crossref_primary_10_1016_j_scitotenv_2024_176989 crossref_primary_10_1166_sam_2024_4699 crossref_primary_10_1016_j_jwpe_2021_102080 crossref_primary_10_1515_gps_2016_0008 crossref_primary_10_1007_s11356_021_16846_3 crossref_primary_10_1007_s42247_024_00715_z crossref_primary_10_1016_j_jhazmat_2021_126625 crossref_primary_10_1016_j_nanoso_2024_101247 crossref_primary_10_1016_j_micpath_2024_106842 crossref_primary_10_3390_en18030523 crossref_primary_10_1016_j_biombioe_2024_107278 crossref_primary_10_1049_iet_nbt_2020_0055 crossref_primary_10_1016_j_jcis_2019_10_108 crossref_primary_10_1016_j_eti_2022_102336 crossref_primary_10_1016_j_jenvman_2024_122738 crossref_primary_10_1016_j_mset_2020_09_006 crossref_primary_10_1016_j_algal_2021_102373 crossref_primary_10_1016_j_biortech_2016_03_154 crossref_primary_10_1016_j_enzmictec_2016_10_015 crossref_primary_10_1016_j_biteb_2025_102089 crossref_primary_10_1007_s11051_016_3378_1 crossref_primary_10_1016_j_bcab_2023_102723 crossref_primary_10_1016_j_chemosphere_2022_133571 crossref_primary_10_1016_j_cscee_2024_100827 crossref_primary_10_1016_j_bcab_2022_102440 crossref_primary_10_1007_s11696_021_01872_9 crossref_primary_10_1007_s13762_022_04684_w crossref_primary_10_1016_j_chemosphere_2020_128306 crossref_primary_10_1016_j_jece_2023_111742 crossref_primary_10_1016_j_chemosphere_2020_128580 crossref_primary_10_1007_s12210_019_00822_8 crossref_primary_10_1002_clen_202200044 crossref_primary_10_1007_s10876_022_02256_z crossref_primary_10_1016_j_biombioe_2023_106707 crossref_primary_10_1007_s40726_023_00290_7 crossref_primary_10_1016_j_tifs_2021_07_026 crossref_primary_10_1007_s00449_017_1801_3 crossref_primary_10_46309_biodicon_2020_764145 crossref_primary_10_1016_j_jhazmat_2021_128033 crossref_primary_10_1016_j_enmm_2019_100279 crossref_primary_10_1016_j_nexres_2024_100058 crossref_primary_10_1002_jobm_202400035 crossref_primary_10_1007_s13399_021_01930_y crossref_primary_10_1039_D4EN00843J crossref_primary_10_1039_D3CC05767D crossref_primary_10_18393_ejss_990605 crossref_primary_10_1016_j_ijbiomac_2023_126318 crossref_primary_10_1016_j_algal_2024_103573 crossref_primary_10_1007_s13204_021_01860_1 crossref_primary_10_7717_peerj_17589 crossref_primary_10_3390_ijms241914731 crossref_primary_10_1007_s12668_019_00644_w crossref_primary_10_1016_j_msec_2019_01_049 crossref_primary_10_3390_nano6110209 crossref_primary_10_1080_24701556_2020_1862229 crossref_primary_10_1016_j_hybadv_2023_100097 crossref_primary_10_1016_j_envres_2021_112202 crossref_primary_10_3390_agriculture13030668 crossref_primary_10_1016_j_algal_2022_102924 crossref_primary_10_1039_C6RA15322D crossref_primary_10_1049_iet_nbt_2016_0201 crossref_primary_10_1016_j_bcab_2023_102986 crossref_primary_10_1007_s12668_020_00805_2 crossref_primary_10_3389_fcimb_2023_1224778 crossref_primary_10_1002_jobm_202100555 crossref_primary_10_1080_1040841X_2019_1593101 crossref_primary_10_1080_00318884_2020_1851010 crossref_primary_10_1007_s10311_023_01682_3 |
Cites_doi | 10.1016/j.cej.2011.05.103 10.1007/s10811-008-9343-3 10.1016/j.matlet.2010.12.056 10.1007/s11051-007-9275-x 10.1016/j.biortech.2013.02.012 10.1023/A:1025520116015 10.1016/j.apcatb.2011.02.011 10.1007/s12030-009-9030-8 10.1016/j.biortech.2011.09.118 10.1079/9781780642239.0053 10.1016/j.jhazmat.2006.11.053 10.1016/0143-1471(86)90041-3 10.1016/j.saa.2012.10.015 10.1016/j.chembiol.2004.08.022 10.1007/s10103-012-1106-3 10.1016/j.matlet.2012.04.009 10.1016/j.biortech.2010.12.040 10.1016/j.colsurfb.2009.01.012 10.1039/B921203P 10.1039/C2RA22402J 10.1021/la103190n 10.1002/bit.260330705 10.1007/s13204-013-0233-x 10.1007/s10811-012-9851-z 10.1016/j.nano.2009.07.002 10.1039/b909148c 10.1007/s10811-010-9645-0 10.1042/BA20100196 10.4172/2324-8777.1000121 10.1016/j.jcis.2004.03.003 10.1016/j.chemosphere.2007.02.062 10.1016/j.saa.2013.06.045 10.1016/j.colsurfb.2007.01.010 10.1016/j.watres.2007.02.037 10.1016/j.jconhyd.2010.02.006 10.1016/j.colsurfb.2011.10.014 10.1016/j.colsurfb.2012.03.023 10.1007/s10811-014-0355-x 10.1007/s10811-014-0311-9 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media Dordrecht 2015 |
Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2015 |
DBID | AAYXX CITATION 3V. 7TN 7X2 8FE 8FH 8FK AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO F1W GNUQQ H95 HCIFZ L.G LK8 M0K M7N M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7TV C1K 7S9 L.6 |
DOI | 10.1007/s10811-014-0492-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Oceanic Abstracts Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences Agriculture Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Pollution Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Oceanic Abstracts Natural Science Collection ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Pollution Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Ecology Botany |
EISSN | 1573-5176 |
EndPage | 1869 |
ExternalDocumentID | 3818904011 10_1007_s10811_014_0492_2 |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1OL 1SB 2.D 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3SX 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M4Y M7P MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XJT XOL YLTOR YQT Z45 Z5O Z7U Z7V Z7W Z7Z Z81 Z83 Z86 Z8O Z8P Z8Q Z8T Z8U Z8W ZMTXR ZOVNA ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 3V. 7TN 8FK ABRTQ AZQEC DWQXO F1W GNUQQ H95 L.G M7N PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7TV C1K 7S9 L.6 |
ID | FETCH-LOGICAL-c452t-69d3e39f8fe091c726a7b877c450f24d7f883efc0ff6e96c932f164441a123353 |
IEDL.DBID | BENPR |
ISSN | 0921-8971 |
IngestDate | Thu Aug 07 15:03:35 EDT 2025 Fri Jul 11 01:06:56 EDT 2025 Fri Jul 25 10:52:27 EDT 2025 Tue Jul 01 04:25:47 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 Fri Feb 21 02:39:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Phyco-nanotechnology Chromium reduction Iron nanoparticle Chlorophyceae sp |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-69d3e39f8fe091c726a7b877c450f24d7f883efc0ff6e96c932f164441a123353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1716782984 |
PQPubID | 2034534 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1746299863 proquest_miscellaneous_1722181865 proquest_journals_1716782984 crossref_citationtrail_10_1007_s10811_014_0492_2 crossref_primary_10_1007_s10811_014_0492_2 springer_journals_10_1007_s10811_014_0492_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Journal of applied phycology |
PublicationTitleAbbrev | J Appl Phycol |
PublicationYear | 2015 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Kebede, Singh, Rai, Giri, Rai, Watal, Gholap (CR13) 2013; 28 Megharaj, Venkateswarlu, Rao (CR19) 1986; 42 Nadagouda, Castle, Murdock, Hussain, Varma (CR22) 2010; 12 Han, Wong, Wong, Tam (CR9) 2007; 146 Brayner, Coradin, Beaunier, Grenèche, Djediat, Yéprémian, Couté, Fiévet (CR4) 2012; 93 Lee, Han, Choi, Hur (CR16) 2007; 68 Chakraborty, Banerjee, Lahiri, Panda, Ghosh, Pal (CR5) 2009; 21 Begum, Mondal, Basu, Laskar, Mandal (CR3) 2009; 71 Wang, Qian, Yang, Zhang, Naman, Xu (CR38) 2010; 114 Zhang (CR40) 2003; 5 Sinha, Khare (CR35) 2011; 102 Abboud, Saffaj, Chagraoui, El Bouari, Brouzi, Tanane, Ihssane (CR1) 2014; 4 Kadu, Sathe, Ingle, Chikate, Patil, Rode (CR12) 2011; 104 Shankar, Rai, Ahmad, Sastry (CR32) 2004; 275 Mazumdar, Haloi (CR18) 2011; 1 Sweeney, Mao, Gao, Burt, Belcher, Georgiou, Iverson (CR36) 2004; 11 Juibari, Abbasalizadeh, Jouzani, Noruzi (CR11) 2011; 65 Ghashghaei, Emtiazi (CR7) 2013; 2 Shahwan, Sirriah, Nairat, Boyac, Eroglu, Scott, Hallam (CR30) 2011; 172 Prasad, Kambala, Naidu (CR27) 2013; 25 Zhao, Xu (CR41) 2007; 41 Eroglu, Chen, Bradshaw, Agarwal, Zou, Stewart, Duan, Lamb, Smith, Raston, Iyer (CR6) 2013; 3 Korbekandi, Iravani (CR14) 2013 Kuyucak, Volesky (CR15) 1989; 33 Nethaji, Sivasamy, Mandal (CR23) 2013; 134 Parial, Patra, Roychoudhury, Dasgupta, Pal (CR26) 2012; 24 Mohan Kumar, Mandal, Kumar, Reddy, Sreedhar (CR20) 2013; 102 Singaravelu, Arockiamary, Kumar, Govindaraju (CR34) 2007; 57 Satapathy, Shukla, Sandeep, Singh, Sharma (CR29) 2014 Wei, Luo, Li, Yang, Liang, Xu, Kong, Liu (CR39) 2012; 103 Shakibaie, Forootanfar, Mollazadeh‐Moghaddam, Bagherzadeh, Nafissi‐Varcheh, Shahverdi, Faramarzi (CR31) 2010; 57 Sharon, Pandey, Oza, Vishwanathan (CR33) 2012; 3 Ahmad, Senapati, Syed, Moeez, Kumar (CR2) 2012; 79 Gopinath, Ali, Priyadarshini, Priyadharsshini, Thajuddin, Velusamy (CR8) 2012; 96 Parial, Pal (CR25) 2014 Mohanpuria, Rana, Yadav (CR21) 2008; 10 Njagi, Huang, Stafford, Genuino, Galindo, Collins, Hoag, Suib (CR24) 2011; 27 Raghunandan, Basavaraja, Mahesh, Balaji, Manjunath, Venkataraman (CR28) 2009; 5 Madhavi, Prasad, Reddy, Reddy, Madhavi (CR17) 2013; 116 Hoag, Collins, Holcomb, Hoag, Nadagouda, Varma (CR10) 2009; 19 Thakkar, Mhatre, Parikh (CR37) 2010; 6 KN Thakkar (492_CR37) 2010; 6 N Chakraborty (492_CR5) 2009; 21 H Mazumdar (492_CR18) 2011; 1 D Parial (492_CR26) 2012; 24 S Ghashghaei (492_CR7) 2013; 2 Q Wang (492_CR38) 2010; 114 MN Nadagouda (492_CR22) 2010; 12 TN Prasad (492_CR27) 2013; 25 S Nethaji (492_CR23) 2013; 134 M Sharon (492_CR33) 2012; 3 X Han (492_CR9) 2007; 146 M Megharaj (492_CR19) 1986; 42 T Shahwan (492_CR30) 2011; 172 M Shakibaie (492_CR31) 2010; 57 S Satapathy (492_CR29) 2014 JH Lee (492_CR16) 2007; 68 E Eroglu (492_CR6) 2013; 3 D Zhao (492_CR41) 2007; 41 A Ahmad (492_CR2) 2012; 79 SS Shankar (492_CR32) 2004; 275 D Parial (492_CR25) 2014 H Korbekandi (492_CR14) 2013 GE Hoag (492_CR10) 2009; 19 R Brayner (492_CR4) 2012; 93 X Wei (492_CR39) 2012; 103 NA Begum (492_CR3) 2009; 71 D Raghunandan (492_CR28) 2009; 5 W Zhang (492_CR40) 2003; 5 MM Juibari (492_CR11) 2011; 65 RY Sweeney (492_CR36) 2004; 11 P Mohanpuria (492_CR21) 2008; 10 V Madhavi (492_CR17) 2013; 116 K Mohan Kumar (492_CR20) 2013; 102 A Kebede (492_CR13) 2013; 28 V Gopinath (492_CR8) 2012; 96 N Kuyucak (492_CR15) 1989; 33 Y Abboud (492_CR1) 2014; 4 G Singaravelu (492_CR34) 2007; 57 BS Kadu (492_CR12) 2011; 104 A Sinha (492_CR35) 2011; 102 EC Njagi (492_CR24) 2011; 27 |
References_xml | – volume: 172 start-page: 258 year: 2011 end-page: 266 ident: CR30 article-title: Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes publication-title: Chem Eng J doi: 10.1016/j.cej.2011.05.103 – volume: 21 start-page: 145 year: 2009 end-page: 152 ident: CR5 article-title: Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation—a novel phenomenon publication-title: J Appl Phycol doi: 10.1007/s10811-008-9343-3 – volume: 65 start-page: 1014 year: 2011 end-page: 1017 ident: CR11 article-title: Intensified biosynthesis of silver nanoparticles using a native extremophilic strain publication-title: Mater Lett doi: 10.1016/j.matlet.2010.12.056 – volume: 10 start-page: 507 year: 2008 end-page: 517 ident: CR21 article-title: Biosynthesis of nanoparticles: technological concepts and future applications publication-title: J Nanoparticle Res doi: 10.1007/s11051-007-9275-x – volume: 134 start-page: 94 year: 2013 end-page: 100 ident: CR23 article-title: Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr(VI) publication-title: Bioresour Technol doi: 10.1016/j.biortech.2013.02.012 – volume: 5 start-page: 323 year: 2003 end-page: 332 ident: CR40 article-title: Nanoscale iron particles for environmental remediation: an overview publication-title: J Nanoparticle Res doi: 10.1023/A:1025520116015 – volume: 104 start-page: 407 year: 2011 end-page: 414 ident: CR12 article-title: Efficiency and recycling capability of montmorillonite supported Fe–Ni bimetallic nanocomposites towards hexavalent chromium remediation publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2011.02.011 – volume: 5 start-page: 34 year: 2009 end-page: 41 ident: CR28 article-title: Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava ( ) leaf extract publication-title: Nanobiotechnology doi: 10.1007/s12030-009-9030-8 – volume: 103 start-page: 273 year: 2012 end-page: 278 ident: CR39 article-title: Synthesis of silver nanoparticles by solar irradiation of cell-free extracts and AgNO publication-title: Bioresour Technol doi: 10.1016/j.biortech.2011.09.118 – year: 2013 ident: CR14 publication-title: Biological synthesis of nanoparticles using algae doi: 10.1079/9781780642239.0053 – volume: 146 start-page: 65 year: 2007 end-page: 72 ident: CR9 article-title: Biosorption and bioreduction of Cr(VI) by a microalgal isolate, publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2006.11.053 – volume: 42 start-page: 15 year: 1986 end-page: 22 ident: CR19 article-title: Growth response of four species of soil algae to monocrotophos and quinalphos publication-title: Environ Pollut A doi: 10.1016/0143-1471(86)90041-3 – volume: 102 start-page: 128 year: 2013 end-page: 133 ident: CR20 article-title: Biobased green method to synthesise palladium and iron nanoparticles using aqueous extract publication-title: Spectrochim Acta A doi: 10.1016/j.saa.2012.10.015 – volume: 11 start-page: 1553 year: 2004 end-page: 1559 ident: CR36 article-title: Bacterial biosynthesis of cadmium sulfide nanocrystals publication-title: Chem Biol doi: 10.1016/j.chembiol.2004.08.022 – volume: 28 start-page: 579 year: 2013 end-page: 587 ident: CR13 article-title: Controlled synthesis, characterization, and application of iron oxide nanoparticles for oral delivery of insulin publication-title: Lasers Med Sci doi: 10.1007/s10103-012-1106-3 – volume: 79 start-page: 116 year: 2012 end-page: 118 ident: CR2 article-title: Intracellular synthesis of gold nanoparticles using alga publication-title: Mater Lett doi: 10.1016/j.matlet.2012.04.009 – volume: 102 start-page: 4281 year: 2011 end-page: 4284 ident: CR35 article-title: Mercury bioaccumulation and simultaneous nanoparticle synthesis by sp. cells publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.12.040 – year: 2014 ident: CR29 article-title: Evaluation of the performance of an algal bioreactor for silver nanoparticle production publication-title: J Appl Phycol – volume: 71 start-page: 113 year: 2009 end-page: 118 ident: CR3 article-title: Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts publication-title: Colloid Surf B doi: 10.1016/j.colsurfb.2009.01.012 – volume: 12 start-page: 114 year: 2010 end-page: 122 ident: CR22 article-title: biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols publication-title: Green Chem doi: 10.1039/B921203P – volume: 3 start-page: 1009 year: 2013 end-page: 1012 ident: CR6 article-title: Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications publication-title: RSC Adv doi: 10.1039/C2RA22402J – volume: 27 start-page: 264 year: 2011 end-page: 271 ident: CR24 article-title: Biosynthesis of iron and silver nanoparticles at room temperature using aqueous Sorghum bran extracts publication-title: Langmuir doi: 10.1021/la103190n – volume: 33 start-page: 823 year: 1989 end-page: 831 ident: CR15 article-title: The mechanism of cobalt biosorption publication-title: Biotechnol Bioeng doi: 10.1002/bit.260330705 – volume: 4 start-page: 571 year: 2014 end-page: 576 ident: CR1 article-title: Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract ( ) publication-title: Appl Nanosci doi: 10.1007/s13204-013-0233-x – volume: 25 start-page: 177 year: 2013 end-page: 182 ident: CR27 article-title: Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae and their characterisation publication-title: J Appl Phycol doi: 10.1007/s10811-012-9851-z – volume: 6 start-page: 257 year: 2010 end-page: 262 ident: CR37 article-title: Biological synthesis of metallic nanoparticles publication-title: Nanomed Nanotechnol doi: 10.1016/j.nano.2009.07.002 – volume: 19 start-page: 8671 year: 2009 end-page: 8677 ident: CR10 article-title: Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols publication-title: J Mater Chem doi: 10.1039/b909148c – volume: 1 start-page: 39 year: 2011 end-page: 49 ident: CR18 article-title: A study on biosynthesis of iron nanoparticles by sp publication-title: J Microbiol Biotech Res – volume: 24 start-page: 55 year: 2012 end-page: 60 ident: CR26 article-title: Gold nanorod production by cyanobacteria—a green chemistry approach publication-title: J Appl Phycol doi: 10.1007/s10811-010-9645-0 – volume: 57 start-page: 71 year: 2010 end-page: 75 ident: CR31 article-title: Green synthesis of gold nanoparticles by the marine microalga publication-title: Biotechnol Appl Biochem doi: 10.1042/BA20100196 – volume: 2 start-page: 5 year: 2013 ident: CR7 article-title: Production of hydroxyapatite nanoparticles using tricalcium-phosphate by publication-title: J Nanomater Mol Nanotechnol doi: 10.4172/2324-8777.1000121 – volume: 275 start-page: 496 year: 2004 end-page: 502 ident: CR32 article-title: Rapid synthesis of Au, Ag and bimetallic Au core–Ag shell nanoparticles using Neem ( ) leaf broth publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2004.03.003 – volume: 3 start-page: 2378 year: 2012 end-page: 2382 ident: CR33 article-title: Biosynthesis of highly stable gold nanoparticles using publication-title: Ann Biol Res – volume: 68 start-page: 1898 year: 2007 end-page: 1905 ident: CR16 article-title: Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by sp. HN-41 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.02.062 – volume: 116 start-page: 17 year: 2013 end-page: 25 ident: CR17 article-title: Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium publication-title: Spectrochim Acta A doi: 10.1016/j.saa.2013.06.045 – volume: 57 start-page: 97 year: 2007 end-page: 101 ident: CR34 article-title: A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Greville publication-title: Colloid Surface B doi: 10.1016/j.colsurfb.2007.01.010 – volume: 41 start-page: 2101 year: 2007 end-page: 2108 ident: CR41 article-title: Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles publication-title: Water Res doi: 10.1016/j.watres.2007.02.037 – volume: 114 start-page: 35 year: 2010 end-page: 42 ident: CR38 article-title: Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles publication-title: J Contam Hydrol doi: 10.1016/j.jconhyd.2010.02.006 – volume: 93 start-page: 20 year: 2012 end-page: 23 ident: CR4 article-title: Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using microalgae publication-title: Colloid Surf B doi: 10.1016/j.colsurfb.2011.10.014 – volume: 96 start-page: 69 year: 2012 end-page: 74 ident: CR8 article-title: Biosynthesis of silver nanoparticles from and its antimicrobial activity: a novel biological approach publication-title: Colloid Surf B doi: 10.1016/j.colsurfb.2012.03.023 – year: 2014 ident: CR25 article-title: Biosynthesis of monodisperse gold nanoparticles by green alga and associated biochemical changes publication-title: J Appl Phycol – volume: 134 start-page: 94 year: 2013 ident: 492_CR23 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2013.02.012 – volume: 19 start-page: 8671 year: 2009 ident: 492_CR10 publication-title: J Mater Chem doi: 10.1039/b909148c – volume: 5 start-page: 34 year: 2009 ident: 492_CR28 publication-title: Nanobiotechnology doi: 10.1007/s12030-009-9030-8 – volume: 68 start-page: 1898 year: 2007 ident: 492_CR16 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.02.062 – volume: 57 start-page: 97 year: 2007 ident: 492_CR34 publication-title: Colloid Surface B doi: 10.1016/j.colsurfb.2007.01.010 – volume: 146 start-page: 65 year: 2007 ident: 492_CR9 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2006.11.053 – volume: 275 start-page: 496 year: 2004 ident: 492_CR32 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2004.03.003 – volume: 2 start-page: 5 year: 2013 ident: 492_CR7 publication-title: J Nanomater Mol Nanotechnol doi: 10.4172/2324-8777.1000121 – volume: 42 start-page: 15 year: 1986 ident: 492_CR19 publication-title: Environ Pollut A doi: 10.1016/0143-1471(86)90041-3 – volume: 3 start-page: 1009 year: 2013 ident: 492_CR6 publication-title: RSC Adv doi: 10.1039/C2RA22402J – volume-title: Biological synthesis of nanoparticles using algae year: 2013 ident: 492_CR14 doi: 10.1079/9781780642239.0053 – volume: 1 start-page: 39 year: 2011 ident: 492_CR18 publication-title: J Microbiol Biotech Res – volume: 24 start-page: 55 year: 2012 ident: 492_CR26 publication-title: J Appl Phycol doi: 10.1007/s10811-010-9645-0 – volume: 71 start-page: 113 year: 2009 ident: 492_CR3 publication-title: Colloid Surf B doi: 10.1016/j.colsurfb.2009.01.012 – volume: 4 start-page: 571 year: 2014 ident: 492_CR1 publication-title: Appl Nanosci doi: 10.1007/s13204-013-0233-x – volume: 96 start-page: 69 year: 2012 ident: 492_CR8 publication-title: Colloid Surf B doi: 10.1016/j.colsurfb.2012.03.023 – volume: 33 start-page: 823 year: 1989 ident: 492_CR15 publication-title: Biotechnol Bioeng doi: 10.1002/bit.260330705 – volume: 114 start-page: 35 year: 2010 ident: 492_CR38 publication-title: J Contam Hydrol doi: 10.1016/j.jconhyd.2010.02.006 – volume: 5 start-page: 323 year: 2003 ident: 492_CR40 publication-title: J Nanoparticle Res doi: 10.1023/A:1025520116015 – volume: 6 start-page: 257 year: 2010 ident: 492_CR37 publication-title: Nanomed Nanotechnol doi: 10.1016/j.nano.2009.07.002 – volume: 104 start-page: 407 year: 2011 ident: 492_CR12 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2011.02.011 – year: 2014 ident: 492_CR25 publication-title: J Appl Phycol doi: 10.1007/s10811-014-0355-x – volume: 79 start-page: 116 year: 2012 ident: 492_CR2 publication-title: Mater Lett doi: 10.1016/j.matlet.2012.04.009 – volume: 12 start-page: 114 year: 2010 ident: 492_CR22 publication-title: Green Chem doi: 10.1039/B921203P – volume: 102 start-page: 4281 year: 2011 ident: 492_CR35 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.12.040 – volume: 93 start-page: 20 year: 2012 ident: 492_CR4 publication-title: Colloid Surf B doi: 10.1016/j.colsurfb.2011.10.014 – volume: 10 start-page: 507 year: 2008 ident: 492_CR21 publication-title: J Nanoparticle Res doi: 10.1007/s11051-007-9275-x – volume: 25 start-page: 177 year: 2013 ident: 492_CR27 publication-title: J Appl Phycol doi: 10.1007/s10811-012-9851-z – volume: 41 start-page: 2101 year: 2007 ident: 492_CR41 publication-title: Water Res doi: 10.1016/j.watres.2007.02.037 – volume: 116 start-page: 17 year: 2013 ident: 492_CR17 publication-title: Spectrochim Acta A doi: 10.1016/j.saa.2013.06.045 – volume: 28 start-page: 579 year: 2013 ident: 492_CR13 publication-title: Lasers Med Sci doi: 10.1007/s10103-012-1106-3 – volume: 3 start-page: 2378 year: 2012 ident: 492_CR33 publication-title: Ann Biol Res – volume: 103 start-page: 273 year: 2012 ident: 492_CR39 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2011.09.118 – volume: 27 start-page: 264 year: 2011 ident: 492_CR24 publication-title: Langmuir doi: 10.1021/la103190n – volume: 102 start-page: 128 year: 2013 ident: 492_CR20 publication-title: Spectrochim Acta A doi: 10.1016/j.saa.2012.10.015 – volume: 65 start-page: 1014 year: 2011 ident: 492_CR11 publication-title: Mater Lett doi: 10.1016/j.matlet.2010.12.056 – volume: 21 start-page: 145 year: 2009 ident: 492_CR5 publication-title: J Appl Phycol doi: 10.1007/s10811-008-9343-3 – volume: 172 start-page: 258 year: 2011 ident: 492_CR30 publication-title: Chem Eng J doi: 10.1016/j.cej.2011.05.103 – volume: 57 start-page: 71 year: 2010 ident: 492_CR31 publication-title: Biotechnol Appl Biochem doi: 10.1042/BA20100196 – year: 2014 ident: 492_CR29 publication-title: J Appl Phycol doi: 10.1007/s10811-014-0311-9 – volume: 11 start-page: 1553 year: 2004 ident: 492_CR36 publication-title: Chem Biol doi: 10.1016/j.chembiol.2004.08.022 |
SSID | ssj0009818 |
Score | 2.4953048 |
Snippet | Green synthesis of iron nanoparticles using a soil microalga,
Chlorococcum
sp. MM11, and their application in chromium remediation have been investigated.... Issue Title: 5th Congress of the International Society for Applied Phycology Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp.... Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp. MM11, and their application in chromium remediation have been investigated.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1861 |
SubjectTerms | 5th Congress of the International Society for Applied Phycology Biomedical and Life Sciences Biotransformation Carbonyl compounds cell walls Chlorococcum Chromium color Ecology Fourier transform infrared spectroscopy Fourier transforms Freshwater & Marine Ecology Glycoproteins image analysis Infrared spectroscopy iron Life Sciences Light scattering Microalgae nanoparticles Phycology Plant Physiology Plant Sciences pollutants polysaccharides remediation Saccharides soil toxicity transmission electron microscopy |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC7EB6wHWWdddnRWemFPK710Okmn-zgOigjjyQH3FDqdbnfBTQYzI8zNH-Ev9JdYnYejooKnBFJ5UP2or1JVXwH8lJkWzMqQWhNpGoV5ThUzhqpEWymFQG_MFziPz8TJJDq9iC_aOu6qy3bvQpL1Tv2k2E3WNWA-cUJxivvuWuxdd5zEEz5cMu3K-qceUzygUiVBF8p87RHPjdESYb4Iita25vgzbLUgkQybUd2GFVv0YHN4ed0SZdgebDRNJBc9WD8sEeDhycZRzUC9-AJ_Rn_RDS9xrzPz_6Sa_ibjcRDc395pUpQ39oqgbk1JC12UTb-dBUHsShALkmpR4KH6V5HSEV8CR7zUtMuf24HJ8dH56IS2PRSoiWI-o0LloQ2Vk84iMjAJFzrJZJLgVeZ4lCdOytA6w5wTVgmDcM6hB4UgSaNNC-PwK6wWZWG_AckCbZXMccF6WjPGM8lVlgfomkeGZUz0gXXKTE1LMO77XFylS2pkr_8U9Z96_ae8D78eb5k27BrvCQ-6EUrbhValnu0HQY6SUR9-PF7GJeLjHrqw5dzLcA9kpIjfk4kEWmYpwj4cdKP_5DVvfdTuh6T34BMCrrhJBhzA6ux6br8jqJll-_UkfgDjEuv1 priority: 102 providerName: Springer Nature |
Title | Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles |
URI | https://link.springer.com/article/10.1007/s10811-014-0492-2 https://www.proquest.com/docview/1716782984 https://www.proquest.com/docview/1722181865 https://www.proquest.com/docview/1746299863 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dixMxEB-8q4I-iFYPq2eJ4JMSTbO72eRJ2rP1UHqIWKhPSzabqHBu6m0r9L930s1eVbBPecgsG2aSmd8k8wHwXJZaMCsTak2qaZpUFVXMGKpybaUUAr2xkOA8vxDni_T9MlvGC7cmhlV2OnGnqCtvwh3561DWBa2Zkumb1U8aukaF19XYQuMIeqiCJTpfvcn04uOnfdldubvhY4qPqFT5qHvXbJPn5C6nLARiKE7535ZpDzf_eSHdGZ7ZPbgbESMZtyK-Dzds3Yc7469XsWqG7cOttqPktg83Jx7R3vYBLM--oSfuUd2ZzQ_SrF6R-RzXQTWp_S97SZC7xtNa177tuLMliF4JokHSbGscmu8N8Y6EJDgSqFZdBN1DWMymn8_OaeyiQE2a8TUVqkpsopx0FrGBybnQeSnzHGeZ42mVOykT6wxzTlglDAI6hz4UwiSNVi3JkhM4rn1tHwEpR9oqWeGRDYXNGC9RHmU1Quc8NaxkYgCs42BhYonx0OnistgXRw5ML5DpRWB6wQfw4vqTVVtf4xDxaSeWIh61pthvjAE8u57GQxJePnRt_SbQ8ABlpMgO0aQCbbMUyQBediL_4zf_W9Tjw4t6ArcRY2Vt_N8pHK-vNvYp4ph1OYTeePJ2Mgvjuy8fpsO4eYdwtODj339U8GY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NHQh4QFBAFAYYCV5ABtdxHfsBoW1s6thaIbRJfQuO42xIIy5LC8o_xd_IOR8rING3PeXBjmLdne9-l_sCeKFSI5lTEXVWGCqiLKOaWUt1bJxSUqI3FgqcJ1M5PhEfZ6PZBvzqamFCWmWnE2tFnXkb_pG_DW1d0JppJd7Pv9MwNSpEV7sRGo1YHLrqJ7ps5buDD8jfl5zv7x3vjmk7VYBaMeILKnUWuUjnKndoK23MpYlTFce4ynIusjhXKnK5ZXkunZYWAU6OPgXCBoNavp4SgSp_U0ToyvRgc2dv-unzqs2vqv8oMs2HVOl42MVRm2I9VdewhcQPzSn_2xKu4O0_Edna0O3fgdstQiXbjUjdhQ1X9OHW9ulF26XD9eF6M8Gy6sO1HY_osroHs90z9Pw9qle7_EbK-RsymeA5qCGF_-HOCXLTelqYwjcTfiqCaJkg-iRlVeCj_FoSn5NQdEfCrnmXsXcfTq6Evg-gV_jCPQSSDo3TKkMVERqpMZ4i_9Ns6FIuLEuZHADrKJjYtqV5mKxxnqyaMQeiJ0j0JBA94QN4dfnKvOnnsW7zVseWpL3aZbISxAE8v1zGSxkiLaZwfhn28ACdlByt2yMkYgElowG87lj-x2f-d6hH6w_1DG6MjydHydHB9PAx3ER8N2pyD7egt7hYuieIoRbp01ZwCXy56rvyG59jKEk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NHSB4mKCAKAwwEryAzFwndeyHCe2r2hitJsSkvmWJY29IJS5LC8q_tr9u53ysgETf9pQHXxTrfL77Xe4L4K1ME8GMDKjRYULDIMuoYlpTFSVGSiHQG_MFzqOxODwNP08GkzW4amthfFplqxMrRZ057f-Rb_m2LmjNlAy3bJMWcbI__DT7Sf0EKR9pbcdp1CJybMrf6L4V20f7eNbvOB8efNs7pM2EAarDAZ9TobLABMpKa9Bu6oiLJEplFOEqszzMIitlYKxm1gqjhEawY9G_QAiRoMavJkag-l-P0CtiHVjfPRiffF22_JXV30WmeJ9KFfXbmGpduCerejafBKI45X9bxSXU_Sc6Wxm94UPYaNAq2anF6xGsmbwLD3bOL5uOHaYLd-tplmUX7uw6RJrlY5jsXUwdGkan9eIHKWYfyWiE-6AJyd0vMyV4strRPMldPe2nJIicCSJRUpQ5PorvBXGW-AI84qlmbfbeEzi9Ff4-hU7ucvMMSNpPjJIZqgvfVI3xFGUhzfom5aFmKRM9YC0HY920N_dTNqbxsjGzZ3qMTI8902Peg_c3r8zq3h6riDfbY4mba17ES6HswZubZbygPuqS5MYtPA33MEqKwSqaUCAukCLowYf2yP_4zP829Xz1pl7DPbwj8Zej8fELuI9Qb1CnIW5CZ365MC8RTs3TV43cEji77atyDaVLLH4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chlorococcum+sp.+MM11--a+novel+phyco-nanofactory+for+the+synthesis+of+iron+nanoparticles&rft.jtitle=Journal+of+applied+phycology&rft.au=Subramaniyam%2C+Vidhyasri&rft.au=Subashchandrabose%2C+Suresh+Ramraj&rft.au=Thavamani%2C+Palanisami&rft.au=Megharaj%2C+Mallavarapu&rft.date=2015-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0921-8971&rft.eissn=1573-5176&rft.volume=27&rft.issue=5&rft.spage=1861&rft_id=info:doi/10.1007%2Fs10811-014-0492-2&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3818904011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8971&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8971&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8971&client=summon |