Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles

Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp. MM11, and their application in chromium remediation have been investigated. Spherical-shaped nanoiron was synthesized by treating the exponentially growing culture of Chlorococcum sp. with 0.1 M iron chloride solution for...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied phycology Vol. 27; no. 5; pp. 1861 - 1869
Main Authors Subramaniyam, Vidhyasri, Subashchandrabose, Suresh Ramraj, Thavamani, Palanisami, Megharaj, Mallavarapu, Chen, Zuliang, Naidu, Ravi
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.10.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0921-8971
1573-5176
DOI10.1007/s10811-014-0492-2

Cover

Loading…
Abstract Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp. MM11, and their application in chromium remediation have been investigated. Spherical-shaped nanoiron was synthesized by treating the exponentially growing culture of Chlorococcum sp. with 0.1 M iron chloride solution for 48 h and incubating it under shaking in the dark. The appearance of a yellowish brown colour indicated the biotransformation of bulk iron into nanoiron. Morphological characteristics of nanoparticles with transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the presence of spherical-shaped nanoiron ranging in size from 20 to 50 nm. TEM imaging also revealed the localization of nanoiron on the microalgal cell surface, inside as well as outside the cell. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the involvement of carbonyl and amine bonds from polysaccharides and glycoproteins present in the algal cell wall in the bioreduction as well as capping of nanoiron. Phyco-synthesized iron nanoparticles were tested for their efficiency in reducing Cr(VI), a toxic environmental pollutant. The results showed that nanoiron reduced 92 % of 4 mg L −1 Cr(VI) to Cr(III) instantaneously, while bulk iron reduced only 25 %. Thus, iron nanoparticles with high reactivity, greater stability and environmentally benign and economically viable properties can be synthesized using phyco-nanofactories like Chlorococcum sp. MM11.
AbstractList Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp. MM11, and their application in chromium remediation have been investigated. Spherical-shaped nanoiron was synthesized by treating the exponentially growing culture of Chlorococcum sp. with 0.1 M iron chloride solution for 48 h and incubating it under shaking in the dark. The appearance of a yellowish brown colour indicated the biotransformation of bulk iron into nanoiron. Morphological characteristics of nanoparticles with transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the presence of spherical-shaped nanoiron ranging in size from 20 to 50 nm. TEM imaging also revealed the localization of nanoiron on the microalgal cell surface, inside as well as outside the cell. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the involvement of carbonyl and amine bonds from polysaccharides and glycoproteins present in the algal cell wall in the bioreduction as well as capping of nanoiron. Phyco-synthesized iron nanoparticles were tested for their efficiency in reducing Cr(VI), a toxic environmental pollutant. The results showed that nanoiron reduced 92 % of 4 mg L −1 Cr(VI) to Cr(III) instantaneously, while bulk iron reduced only 25 %. Thus, iron nanoparticles with high reactivity, greater stability and environmentally benign and economically viable properties can be synthesized using phyco-nanofactories like Chlorococcum sp. MM11.
Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp. MM11, and their application in chromium remediation have been investigated. Spherical-shaped nanoiron was synthesized by treating the exponentially growing culture of Chlorococcum sp. with 0.1 M iron chloride solution for 48 h and incubating it under shaking in the dark. The appearance of a yellowish brown colour indicated the biotransformation of bulk iron into nanoiron. Morphological characteristics of nanoparticles with transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the presence of spherical-shaped nanoiron ranging in size from 20 to 50 nm. TEM imaging also revealed the localization of nanoiron on the microalgal cell surface, inside as well as outside the cell. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the involvement of carbonyl and amine bonds from polysaccharides and glycoproteins present in the algal cell wall in the bioreduction as well as capping of nanoiron. Phyco-synthesized iron nanoparticles were tested for their efficiency in reducing Cr(VI), a toxic environmental pollutant. The results showed that nanoiron reduced 92 % of 4 mg L⁻¹ Cr(VI) to Cr(III) instantaneously, while bulk iron reduced only 25 %. Thus, iron nanoparticles with high reactivity, greater stability and environmentally benign and economically viable properties can be synthesized using phyco-nanofactories like Chlorococcum sp. MM11.
Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp. MM11, and their application in chromium remediation have been investigated. Spherical-shaped nanoiron was synthesized by treating the exponentially growing culture of Chlorococcum sp. with 0.1 M iron chloride solution for 48 h and incubating it under shaking in the dark. The appearance of a yellowish brown colour indicated the biotransformation of bulk iron into nanoiron. Morphological characteristics of nanoparticles with transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the presence of spherical-shaped nanoiron ranging in size from 20 to 50 nm. TEM imaging also revealed the localization of nanoiron on the microalgal cell surface, inside as well as outside the cell. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the involvement of carbonyl and amine bonds from polysaccharides and glycoproteins present in the algal cell wall in the bioreduction as well as capping of nanoiron. Phyco-synthesized iron nanoparticles were tested for their efficiency in reducing Cr(VI), a toxic environmental pollutant. The results showed that nanoiron reduced 92 % of 4 mg L super(-1) Cr(VI) to Cr(III) instantaneously, while bulk iron reduced only 25 %. Thus, iron nanoparticles with high reactivity, greater stability and environmentally benign and economically viable properties can be synthesized using phyco-nanofactories like Chlorococcum sp. MM11.
Issue Title: 5th Congress of the International Society for Applied Phycology Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp. MM11, and their application in chromium remediation have been investigated. Spherical-shaped nanoiron was synthesized by treating the exponentially growing culture of Chlorococcum sp. with 0.1 M iron chloride solution for 48 h and incubating it under shaking in the dark. The appearance of a yellowish brown colour indicated the biotransformation of bulk iron into nanoiron. Morphological characteristics of nanoparticles with transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the presence of spherical-shaped nanoiron ranging in size from 20 to 50 nm. TEM imaging also revealed the localization of nanoiron on the microalgal cell surface, inside as well as outside the cell. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the involvement of carbonyl and amine bonds from polysaccharides and glycoproteins present in the algal cell wall in the bioreduction as well as capping of nanoiron. Phyco-synthesized iron nanoparticles were tested for their efficiency in reducing Cr(VI), a toxic environmental pollutant. The results showed that nanoiron reduced 92 % of 4 mg L^sup -1^ Cr(VI) to Cr(III) instantaneously, while bulk iron reduced only 25 %. Thus, iron nanoparticles with high reactivity, greater stability and environmentally benign and economically viable properties can be synthesized using phyco-nanofactories like Chlorococcum sp. MM11.
Author Subramaniyam, Vidhyasri
Chen, Zuliang
Naidu, Ravi
Megharaj, Mallavarapu
Subashchandrabose, Suresh Ramraj
Thavamani, Palanisami
Author_xml – sequence: 1
  givenname: Vidhyasri
  surname: Subramaniyam
  fullname: Subramaniyam, Vidhyasri
  email: subvy008@mymail.unisa.edu.au
  organization: Centre for Environmental Risk Assessment and Remediation, University of South Australia, CRC for Contamination Assessment and Remediation of the Environment
– sequence: 2
  givenname: Suresh Ramraj
  surname: Subashchandrabose
  fullname: Subashchandrabose, Suresh Ramraj
  organization: Centre for Environmental Risk Assessment and Remediation, University of South Australia, CRC for Contamination Assessment and Remediation of the Environment
– sequence: 3
  givenname: Palanisami
  surname: Thavamani
  fullname: Thavamani, Palanisami
  organization: Centre for Environmental Risk Assessment and Remediation, University of South Australia, CRC for Contamination Assessment and Remediation of the Environment
– sequence: 4
  givenname: Mallavarapu
  surname: Megharaj
  fullname: Megharaj, Mallavarapu
  organization: Centre for Environmental Risk Assessment and Remediation, University of South Australia, CRC for Contamination Assessment and Remediation of the Environment
– sequence: 5
  givenname: Zuliang
  surname: Chen
  fullname: Chen, Zuliang
  organization: Centre for Environmental Risk Assessment and Remediation, University of South Australia, CRC for Contamination Assessment and Remediation of the Environment
– sequence: 6
  givenname: Ravi
  surname: Naidu
  fullname: Naidu, Ravi
  organization: Centre for Environmental Risk Assessment and Remediation, University of South Australia, CRC for Contamination Assessment and Remediation of the Environment
BookMark eNqNkc1OWzEQRq0qSE2gD9CdpW66MXhsxz9LFJW2EhEbWLCyjLGbi27si31TKTsegifkSeooLFCkIlazmHNGM_PN0CTlFBD6CvQUKFVnFagGIBQEocIwwj6hKcwVJ3NQcoKm1DAg2ij4jGa1PlBKjQY9RbeLVZ9L9tn7zRrX4RQvlwAvT88Op_w39HhYbX0myaUcnR9z2eKYCx5XAddtaqV2FeeIu5IT3lGDK2Pn-1BP0FF0fQ1fXusxurn4cb34RS6vfv5enF8SL-ZsJNLc88BN1DFQA14x6dSdVqp1aWTiXkWteYiexiiDkd5wFkEKIcAB43zOj9H3_dyh5MdNqKNdd9WHvncp5E21oIRkxmjJP4AyBu0tcjf12wH6kDcltUMaBVJpZrRolNpTvuRaS4jWd6Mbu5zG4rreArW7dOw-HdvSsbt0LGsmHJhD6daubN912N6pjU1_Qnmz03-lf66Nouw
CitedBy_id crossref_primary_10_1016_j_envres_2022_113140
crossref_primary_10_1016_j_ijbiomac_2023_127017
crossref_primary_10_1007_s42535_022_00399_y
crossref_primary_10_2174_1389201024666230609102243
crossref_primary_10_1016_j_molstruc_2024_138714
crossref_primary_10_1515_gps_2023_0008
crossref_primary_10_1016_j_algal_2024_103782
crossref_primary_10_1016_j_bcab_2019_101354
crossref_primary_10_1016_j_biotechadv_2022_107914
crossref_primary_10_1039_C6GC02346K
crossref_primary_10_2174_2666145417666230714124542
crossref_primary_10_1016_j_micres_2022_127111
crossref_primary_10_3390_ma16020780
crossref_primary_10_5004_dwt_2021_27053
crossref_primary_10_1016_j_jece_2022_107940
crossref_primary_10_1016_j_matpr_2021_03_584
crossref_primary_10_1016_j_gexplo_2023_107283
crossref_primary_10_3389_fenvs_2024_1397850
crossref_primary_10_3390_su17052012
crossref_primary_10_1016_j_rser_2020_110649
crossref_primary_10_3390_agronomy12081788
crossref_primary_10_1016_j_chemosphere_2020_127509
crossref_primary_10_1016_j_mimet_2019_105656
crossref_primary_10_1016_j_chemosphere_2022_136271
crossref_primary_10_1088_1361_6528_acd45a
crossref_primary_10_1002_cjce_23854
crossref_primary_10_1016_j_envpol_2018_02_036
crossref_primary_10_1016_j_scitotenv_2024_176989
crossref_primary_10_1166_sam_2024_4699
crossref_primary_10_1016_j_jwpe_2021_102080
crossref_primary_10_1515_gps_2016_0008
crossref_primary_10_1007_s11356_021_16846_3
crossref_primary_10_1007_s42247_024_00715_z
crossref_primary_10_1016_j_jhazmat_2021_126625
crossref_primary_10_1016_j_nanoso_2024_101247
crossref_primary_10_1016_j_micpath_2024_106842
crossref_primary_10_3390_en18030523
crossref_primary_10_1016_j_biombioe_2024_107278
crossref_primary_10_1049_iet_nbt_2020_0055
crossref_primary_10_1016_j_jcis_2019_10_108
crossref_primary_10_1016_j_eti_2022_102336
crossref_primary_10_1016_j_jenvman_2024_122738
crossref_primary_10_1016_j_mset_2020_09_006
crossref_primary_10_1016_j_algal_2021_102373
crossref_primary_10_1016_j_biortech_2016_03_154
crossref_primary_10_1016_j_enzmictec_2016_10_015
crossref_primary_10_1016_j_biteb_2025_102089
crossref_primary_10_1007_s11051_016_3378_1
crossref_primary_10_1016_j_bcab_2023_102723
crossref_primary_10_1016_j_chemosphere_2022_133571
crossref_primary_10_1016_j_cscee_2024_100827
crossref_primary_10_1016_j_bcab_2022_102440
crossref_primary_10_1007_s11696_021_01872_9
crossref_primary_10_1007_s13762_022_04684_w
crossref_primary_10_1016_j_chemosphere_2020_128306
crossref_primary_10_1016_j_jece_2023_111742
crossref_primary_10_1016_j_chemosphere_2020_128580
crossref_primary_10_1007_s12210_019_00822_8
crossref_primary_10_1002_clen_202200044
crossref_primary_10_1007_s10876_022_02256_z
crossref_primary_10_1016_j_biombioe_2023_106707
crossref_primary_10_1007_s40726_023_00290_7
crossref_primary_10_1016_j_tifs_2021_07_026
crossref_primary_10_1007_s00449_017_1801_3
crossref_primary_10_46309_biodicon_2020_764145
crossref_primary_10_1016_j_jhazmat_2021_128033
crossref_primary_10_1016_j_enmm_2019_100279
crossref_primary_10_1016_j_nexres_2024_100058
crossref_primary_10_1002_jobm_202400035
crossref_primary_10_1007_s13399_021_01930_y
crossref_primary_10_1039_D4EN00843J
crossref_primary_10_1039_D3CC05767D
crossref_primary_10_18393_ejss_990605
crossref_primary_10_1016_j_ijbiomac_2023_126318
crossref_primary_10_1016_j_algal_2024_103573
crossref_primary_10_1007_s13204_021_01860_1
crossref_primary_10_7717_peerj_17589
crossref_primary_10_3390_ijms241914731
crossref_primary_10_1007_s12668_019_00644_w
crossref_primary_10_1016_j_msec_2019_01_049
crossref_primary_10_3390_nano6110209
crossref_primary_10_1080_24701556_2020_1862229
crossref_primary_10_1016_j_hybadv_2023_100097
crossref_primary_10_1016_j_envres_2021_112202
crossref_primary_10_3390_agriculture13030668
crossref_primary_10_1016_j_algal_2022_102924
crossref_primary_10_1039_C6RA15322D
crossref_primary_10_1049_iet_nbt_2016_0201
crossref_primary_10_1016_j_bcab_2023_102986
crossref_primary_10_1007_s12668_020_00805_2
crossref_primary_10_3389_fcimb_2023_1224778
crossref_primary_10_1002_jobm_202100555
crossref_primary_10_1080_1040841X_2019_1593101
crossref_primary_10_1080_00318884_2020_1851010
crossref_primary_10_1007_s10311_023_01682_3
Cites_doi 10.1016/j.cej.2011.05.103
10.1007/s10811-008-9343-3
10.1016/j.matlet.2010.12.056
10.1007/s11051-007-9275-x
10.1016/j.biortech.2013.02.012
10.1023/A:1025520116015
10.1016/j.apcatb.2011.02.011
10.1007/s12030-009-9030-8
10.1016/j.biortech.2011.09.118
10.1079/9781780642239.0053
10.1016/j.jhazmat.2006.11.053
10.1016/0143-1471(86)90041-3
10.1016/j.saa.2012.10.015
10.1016/j.chembiol.2004.08.022
10.1007/s10103-012-1106-3
10.1016/j.matlet.2012.04.009
10.1016/j.biortech.2010.12.040
10.1016/j.colsurfb.2009.01.012
10.1039/B921203P
10.1039/C2RA22402J
10.1021/la103190n
10.1002/bit.260330705
10.1007/s13204-013-0233-x
10.1007/s10811-012-9851-z
10.1016/j.nano.2009.07.002
10.1039/b909148c
10.1007/s10811-010-9645-0
10.1042/BA20100196
10.4172/2324-8777.1000121
10.1016/j.jcis.2004.03.003
10.1016/j.chemosphere.2007.02.062
10.1016/j.saa.2013.06.045
10.1016/j.colsurfb.2007.01.010
10.1016/j.watres.2007.02.037
10.1016/j.jconhyd.2010.02.006
10.1016/j.colsurfb.2011.10.014
10.1016/j.colsurfb.2012.03.023
10.1007/s10811-014-0355-x
10.1007/s10811-014-0311-9
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2015
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2015
DBID AAYXX
CITATION
3V.
7TN
7X2
8FE
8FH
8FK
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
F1W
GNUQQ
H95
HCIFZ
L.G
LK8
M0K
M7N
M7P
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7TV
C1K
7S9
L.6
DOI 10.1007/s10811-014-0492-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
Agriculture Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Pollution Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
Biological Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Pollution Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Ecology
Botany
EISSN 1573-5176
EndPage 1869
ExternalDocumentID 3818904011
10_1007_s10811_014_0492_2
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1OL
1SB
2.D
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7X2
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0K
M4Y
M7P
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XJT
XOL
YLTOR
YQT
Z45
Z5O
Z7U
Z7V
Z7W
Z7Z
Z81
Z83
Z86
Z8O
Z8P
Z8Q
Z8T
Z8U
Z8W
ZMTXR
ZOVNA
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
3V.
7TN
8FK
ABRTQ
AZQEC
DWQXO
F1W
GNUQQ
H95
L.G
M7N
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7TV
C1K
7S9
L.6
ID FETCH-LOGICAL-c452t-69d3e39f8fe091c726a7b877c450f24d7f883efc0ff6e96c932f164441a123353
IEDL.DBID BENPR
ISSN 0921-8971
IngestDate Thu Aug 07 15:03:35 EDT 2025
Fri Jul 11 01:06:56 EDT 2025
Fri Jul 25 10:52:27 EDT 2025
Tue Jul 01 04:25:47 EDT 2025
Thu Apr 24 23:06:43 EDT 2025
Fri Feb 21 02:39:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Phyco-nanotechnology
Chromium reduction
Iron nanoparticle
Chlorophyceae
sp
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-69d3e39f8fe091c726a7b877c450f24d7f883efc0ff6e96c932f164441a123353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1716782984
PQPubID 2034534
PageCount 9
ParticipantIDs proquest_miscellaneous_1746299863
proquest_miscellaneous_1722181865
proquest_journals_1716782984
crossref_citationtrail_10_1007_s10811_014_0492_2
crossref_primary_10_1007_s10811_014_0492_2
springer_journals_10_1007_s10811_014_0492_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of applied phycology
PublicationTitleAbbrev J Appl Phycol
PublicationYear 2015
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Kebede, Singh, Rai, Giri, Rai, Watal, Gholap (CR13) 2013; 28
Megharaj, Venkateswarlu, Rao (CR19) 1986; 42
Nadagouda, Castle, Murdock, Hussain, Varma (CR22) 2010; 12
Han, Wong, Wong, Tam (CR9) 2007; 146
Brayner, Coradin, Beaunier, Grenèche, Djediat, Yéprémian, Couté, Fiévet (CR4) 2012; 93
Lee, Han, Choi, Hur (CR16) 2007; 68
Chakraborty, Banerjee, Lahiri, Panda, Ghosh, Pal (CR5) 2009; 21
Begum, Mondal, Basu, Laskar, Mandal (CR3) 2009; 71
Wang, Qian, Yang, Zhang, Naman, Xu (CR38) 2010; 114
Zhang (CR40) 2003; 5
Sinha, Khare (CR35) 2011; 102
Abboud, Saffaj, Chagraoui, El Bouari, Brouzi, Tanane, Ihssane (CR1) 2014; 4
Kadu, Sathe, Ingle, Chikate, Patil, Rode (CR12) 2011; 104
Shankar, Rai, Ahmad, Sastry (CR32) 2004; 275
Mazumdar, Haloi (CR18) 2011; 1
Sweeney, Mao, Gao, Burt, Belcher, Georgiou, Iverson (CR36) 2004; 11
Juibari, Abbasalizadeh, Jouzani, Noruzi (CR11) 2011; 65
Ghashghaei, Emtiazi (CR7) 2013; 2
Shahwan, Sirriah, Nairat, Boyac, Eroglu, Scott, Hallam (CR30) 2011; 172
Prasad, Kambala, Naidu (CR27) 2013; 25
Zhao, Xu (CR41) 2007; 41
Eroglu, Chen, Bradshaw, Agarwal, Zou, Stewart, Duan, Lamb, Smith, Raston, Iyer (CR6) 2013; 3
Korbekandi, Iravani (CR14) 2013
Kuyucak, Volesky (CR15) 1989; 33
Nethaji, Sivasamy, Mandal (CR23) 2013; 134
Parial, Patra, Roychoudhury, Dasgupta, Pal (CR26) 2012; 24
Mohan Kumar, Mandal, Kumar, Reddy, Sreedhar (CR20) 2013; 102
Singaravelu, Arockiamary, Kumar, Govindaraju (CR34) 2007; 57
Satapathy, Shukla, Sandeep, Singh, Sharma (CR29) 2014
Wei, Luo, Li, Yang, Liang, Xu, Kong, Liu (CR39) 2012; 103
Shakibaie, Forootanfar, Mollazadeh‐Moghaddam, Bagherzadeh, Nafissi‐Varcheh, Shahverdi, Faramarzi (CR31) 2010; 57
Sharon, Pandey, Oza, Vishwanathan (CR33) 2012; 3
Ahmad, Senapati, Syed, Moeez, Kumar (CR2) 2012; 79
Gopinath, Ali, Priyadarshini, Priyadharsshini, Thajuddin, Velusamy (CR8) 2012; 96
Parial, Pal (CR25) 2014
Mohanpuria, Rana, Yadav (CR21) 2008; 10
Njagi, Huang, Stafford, Genuino, Galindo, Collins, Hoag, Suib (CR24) 2011; 27
Raghunandan, Basavaraja, Mahesh, Balaji, Manjunath, Venkataraman (CR28) 2009; 5
Madhavi, Prasad, Reddy, Reddy, Madhavi (CR17) 2013; 116
Hoag, Collins, Holcomb, Hoag, Nadagouda, Varma (CR10) 2009; 19
Thakkar, Mhatre, Parikh (CR37) 2010; 6
KN Thakkar (492_CR37) 2010; 6
N Chakraborty (492_CR5) 2009; 21
H Mazumdar (492_CR18) 2011; 1
D Parial (492_CR26) 2012; 24
S Ghashghaei (492_CR7) 2013; 2
Q Wang (492_CR38) 2010; 114
MN Nadagouda (492_CR22) 2010; 12
TN Prasad (492_CR27) 2013; 25
S Nethaji (492_CR23) 2013; 134
M Sharon (492_CR33) 2012; 3
X Han (492_CR9) 2007; 146
M Megharaj (492_CR19) 1986; 42
T Shahwan (492_CR30) 2011; 172
M Shakibaie (492_CR31) 2010; 57
S Satapathy (492_CR29) 2014
JH Lee (492_CR16) 2007; 68
E Eroglu (492_CR6) 2013; 3
D Zhao (492_CR41) 2007; 41
A Ahmad (492_CR2) 2012; 79
SS Shankar (492_CR32) 2004; 275
D Parial (492_CR25) 2014
H Korbekandi (492_CR14) 2013
GE Hoag (492_CR10) 2009; 19
R Brayner (492_CR4) 2012; 93
X Wei (492_CR39) 2012; 103
NA Begum (492_CR3) 2009; 71
D Raghunandan (492_CR28) 2009; 5
W Zhang (492_CR40) 2003; 5
MM Juibari (492_CR11) 2011; 65
RY Sweeney (492_CR36) 2004; 11
P Mohanpuria (492_CR21) 2008; 10
V Madhavi (492_CR17) 2013; 116
K Mohan Kumar (492_CR20) 2013; 102
A Kebede (492_CR13) 2013; 28
V Gopinath (492_CR8) 2012; 96
N Kuyucak (492_CR15) 1989; 33
Y Abboud (492_CR1) 2014; 4
G Singaravelu (492_CR34) 2007; 57
BS Kadu (492_CR12) 2011; 104
A Sinha (492_CR35) 2011; 102
EC Njagi (492_CR24) 2011; 27
References_xml – volume: 172
  start-page: 258
  year: 2011
  end-page: 266
  ident: CR30
  article-title: Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2011.05.103
– volume: 21
  start-page: 145
  year: 2009
  end-page: 152
  ident: CR5
  article-title: Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation—a novel phenomenon
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-008-9343-3
– volume: 65
  start-page: 1014
  year: 2011
  end-page: 1017
  ident: CR11
  article-title: Intensified biosynthesis of silver nanoparticles using a native extremophilic strain
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2010.12.056
– volume: 10
  start-page: 507
  year: 2008
  end-page: 517
  ident: CR21
  article-title: Biosynthesis of nanoparticles: technological concepts and future applications
  publication-title: J Nanoparticle Res
  doi: 10.1007/s11051-007-9275-x
– volume: 134
  start-page: 94
  year: 2013
  end-page: 100
  ident: CR23
  article-title: Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr(VI)
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2013.02.012
– volume: 5
  start-page: 323
  year: 2003
  end-page: 332
  ident: CR40
  article-title: Nanoscale iron particles for environmental remediation: an overview
  publication-title: J Nanoparticle Res
  doi: 10.1023/A:1025520116015
– volume: 104
  start-page: 407
  year: 2011
  end-page: 414
  ident: CR12
  article-title: Efficiency and recycling capability of montmorillonite supported Fe–Ni bimetallic nanocomposites towards hexavalent chromium remediation
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2011.02.011
– volume: 5
  start-page: 34
  year: 2009
  end-page: 41
  ident: CR28
  article-title: Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava ( ) leaf extract
  publication-title: Nanobiotechnology
  doi: 10.1007/s12030-009-9030-8
– volume: 103
  start-page: 273
  year: 2012
  end-page: 278
  ident: CR39
  article-title: Synthesis of silver nanoparticles by solar irradiation of cell-free extracts and AgNO
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2011.09.118
– year: 2013
  ident: CR14
  publication-title: Biological synthesis of nanoparticles using algae
  doi: 10.1079/9781780642239.0053
– volume: 146
  start-page: 65
  year: 2007
  end-page: 72
  ident: CR9
  article-title: Biosorption and bioreduction of Cr(VI) by a microalgal isolate,
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2006.11.053
– volume: 42
  start-page: 15
  year: 1986
  end-page: 22
  ident: CR19
  article-title: Growth response of four species of soil algae to monocrotophos and quinalphos
  publication-title: Environ Pollut A
  doi: 10.1016/0143-1471(86)90041-3
– volume: 102
  start-page: 128
  year: 2013
  end-page: 133
  ident: CR20
  article-title: Biobased green method to synthesise palladium and iron nanoparticles using aqueous extract
  publication-title: Spectrochim Acta A
  doi: 10.1016/j.saa.2012.10.015
– volume: 11
  start-page: 1553
  year: 2004
  end-page: 1559
  ident: CR36
  article-title: Bacterial biosynthesis of cadmium sulfide nanocrystals
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2004.08.022
– volume: 28
  start-page: 579
  year: 2013
  end-page: 587
  ident: CR13
  article-title: Controlled synthesis, characterization, and application of iron oxide nanoparticles for oral delivery of insulin
  publication-title: Lasers Med Sci
  doi: 10.1007/s10103-012-1106-3
– volume: 79
  start-page: 116
  year: 2012
  end-page: 118
  ident: CR2
  article-title: Intracellular synthesis of gold nanoparticles using alga
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2012.04.009
– volume: 102
  start-page: 4281
  year: 2011
  end-page: 4284
  ident: CR35
  article-title: Mercury bioaccumulation and simultaneous nanoparticle synthesis by sp. cells
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2010.12.040
– year: 2014
  ident: CR29
  article-title: Evaluation of the performance of an algal bioreactor for silver nanoparticle production
  publication-title: J Appl Phycol
– volume: 71
  start-page: 113
  year: 2009
  end-page: 118
  ident: CR3
  article-title: Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts
  publication-title: Colloid Surf B
  doi: 10.1016/j.colsurfb.2009.01.012
– volume: 12
  start-page: 114
  year: 2010
  end-page: 122
  ident: CR22
  article-title: biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols
  publication-title: Green Chem
  doi: 10.1039/B921203P
– volume: 3
  start-page: 1009
  year: 2013
  end-page: 1012
  ident: CR6
  article-title: Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications
  publication-title: RSC Adv
  doi: 10.1039/C2RA22402J
– volume: 27
  start-page: 264
  year: 2011
  end-page: 271
  ident: CR24
  article-title: Biosynthesis of iron and silver nanoparticles at room temperature using aqueous Sorghum bran extracts
  publication-title: Langmuir
  doi: 10.1021/la103190n
– volume: 33
  start-page: 823
  year: 1989
  end-page: 831
  ident: CR15
  article-title: The mechanism of cobalt biosorption
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.260330705
– volume: 4
  start-page: 571
  year: 2014
  end-page: 576
  ident: CR1
  article-title: Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract ( )
  publication-title: Appl Nanosci
  doi: 10.1007/s13204-013-0233-x
– volume: 25
  start-page: 177
  year: 2013
  end-page: 182
  ident: CR27
  article-title: Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae and their characterisation
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-012-9851-z
– volume: 6
  start-page: 257
  year: 2010
  end-page: 262
  ident: CR37
  article-title: Biological synthesis of metallic nanoparticles
  publication-title: Nanomed Nanotechnol
  doi: 10.1016/j.nano.2009.07.002
– volume: 19
  start-page: 8671
  year: 2009
  end-page: 8677
  ident: CR10
  article-title: Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols
  publication-title: J Mater Chem
  doi: 10.1039/b909148c
– volume: 1
  start-page: 39
  year: 2011
  end-page: 49
  ident: CR18
  article-title: A study on biosynthesis of iron nanoparticles by sp
  publication-title: J Microbiol Biotech Res
– volume: 24
  start-page: 55
  year: 2012
  end-page: 60
  ident: CR26
  article-title: Gold nanorod production by cyanobacteria—a green chemistry approach
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-010-9645-0
– volume: 57
  start-page: 71
  year: 2010
  end-page: 75
  ident: CR31
  article-title: Green synthesis of gold nanoparticles by the marine microalga
  publication-title: Biotechnol Appl Biochem
  doi: 10.1042/BA20100196
– volume: 2
  start-page: 5
  year: 2013
  ident: CR7
  article-title: Production of hydroxyapatite nanoparticles using tricalcium-phosphate by
  publication-title: J Nanomater Mol Nanotechnol
  doi: 10.4172/2324-8777.1000121
– volume: 275
  start-page: 496
  year: 2004
  end-page: 502
  ident: CR32
  article-title: Rapid synthesis of Au, Ag and bimetallic Au core–Ag shell nanoparticles using Neem ( ) leaf broth
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2004.03.003
– volume: 3
  start-page: 2378
  year: 2012
  end-page: 2382
  ident: CR33
  article-title: Biosynthesis of highly stable gold nanoparticles using
  publication-title: Ann Biol Res
– volume: 68
  start-page: 1898
  year: 2007
  end-page: 1905
  ident: CR16
  article-title: Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by sp. HN-41
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.02.062
– volume: 116
  start-page: 17
  year: 2013
  end-page: 25
  ident: CR17
  article-title: Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium
  publication-title: Spectrochim Acta A
  doi: 10.1016/j.saa.2013.06.045
– volume: 57
  start-page: 97
  year: 2007
  end-page: 101
  ident: CR34
  article-title: A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Greville
  publication-title: Colloid Surface B
  doi: 10.1016/j.colsurfb.2007.01.010
– volume: 41
  start-page: 2101
  year: 2007
  end-page: 2108
  ident: CR41
  article-title: Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles
  publication-title: Water Res
  doi: 10.1016/j.watres.2007.02.037
– volume: 114
  start-page: 35
  year: 2010
  end-page: 42
  ident: CR38
  article-title: Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles
  publication-title: J Contam Hydrol
  doi: 10.1016/j.jconhyd.2010.02.006
– volume: 93
  start-page: 20
  year: 2012
  end-page: 23
  ident: CR4
  article-title: Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using microalgae
  publication-title: Colloid Surf B
  doi: 10.1016/j.colsurfb.2011.10.014
– volume: 96
  start-page: 69
  year: 2012
  end-page: 74
  ident: CR8
  article-title: Biosynthesis of silver nanoparticles from and its antimicrobial activity: a novel biological approach
  publication-title: Colloid Surf B
  doi: 10.1016/j.colsurfb.2012.03.023
– year: 2014
  ident: CR25
  article-title: Biosynthesis of monodisperse gold nanoparticles by green alga and associated biochemical changes
  publication-title: J Appl Phycol
– volume: 134
  start-page: 94
  year: 2013
  ident: 492_CR23
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2013.02.012
– volume: 19
  start-page: 8671
  year: 2009
  ident: 492_CR10
  publication-title: J Mater Chem
  doi: 10.1039/b909148c
– volume: 5
  start-page: 34
  year: 2009
  ident: 492_CR28
  publication-title: Nanobiotechnology
  doi: 10.1007/s12030-009-9030-8
– volume: 68
  start-page: 1898
  year: 2007
  ident: 492_CR16
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.02.062
– volume: 57
  start-page: 97
  year: 2007
  ident: 492_CR34
  publication-title: Colloid Surface B
  doi: 10.1016/j.colsurfb.2007.01.010
– volume: 146
  start-page: 65
  year: 2007
  ident: 492_CR9
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2006.11.053
– volume: 275
  start-page: 496
  year: 2004
  ident: 492_CR32
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2004.03.003
– volume: 2
  start-page: 5
  year: 2013
  ident: 492_CR7
  publication-title: J Nanomater Mol Nanotechnol
  doi: 10.4172/2324-8777.1000121
– volume: 42
  start-page: 15
  year: 1986
  ident: 492_CR19
  publication-title: Environ Pollut A
  doi: 10.1016/0143-1471(86)90041-3
– volume: 3
  start-page: 1009
  year: 2013
  ident: 492_CR6
  publication-title: RSC Adv
  doi: 10.1039/C2RA22402J
– volume-title: Biological synthesis of nanoparticles using algae
  year: 2013
  ident: 492_CR14
  doi: 10.1079/9781780642239.0053
– volume: 1
  start-page: 39
  year: 2011
  ident: 492_CR18
  publication-title: J Microbiol Biotech Res
– volume: 24
  start-page: 55
  year: 2012
  ident: 492_CR26
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-010-9645-0
– volume: 71
  start-page: 113
  year: 2009
  ident: 492_CR3
  publication-title: Colloid Surf B
  doi: 10.1016/j.colsurfb.2009.01.012
– volume: 4
  start-page: 571
  year: 2014
  ident: 492_CR1
  publication-title: Appl Nanosci
  doi: 10.1007/s13204-013-0233-x
– volume: 96
  start-page: 69
  year: 2012
  ident: 492_CR8
  publication-title: Colloid Surf B
  doi: 10.1016/j.colsurfb.2012.03.023
– volume: 33
  start-page: 823
  year: 1989
  ident: 492_CR15
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.260330705
– volume: 114
  start-page: 35
  year: 2010
  ident: 492_CR38
  publication-title: J Contam Hydrol
  doi: 10.1016/j.jconhyd.2010.02.006
– volume: 5
  start-page: 323
  year: 2003
  ident: 492_CR40
  publication-title: J Nanoparticle Res
  doi: 10.1023/A:1025520116015
– volume: 6
  start-page: 257
  year: 2010
  ident: 492_CR37
  publication-title: Nanomed Nanotechnol
  doi: 10.1016/j.nano.2009.07.002
– volume: 104
  start-page: 407
  year: 2011
  ident: 492_CR12
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2011.02.011
– year: 2014
  ident: 492_CR25
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-014-0355-x
– volume: 79
  start-page: 116
  year: 2012
  ident: 492_CR2
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2012.04.009
– volume: 12
  start-page: 114
  year: 2010
  ident: 492_CR22
  publication-title: Green Chem
  doi: 10.1039/B921203P
– volume: 102
  start-page: 4281
  year: 2011
  ident: 492_CR35
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2010.12.040
– volume: 93
  start-page: 20
  year: 2012
  ident: 492_CR4
  publication-title: Colloid Surf B
  doi: 10.1016/j.colsurfb.2011.10.014
– volume: 10
  start-page: 507
  year: 2008
  ident: 492_CR21
  publication-title: J Nanoparticle Res
  doi: 10.1007/s11051-007-9275-x
– volume: 25
  start-page: 177
  year: 2013
  ident: 492_CR27
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-012-9851-z
– volume: 41
  start-page: 2101
  year: 2007
  ident: 492_CR41
  publication-title: Water Res
  doi: 10.1016/j.watres.2007.02.037
– volume: 116
  start-page: 17
  year: 2013
  ident: 492_CR17
  publication-title: Spectrochim Acta A
  doi: 10.1016/j.saa.2013.06.045
– volume: 28
  start-page: 579
  year: 2013
  ident: 492_CR13
  publication-title: Lasers Med Sci
  doi: 10.1007/s10103-012-1106-3
– volume: 3
  start-page: 2378
  year: 2012
  ident: 492_CR33
  publication-title: Ann Biol Res
– volume: 103
  start-page: 273
  year: 2012
  ident: 492_CR39
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2011.09.118
– volume: 27
  start-page: 264
  year: 2011
  ident: 492_CR24
  publication-title: Langmuir
  doi: 10.1021/la103190n
– volume: 102
  start-page: 128
  year: 2013
  ident: 492_CR20
  publication-title: Spectrochim Acta A
  doi: 10.1016/j.saa.2012.10.015
– volume: 65
  start-page: 1014
  year: 2011
  ident: 492_CR11
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2010.12.056
– volume: 21
  start-page: 145
  year: 2009
  ident: 492_CR5
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-008-9343-3
– volume: 172
  start-page: 258
  year: 2011
  ident: 492_CR30
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2011.05.103
– volume: 57
  start-page: 71
  year: 2010
  ident: 492_CR31
  publication-title: Biotechnol Appl Biochem
  doi: 10.1042/BA20100196
– year: 2014
  ident: 492_CR29
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-014-0311-9
– volume: 11
  start-page: 1553
  year: 2004
  ident: 492_CR36
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2004.08.022
SSID ssj0009818
Score 2.4953048
Snippet Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp. MM11, and their application in chromium remediation have been investigated....
Issue Title: 5th Congress of the International Society for Applied Phycology Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp....
Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp. MM11, and their application in chromium remediation have been investigated....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1861
SubjectTerms 5th Congress of the International Society for Applied Phycology
Biomedical and Life Sciences
Biotransformation
Carbonyl compounds
cell walls
Chlorococcum
Chromium
color
Ecology
Fourier transform infrared spectroscopy
Fourier transforms
Freshwater & Marine Ecology
Glycoproteins
image analysis
Infrared spectroscopy
iron
Life Sciences
Light scattering
Microalgae
nanoparticles
Phycology
Plant Physiology
Plant Sciences
pollutants
polysaccharides
remediation
Saccharides
soil
toxicity
transmission electron microscopy
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC7EB6wHWWdddnRWemFPK710Okmn-zgOigjjyQH3FDqdbnfBTQYzI8zNH-Ev9JdYnYejooKnBFJ5UP2or1JVXwH8lJkWzMqQWhNpGoV5ThUzhqpEWymFQG_MFziPz8TJJDq9iC_aOu6qy3bvQpL1Tv2k2E3WNWA-cUJxivvuWuxdd5zEEz5cMu3K-qceUzygUiVBF8p87RHPjdESYb4Iita25vgzbLUgkQybUd2GFVv0YHN4ed0SZdgebDRNJBc9WD8sEeDhycZRzUC9-AJ_Rn_RDS9xrzPz_6Sa_ibjcRDc395pUpQ39oqgbk1JC12UTb-dBUHsShALkmpR4KH6V5HSEV8CR7zUtMuf24HJ8dH56IS2PRSoiWI-o0LloQ2Vk84iMjAJFzrJZJLgVeZ4lCdOytA6w5wTVgmDcM6hB4UgSaNNC-PwK6wWZWG_AckCbZXMccF6WjPGM8lVlgfomkeGZUz0gXXKTE1LMO77XFylS2pkr_8U9Z96_ae8D78eb5k27BrvCQ-6EUrbhValnu0HQY6SUR9-PF7GJeLjHrqw5dzLcA9kpIjfk4kEWmYpwj4cdKP_5DVvfdTuh6T34BMCrrhJBhzA6ux6br8jqJll-_UkfgDjEuv1
  priority: 102
  providerName: Springer Nature
Title Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles
URI https://link.springer.com/article/10.1007/s10811-014-0492-2
https://www.proquest.com/docview/1716782984
https://www.proquest.com/docview/1722181865
https://www.proquest.com/docview/1746299863
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dixMxEB-8q4I-iFYPq2eJ4JMSTbO72eRJ2rP1UHqIWKhPSzabqHBu6m0r9L930s1eVbBPecgsG2aSmd8k8wHwXJZaMCsTak2qaZpUFVXMGKpybaUUAr2xkOA8vxDni_T9MlvGC7cmhlV2OnGnqCtvwh3561DWBa2Zkumb1U8aukaF19XYQuMIeqiCJTpfvcn04uOnfdldubvhY4qPqFT5qHvXbJPn5C6nLARiKE7535ZpDzf_eSHdGZ7ZPbgbESMZtyK-Dzds3Yc7469XsWqG7cOttqPktg83Jx7R3vYBLM--oSfuUd2ZzQ_SrF6R-RzXQTWp_S97SZC7xtNa177tuLMliF4JokHSbGscmu8N8Y6EJDgSqFZdBN1DWMymn8_OaeyiQE2a8TUVqkpsopx0FrGBybnQeSnzHGeZ42mVOykT6wxzTlglDAI6hz4UwiSNVi3JkhM4rn1tHwEpR9oqWeGRDYXNGC9RHmU1Quc8NaxkYgCs42BhYonx0OnistgXRw5ML5DpRWB6wQfw4vqTVVtf4xDxaSeWIh61pthvjAE8u57GQxJePnRt_SbQ8ABlpMgO0aQCbbMUyQBediL_4zf_W9Tjw4t6ArcRY2Vt_N8pHK-vNvYp4ph1OYTeePJ2Mgvjuy8fpsO4eYdwtODj339U8GY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NHQh4QFBAFAYYCV5ABtdxHfsBoW1s6thaIbRJfQuO42xIIy5LC8o_xd_IOR8rING3PeXBjmLdne9-l_sCeKFSI5lTEXVWGCqiLKOaWUt1bJxSUqI3FgqcJ1M5PhEfZ6PZBvzqamFCWmWnE2tFnXkb_pG_DW1d0JppJd7Pv9MwNSpEV7sRGo1YHLrqJ7ps5buDD8jfl5zv7x3vjmk7VYBaMeILKnUWuUjnKndoK23MpYlTFce4ynIusjhXKnK5ZXkunZYWAU6OPgXCBoNavp4SgSp_U0ToyvRgc2dv-unzqs2vqv8oMs2HVOl42MVRm2I9VdewhcQPzSn_2xKu4O0_Edna0O3fgdstQiXbjUjdhQ1X9OHW9ulF26XD9eF6M8Gy6sO1HY_osroHs90z9Pw9qle7_EbK-RsymeA5qCGF_-HOCXLTelqYwjcTfiqCaJkg-iRlVeCj_FoSn5NQdEfCrnmXsXcfTq6Evg-gV_jCPQSSDo3TKkMVERqpMZ4i_9Ns6FIuLEuZHADrKJjYtqV5mKxxnqyaMQeiJ0j0JBA94QN4dfnKvOnnsW7zVseWpL3aZbISxAE8v1zGSxkiLaZwfhn28ACdlByt2yMkYgElowG87lj-x2f-d6hH6w_1DG6MjydHydHB9PAx3ER8N2pyD7egt7hYuieIoRbp01ZwCXy56rvyG59jKEk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NHSB4mKCAKAwwEryAzFwndeyHCe2r2hitJsSkvmWJY29IJS5LC8q_tr9u53ysgETf9pQHXxTrfL77Xe4L4K1ME8GMDKjRYULDIMuoYlpTFSVGSiHQG_MFzqOxODwNP08GkzW4amthfFplqxMrRZ057f-Rb_m2LmjNlAy3bJMWcbI__DT7Sf0EKR9pbcdp1CJybMrf6L4V20f7eNbvOB8efNs7pM2EAarDAZ9TobLABMpKa9Bu6oiLJEplFOEqszzMIitlYKxm1gqjhEawY9G_QAiRoMavJkag-l-P0CtiHVjfPRiffF22_JXV30WmeJ9KFfXbmGpduCerejafBKI45X9bxSXU_Sc6Wxm94UPYaNAq2anF6xGsmbwLD3bOL5uOHaYLd-tplmUX7uw6RJrlY5jsXUwdGkan9eIHKWYfyWiE-6AJyd0vMyV4strRPMldPe2nJIicCSJRUpQ5PorvBXGW-AI84qlmbfbeEzi9Ff4-hU7ucvMMSNpPjJIZqgvfVI3xFGUhzfom5aFmKRM9YC0HY920N_dTNqbxsjGzZ3qMTI8902Peg_c3r8zq3h6riDfbY4mba17ES6HswZubZbygPuqS5MYtPA33MEqKwSqaUCAukCLowYf2yP_4zP829Xz1pl7DPbwj8Zej8fELuI9Qb1CnIW5CZ365MC8RTs3TV43cEji77atyDaVLLH4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chlorococcum+sp.+MM11--a+novel+phyco-nanofactory+for+the+synthesis+of+iron+nanoparticles&rft.jtitle=Journal+of+applied+phycology&rft.au=Subramaniyam%2C+Vidhyasri&rft.au=Subashchandrabose%2C+Suresh+Ramraj&rft.au=Thavamani%2C+Palanisami&rft.au=Megharaj%2C+Mallavarapu&rft.date=2015-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0921-8971&rft.eissn=1573-5176&rft.volume=27&rft.issue=5&rft.spage=1861&rft_id=info:doi/10.1007%2Fs10811-014-0492-2&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3818904011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8971&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8971&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8971&client=summon