Oxidative stress, lens gap junctions, and cataracts

The eye lens is constantly subjected to oxidative stress from radiation and other sources. The lens has several mechanisms to protect its components from oxidative stress and to maintain its redox state, including enzymatic pathways and high concentrations of ascorbate and reduced glutathione. With...

Full description

Saved in:
Bibliographic Details
Published inAntioxidants & redox signaling Vol. 11; no. 2; p. 339
Main Authors Berthoud, Viviana M, Beyer, Eric C
Format Journal Article
LanguageEnglish
Published United States 01.02.2009
Subjects
Online AccessGet more information

Cover

Loading…
Abstract The eye lens is constantly subjected to oxidative stress from radiation and other sources. The lens has several mechanisms to protect its components from oxidative stress and to maintain its redox state, including enzymatic pathways and high concentrations of ascorbate and reduced glutathione. With aging, accumulation of oxidized lens components and decreased efficiency of repair mechanisms can contribute to the development of lens opacities or cataracts. Maintenance of transparency and homeostasis of the avascular lens depend on an extensive network of gap junctions. Communication through gap junction channels allows intercellular passage of molecules (up to 1 kDa) including antioxidants. Lens gap junctions and their constituent proteins, connexins (Cx43, Cx46, and Cx50), are also subject to the effects of oxidative stress. These observations suggest that oxidative stress-induced damage to connexins (and consequent altered intercellular communication) may contribute to cataract formation.
AbstractList The eye lens is constantly subjected to oxidative stress from radiation and other sources. The lens has several mechanisms to protect its components from oxidative stress and to maintain its redox state, including enzymatic pathways and high concentrations of ascorbate and reduced glutathione. With aging, accumulation of oxidized lens components and decreased efficiency of repair mechanisms can contribute to the development of lens opacities or cataracts. Maintenance of transparency and homeostasis of the avascular lens depend on an extensive network of gap junctions. Communication through gap junction channels allows intercellular passage of molecules (up to 1 kDa) including antioxidants. Lens gap junctions and their constituent proteins, connexins (Cx43, Cx46, and Cx50), are also subject to the effects of oxidative stress. These observations suggest that oxidative stress-induced damage to connexins (and consequent altered intercellular communication) may contribute to cataract formation.
Author Berthoud, Viviana M
Beyer, Eric C
Author_xml – sequence: 1
  givenname: Viviana M
  surname: Berthoud
  fullname: Berthoud, Viviana M
  email: vberthou@peds.bsd.uchicago.edu
  organization: Department of Pediatrics, University of Chicago, Chicago, Illinois 60637, USA. vberthou@peds.bsd.uchicago.edu
– sequence: 2
  givenname: Eric C
  surname: Beyer
  fullname: Beyer, Eric C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18831679$$D View this record in MEDLINE/PubMed
BookMark eNo1js1KAzEURoMo9keXbmUewBlvMslNZinFqlDoRtflJnOVKW06JKno21tQVx-cA4dvJs7jIbIQNxIaCa67p5QbBeAaJWV3JqbSGFtbK3EiZjlvAeAk4FJMpHOtRNtNRbv-GnoqwydXuSTO-a7acczVB43V9hhDGQ7xxCj2VaBCiULJV-LinXaZr_92Lt6Wj6-L53q1fnpZPKzqoI0qNRrllHUBlNUePVqPWre9DGTYdkEH45RGFTQZRPAWjHeIHjQzewJWc3H72x2Pfs_9ZkzDntL35v-9-gFJH0U4
CitedBy_id crossref_primary_10_1038_srep25046
crossref_primary_10_24875_RMO_M20000147
crossref_primary_10_3892_etm_2022_11539
crossref_primary_10_1093_aje_kwr069
crossref_primary_10_1089_zeb_2017_1533
crossref_primary_10_1242_jcs_212506
crossref_primary_10_3390_ijerph16050856
crossref_primary_10_3390_nano11061473
crossref_primary_10_1080_02713683_2022_2050263
crossref_primary_10_3390_ph17101311
crossref_primary_10_3390_ijms12107059
crossref_primary_10_3923_pjbs_2010_413_422
crossref_primary_10_18632_aging_203247
crossref_primary_10_1016_j_exer_2021_108709
crossref_primary_10_3390_ijms20184357
crossref_primary_10_1007_s00424_011_0936_3
crossref_primary_10_1016_j_biocel_2017_09_002
crossref_primary_10_1371_journal_pone_0090282
crossref_primary_10_1186_s12886_020_01725_1
crossref_primary_10_3389_fphys_2022_864948
crossref_primary_10_1002_jat_1615
crossref_primary_10_1007_s12033_018_0136_x
crossref_primary_10_1074_jbc_M111_313171
crossref_primary_10_1007_s10792_017_0713_1
crossref_primary_10_1155_2014_798425
crossref_primary_10_1021_acs_jpcb_0c07833
crossref_primary_10_1007_s10863_012_9480_x
crossref_primary_10_1016_j_bbadis_2021_166115
crossref_primary_10_1038_s41598_017_16456_5
crossref_primary_10_3389_fnut_2025_1555631
crossref_primary_10_1371_journal_pone_0119599
crossref_primary_10_1080_13880209_2017_1299769
crossref_primary_10_1016_j_addr_2018_03_009
crossref_primary_10_1007_s12041_017_0861_0
crossref_primary_10_36106_ijar_8000731
crossref_primary_10_1016_j_exer_2021_108772
crossref_primary_10_1186_s12886_022_02386_y
crossref_primary_10_1016_j_ophtha_2021_02_007
crossref_primary_10_1016_j_abb_2010_05_014
crossref_primary_10_1016_j_abb_2019_108204
crossref_primary_10_1088_0952_4746_32_4_479
crossref_primary_10_1097_MD_0000000000041861
crossref_primary_10_1111_jpi_12430
crossref_primary_10_1007_s12602_017_9349_8
crossref_primary_10_1016_j_arr_2022_101664
crossref_primary_10_3390_metabo13101100
crossref_primary_10_1089_bioe_2023_0025
crossref_primary_10_1016_j_biopha_2018_10_068
crossref_primary_10_3109_02713683_2011_571358
crossref_primary_10_3109_02713683_2011_573899
crossref_primary_10_3389_fmars_2024_1443710
crossref_primary_10_3389_fphys_2018_01670
crossref_primary_10_3389_fphar_2021_697903
crossref_primary_10_1016_j_exer_2021_108705
crossref_primary_10_1016_j_biopha_2018_09_092
crossref_primary_10_1016_j_ejphar_2014_02_005
crossref_primary_10_1016_j_bbrc_2020_02_031
crossref_primary_10_1016_j_exer_2020_108128
crossref_primary_10_1007_s00417_014_2679_2
crossref_primary_10_1177_1120672120962401
crossref_primary_10_1016_j_ejphar_2010_02_001
crossref_primary_10_1080_14789450_2021_1913062
crossref_primary_10_1016_j_ejphar_2016_04_029
crossref_primary_10_1016_j_mrrev_2019_02_004
crossref_primary_10_4236_abb_2012_327123
crossref_primary_10_1177_1535370219867296
crossref_primary_10_1016_j_arcmed_2012_10_016
crossref_primary_10_3390_antiox10091374
crossref_primary_10_3390_biom11040523
crossref_primary_10_1016_j_jad_2016_11_019
crossref_primary_10_1371_journal_pone_0058057
crossref_primary_10_3390_antiox10010089
crossref_primary_10_1007_s12291_014_0446_0
crossref_primary_10_1016_j_bbagen_2009_05_008
crossref_primary_10_1021_acschembio_4c00174
crossref_primary_10_1371_journal_pone_0052894
crossref_primary_10_1089_ars_2011_4391
crossref_primary_10_1016_j_exer_2013_09_010
crossref_primary_10_3390_biom11020276
crossref_primary_10_4103_ijo_IJO_691_17
crossref_primary_10_31083_j_fbl2909319
crossref_primary_10_1016_j_niox_2019_02_007
crossref_primary_10_1016_j_isci_2023_106114
crossref_primary_10_1007_s00775_010_0674_6
crossref_primary_10_1016_j_bbrc_2011_06_132
crossref_primary_10_1016_j_clae_2024_102157
crossref_primary_10_18632_aging_103683
crossref_primary_10_1089_jop_2011_0200
crossref_primary_10_3109_07388551_2015_1049510
crossref_primary_10_3390_ijms24032196
crossref_primary_10_3109_02713683_2014_957778
crossref_primary_10_1016_j_exer_2022_109163
crossref_primary_10_1155_2016_9656078
crossref_primary_10_15252_emmm_201505613
crossref_primary_10_1080_15569527_2021_1976792
crossref_primary_10_1371_journal_pone_0079620
crossref_primary_10_1039_C6JA00431H
crossref_primary_10_1093_toxsci_kft224
crossref_primary_10_1089_jop_2009_0038
crossref_primary_10_1186_s12886_015_0065_4
crossref_primary_10_3390_antiox13091114
crossref_primary_10_1096_fj_09_145276
crossref_primary_10_1016_j_exer_2023_109610
crossref_primary_10_1016_j_ajhg_2011_08_005
crossref_primary_10_1016_j_mcpro_2022_100453
crossref_primary_10_1007_s10792_017_0783_0
crossref_primary_10_3390_biom14091055
crossref_primary_10_1186_s12951_023_01974_4
crossref_primary_10_1007_s11010_014_2294_x
crossref_primary_10_1016_j_jmb_2018_12_005
crossref_primary_10_1177_147323001003800301
crossref_primary_10_1016_j_bbrc_2017_01_050
crossref_primary_10_1016_j_freeradbiomed_2012_07_012
crossref_primary_10_1016_j_yexmp_2017_02_006
crossref_primary_10_1093_gerona_glr034
crossref_primary_10_3390_ijms23010240
crossref_primary_10_1155_2018_4125893
crossref_primary_10_1371_journal_pone_0145581
crossref_primary_10_1038_jp_2012_148
crossref_primary_10_1159_000509602
crossref_primary_10_3390_antiox10071086
crossref_primary_10_1016_j_fct_2025_115263
crossref_primary_10_3892_ijmm_2018_3478
crossref_primary_10_1371_journal_pone_0172092
crossref_primary_10_1089_ars_2010_3150
crossref_primary_10_3389_fphys_2019_01574
crossref_primary_10_1016_j_freeradbiomed_2019_09_019
crossref_primary_10_4103_IJO_IJO_2957_23
crossref_primary_10_1016_j_mrrev_2016_07_010
crossref_primary_10_1155_2011_976701
crossref_primary_10_1016_j_bbamem_2015_10_001
crossref_primary_10_1080_02713683_2016_1198486
crossref_primary_10_1109_TBME_2016_2527787
crossref_primary_10_21518_2079_701X_2022_16_23_263_273
crossref_primary_10_3390_antiox11010024
crossref_primary_10_1016_j_aopr_2022_09_002
crossref_primary_10_2147_OPTH_S369676
crossref_primary_10_3390_medsci10040068
crossref_primary_10_1080_02713683_2020_1855662
crossref_primary_10_1016_j_yexcr_2020_112362
crossref_primary_10_3390_antiox11071285
crossref_primary_10_4103_jrms_JRMS_321_20
crossref_primary_10_1080_02713683_2023_2293456
crossref_primary_10_1111_j_1442_9071_2012_02837_x
crossref_primary_10_1111_php_12096
crossref_primary_10_1007_s00439_015_1554_5
crossref_primary_10_1016_j_cbi_2015_12_002
crossref_primary_10_3390_ijms23137142
crossref_primary_10_1016_j_exer_2016_03_024
crossref_primary_10_1016_j_exer_2022_109179
crossref_primary_10_1186_1471_2415_13_52
crossref_primary_10_3390_ijms221910655
crossref_primary_10_4103_1673_5374_235293
crossref_primary_10_1371_journal_pone_0143781
crossref_primary_10_1007_s10863_012_9461_0
crossref_primary_10_1093_ajcn_nqy270
crossref_primary_10_3390_antiox10020238
crossref_primary_10_3390_biom13101460
crossref_primary_10_1155_2013_587826
crossref_primary_10_1016_j_bbrc_2023_09_051
crossref_primary_10_18410_jebmh_2016_698
crossref_primary_10_1080_02713683_2022_2143529
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1089/ars.2008.2119
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Chemistry
EISSN 1557-7716
ExternalDocumentID 18831679
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: EY08368
– fundername: NEI NIH HHS
  grantid: R01 EY008368
GroupedDBID ---
0R~
0VX
23M
34G
39C
4.4
53G
5GY
5RE
ABBKN
ABJNI
ACGFS
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BNQNF
CAG
CGR
COF
CS3
CUY
CVF
EBS
ECM
EIF
EJD
F5P
IAO
IER
IHR
IM4
ITC
MV1
NPM
NQHIM
O9-
P2P
RIG
RML
RMSOB
UE5
Z0Y
ID FETCH-LOGICAL-c452t-6528278c0274b6b67b6443d1ca5e79c4c582462c4a5660b705b866b04eeeba0e2
IngestDate Fri May 30 10:49:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c452t-6528278c0274b6b67b6443d1ca5e79c4c582462c4a5660b705b866b04eeeba0e2
OpenAccessLink http://doi.org/10.1089/ars.2008.2119
PMID 18831679
ParticipantIDs pubmed_primary_18831679
PublicationCentury 2000
PublicationDate 2009-Feb
PublicationDateYYYYMMDD 2009-02-01
PublicationDate_xml – month: 02
  year: 2009
  text: 2009-Feb
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Antioxidants & redox signaling
PublicationTitleAlternate Antioxid Redox Signal
PublicationYear 2009
SSID ssj0002110
Score 2.3890877
SecondaryResourceType review_article
Snippet The eye lens is constantly subjected to oxidative stress from radiation and other sources. The lens has several mechanisms to protect its components from...
SourceID pubmed
SourceType Index Database
StartPage 339
SubjectTerms Animals
Cataract - metabolism
Cataract - pathology
Gap Junctions - metabolism
Gap Junctions - physiology
Humans
Lens, Crystalline - metabolism
Lens, Crystalline - pathology
Models, Biological
Oxidative Stress - physiology
Title Oxidative stress, lens gap junctions, and cataracts
URI https://www.ncbi.nlm.nih.gov/pubmed/18831679
Volume 11
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG5EE_XFKN5v2YNvMN2l7bZHJBpjor6A4Y20XacYBSJo0F_vOes2LmqCvizLOsbod-i55PtOCTlhrs8opb4dCi1sKt3EjmSMAp8gkglkPlKlBNlbftWk1y3WGu9UmKpLhvJUff6oK_kPqnANcEWV7B-QLR4KF-Ac8IUjIAzHuTC-G3Vi07jbSD5wvsCLDCoPol95Ao-VfnVO0MRKDWqiBpMBaQ3ZjvgYpMOgGWAD0VEFaR3iOXdrqY7ndfjYe0vt4b7zDkYlxoXUc_2RyWaQl1-fqiREOfkYHUG2-rEAwm0jfiyWR3fCDLyJtc43XYi-rcFOiC1MIS03TFVsITd5H0xh_yUFxA1D1OHPMTrTEjsfKpESJAe42ymWaDL3ixlt1kwV3uRs6j2wRWz22Zk0Ig0nGutkLcsDrJoBdYMs6G6ZrNTz7ffKZPkmYz1sEr_A2TI4Vy1E2QKUrQLlqgUYWwXGW6R5edGoX9nZZhe2oswb2pxB8huECssEkkseSIhU_dhVgukgUlSx0KPcU1RAAO7IwGEy5Fw6VGsthaO9bbLY7XX1LrF8xkNf0EiomNMkUBCSJj6PYho7VMWB3CM75qe3-6ajSTuflP1fRw7I6thkDslSAn8hfQTx2FAep_P_BRudMhU
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidative+stress%2C+lens+gap+junctions%2C+and+cataracts&rft.jtitle=Antioxidants+%26+redox+signaling&rft.au=Berthoud%2C+Viviana+M&rft.au=Beyer%2C+Eric+C&rft.date=2009-02-01&rft.eissn=1557-7716&rft.volume=11&rft.issue=2&rft.spage=339&rft_id=info:doi/10.1089%2Fars.2008.2119&rft_id=info%3Apmid%2F18831679&rft_id=info%3Apmid%2F18831679&rft.externalDocID=18831679