A short-chain acyl-CoA synthetase that supports branched-chain fatty acid synthesis in Staphylococcus aureus
Staphylococcus aureus controls its membrane biophysical properties using branched-chain fatty acids (BCFAs). The branched-chain acyl-CoA precursors, utilized to initiate fatty acid synthesis, are derived from branched-chain ketoacid dehydrogenase (Bkd), a multiprotein complex that converts α-keto ac...
Saved in:
Published in | The Journal of biological chemistry Vol. 299; no. 4; p. 103036 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2023
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Staphylococcus aureus controls its membrane biophysical properties using branched-chain fatty acids (BCFAs). The branched-chain acyl-CoA precursors, utilized to initiate fatty acid synthesis, are derived from branched-chain ketoacid dehydrogenase (Bkd), a multiprotein complex that converts α-keto acids to their corresponding acyl-CoAs; however, Bkd KO strains still contain BCFAs. Here, we show that commonly used rich medias contain substantial concentrations of short-chain acids, like 2-methylbutyric and isobutyric acids, that are incorporated into membrane BCFAs. Bkd-deficient strains cannot grow in defined medium unless it is supplemented with either 2-methylbutyric or isobutyric acid. We performed a screen of candidate KO strains and identified the methylbutyryl-CoA synthetase (mbcS gene; SAUSA300_2542) as required for the incorporation of 2-methylbutyric and isobutyric acids into phosphatidylglycerol. Our mass tracing experiments show that isobutyric acid is converted to isobutyryl-CoA that flows into the even-chain acyl-acyl carrier protein intermediates in the type II fatty acid biosynthesis elongation cycle. Furthermore, purified MbcS is an ATP-dependent acyl-CoA synthetase that selectively catalyzes the activation of 2-methylbutyrate and isobutyrate. We found that butyrate and isovalerate are poor MbcS substrates and activity was not detected with acetate or short-chain dicarboxylic acids. Thus, MbcS functions to convert extracellular 2-methylbutyric and isobutyric acids to their respective acyl-CoAs that are used by 3-ketoacyl-ACP synthase III (FabH) to initiate BCFA biosynthesis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/j.jbc.2023.103036 |