The Negative Effect of Preexisting Immunity on Influenza Vaccine Responses Transcends the Impact of Vaccine Formulation Type and Vaccination History
Abstract The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections, establishes diverse repertoires of B cells, antibodies, and T cells. We examined the impact of this accumulated immunity on human response...
Saved in:
Published in | The Journal of infectious diseases Vol. 227; no. 3; pp. 381 - 390 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
US
Oxford University Press
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections, establishes diverse repertoires of B cells, antibodies, and T cells. We examined the impact of this accumulated immunity on human responses in adults to split, subunit, and recombinant protein-based influenza vaccines. Enzyme-linked immunosorbent assay (ELISA) assays, to quantify serum antibodies, and peptide-stimulated CD4 T-cell cytokine ELISpots revealed that preexisting levels of hemagglutinin (HA)-specific antibodies were negatively associated with gains in antibody postvaccination, while preexisting levels of CD4 T cells were negatively correlated with vaccine-induced expansion of CD4 T cells. These patterns were seen independently of the vaccine formulation administered and the subjects’ influenza vaccine history. Thus, although memory CD4 T cells and serum antibodies consist of components that can enhance vaccine responses, on balance, the accumulated immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses.
The impact of accumulated influenza-specific antibodies and CD4 T cells on human responses to influenza vaccines was examined. These studies revealed that, on balance, preexisting immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses. |
---|---|
AbstractList | The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections, establishes diverse repertoires of B cells, antibodies, and T cells. We examined the impact of this accumulated immunity on human responses in adults to split, subunit, and recombinant protein-based influenza vaccines. Enzyme-linked immunosorbent assay (ELISA) assays, to quantify serum antibodies, and peptide-stimulated CD4 T-cell cytokine ELISpots revealed that preexisting levels of hemagglutinin (HA)-specific antibodies were negatively associated with gains in antibody postvaccination, while preexisting levels of CD4 T cells were negatively correlated with vaccine-induced expansion of CD4 T cells. These patterns were seen independently of the vaccine formulation administered and the subjects’ influenza vaccine history. Thus, although memory CD4 T cells and serum antibodies consist of components that can enhance vaccine responses, on balance, the accumulated immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses. Abstract The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections, establishes diverse repertoires of B cells, antibodies, and T cells. We examined the impact of this accumulated immunity on human responses in adults to split, subunit, and recombinant protein-based influenza vaccines. Enzyme-linked immunosorbent assay (ELISA) assays, to quantify serum antibodies, and peptide-stimulated CD4 T-cell cytokine ELISpots revealed that preexisting levels of hemagglutinin (HA)-specific antibodies were negatively associated with gains in antibody postvaccination, while preexisting levels of CD4 T cells were negatively correlated with vaccine-induced expansion of CD4 T cells. These patterns were seen independently of the vaccine formulation administered and the subjects’ influenza vaccine history. Thus, although memory CD4 T cells and serum antibodies consist of components that can enhance vaccine responses, on balance, the accumulated immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses. The impact of accumulated influenza-specific antibodies and CD4 T cells on human responses to influenza vaccines was examined. These studies revealed that, on balance, preexisting immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses. The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections, establishes diverse repertoires of B cells, antibodies, and T cells. We examined the impact of this accumulated immunity on human responses in adults to split, subunit, and recombinant protein-based influenza vaccines. Enzyme-linked immunosorbent assay (ELISA) assays, to quantify serum antibodies, and peptide-stimulated CD4 T-cell cytokine ELISpots revealed that preexisting levels of hemagglutinin (HA)-specific antibodies were negatively associated with gains in antibody postvaccination, while preexisting levels of CD4 T cells were negatively correlated with vaccine-induced expansion of CD4 T cells. These patterns were seen independently of the vaccine formulation administered and the subjects' influenza vaccine history. Thus, although memory CD4 T cells and serum antibodies consist of components that can enhance vaccine responses, on balance, the accumulated immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses.The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections, establishes diverse repertoires of B cells, antibodies, and T cells. We examined the impact of this accumulated immunity on human responses in adults to split, subunit, and recombinant protein-based influenza vaccines. Enzyme-linked immunosorbent assay (ELISA) assays, to quantify serum antibodies, and peptide-stimulated CD4 T-cell cytokine ELISpots revealed that preexisting levels of hemagglutinin (HA)-specific antibodies were negatively associated with gains in antibody postvaccination, while preexisting levels of CD4 T cells were negatively correlated with vaccine-induced expansion of CD4 T cells. These patterns were seen independently of the vaccine formulation administered and the subjects' influenza vaccine history. Thus, although memory CD4 T cells and serum antibodies consist of components that can enhance vaccine responses, on balance, the accumulated immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses. The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections, establishes diverse repertoires of B cells, antibodies, and T cells. We examined the impact of this accumulated immunity on human responses in adults to split, subunit, and recombinant protein-based influenza vaccines. Enzyme-linked immunosorbent assay (ELISA) assays, to quantify serum antibodies, and peptide-stimulated CD4 T-cell cytokine ELISpots revealed that preexisting levels of hemagglutinin (HA)-specific antibodies were negatively associated with gains in antibody postvaccination, while preexisting levels of CD4 T cells were negatively correlated with vaccine-induced expansion of CD4 T cells. These patterns were seen independently of the vaccine formulation administered and the subjects’ influenza vaccine history. Thus, although memory CD4 T cells and serum antibodies consist of components that can enhance vaccine responses, on balance, the accumulated immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses. The impact of accumulated influenza-specific antibodies and CD4 T cells on human responses to influenza vaccines was examined. These studies revealed that, on balance, preexisting immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses. |
Author | Topham, David J Krammer, Florian Chaves, Francisco A Glover, Maryah A Richards, Katherine A Branche, Angela Sant, Andrea J Moritzky, Savannah A Nayak, Jennifer L |
Author_xml | – sequence: 1 givenname: Savannah A surname: Moritzky fullname: Moritzky, Savannah A – sequence: 2 givenname: Katherine A surname: Richards fullname: Richards, Katherine A – sequence: 3 givenname: Maryah A surname: Glover fullname: Glover, Maryah A – sequence: 4 givenname: Florian orcidid: 0000-0003-4121-776X surname: Krammer fullname: Krammer, Florian – sequence: 5 givenname: Francisco A surname: Chaves fullname: Chaves, Francisco A – sequence: 6 givenname: David J surname: Topham fullname: Topham, David J – sequence: 7 givenname: Angela surname: Branche fullname: Branche, Angela – sequence: 8 givenname: Jennifer L surname: Nayak fullname: Nayak, Jennifer L – sequence: 9 givenname: Andrea J surname: Sant fullname: Sant, Andrea J email: andrea_sant@urmc.rochester.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35199825$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9v1DAQxS1URLeFK0dkiQsc0vpP4sQXJFS1dKUKEFq4Wq4z3nqV2MFOqm4_Bx8Yt9lWUAlxsmT_3ps34zlAez54QOg1JUeUSH7svG1dOt44bYhonqEFrXhdCEH5HloQwlhBGyn30UFKG0JIyUX9Au3zikrZsGqBfq2uAH-GtR7dNeBTa8GMOFj8NQLcuDQ6v8bLvp-8G7c4eLz0tpvA32r8QxvjPOBvkIbgEyS8itonA75NeMyuy37Qs9kDehZiP3W5VDZabQfA2re7x_nyPFcMcfsSPbe6S_Bqdx6i72enq5Pz4uLLp-XJx4vClBUbi8qKhhBRWiuY1ZLUtTCWatNyYkCWMrcrLsHwptaCtlwyIVqmGSFVbduKaX6IPsy-w3TZQ5ujj1F3aoiu13Grgnbq7xfvrtQ6XCvZSFoykg3e7Qxi-DlBGlXv8gS6TnsIU1JMcJYjlnWZ0bdP0E2Yos_tKU5FXTeEV02m3vyZ6DHKw4dl4GgGTAwpRbCPCCXqbiPUvBFqtxFZUD4RGDfeTzt35Lp_y97PsjAN_yvxG5GJzqA |
CitedBy_id | crossref_primary_10_1016_j_isci_2024_109992 crossref_primary_10_1126_scitranslmed_adh4529 crossref_primary_10_1080_21645515_2024_2421096 crossref_primary_10_1002_eji_202350525 crossref_primary_10_1093_infdis_jiad589 crossref_primary_10_1080_21645515_2023_2234787 crossref_primary_10_1093_infdis_jiaf003 crossref_primary_10_3389_fimmu_2022_984642 crossref_primary_10_46234_ccdcw2024_082 crossref_primary_10_3390_cells13070639 crossref_primary_10_1016_j_ebiom_2025_105620 crossref_primary_10_1111_irv_13172 crossref_primary_10_3390_biomedinformatics3010004 |
Cites_doi | 10.1080/21645515.2017.1338547 10.1093/infdis/jiu662 10.1038/s41467-021-27064-3 10.3390/vaccines9050426 10.3390/pharmaceutics13010068 10.1016/j.cell.2014.03.031 10.1093/infdis/jiz433 10.1080/14760584.2017.1379396 10.1172/JCI130029 10.1038/s41577-019-0143-6 10.1080/14760584.2017.1334554 10.1093/infdis/jis684 10.4049/jimmunol.1900922 10.4049/jimmunol.1900819 10.1016/j.vaccine.2012.04.059 10.1038/s41467-019-11296-5 10.1093/cid/ciab566 10.1128/microbiolspec.MCHD-0045-2016 10.3390/vaccines6040068 10.1016/j.vaccine.2017.08.061 10.1093/infdis/jiu616 10.1093/infdis/jiy288 10.1093/cid/ciz996 10.1016/j.coi.2019.02.007 10.1111/imr.12888 10.3390/v11020122 10.3389/fimmu.2018.02469 10.1038/msb.2013.15 10.3390/v13060965 10.1080/14760584.2018.1484284 10.1111/imr.12900 10.1038/s41591-020-0769-8 10.1016/j.coi.2018.04.026 10.3389/fimmu.2019.01787 10.1016/S0065-2776(07)96005-8 10.1038/nri.2017.106 10.1089/vim.2017.0141 10.4049/jimmunol.1800986 10.3389/fimmu.2019.00223 10.1016/j.bj.2019.06.002 10.1038/s41541-021-00289-5 10.1038/nri3582 10.1038/s41541-020-00227-x 10.1128/JVI.01460-06 10.1016/j.coi.2018.05.010 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. 2022 The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. 2022 – notice: The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 5PM |
DOI | 10.1093/infdis/jiac068 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1537-6613 |
EndPage | 390 |
ExternalDocumentID | PMC9891420 35199825 10_1093_infdis_jiac068 10.1093/infdis/jiac068 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: HHSN272201400005C – fundername: NIAID NIH HHS grantid: 75N93019C00051 – fundername: NIAID NIH HHS grantid: U01 AI144616 – fundername: ; – fundername: ; grantid: HHSN272201400005C; U01 AI14461602S1; 75N93019R00028; 75N93019C00051 – fundername: ; grantid: 1014095 |
GroupedDBID | --- -DZ -~X ..I .2P .55 .GJ .I3 .XZ .ZR 08P 0R~ 123 1KJ 1TH 29K 2AX 2WC 36B 3O- 4.4 41~ 48X 53G 5GY 5RE 5VS 5WD 6.Y 70D 85S AABZA AACGO AACZT AAHBH AAHTB AAJKP AAJQQ AAMVS AANCE AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAWDT AAWTL AAYOK ABBHK ABDFA ABDPE ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABNHQ ABNKS ABOCM ABPEJ ABPLY ABPPZ ABPTD ABQLI ABQNK ABSAR ABSMQ ABTLG ABVGC ABWST ABXSQ ABXVV ABZBJ ACFRR ACGFO ACGFS ACGOD ACHIC ACPQN ACPRK ACUFI ACUTJ ACUTO ACYHN ACZBC ADBBV ADEYI ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADULT ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AEXZC AFFNX AFFQV AFFZL AFHKK AFIYH AFOFC AFQQW AFSHK AFXAL AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AI. AIAGR AIJHB AJEEA ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APJGH APWMN AQDSO AQKUS AQVQM ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BR6 BTRTY BVRKM BZKNY C45 CDBKE CS3 CZ4 D-I DAKXR DCCCD DIK DILTD DOOOF DU5 D~K EBS ECGQY EE~ EIHJH EJD EMOBN ENERS ESX F5P F9B FECEO FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HQ3 HTVGU HW0 HZ~ IH2 IOX IPSME J21 J5H JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KAQDR KBUDW KOP KQ8 KSI KSN L7B LSO LU7 M49 MBLQV MHKGH MJL ML0 MVM N4W N9A NEJ NGC NOMLY NOYVH NU- NVLIB O0~ O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P0- P2P PAFKI PEELM PQQKQ Q1. Q5Y QBD RD5 ROX ROZ RUSNO RW1 RXO SA0 SJN TCURE TEORI TJX TMA TR2 VH1 VXZ W2D W8F WH7 X7H X7M Y6R YAYTL YIF YKOAZ YXANX ZE2 ZGI ZKG ZXP ~91 AAYXX ABPQP ADNBA AEMQT AGORE AHGBF AJBYB AJNCP ALXQX CITATION JXSIZ CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 5PM |
ID | FETCH-LOGICAL-c452t-5f680064ff62fa90776cf1acd30ce9490046bec387a61d39266d2a20057fd52a3 |
ISSN | 0022-1899 1537-6613 |
IngestDate | Thu Aug 21 18:37:56 EDT 2025 Fri Jul 11 08:36:23 EDT 2025 Mon Jun 30 10:37:09 EDT 2025 Wed Feb 19 02:24:45 EST 2025 Thu Apr 24 22:59:23 EDT 2025 Tue Jul 01 01:31:32 EDT 2025 Tue Feb 18 07:36:33 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | influenza CD4 T cells immune memory vaccines human immunity |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/pages/standard-publication-reuse-rights The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c452t-5f680064ff62fa90776cf1acd30ce9490046bec387a61d39266d2a20057fd52a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4121-776X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9891420 |
PMID | 35199825 |
PQID | 3167780358 |
PQPubID | 41591 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9891420 proquest_miscellaneous_2632800474 proquest_journals_3167780358 pubmed_primary_35199825 crossref_primary_10_1093_infdis_jiac068 crossref_citationtrail_10_1093_infdis_jiac068 oup_primary_10_1093_infdis_jiac068 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | US |
PublicationPlace_xml | – name: US – name: United States – name: Oxford |
PublicationTitle | The Journal of infectious diseases |
PublicationTitleAlternate | J Infect Dis |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Stebegg (2023020118012334500_CIT0046) 2018; 9 Belongia (2023020118012334500_CIT0004) 2017; 16 Wild (2023020118012334500_CIT0049) 2021; 12 Ellebedy (2023020118012334500_CIT0044) 2018; 6 DiPiazza (2023020118012334500_CIT0028) 2019; 203 Lu (2023020118012334500_CIT0045) 2018; 18 Avey (2023020118012334500_CIT0010) 2020; 204 Ueno (2023020118012334500_CIT0037) 2019; 59 Koutsakos (2023020118012334500_CIT0036) 2019; 202 Guilliams (2023020118012334500_CIT0041) 2014; 14 Richards (2023020118012334500_CIT0014) 2020; 5 Aloulou (2023020118012334500_CIT0048) 2019; 42 Francis (2023020118012334500_CIT0035) 2019; 11 He (2023020118012334500_CIT0022) 2006; 80 Richards (2023020118012334500_CIT0027) 2018; 218 Dawood (2023020118012334500_CIT0031) 2021; 73 Richards (2023020118012334500_CIT0015) 2020; 222 Wen (2023020118012334500_CIT0034) 2019; 423 Vemula (2023020118012334500_CIT0003) 2017; 16 Li (2023020118012334500_CIT0021) 2012; 30 Kotliarov (2023020118012334500_CIT0009) 2020; 26 Li (2023020118012334500_CIT0025) 2021; 6 Wang (2023020118012334500_CIT0039) 2019; 129 Tsang (2023020118012334500_CIT0011) 2014; 157 Poland (2023020118012334500_CIT0002) 2018; 17 Guthmiller (2023020118012334500_CIT0017) 2021; 13 Khurana (2023020118012334500_CIT0030) 2019; 10 Krammer (2023020118012334500_CIT0001) 2019; 19 Nayak (2023020118012334500_CIT0013) 2015; 211 Kim (2023020118012334500_CIT0006) 2018; 31 Guthmiller (2023020118012334500_CIT0016) 2018; 53 Margine (2023020118012334500_CIT0029) 2013; 81 Tan (2023020118012334500_CIT0023) 2017; 35 Nimmerjahn (2023020118012334500_CIT0042) 2007; 96 Wang (2023020118012334500_CIT0005) 2018; 53 Patel (2023020118012334500_CIT0043) 2019; 10 Castrucci (2023020118012334500_CIT0007) 2018; 14 Gouma (2023020118012334500_CIT0032) 2020; 71 Wang (2023020118012334500_CIT0040) 2019; 423 Avey (2023020118012334500_CIT0012) 2017; 2 Bournazos (2023020118012334500_CIT0033) 2016; 4 Palm (2023020118012334500_CIT0038) 2019; 10 Knight (2023020118012334500_CIT0018) 2020; 296 Richards (2023020118012334500_CIT0020) 2015; 212 Wing (2023020118012334500_CIT0047) 2020; 296 Dawen Yu (2023020118012334500_CIT0024) 2021; 9 Zhu (2023020118012334500_CIT0026) 2021; 13 Furman (2023020118012334500_CIT0008) 2013; 9 Nayak (2023020118012334500_CIT0019) 2013; 207 |
References_xml | – volume: 14 start-page: 637 year: 2018 ident: 2023020118012334500_CIT0007 article-title: Factors affecting immune responses to the influenza vaccine. publication-title: Hum Vaccin Immunother doi: 10.1080/21645515.2017.1338547 – volume: 212 start-page: 86 year: 2015 ident: 2023020118012334500_CIT0020 article-title: Seasonal influenza can poise hosts for CD4 T-cell immunity to H7N9 avian influenza. publication-title: J Infect Dis doi: 10.1093/infdis/jiu662 – volume: 12 start-page: 6720 year: 2021 ident: 2023020118012334500_CIT0049 article-title: Pre-existing immunity and vaccine history determine hemagglutinin-specific CD4 T cell and IgG response following seasonal influenza vaccination. publication-title: Nat Commun doi: 10.1038/s41467-021-27064-3 – volume: 423 start-page: 63 year: 2019 ident: 2023020118012334500_CIT0040 article-title: IgG Fc glycosylation in human immunity. publication-title: Curr Top Microbiol Immunol – volume: 9 start-page: 426 year: 2021 ident: 2023020118012334500_CIT0024 article-title: Balanced cellular and humoral immune responses targeting multiple antigens in adults receiving a quadrivalent inactivated influenza vaccine. publication-title: Vaccines doi: 10.3390/vaccines9050426 – volume: 81 start-page: e51112 year: 2013 ident: 2023020118012334500_CIT0029 article-title: Expression of functional recombinant hemagglutinin and neuraminidase proteins from the novel H7N9 influenza virus using the baculovirus expression system. publication-title: J Vis Exp – volume: 13 start-page: 68 year: 2021 ident: 2023020118012334500_CIT0026 article-title: Promising adjuvants and platforms for influenza vaccine development. publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13010068 – volume: 157 start-page: 499 year: 2014 ident: 2023020118012334500_CIT0011 article-title: Global analyses of human immune variation reveal baseline predictors of postvaccination responses. publication-title: Cell doi: 10.1016/j.cell.2014.03.031 – volume: 222 start-page: 273 year: 2020 ident: 2023020118012334500_CIT0015 article-title: Evidence that blunted CD4 T-cell responses underlie deficient protective antibody responses to influenza vaccines in repeatedly vaccinated human subjects. publication-title: J Infect Dis doi: 10.1093/infdis/jiz433 – volume: 16 start-page: 1141 year: 2017 ident: 2023020118012334500_CIT0003 article-title: Vaccine approaches conferring cross-protection against influenza viruses. publication-title: Expert Rev Vaccines doi: 10.1080/14760584.2017.1379396 – volume: 129 start-page: 3492 year: 2019 ident: 2023020118012334500_CIT0039 article-title: Functional diversification of IgGs through Fc glycosylation. publication-title: J Clin Invest doi: 10.1172/JCI130029 – volume: 19 start-page: 383 year: 2019 ident: 2023020118012334500_CIT0001 article-title: The human antibody response to influenza A virus infection and vaccination. publication-title: Nat Rev Immunol doi: 10.1038/s41577-019-0143-6 – volume: 16 start-page: 1 year: 2017 ident: 2023020118012334500_CIT0004 article-title: Repeated annual influenza vaccination and vaccine effectiveness: review of evidence. publication-title: Expert Rev Vaccines doi: 10.1080/14760584.2017.1334554 – volume: 207 start-page: 297 year: 2013 ident: 2023020118012334500_CIT0019 article-title: CD4+ T-cell expansion predicts neutralizing antibody responses to monovalent, inactivated 2009 pandemic influenza A(H1N1) virus subtype H1N1 vaccine. publication-title: J Infect Dis doi: 10.1093/infdis/jis684 – volume: 204 start-page: 1661 year: 2020 ident: 2023020118012334500_CIT0010 article-title: Seasonal variability and shared molecular signatures of inactivated influenza vaccination in young and older adults. publication-title: J Immunol doi: 10.4049/jimmunol.1900922 – volume: 203 start-page: 1502 year: 2019 ident: 2023020118012334500_CIT0028 article-title: A novel vaccine strategy to overcome poor immunogenicity of avian influenza vaccines through mobilization of memory CD4 T cells established by seasonal influenza. publication-title: J Immunol doi: 10.4049/jimmunol.1900819 – volume: 30 start-page: 4581 year: 2012 ident: 2023020118012334500_CIT0021 article-title: Ki-67 expression reveals strong, transient influenza specific CD4 T cell responses after adult vaccination. publication-title: Vaccine doi: 10.1016/j.vaccine.2012.04.059 – volume: 10 start-page: 3338 year: 2019 ident: 2023020118012334500_CIT0030 article-title: Repeat vaccination reduces antibody affinity maturation across different influenza vaccine platforms in humans. publication-title: Nat Commun doi: 10.1038/s41467-019-11296-5 – volume: 73 start-page: 1973 year: 2021 ident: 2023020118012334500_CIT0031 article-title: Comparison of the immunogenicity of cell culture-based and recombinant quadrivalent influenza vaccines to conventional egg-based quadrivalent influenza vaccines among healthcare personnel aged 18-64 years: a randomized open-label trial. publication-title: Clin Infect Dis doi: 10.1093/cid/ciab566 – volume: 4 year: 2016 ident: 2023020118012334500_CIT0033 article-title: The role and function of Fcγ receptors on myeloid cells. publication-title: Microbiol Spectr doi: 10.1128/microbiolspec.MCHD-0045-2016 – volume: 6 start-page: 68 year: 2018 ident: 2023020118012334500_CIT0044 article-title: Immunizing the immune: can we overcome influenza’s most formidable challenge? publication-title: Vaccines doi: 10.3390/vaccines6040068 – volume: 35 start-page: 5644 year: 2017 ident: 2023020118012334500_CIT0023 article-title: Hemagglutinin-specific CD4+ T-cell responses following 2009-pH1N1 inactivated split-vaccine inoculation in humans. publication-title: Vaccine doi: 10.1016/j.vaccine.2017.08.061 – volume: 211 start-page: 1408 year: 2015 ident: 2023020118012334500_CIT0013 article-title: Effect of influenza A(H5N1) vaccine prepandemic priming on CD4+ T-cell responses. publication-title: J Infect Dis doi: 10.1093/infdis/jiu616 – volume: 218 start-page: 1169 year: 2018 ident: 2023020118012334500_CIT0027 article-title: Overarching immunodominance patterns and substantial diversity in specificity and functionality in the circulating human influenza A and B virus-specific CD4+ T-cell repertoire. publication-title: J Infect Dis doi: 10.1093/infdis/jiy288 – volume: 71 start-page: 1447 year: 2020 ident: 2023020118012334500_CIT0032 article-title: Comparison of human H3N2 antibody responses elicited by egg-based, cell-based, and recombinant protein-based influenza vaccines during the 2017–2018 season. publication-title: Clin Infect Dis doi: 10.1093/cid/ciz996 – volume: 59 start-page: 9 year: 2019 ident: 2023020118012334500_CIT0037 article-title: Tfh cell response in influenza vaccines in humans: what is visible and what is invisible. publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2019.02.007 – volume: 296 start-page: 104 year: 2020 ident: 2023020118012334500_CIT0047 article-title: Control of foreign Ag-specific Ab responses by Treg and Tfr. publication-title: Immunol Rev doi: 10.1111/imr.12888 – volume: 11 start-page: 122 year: 2019 ident: 2023020118012334500_CIT0035 article-title: Back to the future for influenza preimmunity—looking back at influenza virus history to infer the outcome of future infections. publication-title: Viruses doi: 10.3390/v11020122 – volume: 9 start-page: 2469 year: 2018 ident: 2023020118012334500_CIT0046 article-title: Regulation of the germinal center response. publication-title: Front Immunol doi: 10.3389/fimmu.2018.02469 – volume: 9 start-page: 659 year: 2013 ident: 2023020118012334500_CIT0008 article-title: Apoptosis and other immune biomarkers predict influenza vaccine responsiveness. publication-title: Mol Syst Biol doi: 10.1038/msb.2013.15 – volume: 13 start-page: 965 year: 2021 ident: 2023020118012334500_CIT0017 article-title: B cell responses against influenza viruses: short-lived humoral immunity against a life-long threat. publication-title: Viruses doi: 10.3390/v13060965 – volume: 17 start-page: 495 year: 2018 ident: 2023020118012334500_CIT0002 article-title: Influenza vaccine failure: failure to protect or failure to understand? publication-title: Expert Rev Vaccines doi: 10.1080/14760584.2018.1484284 – volume: 296 start-page: 191 year: 2020 ident: 2023020118012334500_CIT0018 article-title: Imprinting, immunodominance, and other impediments to generating broad influenza immunity. publication-title: Immunol Rev doi: 10.1111/imr.12900 – volume: 26 start-page: 618 year: 2020 ident: 2023020118012334500_CIT0009 article-title: Broad immune activation underlies shared set point signatures for vaccine responsiveness in healthy individuals and disease activity in patients with lupus. publication-title: Nat Med doi: 10.1038/s41591-020-0769-8 – volume: 53 start-page: 124 year: 2018 ident: 2023020118012334500_CIT0005 article-title: Immunological responses to influenza vaccination: lessons for improving vaccine efficacy. publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2018.04.026 – volume: 10 start-page: 1 year: 2019 ident: 2023020118012334500_CIT0038 article-title: Remembrance of things past: long-term B cell memory after infection and vaccination. publication-title: Front Immunol doi: 10.3389/fimmu.2019.01787 – volume: 96 start-page: 179 year: 2007 ident: 2023020118012334500_CIT0042 article-title: Fc-receptors as regulators of immunity. publication-title: Adv Immunol doi: 10.1016/S0065-2776(07)96005-8 – volume: 18 start-page: 46 year: 2018 ident: 2023020118012334500_CIT0045 article-title: Beyond binding: antibody effector functions in infectious diseases. publication-title: Nat Rev Immunol doi: 10.1038/nri.2017.106 – volume: 31 start-page: 174 year: 2018 ident: 2023020118012334500_CIT0006 article-title: Influenza virus: dealing with a drifting and shifting pathogen. publication-title: Viral Immunol doi: 10.1089/vim.2017.0141 – volume: 202 start-page: 360 year: 2019 ident: 2023020118012334500_CIT0036 article-title: With a little help from T follicular helper friends: humoral immunity to influenza vaccination. publication-title: J Immunol doi: 10.4049/jimmunol.1800986 – volume: 10 start-page: 223 year: 2019 ident: 2023020118012334500_CIT0043 article-title: Multiple variables at the leukocyte cell surface impact Fcγ receptor-dependent mechanisms. publication-title: Front Immunol doi: 10.3389/fimmu.2019.00223 – volume: 423 start-page: 95 year: 2019 ident: 2023020118012334500_CIT0034 article-title: Immune complex vaccination. publication-title: Curr Top Microbiol Immunol – volume: 42 start-page: 243 year: 2019 ident: 2023020118012334500_CIT0048 article-title: Regulation of B cell responses by distinct populations of CD4 T cells. publication-title: Biomed J doi: 10.1016/j.bj.2019.06.002 – volume: 2 year: 2017 ident: 2023020118012334500_CIT0012 article-title: Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses. publication-title: Sci Immunol – volume: 6 start-page: 25 year: 2021 ident: 2023020118012334500_CIT0025 article-title: Immunogenicity of standard, high-dose, MF59-adjuvanted, and recombinant-HA seasonal influenza vaccination in older adults. publication-title: NPJ Vaccines doi: 10.1038/s41541-021-00289-5 – volume: 14 start-page: 94 year: 2014 ident: 2023020118012334500_CIT0041 article-title: The function of Fcγ receptors in dendritic cells and macrophages. publication-title: Nat Rev Immunol doi: 10.1038/nri3582 – volume: 5 start-page: 77 year: 2020 ident: 2023020118012334500_CIT0014 article-title: Recombinant HA-based vaccine outperforms split and subunit vaccines in elicitation of influenza-specific CD4 T cells and CD4 T cell-dependent antibody responses in humans. publication-title: NPJ Vaccines doi: 10.1038/s41541-020-00227-x – volume: 80 start-page: 11756 year: 2006 ident: 2023020118012334500_CIT0022 article-title: Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. publication-title: J Virol doi: 10.1128/JVI.01460-06 – volume: 53 start-page: 187 year: 2018 ident: 2023020118012334500_CIT0016 article-title: Harnessing immune history to combat influenza viruses. publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2018.05.010 |
SSID | ssj0004367 |
Score | 2.4883695 |
Snippet | Abstract
The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with... The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections,... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 381 |
SubjectTerms | Adult Antibodies Antibodies, Viral CD4 antigen CD4-Positive T-Lymphocytes Enzyme-linked immunosorbent assay Hemagglutinin Glycoproteins, Influenza Virus Hemagglutinins Humans Immunity Immunological memory Influenza Influenza A Influenza Vaccines Influenza, Human - prevention & control Lymphocytes Lymphocytes B Lymphocytes T Major Memory cells Vaccination Vaccines |
Title | The Negative Effect of Preexisting Immunity on Influenza Vaccine Responses Transcends the Impact of Vaccine Formulation Type and Vaccination History |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35199825 https://www.proquest.com/docview/3167780358 https://www.proquest.com/docview/2632800474 https://pubmed.ncbi.nlm.nih.gov/PMC9891420 |
Volume | 227 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIhAXBOXRhYIMQuJQpc3GeThHBKxaqu2FFvUWeR2nXVRl0T4O3d_Bz-RHMOOxk2xpReESrWLHu6v57IzH33zD2DszMCh6mQdJrCs8ZoQpJaUI5DjXMgaHvlSYnDw6SvdP4i-nyWmv96vDWlouxrt6dW1eyf9YFe6BXTFL9h8s2wwKN-Az2BeuYGG43trGR-aMtLudDjFy2mYGBS4tofnA5n8g7QKjf7YgyUrtfFMaD9QxeI8MWTMnkXNt-bGWT9kkT_quQ3BuXamvHdy82lMHaqSbJDiydkrc5p05aQoifi3n_lyocehH09lksaI47lcF3n2tztswq8v-n3v6h01ZbJtbHupIzS67Dx7ObGDeeuhINXRTwUU5IuGJ0X5PfH32ZHdlh031QFKxpV3jF_MsAP9DdFf7iKQIHKxFZ-0WVDvGuQGCqpj-8YYh9S24VaIGxPD7ROmQCgNd0e2-ufMddjeCTQ3W2_h0cNhm8Yo089r2-E8aiVGxRyPsuefXXKi1tMzO7ugqybfjNR0_Yg-d8fkHwu5j1jP1JrtHBVAvN9n9kaN2PGE_ASzcg5kTmPm04h0wcw9mPq15A2buEMobMPMWzBzAwgnMOJjv2gEzRzBzADPvgJk7MD9lJ8PPxx_3A1cyJNBxEi2CpEoletlVlUaVylGrSlcDpUsRapPHOYaDYNUSMlPpoIS9QZqWkcLIalaVSaTEM7ZRT2uzxbiuQq2lyXUYl1aWMkyVgs1_GMHYUSz7LPBWKLTT08eyLhcF8TpEQVYrnNX67H3T_wcpydzY8y0Y9a-dtr3NC7ckzQuUtchkKBJoftM0wwsDTwFVbWCCF1igQaJIbNxnzwkizVdhtc5cRkmfZWvgaTqgGP16Sz05t6L0ucwHcRS-uM1vf8ketHN8m20sZkvzCnz7xfi1nRK_AV4kBl8 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Negative+Effect+of+Preexisting+Immunity+on+Influenza+Vaccine+Responses+Transcends+the+Impact+of+Vaccine+Formulation+Type+and+Vaccination+History&rft.jtitle=The+Journal+of+infectious+diseases&rft.au=Moritzky%2C+Savannah+A&rft.au=Richards%2C+Katherine+A&rft.au=Glover%2C+Maryah+A&rft.au=Krammer%2C+Florian&rft.date=2023-02-01&rft.pub=Oxford+University+Press&rft.issn=0022-1899&rft.eissn=1537-6613&rft.volume=227&rft.issue=3&rft.spage=381&rft.epage=390&rft_id=info:doi/10.1093%2Finfdis%2Fjiac068&rft.externalDocID=10.1093%2Finfdis%2Fjiac068 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1899&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1899&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1899&client=summon |