The Negative Effect of Preexisting Immunity on Influenza Vaccine Responses Transcends the Impact of Vaccine Formulation Type and Vaccination History

Abstract The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections, establishes diverse repertoires of B cells, antibodies, and T cells. We examined the impact of this accumulated immunity on human response...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of infectious diseases Vol. 227; no. 3; pp. 381 - 390
Main Authors Moritzky, Savannah A, Richards, Katherine A, Glover, Maryah A, Krammer, Florian, Chaves, Francisco A, Topham, David J, Branche, Angela, Nayak, Jennifer L, Sant, Andrea J
Format Journal Article
LanguageEnglish
Published US Oxford University Press 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections, establishes diverse repertoires of B cells, antibodies, and T cells. We examined the impact of this accumulated immunity on human responses in adults to split, subunit, and recombinant protein-based influenza vaccines. Enzyme-linked immunosorbent assay (ELISA) assays, to quantify serum antibodies, and peptide-stimulated CD4 T-cell cytokine ELISpots revealed that preexisting levels of hemagglutinin (HA)-specific antibodies were negatively associated with gains in antibody postvaccination, while preexisting levels of CD4 T cells were negatively correlated with vaccine-induced expansion of CD4 T cells. These patterns were seen independently of the vaccine formulation administered and the subjects’ influenza vaccine history. Thus, although memory CD4 T cells and serum antibodies consist of components that can enhance vaccine responses, on balance, the accumulated immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses. The impact of accumulated influenza-specific antibodies and CD4 T cells on human responses to influenza vaccines was examined. These studies revealed that, on balance, preexisting immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses.
AbstractList The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections, establishes diverse repertoires of B cells, antibodies, and T cells. We examined the impact of this accumulated immunity on human responses in adults to split, subunit, and recombinant protein-based influenza vaccines. Enzyme-linked immunosorbent assay (ELISA) assays, to quantify serum antibodies, and peptide-stimulated CD4 T-cell cytokine ELISpots revealed that preexisting levels of hemagglutinin (HA)-specific antibodies were negatively associated with gains in antibody postvaccination, while preexisting levels of CD4 T cells were negatively correlated with vaccine-induced expansion of CD4 T cells. These patterns were seen independently of the vaccine formulation administered and the subjects’ influenza vaccine history. Thus, although memory CD4 T cells and serum antibodies consist of components that can enhance vaccine responses, on balance, the accumulated immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses.
Abstract The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections, establishes diverse repertoires of B cells, antibodies, and T cells. We examined the impact of this accumulated immunity on human responses in adults to split, subunit, and recombinant protein-based influenza vaccines. Enzyme-linked immunosorbent assay (ELISA) assays, to quantify serum antibodies, and peptide-stimulated CD4 T-cell cytokine ELISpots revealed that preexisting levels of hemagglutinin (HA)-specific antibodies were negatively associated with gains in antibody postvaccination, while preexisting levels of CD4 T cells were negatively correlated with vaccine-induced expansion of CD4 T cells. These patterns were seen independently of the vaccine formulation administered and the subjects’ influenza vaccine history. Thus, although memory CD4 T cells and serum antibodies consist of components that can enhance vaccine responses, on balance, the accumulated immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses. The impact of accumulated influenza-specific antibodies and CD4 T cells on human responses to influenza vaccines was examined. These studies revealed that, on balance, preexisting immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses.
The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections, establishes diverse repertoires of B cells, antibodies, and T cells. We examined the impact of this accumulated immunity on human responses in adults to split, subunit, and recombinant protein-based influenza vaccines. Enzyme-linked immunosorbent assay (ELISA) assays, to quantify serum antibodies, and peptide-stimulated CD4 T-cell cytokine ELISpots revealed that preexisting levels of hemagglutinin (HA)-specific antibodies were negatively associated with gains in antibody postvaccination, while preexisting levels of CD4 T cells were negatively correlated with vaccine-induced expansion of CD4 T cells. These patterns were seen independently of the vaccine formulation administered and the subjects' influenza vaccine history. Thus, although memory CD4 T cells and serum antibodies consist of components that can enhance vaccine responses, on balance, the accumulated immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses.The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections, establishes diverse repertoires of B cells, antibodies, and T cells. We examined the impact of this accumulated immunity on human responses in adults to split, subunit, and recombinant protein-based influenza vaccines. Enzyme-linked immunosorbent assay (ELISA) assays, to quantify serum antibodies, and peptide-stimulated CD4 T-cell cytokine ELISpots revealed that preexisting levels of hemagglutinin (HA)-specific antibodies were negatively associated with gains in antibody postvaccination, while preexisting levels of CD4 T cells were negatively correlated with vaccine-induced expansion of CD4 T cells. These patterns were seen independently of the vaccine formulation administered and the subjects' influenza vaccine history. Thus, although memory CD4 T cells and serum antibodies consist of components that can enhance vaccine responses, on balance, the accumulated immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses.
The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections, establishes diverse repertoires of B cells, antibodies, and T cells. We examined the impact of this accumulated immunity on human responses in adults to split, subunit, and recombinant protein-based influenza vaccines. Enzyme-linked immunosorbent assay (ELISA) assays, to quantify serum antibodies, and peptide-stimulated CD4 T-cell cytokine ELISpots revealed that preexisting levels of hemagglutinin (HA)-specific antibodies were negatively associated with gains in antibody postvaccination, while preexisting levels of CD4 T cells were negatively correlated with vaccine-induced expansion of CD4 T cells. These patterns were seen independently of the vaccine formulation administered and the subjects’ influenza vaccine history. Thus, although memory CD4 T cells and serum antibodies consist of components that can enhance vaccine responses, on balance, the accumulated immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses. The impact of accumulated influenza-specific antibodies and CD4 T cells on human responses to influenza vaccines was examined. These studies revealed that, on balance, preexisting immunity specific for influenza A H1 and H3 proteins is associated with diminished future responses.
Author Topham, David J
Krammer, Florian
Chaves, Francisco A
Glover, Maryah A
Richards, Katherine A
Branche, Angela
Sant, Andrea J
Moritzky, Savannah A
Nayak, Jennifer L
Author_xml – sequence: 1
  givenname: Savannah A
  surname: Moritzky
  fullname: Moritzky, Savannah A
– sequence: 2
  givenname: Katherine A
  surname: Richards
  fullname: Richards, Katherine A
– sequence: 3
  givenname: Maryah A
  surname: Glover
  fullname: Glover, Maryah A
– sequence: 4
  givenname: Florian
  orcidid: 0000-0003-4121-776X
  surname: Krammer
  fullname: Krammer, Florian
– sequence: 5
  givenname: Francisco A
  surname: Chaves
  fullname: Chaves, Francisco A
– sequence: 6
  givenname: David J
  surname: Topham
  fullname: Topham, David J
– sequence: 7
  givenname: Angela
  surname: Branche
  fullname: Branche, Angela
– sequence: 8
  givenname: Jennifer L
  surname: Nayak
  fullname: Nayak, Jennifer L
– sequence: 9
  givenname: Andrea J
  surname: Sant
  fullname: Sant, Andrea J
  email: andrea_sant@urmc.rochester.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35199825$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9v1DAQxS1URLeFK0dkiQsc0vpP4sQXJFS1dKUKEFq4Wq4z3nqV2MFOqm4_Bx8Yt9lWUAlxsmT_3ps34zlAez54QOg1JUeUSH7svG1dOt44bYhonqEFrXhdCEH5HloQwlhBGyn30UFKG0JIyUX9Au3zikrZsGqBfq2uAH-GtR7dNeBTa8GMOFj8NQLcuDQ6v8bLvp-8G7c4eLz0tpvA32r8QxvjPOBvkIbgEyS8itonA75NeMyuy37Qs9kDehZiP3W5VDZabQfA2re7x_nyPFcMcfsSPbe6S_Bqdx6i72enq5Pz4uLLp-XJx4vClBUbi8qKhhBRWiuY1ZLUtTCWatNyYkCWMrcrLsHwptaCtlwyIVqmGSFVbduKaX6IPsy-w3TZQ5ujj1F3aoiu13Grgnbq7xfvrtQ6XCvZSFoykg3e7Qxi-DlBGlXv8gS6TnsIU1JMcJYjlnWZ0bdP0E2Yos_tKU5FXTeEV02m3vyZ6DHKw4dl4GgGTAwpRbCPCCXqbiPUvBFqtxFZUD4RGDfeTzt35Lp_y97PsjAN_yvxG5GJzqA
CitedBy_id crossref_primary_10_1016_j_isci_2024_109992
crossref_primary_10_1126_scitranslmed_adh4529
crossref_primary_10_1080_21645515_2024_2421096
crossref_primary_10_1002_eji_202350525
crossref_primary_10_1093_infdis_jiad589
crossref_primary_10_1080_21645515_2023_2234787
crossref_primary_10_1093_infdis_jiaf003
crossref_primary_10_3389_fimmu_2022_984642
crossref_primary_10_46234_ccdcw2024_082
crossref_primary_10_3390_cells13070639
crossref_primary_10_1016_j_ebiom_2025_105620
crossref_primary_10_1111_irv_13172
crossref_primary_10_3390_biomedinformatics3010004
Cites_doi 10.1080/21645515.2017.1338547
10.1093/infdis/jiu662
10.1038/s41467-021-27064-3
10.3390/vaccines9050426
10.3390/pharmaceutics13010068
10.1016/j.cell.2014.03.031
10.1093/infdis/jiz433
10.1080/14760584.2017.1379396
10.1172/JCI130029
10.1038/s41577-019-0143-6
10.1080/14760584.2017.1334554
10.1093/infdis/jis684
10.4049/jimmunol.1900922
10.4049/jimmunol.1900819
10.1016/j.vaccine.2012.04.059
10.1038/s41467-019-11296-5
10.1093/cid/ciab566
10.1128/microbiolspec.MCHD-0045-2016
10.3390/vaccines6040068
10.1016/j.vaccine.2017.08.061
10.1093/infdis/jiu616
10.1093/infdis/jiy288
10.1093/cid/ciz996
10.1016/j.coi.2019.02.007
10.1111/imr.12888
10.3390/v11020122
10.3389/fimmu.2018.02469
10.1038/msb.2013.15
10.3390/v13060965
10.1080/14760584.2018.1484284
10.1111/imr.12900
10.1038/s41591-020-0769-8
10.1016/j.coi.2018.04.026
10.3389/fimmu.2019.01787
10.1016/S0065-2776(07)96005-8
10.1038/nri.2017.106
10.1089/vim.2017.0141
10.4049/jimmunol.1800986
10.3389/fimmu.2019.00223
10.1016/j.bj.2019.06.002
10.1038/s41541-021-00289-5
10.1038/nri3582
10.1038/s41541-020-00227-x
10.1128/JVI.01460-06
10.1016/j.coi.2018.05.010
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. 2022
The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. 2022
– notice: The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
5PM
DOI 10.1093/infdis/jiac068
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1537-6613
EndPage 390
ExternalDocumentID PMC9891420
35199825
10_1093_infdis_jiac068
10.1093/infdis/jiac068
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: HHSN272201400005C
– fundername: NIAID NIH HHS
  grantid: 75N93019C00051
– fundername: NIAID NIH HHS
  grantid: U01 AI144616
– fundername: ;
– fundername: ;
  grantid: HHSN272201400005C; U01 AI14461602S1; 75N93019R00028; 75N93019C00051
– fundername: ;
  grantid: 1014095
GroupedDBID ---
-DZ
-~X
..I
.2P
.55
.GJ
.I3
.XZ
.ZR
08P
0R~
123
1KJ
1TH
29K
2AX
2WC
36B
3O-
4.4
41~
48X
53G
5GY
5RE
5VS
5WD
6.Y
70D
85S
AABZA
AACGO
AACZT
AAHBH
AAHTB
AAJKP
AAJQQ
AAMVS
AANCE
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAWTL
AAYOK
ABBHK
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABLJU
ABNHQ
ABNKS
ABOCM
ABPEJ
ABPLY
ABPPZ
ABPTD
ABQLI
ABQNK
ABSAR
ABSMQ
ABTLG
ABVGC
ABWST
ABXSQ
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACHIC
ACPQN
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ACZBC
ADBBV
ADEYI
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AEXZC
AFFNX
AFFQV
AFFZL
AFHKK
AFIYH
AFOFC
AFQQW
AFSHK
AFXAL
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AI.
AIAGR
AIJHB
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APJGH
APWMN
AQDSO
AQKUS
AQVQM
ATGXG
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BR6
BTRTY
BVRKM
BZKNY
C45
CDBKE
CS3
CZ4
D-I
DAKXR
DCCCD
DIK
DILTD
DOOOF
DU5
D~K
EBS
ECGQY
EE~
EIHJH
EJD
EMOBN
ENERS
ESX
F5P
F9B
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HQ3
HTVGU
HW0
HZ~
IH2
IOX
IPSME
J21
J5H
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
LSO
LU7
M49
MBLQV
MHKGH
MJL
ML0
MVM
N4W
N9A
NEJ
NGC
NOMLY
NOYVH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P0-
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QBD
RD5
ROX
ROZ
RUSNO
RW1
RXO
SA0
SJN
TCURE
TEORI
TJX
TMA
TR2
VH1
VXZ
W2D
W8F
WH7
X7H
X7M
Y6R
YAYTL
YIF
YKOAZ
YXANX
ZE2
ZGI
ZKG
ZXP
~91
AAYXX
ABPQP
ADNBA
AEMQT
AGORE
AHGBF
AJBYB
AJNCP
ALXQX
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
5PM
ID FETCH-LOGICAL-c452t-5f680064ff62fa90776cf1acd30ce9490046bec387a61d39266d2a20057fd52a3
ISSN 0022-1899
1537-6613
IngestDate Thu Aug 21 18:37:56 EDT 2025
Fri Jul 11 08:36:23 EDT 2025
Mon Jun 30 10:37:09 EDT 2025
Wed Feb 19 02:24:45 EST 2025
Thu Apr 24 22:59:23 EDT 2025
Tue Jul 01 01:31:32 EDT 2025
Tue Feb 18 07:36:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords influenza
CD4 T cells
immune memory
vaccines
human immunity
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/pages/standard-publication-reuse-rights
The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c452t-5f680064ff62fa90776cf1acd30ce9490046bec387a61d39266d2a20057fd52a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4121-776X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9891420
PMID 35199825
PQID 3167780358
PQPubID 41591
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9891420
proquest_miscellaneous_2632800474
proquest_journals_3167780358
pubmed_primary_35199825
crossref_primary_10_1093_infdis_jiac068
crossref_citationtrail_10_1093_infdis_jiac068
oup_primary_10_1093_infdis_jiac068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
– name: United States
– name: Oxford
PublicationTitle The Journal of infectious diseases
PublicationTitleAlternate J Infect Dis
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Stebegg (2023020118012334500_CIT0046) 2018; 9
Belongia (2023020118012334500_CIT0004) 2017; 16
Wild (2023020118012334500_CIT0049) 2021; 12
Ellebedy (2023020118012334500_CIT0044) 2018; 6
DiPiazza (2023020118012334500_CIT0028) 2019; 203
Lu (2023020118012334500_CIT0045) 2018; 18
Avey (2023020118012334500_CIT0010) 2020; 204
Ueno (2023020118012334500_CIT0037) 2019; 59
Koutsakos (2023020118012334500_CIT0036) 2019; 202
Guilliams (2023020118012334500_CIT0041) 2014; 14
Richards (2023020118012334500_CIT0014) 2020; 5
Aloulou (2023020118012334500_CIT0048) 2019; 42
Francis (2023020118012334500_CIT0035) 2019; 11
He (2023020118012334500_CIT0022) 2006; 80
Richards (2023020118012334500_CIT0027) 2018; 218
Dawood (2023020118012334500_CIT0031) 2021; 73
Richards (2023020118012334500_CIT0015) 2020; 222
Wen (2023020118012334500_CIT0034) 2019; 423
Vemula (2023020118012334500_CIT0003) 2017; 16
Li (2023020118012334500_CIT0021) 2012; 30
Kotliarov (2023020118012334500_CIT0009) 2020; 26
Li (2023020118012334500_CIT0025) 2021; 6
Wang (2023020118012334500_CIT0039) 2019; 129
Tsang (2023020118012334500_CIT0011) 2014; 157
Poland (2023020118012334500_CIT0002) 2018; 17
Guthmiller (2023020118012334500_CIT0017) 2021; 13
Khurana (2023020118012334500_CIT0030) 2019; 10
Krammer (2023020118012334500_CIT0001) 2019; 19
Nayak (2023020118012334500_CIT0013) 2015; 211
Kim (2023020118012334500_CIT0006) 2018; 31
Guthmiller (2023020118012334500_CIT0016) 2018; 53
Margine (2023020118012334500_CIT0029) 2013; 81
Tan (2023020118012334500_CIT0023) 2017; 35
Nimmerjahn (2023020118012334500_CIT0042) 2007; 96
Wang (2023020118012334500_CIT0005) 2018; 53
Patel (2023020118012334500_CIT0043) 2019; 10
Castrucci (2023020118012334500_CIT0007) 2018; 14
Gouma (2023020118012334500_CIT0032) 2020; 71
Wang (2023020118012334500_CIT0040) 2019; 423
Avey (2023020118012334500_CIT0012) 2017; 2
Bournazos (2023020118012334500_CIT0033) 2016; 4
Palm (2023020118012334500_CIT0038) 2019; 10
Knight (2023020118012334500_CIT0018) 2020; 296
Richards (2023020118012334500_CIT0020) 2015; 212
Wing (2023020118012334500_CIT0047) 2020; 296
Dawen Yu (2023020118012334500_CIT0024) 2021; 9
Zhu (2023020118012334500_CIT0026) 2021; 13
Furman (2023020118012334500_CIT0008) 2013; 9
Nayak (2023020118012334500_CIT0019) 2013; 207
References_xml – volume: 14
  start-page: 637
  year: 2018
  ident: 2023020118012334500_CIT0007
  article-title: Factors affecting immune responses to the influenza vaccine.
  publication-title: Hum Vaccin Immunother
  doi: 10.1080/21645515.2017.1338547
– volume: 212
  start-page: 86
  year: 2015
  ident: 2023020118012334500_CIT0020
  article-title: Seasonal influenza can poise hosts for CD4 T-cell immunity to H7N9 avian influenza.
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiu662
– volume: 12
  start-page: 6720
  year: 2021
  ident: 2023020118012334500_CIT0049
  article-title: Pre-existing immunity and vaccine history determine hemagglutinin-specific CD4 T cell and IgG response following seasonal influenza vaccination.
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-27064-3
– volume: 423
  start-page: 63
  year: 2019
  ident: 2023020118012334500_CIT0040
  article-title: IgG Fc glycosylation in human immunity.
  publication-title: Curr Top Microbiol Immunol
– volume: 9
  start-page: 426
  year: 2021
  ident: 2023020118012334500_CIT0024
  article-title: Balanced cellular and humoral immune responses targeting multiple antigens in adults receiving a quadrivalent inactivated influenza vaccine.
  publication-title: Vaccines
  doi: 10.3390/vaccines9050426
– volume: 81
  start-page: e51112
  year: 2013
  ident: 2023020118012334500_CIT0029
  article-title: Expression of functional recombinant hemagglutinin and neuraminidase proteins from the novel H7N9 influenza virus using the baculovirus expression system.
  publication-title: J Vis Exp
– volume: 13
  start-page: 68
  year: 2021
  ident: 2023020118012334500_CIT0026
  article-title: Promising adjuvants and platforms for influenza vaccine development.
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13010068
– volume: 157
  start-page: 499
  year: 2014
  ident: 2023020118012334500_CIT0011
  article-title: Global analyses of human immune variation reveal baseline predictors of postvaccination responses.
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.031
– volume: 222
  start-page: 273
  year: 2020
  ident: 2023020118012334500_CIT0015
  article-title: Evidence that blunted CD4 T-cell responses underlie deficient protective antibody responses to influenza vaccines in repeatedly vaccinated human subjects.
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiz433
– volume: 16
  start-page: 1141
  year: 2017
  ident: 2023020118012334500_CIT0003
  article-title: Vaccine approaches conferring cross-protection against influenza viruses.
  publication-title: Expert Rev Vaccines
  doi: 10.1080/14760584.2017.1379396
– volume: 129
  start-page: 3492
  year: 2019
  ident: 2023020118012334500_CIT0039
  article-title: Functional diversification of IgGs through Fc glycosylation.
  publication-title: J Clin Invest
  doi: 10.1172/JCI130029
– volume: 19
  start-page: 383
  year: 2019
  ident: 2023020118012334500_CIT0001
  article-title: The human antibody response to influenza A virus infection and vaccination.
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-019-0143-6
– volume: 16
  start-page: 1
  year: 2017
  ident: 2023020118012334500_CIT0004
  article-title: Repeated annual influenza vaccination and vaccine effectiveness: review of evidence.
  publication-title: Expert Rev Vaccines
  doi: 10.1080/14760584.2017.1334554
– volume: 207
  start-page: 297
  year: 2013
  ident: 2023020118012334500_CIT0019
  article-title: CD4+ T-cell expansion predicts neutralizing antibody responses to monovalent, inactivated 2009 pandemic influenza A(H1N1) virus subtype H1N1 vaccine.
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jis684
– volume: 204
  start-page: 1661
  year: 2020
  ident: 2023020118012334500_CIT0010
  article-title: Seasonal variability and shared molecular signatures of inactivated influenza vaccination in young and older adults.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1900922
– volume: 203
  start-page: 1502
  year: 2019
  ident: 2023020118012334500_CIT0028
  article-title: A novel vaccine strategy to overcome poor immunogenicity of avian influenza vaccines through mobilization of memory CD4 T cells established by seasonal influenza.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1900819
– volume: 30
  start-page: 4581
  year: 2012
  ident: 2023020118012334500_CIT0021
  article-title: Ki-67 expression reveals strong, transient influenza specific CD4 T cell responses after adult vaccination.
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2012.04.059
– volume: 10
  start-page: 3338
  year: 2019
  ident: 2023020118012334500_CIT0030
  article-title: Repeat vaccination reduces antibody affinity maturation across different influenza vaccine platforms in humans.
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-11296-5
– volume: 73
  start-page: 1973
  year: 2021
  ident: 2023020118012334500_CIT0031
  article-title: Comparison of the immunogenicity of cell culture-based and recombinant quadrivalent influenza vaccines to conventional egg-based quadrivalent influenza vaccines among healthcare personnel aged 18-64 years: a randomized open-label trial.
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciab566
– volume: 4
  year: 2016
  ident: 2023020118012334500_CIT0033
  article-title: The role and function of Fcγ receptors on myeloid cells.
  publication-title: Microbiol Spectr
  doi: 10.1128/microbiolspec.MCHD-0045-2016
– volume: 6
  start-page: 68
  year: 2018
  ident: 2023020118012334500_CIT0044
  article-title: Immunizing the immune: can we overcome influenza’s most formidable challenge?
  publication-title: Vaccines
  doi: 10.3390/vaccines6040068
– volume: 35
  start-page: 5644
  year: 2017
  ident: 2023020118012334500_CIT0023
  article-title: Hemagglutinin-specific CD4+ T-cell responses following 2009-pH1N1 inactivated split-vaccine inoculation in humans.
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2017.08.061
– volume: 211
  start-page: 1408
  year: 2015
  ident: 2023020118012334500_CIT0013
  article-title: Effect of influenza A(H5N1) vaccine prepandemic priming on CD4+ T-cell responses.
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiu616
– volume: 218
  start-page: 1169
  year: 2018
  ident: 2023020118012334500_CIT0027
  article-title: Overarching immunodominance patterns and substantial diversity in specificity and functionality in the circulating human influenza A and B virus-specific CD4+ T-cell repertoire.
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiy288
– volume: 71
  start-page: 1447
  year: 2020
  ident: 2023020118012334500_CIT0032
  article-title: Comparison of human H3N2 antibody responses elicited by egg-based, cell-based, and recombinant protein-based influenza vaccines during the 2017–2018 season.
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciz996
– volume: 59
  start-page: 9
  year: 2019
  ident: 2023020118012334500_CIT0037
  article-title: Tfh cell response in influenza vaccines in humans: what is visible and what is invisible.
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2019.02.007
– volume: 296
  start-page: 104
  year: 2020
  ident: 2023020118012334500_CIT0047
  article-title: Control of foreign Ag-specific Ab responses by Treg and Tfr.
  publication-title: Immunol Rev
  doi: 10.1111/imr.12888
– volume: 11
  start-page: 122
  year: 2019
  ident: 2023020118012334500_CIT0035
  article-title: Back to the future for influenza preimmunity—looking back at influenza virus history to infer the outcome of future infections.
  publication-title: Viruses
  doi: 10.3390/v11020122
– volume: 9
  start-page: 2469
  year: 2018
  ident: 2023020118012334500_CIT0046
  article-title: Regulation of the germinal center response.
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.02469
– volume: 9
  start-page: 659
  year: 2013
  ident: 2023020118012334500_CIT0008
  article-title: Apoptosis and other immune biomarkers predict influenza vaccine responsiveness.
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2013.15
– volume: 13
  start-page: 965
  year: 2021
  ident: 2023020118012334500_CIT0017
  article-title: B cell responses against influenza viruses: short-lived humoral immunity against a life-long threat.
  publication-title: Viruses
  doi: 10.3390/v13060965
– volume: 17
  start-page: 495
  year: 2018
  ident: 2023020118012334500_CIT0002
  article-title: Influenza vaccine failure: failure to protect or failure to understand?
  publication-title: Expert Rev Vaccines
  doi: 10.1080/14760584.2018.1484284
– volume: 296
  start-page: 191
  year: 2020
  ident: 2023020118012334500_CIT0018
  article-title: Imprinting, immunodominance, and other impediments to generating broad influenza immunity.
  publication-title: Immunol Rev
  doi: 10.1111/imr.12900
– volume: 26
  start-page: 618
  year: 2020
  ident: 2023020118012334500_CIT0009
  article-title: Broad immune activation underlies shared set point signatures for vaccine responsiveness in healthy individuals and disease activity in patients with lupus.
  publication-title: Nat Med
  doi: 10.1038/s41591-020-0769-8
– volume: 53
  start-page: 124
  year: 2018
  ident: 2023020118012334500_CIT0005
  article-title: Immunological responses to influenza vaccination: lessons for improving vaccine efficacy.
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2018.04.026
– volume: 10
  start-page: 1
  year: 2019
  ident: 2023020118012334500_CIT0038
  article-title: Remembrance of things past: long-term B cell memory after infection and vaccination.
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.01787
– volume: 96
  start-page: 179
  year: 2007
  ident: 2023020118012334500_CIT0042
  article-title: Fc-receptors as regulators of immunity.
  publication-title: Adv Immunol
  doi: 10.1016/S0065-2776(07)96005-8
– volume: 18
  start-page: 46
  year: 2018
  ident: 2023020118012334500_CIT0045
  article-title: Beyond binding: antibody effector functions in infectious diseases.
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2017.106
– volume: 31
  start-page: 174
  year: 2018
  ident: 2023020118012334500_CIT0006
  article-title: Influenza virus: dealing with a drifting and shifting pathogen.
  publication-title: Viral Immunol
  doi: 10.1089/vim.2017.0141
– volume: 202
  start-page: 360
  year: 2019
  ident: 2023020118012334500_CIT0036
  article-title: With a little help from T follicular helper friends: humoral immunity to influenza vaccination.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1800986
– volume: 10
  start-page: 223
  year: 2019
  ident: 2023020118012334500_CIT0043
  article-title: Multiple variables at the leukocyte cell surface impact Fcγ receptor-dependent mechanisms.
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.00223
– volume: 423
  start-page: 95
  year: 2019
  ident: 2023020118012334500_CIT0034
  article-title: Immune complex vaccination.
  publication-title: Curr Top Microbiol Immunol
– volume: 42
  start-page: 243
  year: 2019
  ident: 2023020118012334500_CIT0048
  article-title: Regulation of B cell responses by distinct populations of CD4 T cells.
  publication-title: Biomed J
  doi: 10.1016/j.bj.2019.06.002
– volume: 2
  year: 2017
  ident: 2023020118012334500_CIT0012
  article-title: Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses.
  publication-title: Sci Immunol
– volume: 6
  start-page: 25
  year: 2021
  ident: 2023020118012334500_CIT0025
  article-title: Immunogenicity of standard, high-dose, MF59-adjuvanted, and recombinant-HA seasonal influenza vaccination in older adults.
  publication-title: NPJ Vaccines
  doi: 10.1038/s41541-021-00289-5
– volume: 14
  start-page: 94
  year: 2014
  ident: 2023020118012334500_CIT0041
  article-title: The function of Fcγ receptors in dendritic cells and macrophages.
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3582
– volume: 5
  start-page: 77
  year: 2020
  ident: 2023020118012334500_CIT0014
  article-title: Recombinant HA-based vaccine outperforms split and subunit vaccines in elicitation of influenza-specific CD4 T cells and CD4 T cell-dependent antibody responses in humans.
  publication-title: NPJ Vaccines
  doi: 10.1038/s41541-020-00227-x
– volume: 80
  start-page: 11756
  year: 2006
  ident: 2023020118012334500_CIT0022
  article-title: Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines.
  publication-title: J Virol
  doi: 10.1128/JVI.01460-06
– volume: 53
  start-page: 187
  year: 2018
  ident: 2023020118012334500_CIT0016
  article-title: Harnessing immune history to combat influenza viruses.
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2018.05.010
SSID ssj0004367
Score 2.4883695
Snippet Abstract The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with...
The most effective measure to induce protection from influenza is vaccination. Thus, yearly vaccination is recommended, which, together with infections,...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 381
SubjectTerms Adult
Antibodies
Antibodies, Viral
CD4 antigen
CD4-Positive T-Lymphocytes
Enzyme-linked immunosorbent assay
Hemagglutinin Glycoproteins, Influenza Virus
Hemagglutinins
Humans
Immunity
Immunological memory
Influenza
Influenza A
Influenza Vaccines
Influenza, Human - prevention & control
Lymphocytes
Lymphocytes B
Lymphocytes T
Major
Memory cells
Vaccination
Vaccines
Title The Negative Effect of Preexisting Immunity on Influenza Vaccine Responses Transcends the Impact of Vaccine Formulation Type and Vaccination History
URI https://www.ncbi.nlm.nih.gov/pubmed/35199825
https://www.proquest.com/docview/3167780358
https://www.proquest.com/docview/2632800474
https://pubmed.ncbi.nlm.nih.gov/PMC9891420
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIhAXBOXRhYIMQuJQpc3GeThHBKxaqu2FFvUWeR2nXVRl0T4O3d_Bz-RHMOOxk2xpReESrWLHu6v57IzH33zD2DszMCh6mQdJrCs8ZoQpJaUI5DjXMgaHvlSYnDw6SvdP4i-nyWmv96vDWlouxrt6dW1eyf9YFe6BXTFL9h8s2wwKN-Az2BeuYGG43trGR-aMtLudDjFy2mYGBS4tofnA5n8g7QKjf7YgyUrtfFMaD9QxeI8MWTMnkXNt-bGWT9kkT_quQ3BuXamvHdy82lMHaqSbJDiydkrc5p05aQoifi3n_lyocehH09lksaI47lcF3n2tztswq8v-n3v6h01ZbJtbHupIzS67Dx7ObGDeeuhINXRTwUU5IuGJ0X5PfH32ZHdlh031QFKxpV3jF_MsAP9DdFf7iKQIHKxFZ-0WVDvGuQGCqpj-8YYh9S24VaIGxPD7ROmQCgNd0e2-ufMddjeCTQ3W2_h0cNhm8Yo089r2-E8aiVGxRyPsuefXXKi1tMzO7ugqybfjNR0_Yg-d8fkHwu5j1jP1JrtHBVAvN9n9kaN2PGE_ASzcg5kTmPm04h0wcw9mPq15A2buEMobMPMWzBzAwgnMOJjv2gEzRzBzADPvgJk7MD9lJ8PPxx_3A1cyJNBxEi2CpEoletlVlUaVylGrSlcDpUsRapPHOYaDYNUSMlPpoIS9QZqWkcLIalaVSaTEM7ZRT2uzxbiuQq2lyXUYl1aWMkyVgs1_GMHYUSz7LPBWKLTT08eyLhcF8TpEQVYrnNX67H3T_wcpydzY8y0Y9a-dtr3NC7ckzQuUtchkKBJoftM0wwsDTwFVbWCCF1igQaJIbNxnzwkizVdhtc5cRkmfZWvgaTqgGP16Sz05t6L0ucwHcRS-uM1vf8ketHN8m20sZkvzCnz7xfi1nRK_AV4kBl8
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Negative+Effect+of+Preexisting+Immunity+on+Influenza+Vaccine+Responses+Transcends+the+Impact+of+Vaccine+Formulation+Type+and+Vaccination+History&rft.jtitle=The+Journal+of+infectious+diseases&rft.au=Moritzky%2C+Savannah+A&rft.au=Richards%2C+Katherine+A&rft.au=Glover%2C+Maryah+A&rft.au=Krammer%2C+Florian&rft.date=2023-02-01&rft.pub=Oxford+University+Press&rft.issn=0022-1899&rft.eissn=1537-6613&rft.volume=227&rft.issue=3&rft.spage=381&rft.epage=390&rft_id=info:doi/10.1093%2Finfdis%2Fjiac068&rft.externalDocID=10.1093%2Finfdis%2Fjiac068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1899&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1899&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1899&client=summon