Dulaglutide inhibits high glucose- induced endothelial dysfunction and NLRP3 inflammasome activation
Activation of the NLRP3 inflammasome plays an important role in high glucose- induced endothelial dysfunction in patients with type 2 diabetes mellitus (T2DM). Dulaglutide, a newly developed glucagon-like peptide-1 receptor (GLP-1R) agonist, has been approved for the management of T2DM. In the curre...
Saved in:
Published in | Archives of biochemistry and biophysics Vol. 671; pp. 203 - 209 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Activation of the NLRP3 inflammasome plays an important role in high glucose- induced endothelial dysfunction in patients with type 2 diabetes mellitus (T2DM). Dulaglutide, a newly developed glucagon-like peptide-1 receptor (GLP-1R) agonist, has been approved for the management of T2DM. In the current study, we aimed to investigate whether dulaglutide possesses a protective effect against high glucose- induced activation of the NLRP3 inflammasome. Our results indicate that dulaglutide treatment prevented high glucose- induced generation of reactive oxygen species (ROS) and protein carbonyl, as well as the expression of NADPH oxidase 4 (NOX-4) in human umbilical vein endothelial cells (HUVECs). Dulaglutide treatment could inhibit high glucose- induced release of lactate dehydrogenase (LDH) and the expression of TXNIP. Dulaglutide suppressed high glucose- induced activation of NLRP3 inflammasome by reducing the expression of NLRP3, ASC, and cleaved caspase 1 (P10). Notably, dulaglutide treatment suppressed high glucose- induced maturation of IL-1β and IL-18. Mechanistically, our findings indicate that SIRT1 was involved in this process by showing that knockdown of SIRT1 by transfection with SIRT1 siRNA abolished the inhibitory effects of dulaglutide on IL-1β and IL-18 secretion via suppression of NLRP3, ASC, and p10. These data suggest that dulaglutide might serve as a potential drug for the treatment of cardiovascular complications in T2DM patients. |
---|---|
AbstractList | Activation of the NLRP3 inflammasome plays an important role in high glucose- induced endothelial dysfunction in patients with type 2 diabetes mellitus (T2DM). Dulaglutide, a newly developed glucagon-like peptide-1 receptor (GLP-1R) agonist, has been approved for the management of T2DM. In the current study, we aimed to investigate whether dulaglutide possesses a protective effect against high glucose- induced activation of the NLRP3 inflammasome. Our results indicate that dulaglutide treatment prevented high glucose- induced generation of reactive oxygen species (ROS) and protein carbonyl, as well as the expression of NADPH oxidase 4 (NOX-4) in human umbilical vein endothelial cells (HUVECs). Dulaglutide treatment could inhibit high glucose- induced release of lactate dehydrogenase (LDH) and the expression of TXNIP. Dulaglutide suppressed high glucose- induced activation of NLRP3 inflammasome by reducing the expression of NLRP3, ASC, and cleaved caspase 1 (P10). Notably, dulaglutide treatment suppressed high glucose- induced maturation of IL-1β and IL-18. Mechanistically, our findings indicate that SIRT1 was involved in this process by showing that knockdown of SIRT1 by transfection with SIRT1 siRNA abolished the inhibitory effects of dulaglutide on IL-1β and IL-18 secretion via suppression of NLRP3, ASC, and p10. These data suggest that dulaglutide might serve as a potential drug for the treatment of cardiovascular complications in T2DM patients.Activation of the NLRP3 inflammasome plays an important role in high glucose- induced endothelial dysfunction in patients with type 2 diabetes mellitus (T2DM). Dulaglutide, a newly developed glucagon-like peptide-1 receptor (GLP-1R) agonist, has been approved for the management of T2DM. In the current study, we aimed to investigate whether dulaglutide possesses a protective effect against high glucose- induced activation of the NLRP3 inflammasome. Our results indicate that dulaglutide treatment prevented high glucose- induced generation of reactive oxygen species (ROS) and protein carbonyl, as well as the expression of NADPH oxidase 4 (NOX-4) in human umbilical vein endothelial cells (HUVECs). Dulaglutide treatment could inhibit high glucose- induced release of lactate dehydrogenase (LDH) and the expression of TXNIP. Dulaglutide suppressed high glucose- induced activation of NLRP3 inflammasome by reducing the expression of NLRP3, ASC, and cleaved caspase 1 (P10). Notably, dulaglutide treatment suppressed high glucose- induced maturation of IL-1β and IL-18. Mechanistically, our findings indicate that SIRT1 was involved in this process by showing that knockdown of SIRT1 by transfection with SIRT1 siRNA abolished the inhibitory effects of dulaglutide on IL-1β and IL-18 secretion via suppression of NLRP3, ASC, and p10. These data suggest that dulaglutide might serve as a potential drug for the treatment of cardiovascular complications in T2DM patients. Activation of the NLRP3 inflammasome plays an important role in high glucose- induced endothelial dysfunction in patients with type 2 diabetes mellitus (T2DM). Dulaglutide, a newly developed glucagon-like peptide-1 receptor (GLP-1R) agonist, has been approved for the management of T2DM. In the current study, we aimed to investigate whether dulaglutide possesses a protective effect against high glucose- induced activation of the NLRP3 inflammasome. Our results indicate that dulaglutide treatment prevented high glucose- induced generation of reactive oxygen species (ROS) and protein carbonyl, as well as the expression of NADPH oxidase 4 (NOX-4) in human umbilical vein endothelial cells (HUVECs). Dulaglutide treatment could inhibit high glucose- induced release of lactate dehydrogenase (LDH) and the expression of TXNIP. Dulaglutide suppressed high glucose- induced activation of NLRP3 inflammasome by reducing the expression of NLRP3, ASC, and cleaved caspase 1 (P10). Notably, dulaglutide treatment suppressed high glucose- induced maturation of IL-1β and IL-18. Mechanistically, our findings indicate that SIRT1 was involved in this process by showing that knockdown of SIRT1 by transfection with SIRT1 siRNA abolished the inhibitory effects of dulaglutide on IL-1β and IL-18 secretion via suppression of NLRP3, ASC, and p10. These data suggest that dulaglutide might serve as a potential drug for the treatment of cardiovascular complications in T2DM patients. |
Author | Lv, Zhengbing Ye, Qiran Luo, Xiaojia Chen, Xiaoping Liu, Jianxiong He, Sen Hu, Yongmei |
Author_xml | – sequence: 1 givenname: Xiaojia surname: Luo fullname: Luo, Xiaojia organization: Department of Cardiovascular Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China – sequence: 2 givenname: Yongmei surname: Hu fullname: Hu, Yongmei organization: Department of Cardiovascular Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China – sequence: 3 givenname: Sen surname: He fullname: He, Sen organization: Department of Cardiovascular Medicine, Chengdu Second People’s Hospital, Chengdu, Sichuan, 610000, China – sequence: 4 givenname: Qiran surname: Ye fullname: Ye, Qiran organization: Department of Biotechnology, College of Life Science Sichuan University, Chengdu, Sichuan, 610000, China – sequence: 5 givenname: Zhengbing surname: Lv fullname: Lv, Zhengbing organization: Department of Cardiovascular Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China – sequence: 6 givenname: Jianxiong surname: Liu fullname: Liu, Jianxiong organization: Department of Cardiovascular Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China – sequence: 7 givenname: Xiaoping surname: Chen fullname: Chen, Xiaoping email: chenxp3105@163.com organization: Department of Cardiovascular Medicine, Chengdu Second People’s Hospital, Chengdu, Sichuan, 610000, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31302140$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URLcLP4ALypFLwthOnEScUKGAtAKE4Gz5Y9z1ynFK7FTqv8fbLRw4VGgOlsbPM4f3vSBncY5IyEsKDQUq3hwapXXDgI4N9A3A8IRsKIyiBj60Z2QDALweB0HPyUVKBwBKW8GekXNOOTDawobY92tQ12HN3mLl495rn1O199f7qmzNnLAua7satBVGO-c9Bq9CZe-SW6PJfo6Virb6svv-jRfSBTVNKs0TVqr83qoj8Zw8dSokfPHwbsnPqw8_Lj_Vu68fP1--29Wm7ViuOwRtxk4465zjTFshVE_5oHutDLRKq4GxsVVOAwqtmWidsQDjKDhSEC3fktenuzfL_GvFlOXkk8EQVMR5TZKxQZTp6fgfaDfQruclqS159YCuekIrbxY_qeVO_gmxAPQEmGVOaUH3F6Egj0XJgyxFyWNREnpZiipO_49jfL4PKy_Kh0fNtycTS5K3HheZjMdYCvILmizt7B-xfwN11a1o |
CitedBy_id | crossref_primary_10_1536_ihj_23_576 crossref_primary_10_1016_j_intimp_2024_113716 crossref_primary_10_3390_biom13121695 crossref_primary_10_1016_j_jlr_2022_100298 crossref_primary_10_3389_fimmu_2022_900254 crossref_primary_10_3390_pharmaceutics15071858 crossref_primary_10_1007_s10787_024_01556_2 crossref_primary_10_1016_j_cpcardiol_2024_102489 crossref_primary_10_3389_fimmu_2023_1214289 crossref_primary_10_1111_bph_16479 crossref_primary_10_3892_ijmm_2021_5052 crossref_primary_10_1124_pharmrev_120_000096 crossref_primary_10_1096_fj_202000734R crossref_primary_10_3390_biomedicines13030728 crossref_primary_10_1159_000519008 crossref_primary_10_3389_fendo_2020_568861 crossref_primary_10_3390_ijms22157772 crossref_primary_10_1186_s12933_022_01634_1 crossref_primary_10_3390_antiox14030256 crossref_primary_10_3389_fcvm_2024_1379189 crossref_primary_10_3389_fphar_2024_1349069 crossref_primary_10_1016_j_atherosclerosis_2024_117560 crossref_primary_10_1155_2021_5568159 crossref_primary_10_47803_rjc_2021_31_3_517 crossref_primary_10_1002_jbt_23203 crossref_primary_10_1038_s41419_020_02985_x crossref_primary_10_3390_antiox8090346 crossref_primary_10_1007_s11154_021_09669_7 crossref_primary_10_3390_ijms24098162 crossref_primary_10_1007_s10522_020_09873_z crossref_primary_10_1186_s12933_020_01183_5 crossref_primary_10_1016_j_lfs_2023_121546 crossref_primary_10_1016_j_cbi_2020_108968 crossref_primary_10_1016_j_peptides_2025_171366 crossref_primary_10_1016_j_exger_2022_112064 crossref_primary_10_3389_fphar_2024_1396656 crossref_primary_10_1016_j_bbrc_2024_150002 crossref_primary_10_3390_ijms22041693 crossref_primary_10_3390_antiox12091729 crossref_primary_10_3390_pharmaceutics16111353 crossref_primary_10_1016_j_biopha_2022_113517 crossref_primary_10_1016_j_cytogfr_2023_09_007 crossref_primary_10_1186_s12933_023_01965_7 crossref_primary_10_2147_JIR_S344730 crossref_primary_10_1016_j_coph_2023_102355 crossref_primary_10_3389_fphar_2024_1422740 crossref_primary_10_3390_ijms24097789 crossref_primary_10_1021_acsomega_0c06326 |
Cites_doi | 10.3389/fphys.2017.00519 10.1007/s11010-019-03503-0 10.1371/journal.pone.0097554 10.1111/bcpt.12402 10.1016/j.bbrc.2018.09.134 10.18632/aging.101068 10.1155/2016/6973175 10.1530/JME-12-0166 10.1016/j.redox.2015.01.008 10.1155/2017/7543973 10.1177/1479164117719058 10.1002/jcp.27575 10.1016/j.redox.2018.101095 10.1002/jat.3470 10.1007/s42000-018-0038-0 10.2147/JIR.S141220 10.1007/s13300-018-0560-8 10.1016/j.freeradbiomed.2009.02.018 10.3390/ijms140714105 10.1155/2019/1082497 10.1016/j.imlet.2017.10.010 10.1038/nm.3265 10.1016/j.molimm.2019.01.006 10.2174/1573399052952550 10.1007/s12015-006-0015-x |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier Inc. |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.abb.2019.07.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1096-0384 |
EndPage | 209 |
ExternalDocumentID | 31302140 10_1016_j_abb_2019_07_008 S0003986119302644 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABGSF ABJNI ABMAC ABPPZ ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DOVZS EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLW IH2 IHE J1W KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPCBC SSU SSZ T5K TWZ WH7 ~02 ~G- .55 .GJ .HR 3O- 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF FEDTE FGOYB G-2 HVGLF HZ~ K-O MVM NEJ OHT R2- SBG SEW SSH UQL VH1 WUQ X7M XOL XPP YYP ZGI ZMT ZXP ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c452t-5e0bc956fdfff32bd66a7138b7bac04aba82294afb0e6bb264fcd009963e10643 |
IEDL.DBID | .~1 |
ISSN | 0003-9861 1096-0384 |
IngestDate | Fri Jul 11 05:25:14 EDT 2025 Fri Jul 11 12:43:50 EDT 2025 Thu Apr 03 07:02:03 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Tue Jul 01 03:48:14 EDT 2025 Fri Feb 23 02:29:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Endothelial dysfunction Type 2 diabetes mellitus Cardiovascular diseases NLRP3 inflammasome Dulaglutide IL-18 |
Language | English |
License | Copyright © 2019. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-5e0bc956fdfff32bd66a7138b7bac04aba82294afb0e6bb264fcd009963e10643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31302140 |
PQID | 2258157331 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2286868719 proquest_miscellaneous_2258157331 pubmed_primary_31302140 crossref_primary_10_1016_j_abb_2019_07_008 crossref_citationtrail_10_1016_j_abb_2019_07_008 elsevier_sciencedirect_doi_10_1016_j_abb_2019_07_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-15 |
PublicationDateYYYYMMDD | 2019-08-15 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Archives of biochemistry and biophysics |
PublicationTitleAlternate | Arch Biochem Biophys |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Sepehri, Kiani, Afshari, Kohan, Dalvand, Ghavami (bib23) 2017; 192 Groslambert, Py (bib5) 2018; 11 Liu, Fan, Deng (bib25) 2017; 14 Heile, Wyne, Billings, Cannon, Handelsman, Shannon (bib9) 2018; 24 Kang, Ma, Yu, Liang, Zhang, Liao, Wen, Zhan, Bao, Cheng (bib2) 2019; 21 Eriksson, Nyström (bib16) 2015; 117 Nagaike, Ohara, Kohata, Hiromura, Tomoyasu, Takada, Yamamoto, Hayashi, Fukui, Hirano (bib10) 2019; 10 Sheng, Gong, Niu, Liu, Yan, Lu, Zhang, Hu, Zhao, Zhang, Tang, Gong (bib11) 2009; 46 Jourdan, Godlewski, Cinar, Bertola, Szanda, Liu, Tam, Han, Mukhopadhyay, Skarulis, Ju, Aouadi, Czech, Kunos (bib24) 2013; 19 Guerci, Charbonnel, Gourdy, Hadjadj, Hanaire, Marre, Vergès (bib17) 2019 Jan 21 Leng, Zhang, Liu, Zhang, Liu, Wang, Lu (bib22) 2019; 2019 Zhang, Huang, Zeng, Wu, Zhang, Chen (bib14) 2017; 2017 Jiang, Jiang, Zhang, Ding, Zhou (bib27) 2019; 107 Erdogdu, Eriksson, Xu, Sjoholm, Zhang, Nystrom (bib18) 2013; 50 Zhu, Feng, He, Li, Gong (bib26) 2018; 505 Kitada, Ogura, Koya (bib28) 2016; 8 Elia, Montecucco, Portincasa, Sahebkar, Mollazadeh, Carbone (bib3) 2019; 234 Sfairopoulos, Liatis, Tigas, Liberopoulos (bib8) 2018; 17 Cao, Gong, Liu, Zhou, Fang, Zhang, Li, Li (bib20) 2017; 37 Sharma, Rizky, Stefanovic (bib1) 2017 Rajaraman, Ramadas, Krishnasamy, Ravi, Pathak, Devasena, Swaminathan, Ganeshprasad, Kuppuswamy, Vedantham (bib15) 2019 Luo, Huang, Liu, Liang, Wei, Ke, Zeng, Huang, He (bib6) 2017; 8 Park, Zhang, Georgescu, Johnson, Kong, Galper (bib21) 2006; 2 Krasner, Ido, Ruderman, Cacicedo (bib19) 2014; 9 Nakagami, Kaneda, Ogihara, Morishita (bib12) 2005; 1 Abderrazak, Syrovets, Couchie, El Hadri, Friguet, Simmet, Rouis (bib4) 2015; 4 Fu, Wang, Du, Xu, Cao, Fan (bib7) 2013; 14 Feng, Gu, Gou, Huang, Gao, Chen, Long, Zhou, Yang, Liu, Lü, Luo, Xu (bib13) 2016; 2016 Eriksson (10.1016/j.abb.2019.07.008_bib16) 2015; 117 Erdogdu (10.1016/j.abb.2019.07.008_bib18) 2013; 50 Luo (10.1016/j.abb.2019.07.008_bib6) 2017; 8 Fu (10.1016/j.abb.2019.07.008_bib7) 2013; 14 Park (10.1016/j.abb.2019.07.008_bib21) 2006; 2 Sheng (10.1016/j.abb.2019.07.008_bib11) 2009; 46 Cao (10.1016/j.abb.2019.07.008_bib20) 2017; 37 Nagaike (10.1016/j.abb.2019.07.008_bib10) 2019; 10 Feng (10.1016/j.abb.2019.07.008_bib13) 2016; 2016 Liu (10.1016/j.abb.2019.07.008_bib25) 2017; 14 Kang (10.1016/j.abb.2019.07.008_bib2) 2019; 21 Nakagami (10.1016/j.abb.2019.07.008_bib12) 2005; 1 Leng (10.1016/j.abb.2019.07.008_bib22) 2019; 2019 Groslambert (10.1016/j.abb.2019.07.008_bib5) 2018; 11 Zhu (10.1016/j.abb.2019.07.008_bib26) 2018; 505 Zhang (10.1016/j.abb.2019.07.008_bib14) 2017; 2017 Sepehri (10.1016/j.abb.2019.07.008_bib23) 2017; 192 Sharma (10.1016/j.abb.2019.07.008_bib1) 2017 Guerci (10.1016/j.abb.2019.07.008_bib17) 2019 Jiang (10.1016/j.abb.2019.07.008_bib27) 2019; 107 Heile (10.1016/j.abb.2019.07.008_bib9) 2018; 24 Abderrazak (10.1016/j.abb.2019.07.008_bib4) 2015; 4 Krasner (10.1016/j.abb.2019.07.008_bib19) 2014; 9 Elia (10.1016/j.abb.2019.07.008_bib3) 2019; 234 Kitada (10.1016/j.abb.2019.07.008_bib28) 2016; 8 Sfairopoulos (10.1016/j.abb.2019.07.008_bib8) 2018; 17 Rajaraman (10.1016/j.abb.2019.07.008_bib15) 2019 Jourdan (10.1016/j.abb.2019.07.008_bib24) 2013; 19 |
References_xml | – volume: 2 start-page: 93 year: 2006 end-page: 102 ident: bib21 article-title: Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis publication-title: Stem Cell Rev. – volume: 234 start-page: 2121 year: 2019 end-page: 2133 ident: bib3 article-title: Update on pathological platelet activation in coronary thrombosis publication-title: J. Cell. Physiol. – volume: 14 start-page: 381 year: 2017 end-page: 394 ident: bib25 article-title: High glucose-induced endothelial progenitor cell dysfunction publication-title: Diabetes Vasc. Dis. Res. – volume: 17 start-page: 333 year: 2018 end-page: 350 ident: bib8 article-title: Clinical pharmacology of glucagon-like peptide-1 receptor agonists publication-title: Hormones (Basel) – volume: 117 start-page: 15 year: 2015 end-page: 25 ident: bib16 article-title: Antidiabetic agents and endothelial dysfunction - beyond glucose control publication-title: Basic Clin. Pharmacol. Toxicol. – volume: 11 start-page: 359 year: 2018 end-page: 374 ident: bib5 article-title: Spotlight on the NLRP3 inflammasome pathway publication-title: J. Inflamm. Res. – volume: 37 start-page: 1359 year: 2017 end-page: 1369 ident: bib20 article-title: The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review publication-title: J. Appl. Toxicol. – volume: 19 start-page: 1132 year: 2013 end-page: 1140 ident: bib24 article-title: Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes publication-title: Nat. Med. – volume: 2019 start-page: 1082497 year: 2019 ident: bib22 article-title: Astragaloside IV suppresses high glucose-induced NLRP3 inflammasome activation by inhibiting TLR4/NF-κB and CaSR publication-title: Mediat. Inflamm. – volume: 2017 year: 2017 ident: bib14 article-title: Sirt1 inhibits oxidative stress in vascular endothelial cells publication-title: Oxid. Med. Cell Longev. – volume: 8 start-page: 519 year: 2017 ident: bib6 article-title: NLRP3 inflammasome as a molecular marker in diabetic cardiomyopathy publication-title: Front. Physiol. – start-page: 30021 year: 2019 Jan 21 end-page: 30027 ident: bib17 article-title: Efficacy and adherence of glucagon-like peptide-1 receptor agonist treatment in patients with type 2 diabetes mellitus in real-life settings publication-title: Diabetes Metab. – start-page: 16 year: 2017 end-page: 33 ident: bib1 article-title: The nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) activator dh404 protects against diabetes-induced endothelial dysfunction publication-title: Cardiovasc. Diabetol. – volume: 21 start-page: 101095 year: 2019 ident: bib2 article-title: HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation publication-title: Redox Biol. – year: 2019 ident: bib15 article-title: Hyperglycaemia cause vascular inflammation through advanced glycation end products/early growth response-1 axis in gestational diabetes mellitus publication-title: Mol. Cell. Biochem. – volume: 1 start-page: 59 year: 2005 end-page: 63 ident: bib12 article-title: Endothelial dysfunction in hyperglycemia as a trigger of atherosclerosis publication-title: Curr. Diabetes Rev. – volume: 50 start-page: 229 year: 2013 end-page: 241 ident: bib18 article-title: Exendin-4 protects endothelial cells from lipoapoptosis by PKA, PI3K, eNOS, p38 MAPK, and JNK pathways publication-title: J. Mol. Endocrinol. – volume: 14 start-page: 14105 year: 2013 end-page: 14118 ident: bib7 article-title: Resveratrol inhibits ionising irradiation-induced inflammation in MSCs by activating SIRT1 and limiting NLRP-3 inflammasome activation publication-title: Int. J. Mol. Sci. – volume: 505 start-page: 523 year: 2018 end-page: 529 ident: bib26 article-title: Liraglutide protects non-alcoholic fatty liver disease via inhibiting NLRP3 inflammasome activation in a mouse model induced by high-fat diet publication-title: Biochem. Biophys. Res. Commun. – volume: 107 start-page: 54 year: 2019 end-page: 60 ident: bib27 article-title: Anagliptin ameliorates high glucose- induced endothelial dysfunction via suppression of NLRP3 inflammasome activation mediated by SIRT1 publication-title: Mol. Immunol. – volume: 192 start-page: 97 year: 2017 end-page: 103 ident: bib23 article-title: Inflammasomes and type 2 diabetes: an updated systematic review publication-title: Immunol. Lett. – volume: 4 start-page: 296 year: 2015 end-page: 307 ident: bib4 article-title: NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases publication-title: Redox Biol. – volume: 2016 start-page: 6973175 year: 2016 ident: bib13 article-title: High glucose and lipopolysaccharide prime NLRP3 inflammasome via ROS/TXNIP pathway in mesangial cells publication-title: J. Diabetes Res. – volume: 8 start-page: 2290 year: 2016 end-page: 2307 ident: bib28 article-title: The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis publication-title: Aging (Albany NY) – volume: 24 start-page: S42 year: 2018 end-page: S52 ident: bib9 article-title: Cardiovascular outcomes with once-weekly GLP-1 RAs: clinical and economic implications publication-title: J. Manag. Care Spec. Pharm. – volume: 46 start-page: 1362 year: 2009 end-page: 1375 ident: bib11 article-title: Inhibition of gamma-secretase activity reduces Abeta production, reduces oxidative stress, increases mitochondrial activity and leads to reduced vulnerability to apoptosis: implications for the treatment of Alzheimer's disease publication-title: Free Radic. Biol. Med. – volume: 10 start-page: 215 year: 2019 end-page: 228 ident: bib10 article-title: Effect of dulaglutide versus liraglutide on glucose variability, oxidative stress, and endothelial function in type 2 diabetes: a prospective study publication-title: Diabetes Ther. – volume: 9 year: 2014 ident: bib19 article-title: Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism publication-title: PLoS One – volume: 8 start-page: 519 year: 2017 ident: 10.1016/j.abb.2019.07.008_bib6 article-title: NLRP3 inflammasome as a molecular marker in diabetic cardiomyopathy publication-title: Front. Physiol. doi: 10.3389/fphys.2017.00519 – start-page: 16 year: 2017 ident: 10.1016/j.abb.2019.07.008_bib1 article-title: The nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) activator dh404 protects against diabetes-induced endothelial dysfunction publication-title: Cardiovasc. Diabetol. – year: 2019 ident: 10.1016/j.abb.2019.07.008_bib15 article-title: Hyperglycaemia cause vascular inflammation through advanced glycation end products/early growth response-1 axis in gestational diabetes mellitus publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-019-03503-0 – start-page: 30021 issue: 19 year: 2019 ident: 10.1016/j.abb.2019.07.008_bib17 article-title: Efficacy and adherence of glucagon-like peptide-1 receptor agonist treatment in patients with type 2 diabetes mellitus in real-life settings publication-title: Diabetes Metab. – volume: 9 year: 2014 ident: 10.1016/j.abb.2019.07.008_bib19 article-title: Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism publication-title: PLoS One doi: 10.1371/journal.pone.0097554 – volume: 117 start-page: 15 issue: 1 year: 2015 ident: 10.1016/j.abb.2019.07.008_bib16 article-title: Antidiabetic agents and endothelial dysfunction - beyond glucose control publication-title: Basic Clin. Pharmacol. Toxicol. doi: 10.1111/bcpt.12402 – volume: 505 start-page: 523 issue: 2 year: 2018 ident: 10.1016/j.abb.2019.07.008_bib26 article-title: Liraglutide protects non-alcoholic fatty liver disease via inhibiting NLRP3 inflammasome activation in a mouse model induced by high-fat diet publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.09.134 – volume: 8 start-page: 2290 issue: 10 year: 2016 ident: 10.1016/j.abb.2019.07.008_bib28 article-title: The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis publication-title: Aging (Albany NY) doi: 10.18632/aging.101068 – volume: 2016 start-page: 6973175 year: 2016 ident: 10.1016/j.abb.2019.07.008_bib13 article-title: High glucose and lipopolysaccharide prime NLRP3 inflammasome via ROS/TXNIP pathway in mesangial cells publication-title: J. Diabetes Res. doi: 10.1155/2016/6973175 – volume: 50 start-page: 229 year: 2013 ident: 10.1016/j.abb.2019.07.008_bib18 article-title: Exendin-4 protects endothelial cells from lipoapoptosis by PKA, PI3K, eNOS, p38 MAPK, and JNK pathways publication-title: J. Mol. Endocrinol. doi: 10.1530/JME-12-0166 – volume: 4 start-page: 296 year: 2015 ident: 10.1016/j.abb.2019.07.008_bib4 article-title: NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases publication-title: Redox Biol. doi: 10.1016/j.redox.2015.01.008 – volume: 2017 year: 2017 ident: 10.1016/j.abb.2019.07.008_bib14 article-title: Sirt1 inhibits oxidative stress in vascular endothelial cells publication-title: Oxid. Med. Cell Longev. doi: 10.1155/2017/7543973 – volume: 14 start-page: 381 issue: 5 year: 2017 ident: 10.1016/j.abb.2019.07.008_bib25 article-title: High glucose-induced endothelial progenitor cell dysfunction publication-title: Diabetes Vasc. Dis. Res. doi: 10.1177/1479164117719058 – volume: 234 start-page: 2121 issue: 3 year: 2019 ident: 10.1016/j.abb.2019.07.008_bib3 article-title: Update on pathological platelet activation in coronary thrombosis publication-title: J. Cell. Physiol. doi: 10.1002/jcp.27575 – volume: 21 start-page: 101095 year: 2019 ident: 10.1016/j.abb.2019.07.008_bib2 article-title: HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation publication-title: Redox Biol. doi: 10.1016/j.redox.2018.101095 – volume: 37 start-page: 1359 issue: 12 year: 2017 ident: 10.1016/j.abb.2019.07.008_bib20 article-title: The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review publication-title: J. Appl. Toxicol. doi: 10.1002/jat.3470 – volume: 17 start-page: 333 issue: 3 year: 2018 ident: 10.1016/j.abb.2019.07.008_bib8 article-title: Clinical pharmacology of glucagon-like peptide-1 receptor agonists publication-title: Hormones (Basel) doi: 10.1007/s42000-018-0038-0 – volume: 11 start-page: 359 year: 2018 ident: 10.1016/j.abb.2019.07.008_bib5 article-title: Spotlight on the NLRP3 inflammasome pathway publication-title: J. Inflamm. Res. doi: 10.2147/JIR.S141220 – volume: 10 start-page: 215 issue: 1 year: 2019 ident: 10.1016/j.abb.2019.07.008_bib10 article-title: Effect of dulaglutide versus liraglutide on glucose variability, oxidative stress, and endothelial function in type 2 diabetes: a prospective study publication-title: Diabetes Ther. doi: 10.1007/s13300-018-0560-8 – volume: 46 start-page: 1362 issue: 10 year: 2009 ident: 10.1016/j.abb.2019.07.008_bib11 article-title: Inhibition of gamma-secretase activity reduces Abeta production, reduces oxidative stress, increases mitochondrial activity and leads to reduced vulnerability to apoptosis: implications for the treatment of Alzheimer's disease publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.02.018 – volume: 14 start-page: 14105 year: 2013 ident: 10.1016/j.abb.2019.07.008_bib7 article-title: Resveratrol inhibits ionising irradiation-induced inflammation in MSCs by activating SIRT1 and limiting NLRP-3 inflammasome activation publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms140714105 – volume: 2019 start-page: 1082497 year: 2019 ident: 10.1016/j.abb.2019.07.008_bib22 article-title: Astragaloside IV suppresses high glucose-induced NLRP3 inflammasome activation by inhibiting TLR4/NF-κB and CaSR publication-title: Mediat. Inflamm. doi: 10.1155/2019/1082497 – volume: 192 start-page: 97 year: 2017 ident: 10.1016/j.abb.2019.07.008_bib23 article-title: Inflammasomes and type 2 diabetes: an updated systematic review publication-title: Immunol. Lett. doi: 10.1016/j.imlet.2017.10.010 – volume: 19 start-page: 1132 issue: 9 year: 2013 ident: 10.1016/j.abb.2019.07.008_bib24 article-title: Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes publication-title: Nat. Med. doi: 10.1038/nm.3265 – volume: 107 start-page: 54 year: 2019 ident: 10.1016/j.abb.2019.07.008_bib27 article-title: Anagliptin ameliorates high glucose- induced endothelial dysfunction via suppression of NLRP3 inflammasome activation mediated by SIRT1 publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2019.01.006 – volume: 24 start-page: S42 issue: 9-a Suppl year: 2018 ident: 10.1016/j.abb.2019.07.008_bib9 article-title: Cardiovascular outcomes with once-weekly GLP-1 RAs: clinical and economic implications publication-title: J. Manag. Care Spec. Pharm. – volume: 1 start-page: 59 issue: 1 year: 2005 ident: 10.1016/j.abb.2019.07.008_bib12 article-title: Endothelial dysfunction in hyperglycemia as a trigger of atherosclerosis publication-title: Curr. Diabetes Rev. doi: 10.2174/1573399052952550 – volume: 2 start-page: 93 issue: 2 year: 2006 ident: 10.1016/j.abb.2019.07.008_bib21 article-title: Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis publication-title: Stem Cell Rev. doi: 10.1007/s12015-006-0015-x |
SSID | ssj0011462 |
Score | 2.507837 |
Snippet | Activation of the NLRP3 inflammasome plays an important role in high glucose- induced endothelial dysfunction in patients with type 2 diabetes mellitus (T2DM).... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 203 |
SubjectTerms | agonists CARD Signaling Adaptor Proteins - metabolism Cardiovascular diseases Carrier Proteins - metabolism Caspase 1 - metabolism caspase-1 drugs Dulaglutide Endothelial Cells - drug effects Endothelial dysfunction glucagon-like peptide 1 glucagon-like peptide receptors Glucagon-Like Peptides - analogs & derivatives Glucagon-Like Peptides - pharmacology glucose Glucose - pharmacology Human Umbilical Vein Endothelial Cells Humans IL-18 Immunoglobulin Fc Fragments - pharmacology inflammasomes Inflammasomes - drug effects Inflammasomes - metabolism interleukin-18 interleukin-1beta L-Lactate Dehydrogenase - metabolism lactate dehydrogenase NAD(P)H oxidase (H2O2-forming) NADPH Oxidase 4 - metabolism NLR Family, Pyrin Domain-Containing 3 Protein - metabolism NLRP3 inflammasome noninsulin-dependent diabetes mellitus Oxidative Stress - drug effects patients protective effect Protein Carbonylation - drug effects reactive oxygen species Reactive Oxygen Species - metabolism Recombinant Fusion Proteins - pharmacology secretion Sirtuin 1 - metabolism small interfering RNA transfection Type 2 diabetes mellitus |
Title | Dulaglutide inhibits high glucose- induced endothelial dysfunction and NLRP3 inflammasome activation |
URI | https://dx.doi.org/10.1016/j.abb.2019.07.008 https://www.ncbi.nlm.nih.gov/pubmed/31302140 https://www.proquest.com/docview/2258157331 https://www.proquest.com/docview/2286868719 |
Volume | 671 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdCiVohexrdrVWkYoHoTYmWQySY7rtmWrdhGx0Nswn21kN1vc3UMv_va-l2QWBN1DCYRkeAPDvMf7_iDkWFc4NcQWSahElYgMXroQNnGZ9EVpKu7bpj6XEzm-El-u8-stMoq1MJhW2fP-jqe33LpfOelv8-SurrHGl2VVKTmoIAzFOlawiwKp_NOfdZoHFt2mcWoeQsfIZpvjpY3B7K6q7d-JEyb_LZv-p3u2Muj8BXneK4902J1vl2z5Zo_sDxswnGf39ANt0zlbP_ke2fkcv56O4lC3feJOV1N9g9TmPK2b29rUywXFnsW0T15PYNkBvh31jcPyrClQKHX3C5SAiEWqG0cn3358zwAyAEHN9GI-8xQrJDr_7ktydX72czRO-kELiRV5ukxyz4wFQym4EEKWGielBuO1NIXRlgltNLaFFzoY5qUxcNnBOtQtZeY56jSvyHYzb_wBoSb33DNmpZVB5N7C1iwtNS9k7lJb-QFh8YqV7buQ4zCMqYrpZr8UYEUhVhTD2Hg5IB_XW-66FhybgEXEm_qLjhSIiE3b3kccK8AIBk104-erhQJ-V3JsGsk3wZQSnoJXA_K6I5D1STOMDIMV--ZxB3tLnuEferF5fki2l79X_h2oQUtz1NL5EXkyvPg6njwAJ2sGNQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5Sh5JcSpv04T63UHooiGil1Uo6um6D0zimlARyW_aZqthyiO1D_n1n9DAUWh-KQIjVLiw7wzx2Zr4B-KBL6hpi8yiUooxEii-dCxu5VPq8MCX3DajPxUxOrsS36-x6D8Z9LQylVXayv5XpjbTuRk660zy5rSqq8Y3TspAcTZCY1PoD2Cd0qmwA-6Oz88lsG0xAYZD0jfNoQR_cbNK8tDGU4FU2EJ7UZPLv6ulf5mejhk4fw6POfmSjdotPYM_XR3A8qtF3Xtyzj6zJ6Gyuyo_g4ef-62Dc93U7BvdlM9c3xHDOs6r-WZlqvWIEW8y6_PUIhx2S3DFfO6rQmiOTMne_IiVIhGS6dmw2_fE9xZkBeWqhV8uFZ1Qk0V7xPoWr06-X40nU9VqIrMiSdZT52Fj0lYILIaSJcVJq9F8LkxttY6GNJmR4oYOJvTQGzztYR-alTD0ns-YZDOpl7V8AM5nnPo6ttDKIzFtcmiaF5rnMXGJLP4S4P2JlOyBy6ocxV33G2S-FVFFEFRVTeLwYwqftktsWhWPXZNHTTf3BSgq1xK5l73saK6QIxU107ZeblUKRV3DCjeS75hQSn5yXQ3jeMsh2pykFh9GRffl_G3sHB5PLi6mans3OX8Eh_aFLbZ69hsH6buPfoFW0Nm87rv8NG4sI5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dulaglutide+inhibits+high+glucose-+induced+endothelial+dysfunction+and+NLRP3+inflammasome+activation&rft.jtitle=Archives+of+biochemistry+and+biophysics&rft.au=Luo%2C+Xiaojia&rft.au=Hu%2C+Yongmei&rft.au=He%2C+Sen&rft.au=Ye%2C+Qiran&rft.date=2019-08-15&rft.issn=0003-9861&rft.volume=671+p.203-209&rft.spage=203&rft.epage=209&rft_id=info:doi/10.1016%2Fj.abb.2019.07.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-9861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-9861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-9861&client=summon |