A facile method of using sulfobetaine-containing copolymers for biofouling resistance

ABSTRACT Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate‐ co ‐butyl methacrylate) (PSB) copolymers were investigated for their antifouling properties. The copolymers were synthesized via a simple free‐radical polymerization with...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 131; no. 18; pp. 9432 - n/a
Main Authors Liu, Qingsheng, Li, Wenchen, Wang, Hua, Liu, Lingyun
Format Journal Article
LanguageEnglish
Published Hoboken, NJ Blackwell Publishing Ltd 15.09.2014
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate‐ co ‐butyl methacrylate) (PSB) copolymers were investigated for their antifouling properties. The copolymers were synthesized via a simple free‐radical polymerization with feed ratio of the zwitterionic sulfobetaine methacrylate (SBMA) varying from 0 to 20 mol %. The polymer composition was verified by nuclear magnetic resonance. The enzyme‐linked immunosorbent assay and surface plasmon resonance were used to evaluate protein adsorption on a series of PSB copolymers from the single protein solution of fibrinogen, undiluted human blood serum, and undiluted human blood plasma. Results show that the protein adsorption amount decreased with the increasing content of SBMA in the copolymers. The adsorption levels achieved by PSB containing 20 mol % SBMA (PSB20) were only 4, 17, and 15 ng/cm 2 from fibrinogen, serum, and plasma, respectively, which represented 99%, 90%, and 90% reduction compared with the adsorption amounts on poly(butyl methacrylate) with no SBMA. The PSB20 film also completely inhibited endothelial cell attachment. Fouling resistance of PSB polymers can be well correlated with their receding water contact angles, which represent the polymer surface compositions in aqueous environment. The excellent antifouling abilities of PSB copolymers, combined with the facial synthesis method, commercial availability of all monomers, and low cost, render them highly promising for wide practical applications. The polymers can be applied versatilely as both solvent‐cast films and surface coatings. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 40789.
AbstractList Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate-co-butyl methacrylate) (PSB) copolymers were investigated for their antifouling properties. The copolymers were synthesized via a simple free-radical polymerization with feed ratio of the zwitterionic sulfobetaine methacrylate (SBMA) varying from 0 to 20 mol %. The polymer composition was verified by nuclear magnetic resonance. The enzyme-linked immunosorbent assay and surface plasmon resonance were used to evaluate protein adsorption on a series of PSB copolymers from the single protein solution of fibrinogen, undiluted human blood serum, and undiluted human blood plasma. Results show that the protein adsorption amount decreased with the increasing content of SBMA in the copolymers. The adsorption levels achieved by PSB containing 20 mol % SBMA (PSB20) were only 4, 17, and 15 ng/cm super(2) from fibrinogen, serum, and plasma, respectively, which represented 99%, 90%, and 90% reduction compared with the adsorption amounts on poly(butyl methacrylate) with no SBMA. The PSB20 film also completely inhibited endothelial cell attachment. Fouling resistance of PSB polymers can be well correlated with their receding water contact angles, which represent the polymer surface compositions in aqueous environment. The excellent antifouling abilities of PSB copolymers, combined with the facial synthesis method, commercial availability of all monomers, and low cost, render them highly promising for wide practical applications. The polymers can be applied versatilely as both solvent-cast films and surface coatings. copyright 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40789.
ABSTRACT Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate‐ co ‐butyl methacrylate) (PSB) copolymers were investigated for their antifouling properties. The copolymers were synthesized via a simple free‐radical polymerization with feed ratio of the zwitterionic sulfobetaine methacrylate (SBMA) varying from 0 to 20 mol %. The polymer composition was verified by nuclear magnetic resonance. The enzyme‐linked immunosorbent assay and surface plasmon resonance were used to evaluate protein adsorption on a series of PSB copolymers from the single protein solution of fibrinogen, undiluted human blood serum, and undiluted human blood plasma. Results show that the protein adsorption amount decreased with the increasing content of SBMA in the copolymers. The adsorption levels achieved by PSB containing 20 mol % SBMA (PSB20) were only 4, 17, and 15 ng/cm 2 from fibrinogen, serum, and plasma, respectively, which represented 99%, 90%, and 90% reduction compared with the adsorption amounts on poly(butyl methacrylate) with no SBMA. The PSB20 film also completely inhibited endothelial cell attachment. Fouling resistance of PSB polymers can be well correlated with their receding water contact angles, which represent the polymer surface compositions in aqueous environment. The excellent antifouling abilities of PSB copolymers, combined with the facial synthesis method, commercial availability of all monomers, and low cost, render them highly promising for wide practical applications. The polymers can be applied versatilely as both solvent‐cast films and surface coatings. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 40789.
Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate-co-butyl methacrylate) (PSB) copolymers were investigated for their antifouling properties. The copolymers were synthesized via a simple free-radical polymerization with feed ratio of the zwitterionic sulfobetaine methacrylate (SBMA) varying from 0 to 20 mol %. The polymer composition was verified by nuclear magnetic resonance. The enzyme-linked immunosorbent assay and surface plasmon resonance were used to evaluate protein adsorption on a series of PSB copolymers from the single protein solution of fibrinogen, undiluted human blood serum, and undiluted human blood plasma. Results show that the protein adsorption amount decreased with the increasing content of SBMA in the copolymers. The adsorption levels achieved by PSB containing 20 mol % SBMA (PSB20) were only 4, 17, and 15 ng/cm2 from fibrinogen, serum, and plasma, respectively, which represented 99%, 90%, and 90% reduction compared with the adsorption amounts on poly(butyl methacrylate) with no SBMA. The PSB20 film also completely inhibited endothelial cell attachment. Fouling resistance of PSB polymers can be well correlated with their receding water contact angles, which represent the polymer surface compositions in aqueous environment. The excellent antifouling abilities of PSB copolymers, combined with the facial synthesis method, commercial availability of all monomers, and low cost, render them highly promising for wide practical applications. The polymers can be applied versatilely as both solvent-cast films and surface coatings. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40789.
Author Liu, Lingyun
Li, Wenchen
Wang, Hua
Liu, Qingsheng
Author_xml – sequence: 1
  givenname: Qingsheng
  surname: Liu
  fullname: Liu, Qingsheng
  organization: Department of Chemical and Biomolecular Engineering, University of Akron, Ohio, 44325, Akron
– sequence: 2
  givenname: Wenchen
  surname: Li
  fullname: Li, Wenchen
  organization: Department of Chemical and Biomolecular Engineering, University of Akron, Ohio, 44325, Akron
– sequence: 3
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
  organization: Department of Chemical and Biomolecular Engineering, University of Akron, Ohio, 44325, Akron
– sequence: 4
  givenname: Lingyun
  surname: Liu
  fullname: Liu, Lingyun
  email: lliu@uakron.edu
  organization: Department of Chemical and Biomolecular Engineering, University of Akron, Ohio, 44325, Akron
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28598783$$DView record in Pascal Francis
BookMark eNp9kU9LHTEUxYMo9Gm76DcYKIIuxiaZ3PxZqlhtEQVRugx5mRs7Om8yTWZAv30zfeKii65yyfndw-WcfbI7xAEJ-czoCaOUf3XjeCKo0maHrBg1qhaS612yKhqrtTHwgezn_EQpY0DlijycVsH5rsdqg9Ov2FYxVHPuhscqz32Ia5xcN2Dt47AMy7-PY-xfN5hyFWKq1l0Mce4XJWHu8uQGjx_JXnB9xk9v7wF5-HZxf35VX99efj8_va69AD7V0HIAiRRFwxsRHGUttFIFKZgQinJ0Tdtqx1TQAF5poQWsvfMSWuWCWDcH5GjrO6b4e8Y82U2XPfa9GzDO2TKAEoJhoAr65R_0Kc5pKNdZrsBwIwX_L8WgAQlCmaZQx1vKp5hzwmDH1G1cerWM2qUGW2qwf2so7OGbo8ve9SGVfLr8vsA1GK304llvuRIhvrzrLj1bqRoF9ufNpQV9d8av7n9Y1vwBG2GXSA
CODEN JAPNAB
CitedBy_id crossref_primary_10_1116_1_4904074
crossref_primary_10_1039_C5BM00085H
crossref_primary_10_1002_pola_28540
crossref_primary_10_1021_acsami_5b07362
crossref_primary_10_3390_molecules27217394
crossref_primary_10_1002_app_41327
crossref_primary_10_1021_acs_macromol_5b01861
crossref_primary_10_1016_j_cej_2019_01_013
crossref_primary_10_1021_acsami_1c02789
crossref_primary_10_3390_app13063827
crossref_primary_10_1039_C7PY01535F
crossref_primary_10_1016_j_jiec_2021_01_034
crossref_primary_10_1021_acsomega_0c04643
Cites_doi 10.1021/la062175d
10.1002/jbm.a.30908
10.1007/s00253-001-0850-2
10.1016/j.biomaterials.2009.06.005
10.1146/annurev.physchem.53.091801.115126
10.1002/jbm.10048
10.1016/S0142-9612(00)00310-0
10.1146/annurev.bioeng.6.040803.140027
10.1016/j.progpolymsci.2011.08.001
10.1002/jbm.a.10433
10.1295/polymj.24.1259
10.1016/S0142-9612(00)00343-4
10.1016/j.colsurfb.2006.09.024
10.1002/adfm.201201386
10.1002/(SICI)1097-4636(199802)39:2<323::AID-JBM21>3.0.CO;2-C
10.1002/app.35233
10.1021/la801487f
10.1021/la990260y
10.1021/la052962v
10.1021/ma902866x
10.1016/j.biomaterials.2005.07.006
10.1021/bm701301s
10.1021/bm301646y
10.1016/j.actbio.2012.03.052
10.1515/epoly.2012.12.1.584
10.1016/j.biomaterials.2008.07.039
10.1163/156856201316883421
10.1002/jbm.820251107
10.1021/jp057266i
10.1021/bm3008764
10.1021/bm200368p
10.1021/bm201814p
10.1002/adma.200901407
10.1021/jp993359m
10.1021/la901957k
ContentType Journal Article
Copyright 2015 INIST-CNRS
2014 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 INIST-CNRS
– notice: 2014 Wiley Periodicals, Inc.
DBID BSCLL
IQODW
AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.40789
DatabaseName Istex
Pascal-Francis
CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database
CrossRef
Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 3334729081
10_1002_app_40789
28598783
ark_67375_WNG_58RB2HTJ_1
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
31~
6TJ
6XO
AAJUZ
ABCVL
ABDEX
ABEML
ABFLS
ABHUG
ACSCC
ACSMX
ACXME
ADAWD
ADDAD
AFFNX
AFVGU
AGJLS
AI.
ASPBG
AVWKF
AZFZN
FEDTE
G8K
GYXMG
HF~
HVGLF
H~9
IPNFZ
IQODW
M6T
NEJ
PALCI
RIWAO
RJQFR
SAMSI
VH1
XFK
AAYXX
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c452t-5d2556e0e43234fa01d5d67f64144702ea3dd8a17f855c784845bcac65d7af4b3
ISSN 0021-8995
IngestDate Fri Aug 16 08:19:08 EDT 2024
Thu Oct 10 20:37:38 EDT 2024
Thu Oct 10 16:01:18 EDT 2024
Fri Aug 23 04:06:47 EDT 2024
Tue Sep 20 21:46:58 EDT 2022
Wed Oct 30 09:55:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords copolymers
Endothelial cell
adsorption
Coating material
Polyampholyte
Property composition relationship
Molecular structure
Liquid solid adsorption
Quaternary ammonium copolymer
Experimental study
Sulfonate copolymer
Random copolymer
Wettability
coatings
Biofouling
Preparation
biomedical applications
Cell adhesion
Surface properties
Biomaterial
Methacrylate copolymer
biomaterials
Radical copolymerization
Butyl methacrylate copolymer
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c452t-5d2556e0e43234fa01d5d67f64144702ea3dd8a17f855c784845bcac65d7af4b3
Notes ArticleID:APP40789
ark:/67375/WNG-58RB2HTJ-1
istex:FD3B9E3547FB8CCC2E3DB11EC5B4A2D978191862
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1535654793
PQPubID 1006379
PageCount 9
ParticipantIDs proquest_miscellaneous_1551099157
proquest_journals_2759296427
proquest_journals_1535654793
crossref_primary_10_1002_app_40789
pascalfrancis_primary_28598783
istex_primary_ark_67375_WNG_58RB2HTJ_1
PublicationCentury 2000
PublicationDate 2014-09-15
PublicationDateYYYYMMDD 2014-09-15
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-15
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken, NJ
PublicationPlace_xml – name: Hoboken, NJ
– name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationTitleAlternate J. Appl. Polym. Sci
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Chang, Y.; Shih, Y. J.; Lai, C. J.; Kung, H. H.; Jiang, S. Adv. Funct. Mater. 2013, 23, 1100.
Chang, Y.; Chen, S.; Zhang, Z.; Jiang, S. Langmuir 2006, 22, 2222.
Liu, Q. S.; Singh, Q.; Liu, L. Y. Biomacromolecules 2013, 14, 226.
Branch, D. W.; Wheeler, B. C.; Brewer, G. J.; Leckband, D. E. Biomaterials 2001, 22, 1035.
Ladd, J.; Zhang, Z.; Chen, S. F.; Hower, J. C.; Jiang, S. Y. Biomacromolecules 2008, 9, 1357.
Sawada, S. I.; Sakaki, S.; Iwasaki, Y.; Nakabayashi, N.; Ishihara, K. J. Biomed. Mater. Res. A 2003, 64, 411.
Jiang, S. Y.; Cao, Z. Q. Adv. Mater. 2010, 22, 920.
Zhang, F.; Kang, E. T.; Neoh, K. G.; Wang, P.; Tan, K. L. Biomaterials 2001, 22, 1541.
Ishihara, K.; Nomura, H.; Mihara, T.; Kurita, K.; Iwasaki, Y.; Nakabayashi, N. J. Biomed. Mater. Res. 1998, 39, 323.
Chen, Z.; Shen, Y. R.; Somorjai, G. A. Annu. Rev. Phys. Chem. 2002, 53, 437.
Ueda, T.; Oshida, H.; Kurita, K.; Ishihara, K.; Nakabayashi, N. Polym. J. 1992, 24, 1259.
Ratner, B. D.; Bryant, S. J. Annu. Rev. Biomed. Eng. 2004, 6, 41.
Zhang, Z.; Finlay, J. A.; Wang, L. F.; Gao, Y.; Callow, J. A.; Callow, M. E.; Jiang, S. Y. Langmuir 2009, 25, 13516.
Zhang, Z.; Zhang, M.; Chen, S.; Horbett, T. A.; Ratner, B. D.; Jiang, S. Biomaterials 2008, 29, 4285.
Sibarani, J.; Takai, M.; Ishihara, K. Colloid. Surf. B: Biointerfaces 2007, 54, 88.
Cao, L.; Sukavaneshvar, S.; Ratner, B. D.; Horbett, T. A. J. Biomed. Mater. Res. A 2006, 79, 788.
Kawai, F. Appl. Microbiol. Biotechnol. 2002, 58, 30.
Lin, S. H.; Zhang, B.; Skoumal, M. J.; Ramunno, B.; Li, X. P.; Wesdemiotis, C.; Liu, L. Y.; Jia, L. Biomacromolecules 2011, 12, 2573.
Zhang, Z.; Chao, T.; Chen, S. F.; Jiang, S. Y. Langmuir 2006, 22, 10072.
Yang, Z. H.; Galloway, J. A.; Yu, H. Langmuir 1999, 15, 8405.
Zhang, Z.; Chen, S. F.; Chang, Y.; Jiang, S. Y. J. Phys. Chem. B 2006, 110, 10799.
Benesch, J.; Svedhem, S.; Svensson, S. C. T.; Valiokas, R.; Liedberg, B.; Tengvall, P. J. Biomater. Sci. Polym. Ed. 2001, 12, 581.
Heath, D. E.; Cooper, S. L. Acta Biomater. 2012, 8, 2899.
Xu, Y.; Takai, M.; Ishihara, K. Biomaterials 2009, 30, 4930.
Ishihara, K.; Ziats, N. P.; Tierney, B. P.; Nakabayashi, N.; Anderson, J. M. J. Biomed. Mater. Res. 1991, 25, 1397.
Yang, W.; Chen, S. F.; Cheng, G.; Vaisocherova, H.; Xue, H.; Li, W.; Zhang, J. L.; Jiang, S. Y. Langmuir 2008, 24, 9211.
Tsai, W.-B.; Grunkemeier, J. M.; McFarland, C. D.; Horbett, T. A. J. Biomed. Mater. Res. 2002, 60, 348.
Shih, Y.-J.; Chang, Y.; Deratani, A.; Quemener, D. Biomacromolecules 2012, 13, 2849.
Li, Q.; Wang, Z.; Zhao, Q.; Wang, L.; Wang, S.; Kong, D. e-Polymers 2012, 12, 584.
Kenausis, G. L.; Vörös, J.; Elbert, D. L.; Huang, N. P.; Hofer, R.; Ruiz-Taylor, L.; Textor, M.; Hubbell, J. A.; Spencer, N. D. J. Phys. Chem. B 2000, 104, 3298.
Krishnan, S.; Paik, M. Y.; Ober, C. K.; Martinelli, E.; Galli, G.; Sohn, K. E.; Kramer, E. J.; Fischer, D. A. Macromolecules 2010, 43, 4733.
Wu, L.; Jasinski, J.; Krishnan, S. J. Appl. Polym. Sci. 2012, 124, 2154.
Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K. Prog. Polym. Sci. 2012, 37, 18.
Feng, W.; Brash, J. L.; Zhu, S. P. Biomaterials 2006, 27, 847.
Liu, Q. S.; Singh, A.; Lalani, R.; Liu, L. Y. Biomacromolecules 2012, 13, 1086.
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – ident: e_1_2_6_18_1
  doi: 10.1021/la062175d
– ident: e_1_2_6_6_1
  doi: 10.1002/jbm.a.30908
– ident: e_1_2_6_10_1
  doi: 10.1007/s00253-001-0850-2
– ident: e_1_2_6_28_1
  doi: 10.1016/j.biomaterials.2009.06.005
– ident: e_1_2_6_34_1
  doi: 10.1146/annurev.physchem.53.091801.115126
– ident: e_1_2_6_5_1
  doi: 10.1002/jbm.10048
– ident: e_1_2_6_8_1
  doi: 10.1016/S0142-9612(00)00310-0
– ident: e_1_2_6_2_1
  doi: 10.1146/annurev.bioeng.6.040803.140027
– ident: e_1_2_6_23_1
  doi: 10.1016/j.progpolymsci.2011.08.001
– ident: e_1_2_6_26_1
  doi: 10.1002/jbm.a.10433
– ident: e_1_2_6_36_1
  doi: 10.1295/polymj.24.1259
– ident: e_1_2_6_11_1
  doi: 10.1016/S0142-9612(00)00343-4
– ident: e_1_2_6_14_1
  doi: 10.1016/j.colsurfb.2006.09.024
– ident: e_1_2_6_20_1
  doi: 10.1002/adfm.201201386
– ident: e_1_2_6_25_1
  doi: 10.1002/(SICI)1097-4636(199802)39:2<323::AID-JBM21>3.0.CO;2-C
– ident: e_1_2_6_35_1
  doi: 10.1002/app.35233
– ident: e_1_2_6_17_1
  doi: 10.1021/la801487f
– ident: e_1_2_6_9_1
  doi: 10.1021/la990260y
– ident: e_1_2_6_19_1
  doi: 10.1021/la052962v
– ident: e_1_2_6_33_1
  doi: 10.1021/ma902866x
– ident: e_1_2_6_15_1
  doi: 10.1016/j.biomaterials.2005.07.006
– ident: e_1_2_6_31_1
  doi: 10.1021/bm701301s
– ident: e_1_2_6_4_1
  doi: 10.1021/bm301646y
– ident: e_1_2_6_30_1
  doi: 10.1016/j.actbio.2012.03.052
– ident: e_1_2_6_22_1
  doi: 10.1515/epoly.2012.12.1.584
– ident: e_1_2_6_16_1
  doi: 10.1016/j.biomaterials.2008.07.039
– ident: e_1_2_6_32_1
  doi: 10.1163/156856201316883421
– ident: e_1_2_6_27_1
  doi: 10.1002/jbm.820251107
– ident: e_1_2_6_12_1
  doi: 10.1021/jp057266i
– ident: e_1_2_6_21_1
  doi: 10.1021/bm3008764
– ident: e_1_2_6_29_1
  doi: 10.1021/bm200368p
– ident: e_1_2_6_24_1
  doi: 10.1021/bm201814p
– ident: e_1_2_6_3_1
  doi: 10.1002/adma.200901407
– ident: e_1_2_6_7_1
  doi: 10.1021/jp993359m
– ident: e_1_2_6_13_1
  doi: 10.1021/la901957k
SSID ssj0011506
Score 2.2608335
Snippet ABSTRACT Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate‐ co ‐butyl methacrylate) (PSB)...
Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate-co-butyl methacrylate) (PSB) copolymers...
Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate‐co‐butyl methacrylate) (PSB) copolymers...
SourceID proquest
crossref
pascalfrancis
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 9432
SubjectTerms Adsorption
Antifouling
Applied sciences
Aqueous environments
Biofouling
Biological and medical sciences
biomaterials
biomedical applications
Biomedical materials
Blood plasma
Chemical synthesis
coatings
Composition
Contact angle
Copolymers
Endothelial cells
Exact sciences and technology
Fibrinogen
Human
Materials science
Medical sciences
NMR
Nuclear magnetic resonance
Organic polymers
Physicochemistry of polymers
Polybutyl methacrylates
Polymers
Polymers with particular properties
Preparation, kinetics, thermodynamics, mechanism and catalysts
Protein adsorption
Proteins
Serums
Surface chemistry
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Title A facile method of using sulfobetaine-containing copolymers for biofouling resistance
URI https://api.istex.fr/ark:/67375/WNG-58RB2HTJ-1/fulltext.pdf
https://www.proquest.com/docview/1535654793
https://www.proquest.com/docview/2759296427
https://search.proquest.com/docview/1551099157
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfK9gIPiL8iMCaDEC9TIHHsOHksCKgmMYmpU_cWObG9TaAErY3EeOIj8Bn5JNzFbtKufRi8RJUTp63vZ9-d_bs7Ql7JvMpRj4SKJWUICMFqgCIPjRFRaXlidHfQ_vkonZzww1NxOhrZFdZSuyjfVD-3xpX8j1ShDeSKUbL_INn-pdAAn0G-cAUJw_VGMh5juRyY1r4ONBp-bef7z9tvtimRHVqbns6ArHRXD-KgwtIIV7hl7eiaF43FyuhYdsjM0aJcQmHTbFXebPUvOPAqtCf2XLQotS-4AX9uvFrs2js2Hzx6PgSfzfxm9aRV1_qDi3x21darexIxRwKFi8rsYwTiEDw512Tc0hrlMsRI2LW116sAD7Js66LuksRi2TM8dMwHzbU8rb-m0HqaoUvJzAroWnRdb5FdBgtSd5x_3KcZQ6M4dVQg96uXGagi9rb_1jW7ZRen4A_k0ao5TCXraqBsqPPORpneI3e9lOjYIeU-GZn6AbmzknLyIZmNqcMMdZihjaUdZugqZv78-j2ghQ5ooYAWOqCFDmh5RE4-fpi-n4S-uEZYccEWodCYfM5Ehics4VZFsRY6lTbl4GLLiBmVaJ2pWNpMiEpmPOOirFSVCi2V5WXymOzUTW2eEFrlnBt05pXOuGYw4cELycFXTm3MdF4G5OVy6IrvLodKsSGagLzuBrV_Ql1-RdKhFMXs6FMhsuN3bDI9LOKA7K-Net8BUzFmMksCsrcUQ-En67wAxS6wzna-_TaTIkcCApMBedHfhpUWj89UbZoWXyHwGDkW8ulN_tAzcnuYGntkZ3HZmudgwC7K_Q59fwHRcZ2d
link.rule.ids 315,783,787,27936,27937
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+facile+method+of+using+sulfobetaine%E2%80%90containing+copolymers+for+biofouling+resistance&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Liu%2C+Qingsheng&rft.au=Li%2C+Wenchen&rft.au=Wang%2C+Hua&rft.au=Liu%2C+Lingyun&rft.date=2014-09-15&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=131&rft.issue=18&rft_id=info:doi/10.1002%2Fapp.40789&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_app_40789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon