A facile method of using sulfobetaine-containing copolymers for biofouling resistance
ABSTRACT Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate‐ co ‐butyl methacrylate) (PSB) copolymers were investigated for their antifouling properties. The copolymers were synthesized via a simple free‐radical polymerization with...
Saved in:
Published in | Journal of applied polymer science Vol. 131; no. 18; pp. 9432 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, NJ
Blackwell Publishing Ltd
15.09.2014
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate‐
co
‐butyl methacrylate) (PSB) copolymers were investigated for their antifouling properties. The copolymers were synthesized via a simple free‐radical polymerization with feed ratio of the zwitterionic sulfobetaine methacrylate (SBMA) varying from 0 to 20 mol %. The polymer composition was verified by nuclear magnetic resonance. The enzyme‐linked immunosorbent assay and surface plasmon resonance were used to evaluate protein adsorption on a series of PSB copolymers from the single protein solution of fibrinogen, undiluted human blood serum, and undiluted human blood plasma. Results show that the protein adsorption amount decreased with the increasing content of SBMA in the copolymers. The adsorption levels achieved by PSB containing 20 mol % SBMA (PSB20) were only 4, 17, and 15 ng/cm
2
from fibrinogen, serum, and plasma, respectively, which represented 99%, 90%, and 90% reduction compared with the adsorption amounts on poly(butyl methacrylate) with no SBMA. The PSB20 film also completely inhibited endothelial cell attachment. Fouling resistance of PSB polymers can be well correlated with their receding water contact angles, which represent the polymer surface compositions in aqueous environment. The excellent antifouling abilities of PSB copolymers, combined with the facial synthesis method, commercial availability of all monomers, and low cost, render them highly promising for wide practical applications. The polymers can be applied versatilely as both solvent‐cast films and surface coatings. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci.
2014
,
131
, 40789. |
---|---|
AbstractList | Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate-co-butyl methacrylate) (PSB) copolymers were investigated for their antifouling properties. The copolymers were synthesized via a simple free-radical polymerization with feed ratio of the zwitterionic sulfobetaine methacrylate (SBMA) varying from 0 to 20 mol %. The polymer composition was verified by nuclear magnetic resonance. The enzyme-linked immunosorbent assay and surface plasmon resonance were used to evaluate protein adsorption on a series of PSB copolymers from the single protein solution of fibrinogen, undiluted human blood serum, and undiluted human blood plasma. Results show that the protein adsorption amount decreased with the increasing content of SBMA in the copolymers. The adsorption levels achieved by PSB containing 20 mol % SBMA (PSB20) were only 4, 17, and 15 ng/cm super(2) from fibrinogen, serum, and plasma, respectively, which represented 99%, 90%, and 90% reduction compared with the adsorption amounts on poly(butyl methacrylate) with no SBMA. The PSB20 film also completely inhibited endothelial cell attachment. Fouling resistance of PSB polymers can be well correlated with their receding water contact angles, which represent the polymer surface compositions in aqueous environment. The excellent antifouling abilities of PSB copolymers, combined with the facial synthesis method, commercial availability of all monomers, and low cost, render them highly promising for wide practical applications. The polymers can be applied versatilely as both solvent-cast films and surface coatings. copyright 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40789. ABSTRACT Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate‐ co ‐butyl methacrylate) (PSB) copolymers were investigated for their antifouling properties. The copolymers were synthesized via a simple free‐radical polymerization with feed ratio of the zwitterionic sulfobetaine methacrylate (SBMA) varying from 0 to 20 mol %. The polymer composition was verified by nuclear magnetic resonance. The enzyme‐linked immunosorbent assay and surface plasmon resonance were used to evaluate protein adsorption on a series of PSB copolymers from the single protein solution of fibrinogen, undiluted human blood serum, and undiluted human blood plasma. Results show that the protein adsorption amount decreased with the increasing content of SBMA in the copolymers. The adsorption levels achieved by PSB containing 20 mol % SBMA (PSB20) were only 4, 17, and 15 ng/cm 2 from fibrinogen, serum, and plasma, respectively, which represented 99%, 90%, and 90% reduction compared with the adsorption amounts on poly(butyl methacrylate) with no SBMA. The PSB20 film also completely inhibited endothelial cell attachment. Fouling resistance of PSB polymers can be well correlated with their receding water contact angles, which represent the polymer surface compositions in aqueous environment. The excellent antifouling abilities of PSB copolymers, combined with the facial synthesis method, commercial availability of all monomers, and low cost, render them highly promising for wide practical applications. The polymers can be applied versatilely as both solvent‐cast films and surface coatings. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 40789. Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate-co-butyl methacrylate) (PSB) copolymers were investigated for their antifouling properties. The copolymers were synthesized via a simple free-radical polymerization with feed ratio of the zwitterionic sulfobetaine methacrylate (SBMA) varying from 0 to 20 mol %. The polymer composition was verified by nuclear magnetic resonance. The enzyme-linked immunosorbent assay and surface plasmon resonance were used to evaluate protein adsorption on a series of PSB copolymers from the single protein solution of fibrinogen, undiluted human blood serum, and undiluted human blood plasma. Results show that the protein adsorption amount decreased with the increasing content of SBMA in the copolymers. The adsorption levels achieved by PSB containing 20 mol % SBMA (PSB20) were only 4, 17, and 15 ng/cm2 from fibrinogen, serum, and plasma, respectively, which represented 99%, 90%, and 90% reduction compared with the adsorption amounts on poly(butyl methacrylate) with no SBMA. The PSB20 film also completely inhibited endothelial cell attachment. Fouling resistance of PSB polymers can be well correlated with their receding water contact angles, which represent the polymer surface compositions in aqueous environment. The excellent antifouling abilities of PSB copolymers, combined with the facial synthesis method, commercial availability of all monomers, and low cost, render them highly promising for wide practical applications. The polymers can be applied versatilely as both solvent-cast films and surface coatings. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40789. |
Author | Liu, Lingyun Li, Wenchen Wang, Hua Liu, Qingsheng |
Author_xml | – sequence: 1 givenname: Qingsheng surname: Liu fullname: Liu, Qingsheng organization: Department of Chemical and Biomolecular Engineering, University of Akron, Ohio, 44325, Akron – sequence: 2 givenname: Wenchen surname: Li fullname: Li, Wenchen organization: Department of Chemical and Biomolecular Engineering, University of Akron, Ohio, 44325, Akron – sequence: 3 givenname: Hua surname: Wang fullname: Wang, Hua organization: Department of Chemical and Biomolecular Engineering, University of Akron, Ohio, 44325, Akron – sequence: 4 givenname: Lingyun surname: Liu fullname: Liu, Lingyun email: lliu@uakron.edu organization: Department of Chemical and Biomolecular Engineering, University of Akron, Ohio, 44325, Akron |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28598783$$DView record in Pascal Francis |
BookMark | eNp9kU9LHTEUxYMo9Gm76DcYKIIuxiaZ3PxZqlhtEQVRugx5mRs7Om8yTWZAv30zfeKii65yyfndw-WcfbI7xAEJ-czoCaOUf3XjeCKo0maHrBg1qhaS612yKhqrtTHwgezn_EQpY0DlijycVsH5rsdqg9Ov2FYxVHPuhscqz32Ia5xcN2Dt47AMy7-PY-xfN5hyFWKq1l0Mce4XJWHu8uQGjx_JXnB9xk9v7wF5-HZxf35VX99efj8_va69AD7V0HIAiRRFwxsRHGUttFIFKZgQinJ0Tdtqx1TQAF5poQWsvfMSWuWCWDcH5GjrO6b4e8Y82U2XPfa9GzDO2TKAEoJhoAr65R_0Kc5pKNdZrsBwIwX_L8WgAQlCmaZQx1vKp5hzwmDH1G1cerWM2qUGW2qwf2so7OGbo8ve9SGVfLr8vsA1GK304llvuRIhvrzrLj1bqRoF9ufNpQV9d8av7n9Y1vwBG2GXSA |
CODEN | JAPNAB |
CitedBy_id | crossref_primary_10_1116_1_4904074 crossref_primary_10_1039_C5BM00085H crossref_primary_10_1002_pola_28540 crossref_primary_10_1021_acsami_5b07362 crossref_primary_10_3390_molecules27217394 crossref_primary_10_1002_app_41327 crossref_primary_10_1021_acs_macromol_5b01861 crossref_primary_10_1016_j_cej_2019_01_013 crossref_primary_10_1021_acsami_1c02789 crossref_primary_10_3390_app13063827 crossref_primary_10_1039_C7PY01535F crossref_primary_10_1016_j_jiec_2021_01_034 crossref_primary_10_1021_acsomega_0c04643 |
Cites_doi | 10.1021/la062175d 10.1002/jbm.a.30908 10.1007/s00253-001-0850-2 10.1016/j.biomaterials.2009.06.005 10.1146/annurev.physchem.53.091801.115126 10.1002/jbm.10048 10.1016/S0142-9612(00)00310-0 10.1146/annurev.bioeng.6.040803.140027 10.1016/j.progpolymsci.2011.08.001 10.1002/jbm.a.10433 10.1295/polymj.24.1259 10.1016/S0142-9612(00)00343-4 10.1016/j.colsurfb.2006.09.024 10.1002/adfm.201201386 10.1002/(SICI)1097-4636(199802)39:2<323::AID-JBM21>3.0.CO;2-C 10.1002/app.35233 10.1021/la801487f 10.1021/la990260y 10.1021/la052962v 10.1021/ma902866x 10.1016/j.biomaterials.2005.07.006 10.1021/bm701301s 10.1021/bm301646y 10.1016/j.actbio.2012.03.052 10.1515/epoly.2012.12.1.584 10.1016/j.biomaterials.2008.07.039 10.1163/156856201316883421 10.1002/jbm.820251107 10.1021/jp057266i 10.1021/bm3008764 10.1021/bm200368p 10.1021/bm201814p 10.1002/adma.200901407 10.1021/jp993359m 10.1021/la901957k |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS 2014 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: 2014 Wiley Periodicals, Inc. |
DBID | BSCLL IQODW AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.40789 |
DatabaseName | Istex Pascal-Francis CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1097-4628 |
EndPage | n/a |
ExternalDocumentID | 3334729081 10_1002_app_40789 28598783 ark_67375_WNG_58RB2HTJ_1 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT 31~ 6TJ 6XO AAJUZ ABCVL ABDEX ABEML ABFLS ABHUG ACSCC ACSMX ACXME ADAWD ADDAD AFFNX AFVGU AGJLS AI. ASPBG AVWKF AZFZN FEDTE G8K GYXMG HF~ HVGLF H~9 IPNFZ IQODW M6T NEJ PALCI RIWAO RJQFR SAMSI VH1 XFK AAYXX CITATION 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c452t-5d2556e0e43234fa01d5d67f64144702ea3dd8a17f855c784845bcac65d7af4b3 |
ISSN | 0021-8995 |
IngestDate | Fri Aug 16 08:19:08 EDT 2024 Thu Oct 10 20:37:38 EDT 2024 Thu Oct 10 16:01:18 EDT 2024 Fri Aug 23 04:06:47 EDT 2024 Tue Sep 20 21:46:58 EDT 2022 Wed Oct 30 09:55:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | copolymers Endothelial cell adsorption Coating material Polyampholyte Property composition relationship Molecular structure Liquid solid adsorption Quaternary ammonium copolymer Experimental study Sulfonate copolymer Random copolymer Wettability coatings Biofouling Preparation biomedical applications Cell adhesion Surface properties Biomaterial Methacrylate copolymer biomaterials Radical copolymerization Butyl methacrylate copolymer |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c452t-5d2556e0e43234fa01d5d67f64144702ea3dd8a17f855c784845bcac65d7af4b3 |
Notes | ArticleID:APP40789 ark:/67375/WNG-58RB2HTJ-1 istex:FD3B9E3547FB8CCC2E3DB11EC5B4A2D978191862 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1535654793 |
PQPubID | 1006379 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1551099157 proquest_journals_2759296427 proquest_journals_1535654793 crossref_primary_10_1002_app_40789 pascalfrancis_primary_28598783 istex_primary_ark_67375_WNG_58RB2HTJ_1 |
PublicationCentury | 2000 |
PublicationDate | 2014-09-15 |
PublicationDateYYYYMMDD | 2014-09-15 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, NJ |
PublicationPlace_xml | – name: Hoboken, NJ – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationTitleAlternate | J. Appl. Polym. Sci |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
References | Chang, Y.; Shih, Y. J.; Lai, C. J.; Kung, H. H.; Jiang, S. Adv. Funct. Mater. 2013, 23, 1100. Chang, Y.; Chen, S.; Zhang, Z.; Jiang, S. Langmuir 2006, 22, 2222. Liu, Q. S.; Singh, Q.; Liu, L. Y. Biomacromolecules 2013, 14, 226. Branch, D. W.; Wheeler, B. C.; Brewer, G. J.; Leckband, D. E. Biomaterials 2001, 22, 1035. Ladd, J.; Zhang, Z.; Chen, S. F.; Hower, J. C.; Jiang, S. Y. Biomacromolecules 2008, 9, 1357. Sawada, S. I.; Sakaki, S.; Iwasaki, Y.; Nakabayashi, N.; Ishihara, K. J. Biomed. Mater. Res. A 2003, 64, 411. Jiang, S. Y.; Cao, Z. Q. Adv. Mater. 2010, 22, 920. Zhang, F.; Kang, E. T.; Neoh, K. G.; Wang, P.; Tan, K. L. Biomaterials 2001, 22, 1541. Ishihara, K.; Nomura, H.; Mihara, T.; Kurita, K.; Iwasaki, Y.; Nakabayashi, N. J. Biomed. Mater. Res. 1998, 39, 323. Chen, Z.; Shen, Y. R.; Somorjai, G. A. Annu. Rev. Phys. Chem. 2002, 53, 437. Ueda, T.; Oshida, H.; Kurita, K.; Ishihara, K.; Nakabayashi, N. Polym. J. 1992, 24, 1259. Ratner, B. D.; Bryant, S. J. Annu. Rev. Biomed. Eng. 2004, 6, 41. Zhang, Z.; Finlay, J. A.; Wang, L. F.; Gao, Y.; Callow, J. A.; Callow, M. E.; Jiang, S. Y. Langmuir 2009, 25, 13516. Zhang, Z.; Zhang, M.; Chen, S.; Horbett, T. A.; Ratner, B. D.; Jiang, S. Biomaterials 2008, 29, 4285. Sibarani, J.; Takai, M.; Ishihara, K. Colloid. Surf. B: Biointerfaces 2007, 54, 88. Cao, L.; Sukavaneshvar, S.; Ratner, B. D.; Horbett, T. A. J. Biomed. Mater. Res. A 2006, 79, 788. Kawai, F. Appl. Microbiol. Biotechnol. 2002, 58, 30. Lin, S. H.; Zhang, B.; Skoumal, M. J.; Ramunno, B.; Li, X. P.; Wesdemiotis, C.; Liu, L. Y.; Jia, L. Biomacromolecules 2011, 12, 2573. Zhang, Z.; Chao, T.; Chen, S. F.; Jiang, S. Y. Langmuir 2006, 22, 10072. Yang, Z. H.; Galloway, J. A.; Yu, H. Langmuir 1999, 15, 8405. Zhang, Z.; Chen, S. F.; Chang, Y.; Jiang, S. Y. J. Phys. Chem. B 2006, 110, 10799. Benesch, J.; Svedhem, S.; Svensson, S. C. T.; Valiokas, R.; Liedberg, B.; Tengvall, P. J. Biomater. Sci. Polym. Ed. 2001, 12, 581. Heath, D. E.; Cooper, S. L. Acta Biomater. 2012, 8, 2899. Xu, Y.; Takai, M.; Ishihara, K. Biomaterials 2009, 30, 4930. Ishihara, K.; Ziats, N. P.; Tierney, B. P.; Nakabayashi, N.; Anderson, J. M. J. Biomed. Mater. Res. 1991, 25, 1397. Yang, W.; Chen, S. F.; Cheng, G.; Vaisocherova, H.; Xue, H.; Li, W.; Zhang, J. L.; Jiang, S. Y. Langmuir 2008, 24, 9211. Tsai, W.-B.; Grunkemeier, J. M.; McFarland, C. D.; Horbett, T. A. J. Biomed. Mater. Res. 2002, 60, 348. Shih, Y.-J.; Chang, Y.; Deratani, A.; Quemener, D. Biomacromolecules 2012, 13, 2849. Li, Q.; Wang, Z.; Zhao, Q.; Wang, L.; Wang, S.; Kong, D. e-Polymers 2012, 12, 584. Kenausis, G. L.; Vörös, J.; Elbert, D. L.; Huang, N. P.; Hofer, R.; Ruiz-Taylor, L.; Textor, M.; Hubbell, J. A.; Spencer, N. D. J. Phys. Chem. B 2000, 104, 3298. Krishnan, S.; Paik, M. Y.; Ober, C. K.; Martinelli, E.; Galli, G.; Sohn, K. E.; Kramer, E. J.; Fischer, D. A. Macromolecules 2010, 43, 4733. Wu, L.; Jasinski, J.; Krishnan, S. J. Appl. Polym. Sci. 2012, 124, 2154. Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K. Prog. Polym. Sci. 2012, 37, 18. Feng, W.; Brash, J. L.; Zhu, S. P. Biomaterials 2006, 27, 847. Liu, Q. S.; Singh, A.; Lalani, R.; Liu, L. Y. Biomacromolecules 2012, 13, 1086. e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – ident: e_1_2_6_18_1 doi: 10.1021/la062175d – ident: e_1_2_6_6_1 doi: 10.1002/jbm.a.30908 – ident: e_1_2_6_10_1 doi: 10.1007/s00253-001-0850-2 – ident: e_1_2_6_28_1 doi: 10.1016/j.biomaterials.2009.06.005 – ident: e_1_2_6_34_1 doi: 10.1146/annurev.physchem.53.091801.115126 – ident: e_1_2_6_5_1 doi: 10.1002/jbm.10048 – ident: e_1_2_6_8_1 doi: 10.1016/S0142-9612(00)00310-0 – ident: e_1_2_6_2_1 doi: 10.1146/annurev.bioeng.6.040803.140027 – ident: e_1_2_6_23_1 doi: 10.1016/j.progpolymsci.2011.08.001 – ident: e_1_2_6_26_1 doi: 10.1002/jbm.a.10433 – ident: e_1_2_6_36_1 doi: 10.1295/polymj.24.1259 – ident: e_1_2_6_11_1 doi: 10.1016/S0142-9612(00)00343-4 – ident: e_1_2_6_14_1 doi: 10.1016/j.colsurfb.2006.09.024 – ident: e_1_2_6_20_1 doi: 10.1002/adfm.201201386 – ident: e_1_2_6_25_1 doi: 10.1002/(SICI)1097-4636(199802)39:2<323::AID-JBM21>3.0.CO;2-C – ident: e_1_2_6_35_1 doi: 10.1002/app.35233 – ident: e_1_2_6_17_1 doi: 10.1021/la801487f – ident: e_1_2_6_9_1 doi: 10.1021/la990260y – ident: e_1_2_6_19_1 doi: 10.1021/la052962v – ident: e_1_2_6_33_1 doi: 10.1021/ma902866x – ident: e_1_2_6_15_1 doi: 10.1016/j.biomaterials.2005.07.006 – ident: e_1_2_6_31_1 doi: 10.1021/bm701301s – ident: e_1_2_6_4_1 doi: 10.1021/bm301646y – ident: e_1_2_6_30_1 doi: 10.1016/j.actbio.2012.03.052 – ident: e_1_2_6_22_1 doi: 10.1515/epoly.2012.12.1.584 – ident: e_1_2_6_16_1 doi: 10.1016/j.biomaterials.2008.07.039 – ident: e_1_2_6_32_1 doi: 10.1163/156856201316883421 – ident: e_1_2_6_27_1 doi: 10.1002/jbm.820251107 – ident: e_1_2_6_12_1 doi: 10.1021/jp057266i – ident: e_1_2_6_21_1 doi: 10.1021/bm3008764 – ident: e_1_2_6_29_1 doi: 10.1021/bm200368p – ident: e_1_2_6_24_1 doi: 10.1021/bm201814p – ident: e_1_2_6_3_1 doi: 10.1002/adma.200901407 – ident: e_1_2_6_7_1 doi: 10.1021/jp993359m – ident: e_1_2_6_13_1 doi: 10.1021/la901957k |
SSID | ssj0011506 |
Score | 2.2608335 |
Snippet | ABSTRACT
Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate‐
co
‐butyl methacrylate) (PSB)... Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate-co-butyl methacrylate) (PSB) copolymers... Antifouling materials are desirable for many biomedical applications. In this work, the poly(sulfobetaine methacrylate‐co‐butyl methacrylate) (PSB) copolymers... |
SourceID | proquest crossref pascalfrancis istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 9432 |
SubjectTerms | Adsorption Antifouling Applied sciences Aqueous environments Biofouling Biological and medical sciences biomaterials biomedical applications Biomedical materials Blood plasma Chemical synthesis coatings Composition Contact angle Copolymers Endothelial cells Exact sciences and technology Fibrinogen Human Materials science Medical sciences NMR Nuclear magnetic resonance Organic polymers Physicochemistry of polymers Polybutyl methacrylates Polymers Polymers with particular properties Preparation, kinetics, thermodynamics, mechanism and catalysts Protein adsorption Proteins Serums Surface chemistry Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments |
Title | A facile method of using sulfobetaine-containing copolymers for biofouling resistance |
URI | https://api.istex.fr/ark:/67375/WNG-58RB2HTJ-1/fulltext.pdf https://www.proquest.com/docview/1535654793 https://www.proquest.com/docview/2759296427 https://search.proquest.com/docview/1551099157 |
Volume | 131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfK9gIPiL8iMCaDEC9TIHHsOHksCKgmMYmpU_cWObG9TaAErY3EeOIj8Bn5JNzFbtKufRi8RJUTp63vZ9-d_bs7Ql7JvMpRj4SKJWUICMFqgCIPjRFRaXlidHfQ_vkonZzww1NxOhrZFdZSuyjfVD-3xpX8j1ShDeSKUbL_INn-pdAAn0G-cAUJw_VGMh5juRyY1r4ONBp-bef7z9tvtimRHVqbns6ArHRXD-KgwtIIV7hl7eiaF43FyuhYdsjM0aJcQmHTbFXebPUvOPAqtCf2XLQotS-4AX9uvFrs2js2Hzx6PgSfzfxm9aRV1_qDi3x21darexIxRwKFi8rsYwTiEDw512Tc0hrlMsRI2LW116sAD7Js66LuksRi2TM8dMwHzbU8rb-m0HqaoUvJzAroWnRdb5FdBgtSd5x_3KcZQ6M4dVQg96uXGagi9rb_1jW7ZRen4A_k0ao5TCXraqBsqPPORpneI3e9lOjYIeU-GZn6AbmzknLyIZmNqcMMdZihjaUdZugqZv78-j2ghQ5ooYAWOqCFDmh5RE4-fpi-n4S-uEZYccEWodCYfM5Ehics4VZFsRY6lTbl4GLLiBmVaJ2pWNpMiEpmPOOirFSVCi2V5WXymOzUTW2eEFrlnBt05pXOuGYw4cELycFXTm3MdF4G5OVy6IrvLodKsSGagLzuBrV_Ql1-RdKhFMXs6FMhsuN3bDI9LOKA7K-Net8BUzFmMksCsrcUQ-En67wAxS6wzna-_TaTIkcCApMBedHfhpUWj89UbZoWXyHwGDkW8ulN_tAzcnuYGntkZ3HZmudgwC7K_Q59fwHRcZ2d |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+facile+method+of+using+sulfobetaine%E2%80%90containing+copolymers+for+biofouling+resistance&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Liu%2C+Qingsheng&rft.au=Li%2C+Wenchen&rft.au=Wang%2C+Hua&rft.au=Liu%2C+Lingyun&rft.date=2014-09-15&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=131&rft.issue=18&rft_id=info:doi/10.1002%2Fapp.40789&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_app_40789 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |