Hydraulic pressures generated in Magnetic Ionic Liquids by paramagnetic fluid/air interfaces inside of uniform tangential magnetic fields
[Display omitted] •MILs are “2nd-Gen” magnetic liquids without dispersed magnetic particles.•Uniform tangential magnetic fields produce magnetic hydraulic pressures in MILs.•FHD-Bernoulli eq. predicts the magnetic hydraulic pressure or head (>900Pa or 6cm).•Phenomena directly related to magnetic...
Saved in:
Published in | Journal of colloid and interface science Vol. 428; no. 428; pp. 16 - 23 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
15.08.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9797 1095-7103 1095-7103 |
DOI | 10.1016/j.jcis.2014.04.023 |
Cover
Loading…
Abstract | [Display omitted]
•MILs are “2nd-Gen” magnetic liquids without dispersed magnetic particles.•Uniform tangential magnetic fields produce magnetic hydraulic pressures in MILs.•FHD-Bernoulli eq. predicts the magnetic hydraulic pressure or head (>900Pa or 6cm).•Phenomena directly related to magnetic susceptibility and the field strength squared.•Phenomena could complicate research of MILs as reaction media or separation agents.
Magnetic Ionic Liquid (MILs), novel magnetic molecules that form “pure magnetic liquids,” will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial.
We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element.
Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid’s volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910Pa at 1.627Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications. |
---|---|
AbstractList | Magnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial.HYPOTHESISMagnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial.We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element.EXPERIMENTSWe imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element.Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid's volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910 Pa at 1.627 Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications.FINDINGSUniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid's volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910 Pa at 1.627 Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications. [Display omitted] •MILs are “2nd-Gen” magnetic liquids without dispersed magnetic particles.•Uniform tangential magnetic fields produce magnetic hydraulic pressures in MILs.•FHD-Bernoulli eq. predicts the magnetic hydraulic pressure or head (>900Pa or 6cm).•Phenomena directly related to magnetic susceptibility and the field strength squared.•Phenomena could complicate research of MILs as reaction media or separation agents. Magnetic Ionic Liquid (MILs), novel magnetic molecules that form “pure magnetic liquids,” will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial. We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element. Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid’s volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910Pa at 1.627Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications. Magnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial. We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element. Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid's volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910 Pa at 1.627 Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications. Hypothesis Magnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial. Experiments We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element. Findings: Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid's volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl sub(4)] generated the greatest hydraulic head (64-mm or 910 Pa at 1.627 Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications. Magnetic Ionic Liquid (MILs), novel magnetic molecules that form “pure magnetic liquids,” will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial.We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element.Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid’s volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910Pa at 1.627Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications. |
Author | Crespo, João G. Rosatella, Andreia A. Afonso, Carlos A.M. Scovazzo, Paul Portugal, Carla A.M. |
Author_xml | – sequence: 1 givenname: Paul surname: Scovazzo fullname: Scovazzo, Paul email: scovazzo@olemiss.edu organization: Department of Chemical Engineering, University of Mississippi, Oxford, MS, USA – sequence: 2 givenname: Carla A.M. surname: Portugal fullname: Portugal, Carla A.M. email: cmp@fct.unl.pt organization: REQUIMTE-CQFB, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal – sequence: 3 givenname: Andreia A. surname: Rosatella fullname: Rosatella, Andreia A. email: rosatella@ff.ul.pt organization: Research Institute for Medicines and Pharmaceutical Sciences (iMED.UL), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal – sequence: 4 givenname: Carlos A.M. surname: Afonso fullname: Afonso, Carlos A.M. email: carlosafonso@ff.ul.pt organization: Research Institute for Medicines and Pharmaceutical Sciences (iMED.UL), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal – sequence: 5 givenname: João G. surname: Crespo fullname: Crespo, João G. email: jgc@fct.unl.pt organization: REQUIMTE-CQFB, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28601903$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24910029$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksGKFDEQhoOsuLOrL-BB-iJ46dkk3Z10wIss6i6MeNFzqE4qS4bu9GySFuYRfGszzAwLHlahqIKq7_8PVXVFLsIckJC3jK4ZZeJmu94an9acsnZNS_DmBVkxqrpaMtpckBWlnNVKKnlJrlLaUspY16lX5JK3ipWhWpHfd3sbYRm9qXYRU1pKqh4wYISMtvKh-gYPAXOZ38-h5I1_XLxN1bCvdhBhOk_dWNo34GPRZIwOTDHyIXmL1eyqJXg3x6nKEIp79jBWT1KPo02vyUsHY8I3p3pNfn75_OP2rt58_3p_-2lTm7bjuW6d4lJILo2wXYvcKAcwlK7rBLcUeyb4wACYtIq5thWisa1gQg1Ciq7nzTX5cPTdxflxwZT15JPBcYSA85I0L7ttpOBN90-0bJPRXnZ9_x9o07ayUYwV9N0JXYYJrd5FP0Hc6_NRCvD-BEAyMLoIodz5iesFZYo2heuPnIlzShGdNj5D9nPIEfyoGdWHP9FbffgTffgTTUvwg5T_JT27Pyv6eBRhOc8vj1En4zEYtD6iydrO_jn5H6s21pU |
CODEN | JCISA5 |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_0c01215 crossref_primary_10_1039_C9CP06994A crossref_primary_10_1039_C6CP02433E crossref_primary_10_1021_acs_jpcb_7b07929 crossref_primary_10_3390_ijms22020706 crossref_primary_10_1016_j_ultsonch_2016_08_023 crossref_primary_10_1016_j_chroma_2018_12_032 crossref_primary_10_1016_j_jiec_2023_04_011 crossref_primary_10_1016_j_chroma_2022_463577 crossref_primary_10_1016_j_trac_2024_118116 crossref_primary_10_1039_C8AY01058G crossref_primary_10_1016_j_aca_2019_02_013 crossref_primary_10_1021_cm504202v |
Cites_doi | 10.1016/j.memsci.2012.12.009 10.1246/cl.2004.1590 10.1016/S0304-8853(01)01368-3 10.1016/j.cej.2011.05.057 10.1109/TMAG.2003.815546 10.5772/14846 10.1016/j.jmmm.2012.04.007 10.1039/B711189D 10.1109/TMAG.2005.854875 10.1063/1.2173207 10.1002/anie.201108010 10.1007/s10404-012-1008-5 10.1063/1.1711103 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. 2015 INIST-CNRS Copyright © 2014 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: Copyright © 2014 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION IQODW NPM 7X8 7U5 8FD L7M 7S9 L.6 |
DOI | 10.1016/j.jcis.2014.04.023 |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 23 |
ExternalDocumentID | 24910029 28601903 10_1016_j_jcis_2014_04_023 S0021979714002343 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- SCB SCE SEW SSH VH1 WUQ ZGI ZXP IQODW NPM 7X8 EFKBS 7U5 8FD L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c452t-4f9276727c6d54e2c9faab4f9f562d0e8162b1aa17d91f44663d46169b6765823 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Sep 05 12:23:38 EDT 2025 Fri Sep 05 09:34:18 EDT 2025 Fri Sep 05 08:26:25 EDT 2025 Thu Apr 03 07:10:11 EDT 2025 Wed Apr 02 07:15:03 EDT 2025 Tue Jul 01 01:18:16 EDT 2025 Thu Apr 24 23:06:57 EDT 2025 Fri Feb 23 02:33:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 428 |
Keywords | Magnetic Ionic Liquid Magnetic force density Room temperature ionic liquid The Ferrohydrodynamic Bernoulli Relationship Magnetic surface force Magnetic energy density The Ferrohydrodynamic Bernoulli Fluid Magnetic force Air Density Ionic liquid Energy Relationship Magnetic field Interface Room temperature |
Language | English |
License | CC BY 4.0 Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-4f9276727c6d54e2c9faab4f9f562d0e8162b1aa17d91f44663d46169b6765823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 24910029 |
PQID | 1534473911 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2101376235 proquest_miscellaneous_1551087588 proquest_miscellaneous_1534473911 pubmed_primary_24910029 pascalfrancis_primary_28601903 crossref_citationtrail_10_1016_j_jcis_2014_04_023 crossref_primary_10_1016_j_jcis_2014_04_023 elsevier_sciencedirect_doi_10_1016_j_jcis_2014_04_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-15 |
PublicationDateYYYYMMDD | 2014-08-15 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Brown, Bushmelev, Butts, Cheng, Eastoe, Grillo, Heenan, Schmidt (b0090) 2012; 51 Zou, Zou, Hu (b0095) 2003; 39 Lange (b0070) 2002; 241 Li, Yang, Zhou, Zhang (b0100) 2010; 10 Hayashi, Hamaguchi (b0005) 2004; 33 Hayashi, Saha, Hamaguchi (b0010) 2006; 42 Misuka, Breucha, Lowe (b0025) 2011; 173 Kurloglu, Bilgin, Sesen, Misirlioglu, Yildiz, Acar, Kosar (b0035) 2012; 13 Ludovisi, Cha, Worek, Ramachandra (b0045) 2012; 324 Y. Yoshida, G. Saito, Progress in paramagnetic ionic liquids, in: Ionic Liquids: Theory, properties, new approaches, A. Kokorin, Ed., InTech, 2011, pp. 723–738. Santos, Albo, Daniel, Portugal, Crespo, Irabien (b0040) 2013; 430 d’Aquino, Miano, Serpico, Zamboni, Coppola (b0050) 2003; 39 Choi, Kim, Kim, Park (b0055) 2008; 44 R. Kalb, Use of magnetic, ionic liquids as an extraction agent, USA Patent US 2011/0020509 A1, 27 January, 2011. Kraus, Fleisch (b0060) 1999 Choi, Park, Lee (b0065) 2006; 99 Rosensweig (b0020) 2014 Del Sesto, McCleskey, Burrell, Baker, Thompson, Scott, Wilkes, Williams (b0085) 2008 Neuringer, Rosensweig (b0075) 1964; 7 Del Sesto (10.1016/j.jcis.2014.04.023_b0085) 2008 Zou (10.1016/j.jcis.2014.04.023_b0095) 2003; 39 Misuka (10.1016/j.jcis.2014.04.023_b0025) 2011; 173 Santos (10.1016/j.jcis.2014.04.023_b0040) 2013; 430 Kurloglu (10.1016/j.jcis.2014.04.023_b0035) 2012; 13 Choi (10.1016/j.jcis.2014.04.023_b0065) 2006; 99 10.1016/j.jcis.2014.04.023_b0030 Kraus (10.1016/j.jcis.2014.04.023_b0060) 1999 Brown (10.1016/j.jcis.2014.04.023_b0090) 2012; 51 Lange (10.1016/j.jcis.2014.04.023_b0070) 2002; 241 Li (10.1016/j.jcis.2014.04.023_b0100) 2010; 10 d’Aquino (10.1016/j.jcis.2014.04.023_b0050) 2003; 39 Choi (10.1016/j.jcis.2014.04.023_b0055) 2008; 44 Hayashi (10.1016/j.jcis.2014.04.023_b0005) 2004; 33 Hayashi (10.1016/j.jcis.2014.04.023_b0010) 2006; 42 Neuringer (10.1016/j.jcis.2014.04.023_b0075) 1964; 7 Rosensweig (10.1016/j.jcis.2014.04.023_b0020) 2014 Ludovisi (10.1016/j.jcis.2014.04.023_b0045) 2012; 324 10.1016/j.jcis.2014.04.023_b0015 |
References_xml | – volume: 324 start-page: 3633 year: 2012 end-page: 3640 ident: b0045 publication-title: J. Magn. Magn. Mater. – year: 1999 ident: b0060 article-title: Electromagnetics with Applications – volume: 7 start-page: 1927 year: 1964 end-page: 1937 ident: b0075 publication-title: Phys. Fluids – volume: 39 start-page: 261 year: 2003 end-page: 2653 ident: b0095 publication-title: IEEE Trans. Magn. – reference: R. Kalb, Use of magnetic, ionic liquids as an extraction agent, USA Patent US 2011/0020509 A1, 27 January, 2011. – volume: 51 start-page: 2414 year: 2012 end-page: 2416 ident: b0090 publication-title: Angew. Chem. Int. Ed. – volume: 173 start-page: 536 year: 2011 end-page: 540 ident: b0025 publication-title: Chem. Eng. J. – volume: 33 start-page: 1590 year: 2004 end-page: 1591 ident: b0005 publication-title: Chem. Lett. – reference: Y. Yoshida, G. Saito, Progress in paramagnetic ionic liquids, in: Ionic Liquids: Theory, properties, new approaches, A. Kokorin, Ed., InTech, 2011, pp. 723–738. – volume: 39 start-page: 2657 year: 2003 end-page: 2659 ident: b0050 publication-title: IEEE Trans. Magn. – volume: 10 start-page: 788 year: 2010 end-page: 794 ident: b0100 publication-title: Chin. J. Process Eng. – start-page: 447 year: 2008 end-page: 449 ident: b0085 publication-title: Chem. Commun. – volume: 13 start-page: 683 year: 2012 end-page: 694 ident: b0035 publication-title: Microfluid. Nanofluid. – volume: 99 start-page: 08H903 year: 2006 ident: b0065 publication-title: J. Appl. Phys. – volume: 44 year: 2008 ident: b0055 publication-title: IEEE Trans. Magn. – volume: 241 start-page: 327 year: 2002 end-page: 329 ident: b0070 publication-title: J. Magn. Magn. Mater. – volume: 430 start-page: 56 year: 2013 end-page: 61 ident: b0040 publication-title: J. Membr. Sci. – year: 2014 ident: b0020 article-title: Ferrohydrodynamics – volume: 42 start-page: 12 year: 2006 end-page: 14 ident: b0010 publication-title: IEEE Trans. Magn. – volume: 430 start-page: 56 year: 2013 ident: 10.1016/j.jcis.2014.04.023_b0040 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.12.009 – volume: 33 start-page: 1590 issue: 12 year: 2004 ident: 10.1016/j.jcis.2014.04.023_b0005 publication-title: Chem. Lett. doi: 10.1246/cl.2004.1590 – volume: 241 start-page: 327 year: 2002 ident: 10.1016/j.jcis.2014.04.023_b0070 publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(01)01368-3 – volume: 173 start-page: 536 year: 2011 ident: 10.1016/j.jcis.2014.04.023_b0025 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.05.057 – volume: 44 issue: 6 year: 2008 ident: 10.1016/j.jcis.2014.04.023_b0055 publication-title: IEEE Trans. Magn. – year: 1999 ident: 10.1016/j.jcis.2014.04.023_b0060 – volume: 10 start-page: 788 issue: 4 year: 2010 ident: 10.1016/j.jcis.2014.04.023_b0100 publication-title: Chin. J. Process Eng. – volume: 39 start-page: 2657 issue: 5 year: 2003 ident: 10.1016/j.jcis.2014.04.023_b0050 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2003.815546 – ident: 10.1016/j.jcis.2014.04.023_b0015 doi: 10.5772/14846 – volume: 324 start-page: 3633 year: 2012 ident: 10.1016/j.jcis.2014.04.023_b0045 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2012.04.007 – start-page: 447 year: 2008 ident: 10.1016/j.jcis.2014.04.023_b0085 publication-title: Chem. Commun. doi: 10.1039/B711189D – volume: 42 start-page: 12 issue: 1 year: 2006 ident: 10.1016/j.jcis.2014.04.023_b0010 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2005.854875 – volume: 99 start-page: 08H903 year: 2006 ident: 10.1016/j.jcis.2014.04.023_b0065 publication-title: J. Appl. Phys. doi: 10.1063/1.2173207 – ident: 10.1016/j.jcis.2014.04.023_b0030 – volume: 51 start-page: 2414 year: 2012 ident: 10.1016/j.jcis.2014.04.023_b0090 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201108010 – volume: 13 start-page: 683 issue: 4 year: 2012 ident: 10.1016/j.jcis.2014.04.023_b0035 publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-012-1008-5 – year: 2014 ident: 10.1016/j.jcis.2014.04.023_b0020 – volume: 39 start-page: 261 issue: 5 year: 2003 ident: 10.1016/j.jcis.2014.04.023_b0095 publication-title: IEEE Trans. Magn. – volume: 7 start-page: 1927 issue: 12 year: 1964 ident: 10.1016/j.jcis.2014.04.023_b0075 publication-title: Phys. Fluids doi: 10.1063/1.1711103 |
SSID | ssj0011559 |
Score | 2.2035534 |
Snippet | [Display omitted]
•MILs are “2nd-Gen” magnetic liquids without dispersed magnetic particles.•Uniform tangential magnetic fields produce magnetic hydraulic... Magnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship. Based on... Hypothesis Magnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship.... Magnetic Ionic Liquid (MILs), novel magnetic molecules that form “pure magnetic liquids,” will follow the Ferrohydrodynamic Bernoulli Relationship. Based on... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16 |
SubjectTerms | air chemical structure Chemistry Computational fluid dynamics Exact sciences and technology experimental design Ferrohydrodynamics Fluid flow Fluids General and physical chemistry gravity Ionic liquids Magnetic energy density Magnetic fields Magnetic force density Magnetic Ionic Liquid Magnetic permeability Magnetic surface force Position (location) Room temperature ionic liquid surface area Surface physical chemistry The Ferrohydrodynamic Bernoulli Relationship |
Title | Hydraulic pressures generated in Magnetic Ionic Liquids by paramagnetic fluid/air interfaces inside of uniform tangential magnetic fields |
URI | https://dx.doi.org/10.1016/j.jcis.2014.04.023 https://www.ncbi.nlm.nih.gov/pubmed/24910029 https://www.proquest.com/docview/1534473911 https://www.proquest.com/docview/1551087588 https://www.proquest.com/docview/2101376235 |
Volume | 428 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK7rANxbB1j2ZbAw3YbfASyfRDxyJYkW5rTyvQmyBZUuEidbIkPvSy-_71SD_S9ZAcCgRGIlOwY9IkJZIfGftMW8aQyRDlAC4C5_PIqjSJUgUFSoAFaWkf8vwinV7C96vkao9N-loYSqvsdH-r0xtt3Y2Muqc5WpQl1fji25YpQpxDwwOE-AmQEX7-1z-bNA9BYbc2zUNERN0VzrQ5XjdFSZDdAhq4UxlvM04HC7PCRxbaXhfbndHGKJ2-ZC86b5KftDf8iu356pA9nfRN3A7Z8__wBl-zv9M7tzT1rCx4k_9a44FfN8DT6HjysuLn5rqiskZ-RpC5_Gf5uy7dits7Thjht_3ZMMPhkSmXnOAmloHyuvArtf7k88Driuq9bvnaNJVbKOL8fiqlzK3esMvTb78m06jrxRAVkMh1BEHJjKK2ReoS8LJQwRiLowEdKDf2uUilFcaIzCkRKEgcO0hFqmyaoZMj47dsv5pX_ohxUM76OA_jsUMNAp5ArLzHpZUxCcU9B0z0TNBFB1RO_TJmus9Iu9HEOE2M02P8yHjAvmzmLFqYjp3USc9b_UDYNNqRnfOGDwRhcymZp1STjwSfesnQyGiKvZjKz-uVRsOCwhmjadlFgwoS1495vp0GV-gCbYKMkwF714re_V2AIkBd9f6Rf-8De0a_aMdcJB_Z_npZ-2N0udZ22LxTQ_bk5OzH9OIfBkMqog |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa67tAVQ7F1j2aPTgN2G7xEMv3QcQhWpFvSUwv0JsiWVLhInTSJD730vn890o-0PSSHAYERyBT8IE1SIvmRsW-0ZQyJ9EEKYAOwLg0yFUdBrCBHCchAZrQPOTmLRxfw-zK63GHDrhaG0ipb3d_o9FpbtyP99m3250VBNb74tSWKEOfQ8ED4jD2HKExItH_cr_M8BMXdmjwPERB5WznTJHld5wVhdguo8U5luMk6vZybJb4z3zS72OyN1lbp5BU7aN1J_rO549dsx5WHbG_YdXE7ZPuPAAffsL-jO7sw1bTIeZ0AW-GBX9XI0-h58qLkE3NVUl0jPyXMXD4ubqvCLnl2xwkk_KY766c43DfFghPexMJTYhf-pd6ffOZ5VVLB1w1fmbp0C2WcP0ylnLnlW3Zx8ut8OAraZgxBDpFcBeCVTChsm8c2Aidz5Y3JcNSjB2UHLhWxzIQxIrFKeIoShxZiEassTtDLkeE7tlvOSnfEOCibuTD1g4FFFQKOUKycw7WVMREFPntMdEzQeYtUTg0zprpLSbvWxDhNjNMD_Mmwx76v58wbnI6t1FHHW_1E2jQakq3zjp8IwvpSMo2pKB8JvnaSoZHRFHwxpZtVS42WBSAJ0bZso0ENiQvINN1Mg0t0gUZBhlGPvW9E7-EuQBGirvrwn4_3he2NzidjPT49-_ORvaAztH0uok9sd7Wo3Gf0v1bZcf19_QOufyw4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydraulic+pressures+generated+in+Magnetic+Ionic+Liquids+by+paramagnetic+fluid%2Fair+interfaces+inside+of+uniform+tangential+magnetic+fields&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=SCOVAZZO%2C+Paul&rft.au=PORTUGAL%2C+Carla+A.+M&rft.au=ROSATELLA%2C+Andreia+A&rft.au=AFONSO%2C+Carlos+A.+M&rft.date=2014-08-15&rft.pub=Elsevier&rft.issn=0021-9797&rft.issue=428&rft.spage=16&rft.epage=23&rft_id=info:doi/10.1016%2Fj.jcis.2014.04.023&rft.externalDBID=n%2Fa&rft.externalDocID=28601903 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |