Hydraulic pressures generated in Magnetic Ionic Liquids by paramagnetic fluid/air interfaces inside of uniform tangential magnetic fields

[Display omitted] •MILs are “2nd-Gen” magnetic liquids without dispersed magnetic particles.•Uniform tangential magnetic fields produce magnetic hydraulic pressures in MILs.•FHD-Bernoulli eq. predicts the magnetic hydraulic pressure or head (>900Pa or 6cm).•Phenomena directly related to magnetic...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 428; no. 428; pp. 16 - 23
Main Authors Scovazzo, Paul, Portugal, Carla A.M., Rosatella, Andreia A., Afonso, Carlos A.M., Crespo, João G.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.08.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0021-9797
1095-7103
1095-7103
DOI10.1016/j.jcis.2014.04.023

Cover

Loading…
Abstract [Display omitted] •MILs are “2nd-Gen” magnetic liquids without dispersed magnetic particles.•Uniform tangential magnetic fields produce magnetic hydraulic pressures in MILs.•FHD-Bernoulli eq. predicts the magnetic hydraulic pressure or head (>900Pa or 6cm).•Phenomena directly related to magnetic susceptibility and the field strength squared.•Phenomena could complicate research of MILs as reaction media or separation agents. Magnetic Ionic Liquid (MILs), novel magnetic molecules that form “pure magnetic liquids,” will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial. We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element. Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid’s volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910Pa at 1.627Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications.
AbstractList Magnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial.HYPOTHESISMagnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial.We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element.EXPERIMENTSWe imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element.Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid's volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910 Pa at 1.627 Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications.FINDINGSUniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid's volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910 Pa at 1.627 Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications.
[Display omitted] •MILs are “2nd-Gen” magnetic liquids without dispersed magnetic particles.•Uniform tangential magnetic fields produce magnetic hydraulic pressures in MILs.•FHD-Bernoulli eq. predicts the magnetic hydraulic pressure or head (>900Pa or 6cm).•Phenomena directly related to magnetic susceptibility and the field strength squared.•Phenomena could complicate research of MILs as reaction media or separation agents. Magnetic Ionic Liquid (MILs), novel magnetic molecules that form “pure magnetic liquids,” will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial. We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element. Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid’s volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910Pa at 1.627Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications.
Magnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial. We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element. Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid's volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910 Pa at 1.627 Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications.
Hypothesis Magnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial. Experiments We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element. Findings: Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid's volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl sub(4)] generated the greatest hydraulic head (64-mm or 910 Pa at 1.627 Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications.
Magnetic Ionic Liquid (MILs), novel magnetic molecules that form “pure magnetic liquids,” will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial.We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element.Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid’s volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910Pa at 1.627Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications.
Author Crespo, João G.
Rosatella, Andreia A.
Afonso, Carlos A.M.
Scovazzo, Paul
Portugal, Carla A.M.
Author_xml – sequence: 1
  givenname: Paul
  surname: Scovazzo
  fullname: Scovazzo, Paul
  email: scovazzo@olemiss.edu
  organization: Department of Chemical Engineering, University of Mississippi, Oxford, MS, USA
– sequence: 2
  givenname: Carla A.M.
  surname: Portugal
  fullname: Portugal, Carla A.M.
  email: cmp@fct.unl.pt
  organization: REQUIMTE-CQFB, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
– sequence: 3
  givenname: Andreia A.
  surname: Rosatella
  fullname: Rosatella, Andreia A.
  email: rosatella@ff.ul.pt
  organization: Research Institute for Medicines and Pharmaceutical Sciences (iMED.UL), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
– sequence: 4
  givenname: Carlos A.M.
  surname: Afonso
  fullname: Afonso, Carlos A.M.
  email: carlosafonso@ff.ul.pt
  organization: Research Institute for Medicines and Pharmaceutical Sciences (iMED.UL), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
– sequence: 5
  givenname: João G.
  surname: Crespo
  fullname: Crespo, João G.
  email: jgc@fct.unl.pt
  organization: REQUIMTE-CQFB, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28601903$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24910029$$D View this record in MEDLINE/PubMed
BookMark eNqNksGKFDEQhoOsuLOrL-BB-iJ46dkk3Z10wIss6i6MeNFzqE4qS4bu9GySFuYRfGszzAwLHlahqIKq7_8PVXVFLsIckJC3jK4ZZeJmu94an9acsnZNS_DmBVkxqrpaMtpckBWlnNVKKnlJrlLaUspY16lX5JK3ipWhWpHfd3sbYRm9qXYRU1pKqh4wYISMtvKh-gYPAXOZ38-h5I1_XLxN1bCvdhBhOk_dWNo34GPRZIwOTDHyIXmL1eyqJXg3x6nKEIp79jBWT1KPo02vyUsHY8I3p3pNfn75_OP2rt58_3p_-2lTm7bjuW6d4lJILo2wXYvcKAcwlK7rBLcUeyb4wACYtIq5thWisa1gQg1Ciq7nzTX5cPTdxflxwZT15JPBcYSA85I0L7ttpOBN90-0bJPRXnZ9_x9o07ayUYwV9N0JXYYJrd5FP0Hc6_NRCvD-BEAyMLoIodz5iesFZYo2heuPnIlzShGdNj5D9nPIEfyoGdWHP9FbffgTffgTTUvwg5T_JT27Pyv6eBRhOc8vj1En4zEYtD6iydrO_jn5H6s21pU
CODEN JCISA5
CitedBy_id crossref_primary_10_1021_acs_langmuir_0c01215
crossref_primary_10_1039_C9CP06994A
crossref_primary_10_1039_C6CP02433E
crossref_primary_10_1021_acs_jpcb_7b07929
crossref_primary_10_3390_ijms22020706
crossref_primary_10_1016_j_ultsonch_2016_08_023
crossref_primary_10_1016_j_chroma_2018_12_032
crossref_primary_10_1016_j_jiec_2023_04_011
crossref_primary_10_1016_j_chroma_2022_463577
crossref_primary_10_1016_j_trac_2024_118116
crossref_primary_10_1039_C8AY01058G
crossref_primary_10_1016_j_aca_2019_02_013
crossref_primary_10_1021_cm504202v
Cites_doi 10.1016/j.memsci.2012.12.009
10.1246/cl.2004.1590
10.1016/S0304-8853(01)01368-3
10.1016/j.cej.2011.05.057
10.1109/TMAG.2003.815546
10.5772/14846
10.1016/j.jmmm.2012.04.007
10.1039/B711189D
10.1109/TMAG.2005.854875
10.1063/1.2173207
10.1002/anie.201108010
10.1007/s10404-012-1008-5
10.1063/1.1711103
ContentType Journal Article
Copyright 2014 Elsevier Inc.
2015 INIST-CNRS
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
IQODW
NPM
7X8
7U5
8FD
L7M
7S9
L.6
DOI 10.1016/j.jcis.2014.04.023
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Technology Research Database
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 23
ExternalDocumentID 24910029
28601903
10_1016_j_jcis_2014_04_023
S0021979714002343
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
IQODW
NPM
7X8
EFKBS
7U5
8FD
L7M
7S9
L.6
ID FETCH-LOGICAL-c452t-4f9276727c6d54e2c9faab4f9f562d0e8162b1aa17d91f44663d46169b6765823
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Sep 05 12:23:38 EDT 2025
Fri Sep 05 09:34:18 EDT 2025
Fri Sep 05 08:26:25 EDT 2025
Thu Apr 03 07:10:11 EDT 2025
Wed Apr 02 07:15:03 EDT 2025
Tue Jul 01 01:18:16 EDT 2025
Thu Apr 24 23:06:57 EDT 2025
Fri Feb 23 02:33:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 428
Keywords Magnetic Ionic Liquid
Magnetic force density
Room temperature ionic liquid
The Ferrohydrodynamic Bernoulli Relationship
Magnetic surface force
Magnetic energy density
The Ferrohydrodynamic Bernoulli
Fluid
Magnetic force
Air
Density
Ionic liquid
Energy
Relationship
Magnetic field
Interface
Room temperature
Language English
License CC BY 4.0
Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-4f9276727c6d54e2c9faab4f9f562d0e8162b1aa17d91f44663d46169b6765823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24910029
PQID 1534473911
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2101376235
proquest_miscellaneous_1551087588
proquest_miscellaneous_1534473911
pubmed_primary_24910029
pascalfrancis_primary_28601903
crossref_citationtrail_10_1016_j_jcis_2014_04_023
crossref_primary_10_1016_j_jcis_2014_04_023
elsevier_sciencedirect_doi_10_1016_j_jcis_2014_04_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-15
PublicationDateYYYYMMDD 2014-08-15
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Brown, Bushmelev, Butts, Cheng, Eastoe, Grillo, Heenan, Schmidt (b0090) 2012; 51
Zou, Zou, Hu (b0095) 2003; 39
Lange (b0070) 2002; 241
Li, Yang, Zhou, Zhang (b0100) 2010; 10
Hayashi, Hamaguchi (b0005) 2004; 33
Hayashi, Saha, Hamaguchi (b0010) 2006; 42
Misuka, Breucha, Lowe (b0025) 2011; 173
Kurloglu, Bilgin, Sesen, Misirlioglu, Yildiz, Acar, Kosar (b0035) 2012; 13
Ludovisi, Cha, Worek, Ramachandra (b0045) 2012; 324
Y. Yoshida, G. Saito, Progress in paramagnetic ionic liquids, in: Ionic Liquids: Theory, properties, new approaches, A. Kokorin, Ed., InTech, 2011, pp. 723–738.
Santos, Albo, Daniel, Portugal, Crespo, Irabien (b0040) 2013; 430
d’Aquino, Miano, Serpico, Zamboni, Coppola (b0050) 2003; 39
Choi, Kim, Kim, Park (b0055) 2008; 44
R. Kalb, Use of magnetic, ionic liquids as an extraction agent, USA Patent US 2011/0020509 A1, 27 January, 2011.
Kraus, Fleisch (b0060) 1999
Choi, Park, Lee (b0065) 2006; 99
Rosensweig (b0020) 2014
Del Sesto, McCleskey, Burrell, Baker, Thompson, Scott, Wilkes, Williams (b0085) 2008
Neuringer, Rosensweig (b0075) 1964; 7
Del Sesto (10.1016/j.jcis.2014.04.023_b0085) 2008
Zou (10.1016/j.jcis.2014.04.023_b0095) 2003; 39
Misuka (10.1016/j.jcis.2014.04.023_b0025) 2011; 173
Santos (10.1016/j.jcis.2014.04.023_b0040) 2013; 430
Kurloglu (10.1016/j.jcis.2014.04.023_b0035) 2012; 13
Choi (10.1016/j.jcis.2014.04.023_b0065) 2006; 99
10.1016/j.jcis.2014.04.023_b0030
Kraus (10.1016/j.jcis.2014.04.023_b0060) 1999
Brown (10.1016/j.jcis.2014.04.023_b0090) 2012; 51
Lange (10.1016/j.jcis.2014.04.023_b0070) 2002; 241
Li (10.1016/j.jcis.2014.04.023_b0100) 2010; 10
d’Aquino (10.1016/j.jcis.2014.04.023_b0050) 2003; 39
Choi (10.1016/j.jcis.2014.04.023_b0055) 2008; 44
Hayashi (10.1016/j.jcis.2014.04.023_b0005) 2004; 33
Hayashi (10.1016/j.jcis.2014.04.023_b0010) 2006; 42
Neuringer (10.1016/j.jcis.2014.04.023_b0075) 1964; 7
Rosensweig (10.1016/j.jcis.2014.04.023_b0020) 2014
Ludovisi (10.1016/j.jcis.2014.04.023_b0045) 2012; 324
10.1016/j.jcis.2014.04.023_b0015
References_xml – volume: 324
  start-page: 3633
  year: 2012
  end-page: 3640
  ident: b0045
  publication-title: J. Magn. Magn. Mater.
– year: 1999
  ident: b0060
  article-title: Electromagnetics with Applications
– volume: 7
  start-page: 1927
  year: 1964
  end-page: 1937
  ident: b0075
  publication-title: Phys. Fluids
– volume: 39
  start-page: 261
  year: 2003
  end-page: 2653
  ident: b0095
  publication-title: IEEE Trans. Magn.
– reference: R. Kalb, Use of magnetic, ionic liquids as an extraction agent, USA Patent US 2011/0020509 A1, 27 January, 2011.
– volume: 51
  start-page: 2414
  year: 2012
  end-page: 2416
  ident: b0090
  publication-title: Angew. Chem. Int. Ed.
– volume: 173
  start-page: 536
  year: 2011
  end-page: 540
  ident: b0025
  publication-title: Chem. Eng. J.
– volume: 33
  start-page: 1590
  year: 2004
  end-page: 1591
  ident: b0005
  publication-title: Chem. Lett.
– reference: Y. Yoshida, G. Saito, Progress in paramagnetic ionic liquids, in: Ionic Liquids: Theory, properties, new approaches, A. Kokorin, Ed., InTech, 2011, pp. 723–738.
– volume: 39
  start-page: 2657
  year: 2003
  end-page: 2659
  ident: b0050
  publication-title: IEEE Trans. Magn.
– volume: 10
  start-page: 788
  year: 2010
  end-page: 794
  ident: b0100
  publication-title: Chin. J. Process Eng.
– start-page: 447
  year: 2008
  end-page: 449
  ident: b0085
  publication-title: Chem. Commun.
– volume: 13
  start-page: 683
  year: 2012
  end-page: 694
  ident: b0035
  publication-title: Microfluid. Nanofluid.
– volume: 99
  start-page: 08H903
  year: 2006
  ident: b0065
  publication-title: J. Appl. Phys.
– volume: 44
  year: 2008
  ident: b0055
  publication-title: IEEE Trans. Magn.
– volume: 241
  start-page: 327
  year: 2002
  end-page: 329
  ident: b0070
  publication-title: J. Magn. Magn. Mater.
– volume: 430
  start-page: 56
  year: 2013
  end-page: 61
  ident: b0040
  publication-title: J. Membr. Sci.
– year: 2014
  ident: b0020
  article-title: Ferrohydrodynamics
– volume: 42
  start-page: 12
  year: 2006
  end-page: 14
  ident: b0010
  publication-title: IEEE Trans. Magn.
– volume: 430
  start-page: 56
  year: 2013
  ident: 10.1016/j.jcis.2014.04.023_b0040
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.12.009
– volume: 33
  start-page: 1590
  issue: 12
  year: 2004
  ident: 10.1016/j.jcis.2014.04.023_b0005
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2004.1590
– volume: 241
  start-page: 327
  year: 2002
  ident: 10.1016/j.jcis.2014.04.023_b0070
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(01)01368-3
– volume: 173
  start-page: 536
  year: 2011
  ident: 10.1016/j.jcis.2014.04.023_b0025
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.05.057
– volume: 44
  issue: 6
  year: 2008
  ident: 10.1016/j.jcis.2014.04.023_b0055
  publication-title: IEEE Trans. Magn.
– year: 1999
  ident: 10.1016/j.jcis.2014.04.023_b0060
– volume: 10
  start-page: 788
  issue: 4
  year: 2010
  ident: 10.1016/j.jcis.2014.04.023_b0100
  publication-title: Chin. J. Process Eng.
– volume: 39
  start-page: 2657
  issue: 5
  year: 2003
  ident: 10.1016/j.jcis.2014.04.023_b0050
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2003.815546
– ident: 10.1016/j.jcis.2014.04.023_b0015
  doi: 10.5772/14846
– volume: 324
  start-page: 3633
  year: 2012
  ident: 10.1016/j.jcis.2014.04.023_b0045
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2012.04.007
– start-page: 447
  year: 2008
  ident: 10.1016/j.jcis.2014.04.023_b0085
  publication-title: Chem. Commun.
  doi: 10.1039/B711189D
– volume: 42
  start-page: 12
  issue: 1
  year: 2006
  ident: 10.1016/j.jcis.2014.04.023_b0010
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2005.854875
– volume: 99
  start-page: 08H903
  year: 2006
  ident: 10.1016/j.jcis.2014.04.023_b0065
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2173207
– ident: 10.1016/j.jcis.2014.04.023_b0030
– volume: 51
  start-page: 2414
  year: 2012
  ident: 10.1016/j.jcis.2014.04.023_b0090
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201108010
– volume: 13
  start-page: 683
  issue: 4
  year: 2012
  ident: 10.1016/j.jcis.2014.04.023_b0035
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-012-1008-5
– year: 2014
  ident: 10.1016/j.jcis.2014.04.023_b0020
– volume: 39
  start-page: 261
  issue: 5
  year: 2003
  ident: 10.1016/j.jcis.2014.04.023_b0095
  publication-title: IEEE Trans. Magn.
– volume: 7
  start-page: 1927
  issue: 12
  year: 1964
  ident: 10.1016/j.jcis.2014.04.023_b0075
  publication-title: Phys. Fluids
  doi: 10.1063/1.1711103
SSID ssj0011559
Score 2.2035534
Snippet [Display omitted] •MILs are “2nd-Gen” magnetic liquids without dispersed magnetic particles.•Uniform tangential magnetic fields produce magnetic hydraulic...
Magnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship. Based on...
Hypothesis Magnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship....
Magnetic Ionic Liquid (MILs), novel magnetic molecules that form “pure magnetic liquids,” will follow the Ferrohydrodynamic Bernoulli Relationship. Based on...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16
SubjectTerms air
chemical structure
Chemistry
Computational fluid dynamics
Exact sciences and technology
experimental design
Ferrohydrodynamics
Fluid flow
Fluids
General and physical chemistry
gravity
Ionic liquids
Magnetic energy density
Magnetic fields
Magnetic force density
Magnetic Ionic Liquid
Magnetic permeability
Magnetic surface force
Position (location)
Room temperature ionic liquid
surface area
Surface physical chemistry
The Ferrohydrodynamic Bernoulli Relationship
Title Hydraulic pressures generated in Magnetic Ionic Liquids by paramagnetic fluid/air interfaces inside of uniform tangential magnetic fields
URI https://dx.doi.org/10.1016/j.jcis.2014.04.023
https://www.ncbi.nlm.nih.gov/pubmed/24910029
https://www.proquest.com/docview/1534473911
https://www.proquest.com/docview/1551087588
https://www.proquest.com/docview/2101376235
Volume 428
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK7rANxbB1j2ZbAw3YbfASyfRDxyJYkW5rTyvQmyBZUuEidbIkPvSy-_71SD_S9ZAcCgRGIlOwY9IkJZIfGftMW8aQyRDlAC4C5_PIqjSJUgUFSoAFaWkf8vwinV7C96vkao9N-loYSqvsdH-r0xtt3Y2Muqc5WpQl1fji25YpQpxDwwOE-AmQEX7-1z-bNA9BYbc2zUNERN0VzrQ5XjdFSZDdAhq4UxlvM04HC7PCRxbaXhfbndHGKJ2-ZC86b5KftDf8iu356pA9nfRN3A7Z8__wBl-zv9M7tzT1rCx4k_9a44FfN8DT6HjysuLn5rqiskZ-RpC5_Gf5uy7dits7Thjht_3ZMMPhkSmXnOAmloHyuvArtf7k88Driuq9bvnaNJVbKOL8fiqlzK3esMvTb78m06jrxRAVkMh1BEHJjKK2ReoS8LJQwRiLowEdKDf2uUilFcaIzCkRKEgcO0hFqmyaoZMj47dsv5pX_ohxUM76OA_jsUMNAp5ArLzHpZUxCcU9B0z0TNBFB1RO_TJmus9Iu9HEOE2M02P8yHjAvmzmLFqYjp3USc9b_UDYNNqRnfOGDwRhcymZp1STjwSfesnQyGiKvZjKz-uVRsOCwhmjadlFgwoS1495vp0GV-gCbYKMkwF714re_V2AIkBd9f6Rf-8De0a_aMdcJB_Z_npZ-2N0udZ22LxTQ_bk5OzH9OIfBkMqog
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa67tAVQ7F1j2aPTgN2G7xEMv3QcQhWpFvSUwv0JsiWVLhInTSJD730vn890o-0PSSHAYERyBT8IE1SIvmRsW-0ZQyJ9EEKYAOwLg0yFUdBrCBHCchAZrQPOTmLRxfw-zK63GHDrhaG0ipb3d_o9FpbtyP99m3250VBNb74tSWKEOfQ8ED4jD2HKExItH_cr_M8BMXdmjwPERB5WznTJHld5wVhdguo8U5luMk6vZybJb4z3zS72OyN1lbp5BU7aN1J_rO549dsx5WHbG_YdXE7ZPuPAAffsL-jO7sw1bTIeZ0AW-GBX9XI0-h58qLkE3NVUl0jPyXMXD4ubqvCLnl2xwkk_KY766c43DfFghPexMJTYhf-pd6ffOZ5VVLB1w1fmbp0C2WcP0ylnLnlW3Zx8ut8OAraZgxBDpFcBeCVTChsm8c2Aidz5Y3JcNSjB2UHLhWxzIQxIrFKeIoShxZiEassTtDLkeE7tlvOSnfEOCibuTD1g4FFFQKOUKycw7WVMREFPntMdEzQeYtUTg0zprpLSbvWxDhNjNMD_Mmwx76v58wbnI6t1FHHW_1E2jQakq3zjp8IwvpSMo2pKB8JvnaSoZHRFHwxpZtVS42WBSAJ0bZso0ENiQvINN1Mg0t0gUZBhlGPvW9E7-EuQBGirvrwn4_3he2NzidjPT49-_ORvaAztH0uok9sd7Wo3Gf0v1bZcf19_QOufyw4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydraulic+pressures+generated+in+Magnetic+Ionic+Liquids+by+paramagnetic+fluid%2Fair+interfaces+inside+of+uniform+tangential+magnetic+fields&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=SCOVAZZO%2C+Paul&rft.au=PORTUGAL%2C+Carla+A.+M&rft.au=ROSATELLA%2C+Andreia+A&rft.au=AFONSO%2C+Carlos+A.+M&rft.date=2014-08-15&rft.pub=Elsevier&rft.issn=0021-9797&rft.issue=428&rft.spage=16&rft.epage=23&rft_id=info:doi/10.1016%2Fj.jcis.2014.04.023&rft.externalDBID=n%2Fa&rft.externalDocID=28601903
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon