Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling
•Three-dimensional numerical models of lithium-ion battery are established.•The coolant distribution in the cold-plate is non-uniform.•The heat generation of the battery is changeable during the discharge. Thermal management is indispensable to lithium-ion battery pack especially within high power e...
Saved in:
Published in | Energy conversion and management Vol. 126; pp. 622 - 631 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Three-dimensional numerical models of lithium-ion battery are established.•The coolant distribution in the cold-plate is non-uniform.•The heat generation of the battery is changeable during the discharge.
Thermal management is indispensable to lithium-ion battery pack especially within high power energy storage device and system. To investigate the thermal performance of lithium-ion battery pack, a type of liquid cooling method based on mini-channel cold-plate is used and the three-dimensional numerical model was established in this paper. The effects of number of channels, inlet mass flow rate, flow direction and width of channels on the thermal behaviors of the battery pack were analyzed. The results showed that the mini-channel cold-plate thermal management system provided good cooling efficiency in controlling the battery temperature at 5C discharge. A 5-channel cold-plate was enough and the temperature could be evidently reduced by increasing the inlet mass flow rate. Additionally, for the bad temperature uniformity in the design 1, design 2 was proposed and compared with the design 1. The maximum temperature and temperature difference decreased 13.3% and 43.3%, respectively. Temperature uniformity was significantly improved. |
---|---|
AbstractList | •Three-dimensional numerical models of lithium-ion battery are established.•The coolant distribution in the cold-plate is non-uniform.•The heat generation of the battery is changeable during the discharge.
Thermal management is indispensable to lithium-ion battery pack especially within high power energy storage device and system. To investigate the thermal performance of lithium-ion battery pack, a type of liquid cooling method based on mini-channel cold-plate is used and the three-dimensional numerical model was established in this paper. The effects of number of channels, inlet mass flow rate, flow direction and width of channels on the thermal behaviors of the battery pack were analyzed. The results showed that the mini-channel cold-plate thermal management system provided good cooling efficiency in controlling the battery temperature at 5C discharge. A 5-channel cold-plate was enough and the temperature could be evidently reduced by increasing the inlet mass flow rate. Additionally, for the bad temperature uniformity in the design 1, design 2 was proposed and compared with the design 1. The maximum temperature and temperature difference decreased 13.3% and 43.3%, respectively. Temperature uniformity was significantly improved. Thermal management is indispensable to lithium-ion battery pack especially within high power energy storage device and system. To investigate the thermal performance of lithium-ion battery pack, a type of liquid cooling method based on mini-channel cold-plate is used and the three-dimensional numerical model was established in this paper. The effects of number of channels, inlet mass flow rate, flow direction and width of channels on the thermal behaviors of the battery pack were analyzed. The results showed that the mini-channel cold-plate thermal management system provided good cooling efficiency in controlling the battery temperature at 5C discharge. A 5-channel cold-plate was enough and the temperature could be evidently reduced by increasing the inlet mass flow rate. Additionally, for the bad temperature uniformity in the design 1, design 2 was proposed and compared with the design 1. The maximum temperature and temperature difference decreased 13.3% and 43.3%, respectively. Temperature uniformity was significantly improved. |
Author | Qian, Zhen Li, Yimin Rao, Zhonghao |
Author_xml | – sequence: 1 givenname: Zhen surname: Qian fullname: Qian, Zhen – sequence: 2 givenname: Yimin surname: Li fullname: Li, Yimin – sequence: 3 givenname: Zhonghao surname: Rao fullname: Rao, Zhonghao email: raozhonghao@cumt.edu.cn |
BookMark | eNqFkE1PAyEURYmpifXjLxiWbmZkmCkwiQtN41fSxE33BJiHpZmBCtSk_15MdePGFfDeuTfknKOZDx4Qum5I3ZCG3W5r8Cb4SfmalndNRE1Ye4LmjeB9RSnlMzQnTc8q0ZPuDJ2ntCWEtAvC5kivNxAnNeIdRBvKzRvAweLR5Y3bT5ULHmuVM8QDzj9ogdQ7TOAzToeUYcL6gPfJ-Xc8Oe8qs1Hew4hNCGMZXqJTq8YEVz_nBVo_Pa6XL9Xq7fl1-bCqTLegueosa4XVveatKN-DQWhNqe2J5iCU5oK3TDSWCCsGZmmnWc-5ac0AfVm07QW6OdbuYvjYQ8pycsnAOCoPYZ8kJd1CNAvKeEHZETUxpBTByl10k4oH2RD57VRu5a9T-e1UEiGL0xK8-xM0LqtcJOWo3Ph__P4Yh6Lh00GUybhCwuAimCyH4P6r-ALEMZuD |
CitedBy_id | crossref_primary_10_1016_j_est_2023_106834 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123685 crossref_primary_10_1080_08916152_2024_2420942 crossref_primary_10_1016_j_est_2022_104014 crossref_primary_10_1016_j_est_2022_104375 crossref_primary_10_1016_j_enconman_2024_119223 crossref_primary_10_1021_acsomega_0c01858 crossref_primary_10_3389_fenrg_2022_1087682 crossref_primary_10_1016_j_applthermaleng_2019_114257 crossref_primary_10_1016_j_seta_2022_101993 crossref_primary_10_1016_j_applthermaleng_2021_117022 crossref_primary_10_3390_electrochem2010011 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125190 crossref_primary_10_1016_j_jpowsour_2020_229079 crossref_primary_10_1021_acsomega_0c01862 crossref_primary_10_1016_j_applthermaleng_2018_09_048 crossref_primary_10_1016_j_energy_2022_123637 crossref_primary_10_1016_j_applthermaleng_2021_117398 crossref_primary_10_1016_j_ijrefrig_2019_08_027 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122184 crossref_primary_10_1016_j_applthermaleng_2021_117157 crossref_primary_10_1016_j_enconman_2024_118383 crossref_primary_10_1115_1_4067955 crossref_primary_10_1016_j_applthermaleng_2022_118503 crossref_primary_10_1016_j_enconman_2017_08_016 crossref_primary_10_1080_10407782_2019_1685812 crossref_primary_10_1007_s11581_018_2481_y crossref_primary_10_1016_j_energy_2019_07_142 crossref_primary_10_1016_j_ijthermalsci_2023_108614 crossref_primary_10_1016_j_enconman_2021_114168 crossref_primary_10_1016_j_enconman_2017_10_063 crossref_primary_10_1016_j_est_2024_112682 crossref_primary_10_1038_s41598_024_52238_6 crossref_primary_10_3390_electronics12244931 crossref_primary_10_1016_j_est_2022_106208 crossref_primary_10_17482_uumfd_1570344 crossref_primary_10_1115_1_4063244 crossref_primary_10_1016_j_applthermaleng_2022_119940 crossref_primary_10_1115_1_4066514 crossref_primary_10_1016_j_energy_2024_130832 crossref_primary_10_1016_j_enconman_2023_116812 crossref_primary_10_1016_j_jechem_2020_10_017 crossref_primary_10_1016_j_applthermaleng_2020_115944 crossref_primary_10_1016_j_ijthermalsci_2023_108620 crossref_primary_10_1016_j_applthermaleng_2024_124777 crossref_primary_10_1088_1742_6596_2968_1_012013 crossref_primary_10_1016_j_enconman_2017_02_052 crossref_primary_10_1299_jtst_2018jtst0024 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120834 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122087 crossref_primary_10_1002_er_3801 crossref_primary_10_3390_en13071638 crossref_primary_10_1016_j_cej_2023_142401 crossref_primary_10_1016_j_energy_2023_127250 crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_116 crossref_primary_10_1016_j_enconman_2018_12_051 crossref_primary_10_1021_acs_energyfuels_4c02062 crossref_primary_10_1016_j_applthermaleng_2024_123673 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119988 crossref_primary_10_1016_j_enconman_2018_02_002 crossref_primary_10_1016_j_applthermaleng_2024_123795 crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_024 crossref_primary_10_1007_s11831_024_10068_9 crossref_primary_10_1016_j_applthermaleng_2022_119936 crossref_primary_10_1016_j_jpowsour_2021_229462 crossref_primary_10_1016_j_est_2022_104128 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119265 crossref_primary_10_1016_j_renene_2025_122461 crossref_primary_10_1002_er_3916 crossref_primary_10_1016_j_applthermaleng_2022_118675 crossref_primary_10_1016_j_egypro_2019_01_771 crossref_primary_10_1016_j_applthermaleng_2019_04_033 crossref_primary_10_1016_j_applthermaleng_2019_114183 crossref_primary_10_1016_j_est_2024_112750 crossref_primary_10_1002_ente_202400689 crossref_primary_10_1016_j_est_2023_110050 crossref_primary_10_1016_j_energy_2024_134187 crossref_primary_10_1016_j_energy_2021_123039 crossref_primary_10_1016_j_est_2021_103078 crossref_primary_10_1016_j_applthermaleng_2022_119874 crossref_primary_10_3390_batteries9080400 crossref_primary_10_1080_10407782_2023_2202883 crossref_primary_10_1016_j_est_2024_114708 crossref_primary_10_1016_j_ijft_2022_100153 crossref_primary_10_1016_j_jpowsour_2017_12_071 crossref_primary_10_1016_j_est_2024_113731 crossref_primary_10_1002_er_5089 crossref_primary_10_1016_j_seta_2021_101319 crossref_primary_10_1016_j_jpowsour_2022_231610 crossref_primary_10_1016_j_enconman_2018_02_022 crossref_primary_10_1080_10407782_2021_1947110 crossref_primary_10_1016_j_est_2020_101235 crossref_primary_10_1007_s10973_020_09606_x crossref_primary_10_3390_en16134845 crossref_primary_10_1016_j_applthermaleng_2022_119501 crossref_primary_10_1007_s10973_022_11935_y crossref_primary_10_1016_j_enconman_2024_119440 crossref_primary_10_3390_batteries9030153 crossref_primary_10_1016_j_applthermaleng_2022_118417 crossref_primary_10_1016_j_applthermaleng_2022_119626 crossref_primary_10_3390_app10207354 crossref_primary_10_1016_j_applthermaleng_2025_125945 crossref_primary_10_1016_j_apenergy_2023_122241 crossref_primary_10_1016_j_applthermaleng_2017_06_059 crossref_primary_10_52547_mme_22_11_687 crossref_primary_10_1016_j_applthermaleng_2024_124455 crossref_primary_10_1115_1_4062080 crossref_primary_10_1002_htj_23163 crossref_primary_10_3390_en10101677 crossref_primary_10_1016_j_applthermaleng_2024_122393 crossref_primary_10_1016_j_enconman_2017_01_069 crossref_primary_10_1016_j_applthermaleng_2018_10_077 crossref_primary_10_1016_j_apenergy_2024_124173 crossref_primary_10_1115_1_4049568 crossref_primary_10_1007_s11581_023_05040_9 crossref_primary_10_1016_j_enconman_2019_05_084 crossref_primary_10_1016_j_rser_2021_111049 crossref_primary_10_3390_en15196865 crossref_primary_10_1016_j_applthermaleng_2018_08_064 crossref_primary_10_1016_j_renene_2024_121952 crossref_primary_10_1002_er_4095 crossref_primary_10_1007_s11708_022_0825_9 crossref_primary_10_1016_j_csite_2022_102023 crossref_primary_10_1007_s11630_020_1280_8 crossref_primary_10_1002_er_6157 crossref_primary_10_1016_j_est_2025_115395 crossref_primary_10_1016_j_eng_2020_06_016 crossref_primary_10_1007_s11431_020_1605_5 crossref_primary_10_1016_j_est_2025_115399 crossref_primary_10_1115_1_4043570 crossref_primary_10_1016_j_applthermaleng_2024_123826 crossref_primary_10_1155_2020_4695419 crossref_primary_10_1149_1945_7111_ab8b96 crossref_primary_10_3390_en15197448 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125070 crossref_primary_10_1002_er_6387 crossref_primary_10_1016_j_est_2023_110374 crossref_primary_10_1016_j_est_2023_110372 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121026 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121269 crossref_primary_10_1002_er_6268 crossref_primary_10_1007_s10973_023_12092_6 crossref_primary_10_4028_www_scientific_net_AMR_1163_73 crossref_primary_10_1016_j_ijthermalsci_2024_109372 crossref_primary_10_1016_j_energy_2019_116010 crossref_primary_10_1016_j_energy_2023_129295 crossref_primary_10_1016_j_est_2022_105871 crossref_primary_10_1016_j_eng_2024_11_035 crossref_primary_10_1016_j_ijthermalsci_2021_107244 crossref_primary_10_1016_j_patter_2021_100432 crossref_primary_10_2139_ssrn_4134185 crossref_primary_10_1016_j_psep_2023_11_015 crossref_primary_10_1016_j_applthermaleng_2023_120287 crossref_primary_10_1061__ASCE_EY_1943_7897_0000592 crossref_primary_10_1007_s11431_020_1714_1 crossref_primary_10_1016_j_applthermaleng_2023_121349 crossref_primary_10_1007_s10973_020_09318_2 crossref_primary_10_1016_j_energy_2018_11_011 crossref_primary_10_1016_j_est_2023_109161 crossref_primary_10_1016_j_applthermaleng_2018_09_108 crossref_primary_10_1016_j_est_2023_110391 crossref_primary_10_1109_TTE_2021_3131718 crossref_primary_10_1016_j_est_2023_110276 crossref_primary_10_1016_j_est_2023_109167 crossref_primary_10_1002_est2_137 crossref_primary_10_1016_j_enconman_2019_02_010 crossref_primary_10_1016_j_csite_2025_105945 crossref_primary_10_1002_er_4067 crossref_primary_10_1016_j_energy_2019_116233 crossref_primary_10_1016_j_est_2021_103027 crossref_primary_10_1016_j_applthermaleng_2020_116067 crossref_primary_10_1016_j_est_2019_100969 crossref_primary_10_1007_s11630_020_1331_1 crossref_primary_10_1007_s11581_020_03676_5 crossref_primary_10_1016_j_est_2023_107096 crossref_primary_10_1016_j_matpr_2021_01_823 crossref_primary_10_1016_j_energy_2021_122553 crossref_primary_10_1016_j_ijthermalsci_2019_02_029 crossref_primary_10_1016_j_est_2019_100913 crossref_primary_10_1016_j_est_2021_103482 crossref_primary_10_3390_app11167440 crossref_primary_10_1016_j_applthermaleng_2024_123747 crossref_primary_10_20964_2019_07_06 crossref_primary_10_1016_j_apenergy_2020_115808 crossref_primary_10_2139_ssrn_4057403 crossref_primary_10_1016_j_ijthermalsci_2022_107955 crossref_primary_10_1002_ente_202200795 crossref_primary_10_1016_j_est_2023_109586 crossref_primary_10_1016_j_applthermaleng_2024_123984 crossref_primary_10_1016_j_applthermaleng_2023_121289 crossref_primary_10_1016_j_est_2023_108014 crossref_primary_10_1016_j_ijheatfluidflow_2024_109453 crossref_primary_10_1016_j_csite_2024_104759 crossref_primary_10_1016_j_est_2022_104853 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122956 crossref_primary_10_1016_j_applthermaleng_2021_117871 crossref_primary_10_1016_j_est_2022_105952 crossref_primary_10_1016_j_est_2023_110329 crossref_primary_10_2514_1_T6899 crossref_primary_10_1016_j_energy_2024_131731 crossref_primary_10_1177_09544070231220750 crossref_primary_10_1002_cben_202400037 crossref_primary_10_1016_j_applthermaleng_2020_116240 crossref_primary_10_1016_j_enconman_2018_09_025 crossref_primary_10_3390_app112411729 crossref_primary_10_1016_j_est_2023_108001 crossref_primary_10_1016_j_csite_2024_104983 crossref_primary_10_1002_er_4158 crossref_primary_10_1016_j_applthermaleng_2023_121051 crossref_primary_10_1016_j_applthermaleng_2021_117884 crossref_primary_10_1016_j_applthermaleng_2017_07_141 crossref_primary_10_1016_j_est_2021_102255 crossref_primary_10_1016_j_apmt_2023_102021 crossref_primary_10_1002_er_7893 crossref_primary_10_1016_j_applthermaleng_2024_122555 crossref_primary_10_1002_er_7539 crossref_primary_10_1016_j_etran_2024_100364 crossref_primary_10_1080_08916152_2023_2208132 crossref_primary_10_1002_er_4025 crossref_primary_10_1016_j_tsep_2023_101857 crossref_primary_10_1080_10407782_2021_1959834 crossref_primary_10_1016_j_jpowsour_2021_229539 crossref_primary_10_1080_10407782_2019_1595817 crossref_primary_10_1007_s10973_020_09403_6 crossref_primary_10_1016_j_apenergy_2024_124570 crossref_primary_10_1007_s10973_020_09611_0 crossref_primary_10_1016_j_est_2024_111858 crossref_primary_10_1016_j_applthermaleng_2024_122668 crossref_primary_10_1080_15435075_2023_2253886 crossref_primary_10_1080_15435075_2025_2469802 crossref_primary_10_1002_er_5220 crossref_primary_10_1016_j_tsep_2019_03_003 crossref_primary_10_1016_j_est_2023_108142 crossref_primary_10_1016_j_est_2023_108028 crossref_primary_10_1007_s11581_019_03247_3 crossref_primary_10_1039_D3RA05506J crossref_primary_10_1016_j_applthermaleng_2019_113847 crossref_primary_10_1016_j_est_2021_103685 crossref_primary_10_1016_j_jpowsour_2020_228775 crossref_primary_10_1016_j_energy_2022_125384 crossref_primary_10_1615_AnnualRevHeatTransfer_2023049374 crossref_primary_10_2139_ssrn_4137164 crossref_primary_10_1016_j_est_2022_104819 crossref_primary_10_1002_er_6425 crossref_primary_10_1002_er_7878 crossref_primary_10_1007_s10973_024_13829_7 crossref_primary_10_1016_j_applthermaleng_2020_115591 crossref_primary_10_1016_j_enconman_2018_07_072 crossref_primary_10_1080_15567265_2019_1572679 crossref_primary_10_1002_fam_2963 crossref_primary_10_1016_j_applthermaleng_2024_124187 crossref_primary_10_3390_pr11123450 crossref_primary_10_1016_j_est_2023_108560 crossref_primary_10_1016_j_ijthermalsci_2025_109700 crossref_primary_10_1115_1_4056112 crossref_primary_10_1016_j_est_2024_115271 crossref_primary_10_1002_er_5200 crossref_primary_10_1016_j_est_2021_103314 crossref_primary_10_1002_er_6775 crossref_primary_10_1007_s11581_020_03853_6 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125966 crossref_primary_10_2139_ssrn_3992157 crossref_primary_10_1016_j_applthermaleng_2021_116995 crossref_primary_10_1016_j_psep_2021_10_034 crossref_primary_10_1016_j_applthermaleng_2023_121983 crossref_primary_10_1016_j_enconman_2017_04_105 crossref_primary_10_1016_j_est_2023_107263 crossref_primary_10_1016_j_est_2024_115045 crossref_primary_10_1177_09544089221123975 crossref_primary_10_1039_C7RA08277K crossref_primary_10_1016_j_etran_2023_100242 crossref_primary_10_1016_j_icheatmasstransfer_2024_107570 crossref_primary_10_1002_est2_418 crossref_primary_10_1007_s10973_023_12726_9 crossref_primary_10_1016_j_nxener_2024_100186 crossref_primary_10_1016_j_enconman_2021_114936 crossref_primary_10_1063_1_5039841 crossref_primary_10_1115_1_4045325 crossref_primary_10_2514_1_T5824 crossref_primary_10_1061__ASCE_EY_1943_7897_0000768 crossref_primary_10_1002_er_4571 crossref_primary_10_1016_j_electacta_2017_06_162 crossref_primary_10_1002_est2_420 crossref_primary_10_3390_batteries10040113 crossref_primary_10_3390_en16093857 crossref_primary_10_1016_j_enconman_2017_12_035 crossref_primary_10_1016_j_applthermaleng_2018_12_020 crossref_primary_10_3390_en16227673 crossref_primary_10_55024_buyasambid_1339607 crossref_primary_10_3390_en12071251 crossref_primary_10_1016_j_energy_2024_130494 crossref_primary_10_1016_j_renene_2024_121250 crossref_primary_10_20964_2021_03_35 crossref_primary_10_1016_j_rser_2023_113711 crossref_primary_10_1016_j_rser_2020_110685 crossref_primary_10_1016_j_applthermaleng_2019_113760 crossref_primary_10_2298_TSCI211123030S crossref_primary_10_1002_htj_22653 crossref_primary_10_1002_htj_22654 crossref_primary_10_1016_j_energy_2021_121652 crossref_primary_10_1016_j_est_2023_108651 crossref_primary_10_1016_j_nexus_2022_100131 crossref_primary_10_1016_j_applthermaleng_2021_116811 crossref_primary_10_3390_en11102550 crossref_primary_10_1016_j_applthermaleng_2021_116934 crossref_primary_10_1002_er_5533 crossref_primary_10_1016_j_energy_2024_131210 crossref_primary_10_1002_est2_59 crossref_primary_10_1088_1742_6596_1550_6_062009 crossref_primary_10_18186_thermal_822509 crossref_primary_10_1360_SST_2023_0300 crossref_primary_10_1016_j_applthermaleng_2024_122803 crossref_primary_10_1007_s11630_017_0955_2 crossref_primary_10_1016_j_jpowsour_2022_232145 crossref_primary_10_3390_batteries9110538 crossref_primary_10_21923_jesd_1106646 crossref_primary_10_3390_en15113930 crossref_primary_10_1016_j_est_2023_109852 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121612 crossref_primary_10_15377_2409_5826_2023_10_3 crossref_primary_10_1002_ese3_798 crossref_primary_10_1016_j_applthermaleng_2023_121571 crossref_primary_10_1016_j_est_2021_102301 crossref_primary_10_1016_j_est_2021_102543 crossref_primary_10_1016_j_est_2021_102771 crossref_primary_10_1016_j_est_2022_106299 crossref_primary_10_32604_fhmt_2024_047714 crossref_primary_10_1115_1_4062514 crossref_primary_10_1016_j_jpowsour_2024_235495 crossref_primary_10_1108_HFF_09_2023_0555 crossref_primary_10_1016_j_energy_2023_129085 crossref_primary_10_1016_j_rser_2022_112207 crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_037 crossref_primary_10_1016_j_renene_2022_04_116 crossref_primary_10_1016_j_pecs_2019_100806 crossref_primary_10_1002_est2_216 crossref_primary_10_1016_j_est_2020_101800 crossref_primary_10_3390_en16052196 crossref_primary_10_1016_j_egyr_2023_04_359 crossref_primary_10_4271_2020_01_0745 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125899 crossref_primary_10_1002_er_6837 crossref_primary_10_1016_j_applthermaleng_2021_116961 crossref_primary_10_1016_j_matpr_2020_03_317 crossref_primary_10_1002_er_6718 crossref_primary_10_1016_j_csite_2023_103097 crossref_primary_10_1016_j_rser_2025_115362 crossref_primary_10_1016_j_applthermaleng_2022_119173 crossref_primary_10_1016_j_enconman_2022_116147 crossref_primary_10_1016_j_tsep_2024_103027 crossref_primary_10_1088_0256_307X_38_11_118201 crossref_primary_10_1016_j_est_2021_102769 crossref_primary_10_1016_j_pmcj_2021_101509 crossref_primary_10_1002_ese3_777 crossref_primary_10_1016_j_enconman_2022_115290 crossref_primary_10_1016_j_jclepro_2023_138125 crossref_primary_10_1108_AEAT_03_2024_0060 crossref_primary_10_1016_j_applthermaleng_2022_119324 crossref_primary_10_1021_acs_energyfuels_0c02661 crossref_primary_10_1155_2024_3314308 crossref_primary_10_1016_j_applthermaleng_2022_119564 crossref_primary_10_1016_j_enconman_2017_11_046 crossref_primary_10_1016_j_rser_2021_111611 crossref_primary_10_1016_j_applthermaleng_2022_118230 crossref_primary_10_1016_j_jpowsour_2021_230182 crossref_primary_10_1016_j_applthermaleng_2024_124596 crossref_primary_10_2139_ssrn_4119218 crossref_primary_10_1016_j_enconman_2018_04_004 crossref_primary_10_1016_j_est_2021_103728 crossref_primary_10_1016_j_est_2024_111183 crossref_primary_10_1177_01445987241310003 crossref_primary_10_3390_batteries8110236 crossref_primary_10_1016_j_energy_2024_133053 crossref_primary_10_1002_er_4404 crossref_primary_10_1016_j_ecmx_2022_100215 crossref_primary_10_1016_j_rineng_2023_101424 crossref_primary_10_1007_s10973_023_12438_0 crossref_primary_10_1016_j_energy_2020_117009 crossref_primary_10_1016_j_psep_2021_12_051 crossref_primary_10_1002_er_4518 crossref_primary_10_1016_j_applthermaleng_2019_114660 crossref_primary_10_1016_j_est_2024_114107 crossref_primary_10_1002_er_6933 crossref_primary_10_1016_j_est_2023_109930 crossref_primary_10_1016_j_jmapro_2020_05_028 crossref_primary_10_1016_j_applthermaleng_2018_11_009 crossref_primary_10_1016_j_applthermaleng_2019_114759 crossref_primary_10_3390_en10070919 crossref_primary_10_3390_en18030631 crossref_primary_10_1016_j_est_2022_104197 crossref_primary_10_1016_j_est_2021_102616 crossref_primary_10_1016_j_applthermaleng_2017_05_060 crossref_primary_10_3390_pr11041204 crossref_primary_10_3390_math12203261 crossref_primary_10_2139_ssrn_4106274 crossref_primary_10_1016_j_icheatmasstransfer_2024_108143 crossref_primary_10_1016_j_ijheatmasstransfer_2021_120998 crossref_primary_10_1016_j_est_2023_108749 crossref_primary_10_1016_j_csite_2018_09_008 crossref_primary_10_1115_1_4051727 crossref_primary_10_1016_j_applthermaleng_2019_114401 crossref_primary_10_1016_j_applthermaleng_2023_121918 crossref_primary_10_1007_s00158_024_03919_3 crossref_primary_10_1016_j_fub_2024_100018 crossref_primary_10_1016_j_rineng_2024_102913 crossref_primary_10_1002_ente_202100239 crossref_primary_10_1016_j_ijthermalsci_2024_108936 crossref_primary_10_3390_en16176144 crossref_primary_10_1016_j_applthermaleng_2025_125756 crossref_primary_10_1016_j_psep_2024_06_092 crossref_primary_10_1080_15435075_2024_2446494 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120568 crossref_primary_10_1016_j_apenergy_2020_115243 crossref_primary_10_1016_j_csite_2024_105169 crossref_primary_10_1016_j_ijthermalsci_2020_106738 crossref_primary_10_1155_2023_8207527 crossref_primary_10_3390_en14144187 crossref_primary_10_1016_j_applthermaleng_2019_114330 crossref_primary_10_1016_j_applthermaleng_2018_06_043 crossref_primary_10_1016_j_jpowsour_2018_08_020 crossref_primary_10_1615_HeatTransRes_2023048307 crossref_primary_10_1016_j_applthermaleng_2024_124153 crossref_primary_10_1016_j_matpr_2022_09_343 crossref_primary_10_1016_j_apenergy_2019_04_180 crossref_primary_10_3390_en15134581 crossref_primary_10_1016_j_tsep_2024_102560 crossref_primary_10_1115_1_4048537 crossref_primary_10_3389_fenrg_2022_992779 crossref_primary_10_3390_batteries9040220 crossref_primary_10_1007_s11581_020_03745_9 crossref_primary_10_1002_er_4831 crossref_primary_10_1016_j_enconman_2019_112280 crossref_primary_10_1016_j_enconman_2018_11_064 crossref_primary_10_1016_j_applthermaleng_2019_114679 crossref_primary_10_3390_pr12112578 crossref_primary_10_1115_1_4064095 crossref_primary_10_1061__ASCE_EY_1943_7897_0000621 crossref_primary_10_1016_j_ijheatmasstransfer_2017_09_092 crossref_primary_10_1115_1_4050723 crossref_primary_10_1016_j_energy_2020_118596 crossref_primary_10_3390_en16145243 crossref_primary_10_1007_s13369_024_08790_4 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124439 crossref_primary_10_3390_batteries9050274 crossref_primary_10_1016_j_ijmecsci_2023_108594 crossref_primary_10_1016_j_applthermaleng_2020_115509 crossref_primary_10_1002_ceat_202000316 crossref_primary_10_1016_j_applthermaleng_2018_11_038 crossref_primary_10_1016_j_energy_2017_12_110 crossref_primary_10_1016_j_ijrefrig_2017_12_005 crossref_primary_10_1016_j_est_2022_104040 crossref_primary_10_1016_j_matpr_2022_09_566 crossref_primary_10_1177_09544070221079195 crossref_primary_10_1016_j_applthermaleng_2019_114200 crossref_primary_10_1016_j_applthermaleng_2022_119694 crossref_primary_10_1016_j_enconman_2019_06_043 crossref_primary_10_1016_j_enconman_2017_02_022 crossref_primary_10_1155_2017_2929473 crossref_primary_10_1002_est2_501 crossref_primary_10_1007_s10973_022_11661_5 crossref_primary_10_1039_C8RA10433F crossref_primary_10_3390_en13041013 |
Cites_doi | 10.1016/j.jpowsour.2012.10.060 10.1016/j.rser.2011.07.096 10.1149/1.1393888 10.1016/j.jpowsour.2014.12.027 10.1115/1.4029053 10.1016/j.apenergy.2015.12.021 10.1016/j.enconman.2011.07.009 10.1016/j.enconman.2015.06.056 10.1016/j.ijheatmasstransfer.2015.07.128 10.1016/j.jpowsour.2014.02.004 10.1016/j.applthermaleng.2015.10.015 10.1016/j.jpowsour.2011.02.076 10.1016/j.jpowsour.2013.03.050 10.1002/er.1956 10.1016/S0378-7753(02)00200-8 10.1016/j.joei.2014.09.006 10.1016/j.energy.2014.04.046 10.1016/j.applthermaleng.2015.04.012 10.1016/j.expthermflusci.2014.03.017 10.1016/j.enconman.2014.10.015 10.1016/j.jpowsour.2015.03.022 10.1016/j.apenergy.2013.07.013 10.1016/j.enconman.2014.10.045 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.enconman.2016.08.063 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2227 |
EndPage | 631 |
ExternalDocumentID | 10_1016_j_enconman_2016_08_063 S0196890416307373 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ 7S9 AFXIZ EFKBS L.6 |
ID | FETCH-LOGICAL-c452t-4f638fb9b738000ed8bb22f90b7e8ab7873681f08f8d6f24b6977c3cde936833 |
IEDL.DBID | .~1 |
ISSN | 0196-8904 |
IngestDate | Wed Jul 30 11:32:50 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Tue Jul 01 01:17:17 EDT 2025 Fri Feb 23 02:33:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion battery pack Mini-channel Battery thermal management Cold-plate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-4f638fb9b738000ed8bb22f90b7e8ab7873681f08f8d6f24b6977c3cde936833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2045815267 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2045815267 crossref_primary_10_1016_j_enconman_2016_08_063 crossref_citationtrail_10_1016_j_enconman_2016_08_063 elsevier_sciencedirect_doi_10_1016_j_enconman_2016_08_063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-15 |
PublicationDateYYYYMMDD | 2016-10-15 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Energy conversion and management |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Rao, Huo, Liu (b0090) 2014; 57 Fathabadi (b0040) 2014; 70 Mahamud, Park (b0010) 2011; 196 Rao, Wang, Zhang (b0055) 2011; 52 Greco, Cao, Jiang, Yang (b0025) 2014; 257 Huo, Rao (b0085) 2015; 91 Alshaer, Nada, Rady, Le Bot, Palomo Del Barrio (b0060) 2015; 89 Rao, Wang (b0015) 2011; 15 Greco, Jiang, Cao (b0005) 2015; 278 Amiribavandpour, Shen, Mu, Kapoor (b0120) 2015; 284 Huo, Rao, Liu, Zhao (b0095) 2015; 89 Zhao, Rao, Huo, Liu, Li (b0020) 2015; 85 Al Hallaj, Selman (b0045) 2000; 147 Javani, Dincer, Naterer (b0050) 2015; 7 Zolot, Keyser, Mihalic, Pesaran (b0070) 2001 Fan, Khodadadi, Pesaran (b0075) 2013; 238 Jin, Lee, Kong, Fan, Chou (b0110) 2014; 113 Rao, Huo, Liu, Zhang (b0115) 2015; 88 Lu, Han, Li, Hua, Ouyang (b0030) 2013; 226 Pesaran (b0035) 2002; 110 Rao, Wang, Huang (b0105) 2016; 164 Karimi, Li (b0125) 2013; 37 Kelly, Mihalic, Zolot (b0065) 2002 Chen, Jiang, Kim, Yang, Pesaran (b0080) 2016; 94 Zhao, Rao, Li (b0100) 2015; 103 Rao (10.1016/j.enconman.2016.08.063_b0055) 2011; 52 Kelly (10.1016/j.enconman.2016.08.063_b0065) 2002 Amiribavandpour (10.1016/j.enconman.2016.08.063_b0120) 2015; 284 Rao (10.1016/j.enconman.2016.08.063_b0090) 2014; 57 Al Hallaj (10.1016/j.enconman.2016.08.063_b0045) 2000; 147 Zhao (10.1016/j.enconman.2016.08.063_b0020) 2015; 85 Fan (10.1016/j.enconman.2016.08.063_b0075) 2013; 238 Rao (10.1016/j.enconman.2016.08.063_b0115) 2015; 88 Zhao (10.1016/j.enconman.2016.08.063_b0100) 2015; 103 Rao (10.1016/j.enconman.2016.08.063_b0015) 2011; 15 Fathabadi (10.1016/j.enconman.2016.08.063_b0040) 2014; 70 Huo (10.1016/j.enconman.2016.08.063_b0095) 2015; 89 Greco (10.1016/j.enconman.2016.08.063_b0005) 2015; 278 Pesaran (10.1016/j.enconman.2016.08.063_b0035) 2002; 110 Zolot (10.1016/j.enconman.2016.08.063_b0070) 2001 Huo (10.1016/j.enconman.2016.08.063_b0085) 2015; 91 Jin (10.1016/j.enconman.2016.08.063_b0110) 2014; 113 Lu (10.1016/j.enconman.2016.08.063_b0030) 2013; 226 Greco (10.1016/j.enconman.2016.08.063_b0025) 2014; 257 Javani (10.1016/j.enconman.2016.08.063_b0050) 2015; 7 Karimi (10.1016/j.enconman.2016.08.063_b0125) 2013; 37 Alshaer (10.1016/j.enconman.2016.08.063_b0060) 2015; 89 Rao (10.1016/j.enconman.2016.08.063_b0105) 2016; 164 Mahamud (10.1016/j.enconman.2016.08.063_b0010) 2011; 196 Chen (10.1016/j.enconman.2016.08.063_b0080) 2016; 94 |
References_xml | – volume: 113 start-page: 1786 year: 2014 end-page: 1794 ident: b0110 article-title: Ultra-thin minichannel LCP for EV battery thermal management publication-title: Appl Energy – volume: 164 start-page: 659 year: 2016 end-page: 669 ident: b0105 article-title: Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system publication-title: Appl Energy – volume: 37 start-page: 13 year: 2013 end-page: 24 ident: b0125 article-title: Thermal management of lithium-ion batteries for electric vehicles publication-title: Int J Energy Res – year: 2001 ident: b0070 article-title: Thermal Evaluation of the Honda Insight Battery Pack publication-title: 36th Intersociety Energy Conversion Engineering Conference 2001 – volume: 103 start-page: 157 year: 2015 end-page: 165 ident: b0100 article-title: Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery publication-title: Energy Convers Manage – volume: 147 start-page: 3231 year: 2000 end-page: 3236 ident: b0045 article-title: A novel thermal management system for electric vehicle batteries using phase‐change material publication-title: J Electrochem Soc – volume: 238 start-page: 301 year: 2013 end-page: 312 ident: b0075 article-title: A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles publication-title: J Power Sources – volume: 91 start-page: 374 year: 2015 end-page: 384 ident: b0085 article-title: The numerical investigation of nanofluid based cylinder battery thermal management using lattice Boltzmann method publication-title: Int J Heat Mass Transf – volume: 94 start-page: 846 year: 2016 end-page: 854 ident: b0080 article-title: Comparison of different cooling methods for lithium ion battery cells publication-title: Appl Therm Eng – volume: 15 start-page: 4554 year: 2011 end-page: 4571 ident: b0015 article-title: A review of power battery thermal energy management publication-title: Renew Sust Energ Rev – volume: 110 start-page: 377 year: 2002 end-page: 382 ident: b0035 article-title: Battery thermal models for hybrid vehicle simulations publication-title: J Power Sources – volume: 226 start-page: 272 year: 2013 end-page: 288 ident: b0030 article-title: A review on the key issues for lithium-ion battery management in electric vehicles publication-title: J Power Sources – volume: 57 start-page: 20 year: 2014 end-page: 26 ident: b0090 article-title: Experimental study of an OHP-cooled thermal management system for electric vehicle power battery publication-title: Exp Therm Fluid Sci – volume: 52 start-page: 3408 year: 2011 end-page: 3414 ident: b0055 article-title: Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery publication-title: Energy Convers Manage – volume: 70 start-page: 529 year: 2014 end-page: 538 ident: b0040 article-title: High thermal performance lithium-ion battery pack including hybrid active passive thermal management system for using in hybrid/electric vehicles publication-title: Energy – start-page: 247 year: 2002 end-page: 252 ident: b0065 article-title: Battery usage and thermal performance of the Toyota Prius and Honda Insight during chassis dynamometer testing publication-title: Battery Conference on Applications and Advances, 2002 The Seventeenth Annual 2002 – volume: 88 start-page: 241 year: 2015 end-page: 246 ident: b0115 article-title: Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam publication-title: J Energy Inst – volume: 257 start-page: 344 year: 2014 end-page: 355 ident: b0025 article-title: A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes publication-title: J Power Sources – volume: 85 start-page: 33 year: 2015 end-page: 43 ident: b0020 article-title: Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles publication-title: Appl Therm Eng – volume: 284 start-page: 328 year: 2015 end-page: 338 ident: b0120 article-title: An improved theoretical electrochemical-thermal modelling of lithium-ion battery packs in electric vehicles publication-title: J Power Sources – volume: 7 start-page: 031005 year: 2015 ident: b0050 article-title: Numerical modeling of submodule heat transfer with phase change material for thermal management of electric vehicle battery packs publication-title: J Therm Sci Eng Appl – volume: 89 start-page: 873 year: 2015 end-page: 884 ident: b0060 article-title: Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment publication-title: Energy Convers Manage – volume: 196 start-page: 5685 year: 2011 end-page: 5696 ident: b0010 article-title: Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity publication-title: J Power Sources – volume: 89 start-page: 387 year: 2015 end-page: 395 ident: b0095 article-title: Investigation of power battery thermal management by using mini-channel cold plate publication-title: Energy Convers Manage – volume: 278 start-page: 50 year: 2015 end-page: 68 ident: b0005 article-title: An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite publication-title: J Power Sources – volume: 226 start-page: 272 year: 2013 ident: 10.1016/j.enconman.2016.08.063_b0030 article-title: A review on the key issues for lithium-ion battery management in electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.10.060 – volume: 15 start-page: 4554 year: 2011 ident: 10.1016/j.enconman.2016.08.063_b0015 article-title: A review of power battery thermal energy management publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2011.07.096 – volume: 147 start-page: 3231 year: 2000 ident: 10.1016/j.enconman.2016.08.063_b0045 article-title: A novel thermal management system for electric vehicle batteries using phase‐change material publication-title: J Electrochem Soc doi: 10.1149/1.1393888 – volume: 278 start-page: 50 year: 2015 ident: 10.1016/j.enconman.2016.08.063_b0005 article-title: An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.12.027 – volume: 7 start-page: 031005 year: 2015 ident: 10.1016/j.enconman.2016.08.063_b0050 article-title: Numerical modeling of submodule heat transfer with phase change material for thermal management of electric vehicle battery packs publication-title: J Therm Sci Eng Appl doi: 10.1115/1.4029053 – start-page: 247 year: 2002 ident: 10.1016/j.enconman.2016.08.063_b0065 article-title: Battery usage and thermal performance of the Toyota Prius and Honda Insight during chassis dynamometer testing – volume: 164 start-page: 659 year: 2016 ident: 10.1016/j.enconman.2016.08.063_b0105 article-title: Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.12.021 – volume: 52 start-page: 3408 year: 2011 ident: 10.1016/j.enconman.2016.08.063_b0055 article-title: Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2011.07.009 – volume: 103 start-page: 157 year: 2015 ident: 10.1016/j.enconman.2016.08.063_b0100 article-title: Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.06.056 – year: 2001 ident: 10.1016/j.enconman.2016.08.063_b0070 article-title: Thermal Evaluation of the Honda Insight Battery Pack – volume: 91 start-page: 374 year: 2015 ident: 10.1016/j.enconman.2016.08.063_b0085 article-title: The numerical investigation of nanofluid based cylinder battery thermal management using lattice Boltzmann method publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.07.128 – volume: 257 start-page: 344 year: 2014 ident: 10.1016/j.enconman.2016.08.063_b0025 article-title: A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.02.004 – volume: 94 start-page: 846 year: 2016 ident: 10.1016/j.enconman.2016.08.063_b0080 article-title: Comparison of different cooling methods for lithium ion battery cells publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.10.015 – volume: 196 start-page: 5685 year: 2011 ident: 10.1016/j.enconman.2016.08.063_b0010 article-title: Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.02.076 – volume: 238 start-page: 301 year: 2013 ident: 10.1016/j.enconman.2016.08.063_b0075 article-title: A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.03.050 – volume: 37 start-page: 13 year: 2013 ident: 10.1016/j.enconman.2016.08.063_b0125 article-title: Thermal management of lithium-ion batteries for electric vehicles publication-title: Int J Energy Res doi: 10.1002/er.1956 – volume: 110 start-page: 377 year: 2002 ident: 10.1016/j.enconman.2016.08.063_b0035 article-title: Battery thermal models for hybrid vehicle simulations publication-title: J Power Sources doi: 10.1016/S0378-7753(02)00200-8 – volume: 88 start-page: 241 year: 2015 ident: 10.1016/j.enconman.2016.08.063_b0115 article-title: Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam publication-title: J Energy Inst doi: 10.1016/j.joei.2014.09.006 – volume: 70 start-page: 529 year: 2014 ident: 10.1016/j.enconman.2016.08.063_b0040 article-title: High thermal performance lithium-ion battery pack including hybrid active passive thermal management system for using in hybrid/electric vehicles publication-title: Energy doi: 10.1016/j.energy.2014.04.046 – volume: 85 start-page: 33 year: 2015 ident: 10.1016/j.enconman.2016.08.063_b0020 article-title: Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.04.012 – volume: 57 start-page: 20 year: 2014 ident: 10.1016/j.enconman.2016.08.063_b0090 article-title: Experimental study of an OHP-cooled thermal management system for electric vehicle power battery publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2014.03.017 – volume: 89 start-page: 387 year: 2015 ident: 10.1016/j.enconman.2016.08.063_b0095 article-title: Investigation of power battery thermal management by using mini-channel cold plate publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.10.015 – volume: 284 start-page: 328 year: 2015 ident: 10.1016/j.enconman.2016.08.063_b0120 article-title: An improved theoretical electrochemical-thermal modelling of lithium-ion battery packs in electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.03.022 – volume: 113 start-page: 1786 year: 2014 ident: 10.1016/j.enconman.2016.08.063_b0110 article-title: Ultra-thin minichannel LCP for EV battery thermal management publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.07.013 – volume: 89 start-page: 873 year: 2015 ident: 10.1016/j.enconman.2016.08.063_b0060 article-title: Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.10.045 |
SSID | ssj0003506 |
Score | 2.6412594 |
Snippet | •Three-dimensional numerical models of lithium-ion battery are established.•The coolant distribution in the cold-plate is non-uniform.•The heat generation of... Thermal management is indispensable to lithium-ion battery pack especially within high power energy storage device and system. To investigate the thermal... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 622 |
SubjectTerms | Battery thermal management Cold-plate cooling energy liquids lithium batteries Lithium-ion battery pack mass flow mathematical models Mini-channel temperature thermal properties |
Title | Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling |
URI | https://dx.doi.org/10.1016/j.enconman.2016.08.063 https://www.proquest.com/docview/2045815267 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QvOjB-IxPsiZel5Zuu22PhEhQIxcx4bbpll2EQEu0HLj4253pA9DEcPDYdqZp5r3pzDeE3BsMi0ZrZpzQZm5LOQzyuMe48sC6fB37AU4jv_RF7819GnrDGulUszDYVlnG_iKm59G6vGOV0rQWk4n1isguQWhjRQF26iPip-v6aOXNr02bB_fy_ZpIzJB6a0p42kSsyGQeIQ5qSxRQnvyvBPUrVOf5p3tEDsvCkbaLbzsmNZ2ckIMtOMFTokDnEGdndLGZBqCpoVBpv0-WcwYqoCrH01zRrCSdr9tfaAHqTNWKYjP8mCLqCMPB4ETPaJzidp_xGRl0HwadHit3KLDY9ZyMuQYczKhQ-RxKQ1uPAqUcx4S28nUQKXBXLoKWsQMTjIRxXCWgIIx5PNIhPOD8nNSTNNEXhIZAxJUdO1xF7kjAwQpOgho83ouNjrS4JF4lNxmX-OK45mImq0ayqazkLVHeEvdfCn5JrDXfokDY2MkRVmqRP2xFQhrYyXtX6VGCI-HfkSjR6fJTIi5_ANWM8K_-8f5rso9XmN1a3g2pZx9LfQtlS6YauV02yF778bnX_wbITu7l |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHNSD8RnfronXldLtbtsjIRJ8cRETb5tu2VUMFKJw4N87Q1t8JIaD1-5M08x705lvAC4dhUVnLXd-7PGgbnyOeVxyYSRaV2jTMKJp5IeOaj8Ft8_yeQWa5SwMtVUWsT-P6fNoXTypFdKsjfv92iMhu0SxRxUF2mkoVqFK6FSyAtXGzV27swjIQs5XbBI9J4Zvg8JvVwQXmQ0TgkKtqxzNU_yVo35F63kKam3BZlE7skb-eduwYrMd2PiGKLgLBtWOoXbAxl8DAWzkGBbbr_3pkKMWmJlDas7YpCAdLjpgWI7rzMyMUT_8CyPgEU6zwZkdsHREC35e9qDbuu4227xYo8DTQPoTHjj0MWdiEwqsDj3bi4zxfRd7JrRRYtBjhYrqzotc1FPOD4zCmjAVac_GeCDEPlSyUWYPgMVIJIyX-sIkQU_h3QovgxadXqbOJlYdgizlptMCYpw2XQx02Uv2pkt5a5K3phWYShxCbcE3zkE2lnLEpVr0D3PRmAmW8l6UetToS_SDJMnsaPqhCZo_woJGhUf_eP85rLW7D_f6_qZzdwzrdELJri5PoDJ5n9pTrGIm5qyw0k_0HvGW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+performance+of+lithium-ion+battery+thermal+management+system+by+using+mini-channel+cooling&rft.jtitle=Energy+conversion+and+management&rft.au=Qian%2C+Zhen&rft.au=Li%2C+Yimin&rft.au=Rao%2C+Zhonghao&rft.date=2016-10-15&rft.issn=0196-8904&rft.volume=126+p.622-631&rft.spage=622&rft.epage=631&rft_id=info:doi/10.1016%2Fj.enconman.2016.08.063&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |