Estimating Individual Treatment Effect in Observational Data Using Random Forest Methods

Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model, which takes the hypothetical stance of asking what if an individual...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 27; no. 1; pp. 209 - 219
Main Authors Lu, Min, Sadiq, Saad, Feaster, Daniel J., Ishwaran, Hemant
Format Journal Article
LanguageEnglish
Published United States American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 01.01.2018
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
DOI10.1080/10618600.2017.1356325

Cover

Loading…
Abstract Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model, which takes the hypothetical stance of asking what if an individual had received both treatments. Making use of random forests (RF) within the counterfactual framework we estimate individual treatment effects by directly modeling the response. We find that accurate estimation of individual treatment effects is possible even in complex heterogenous settings but that the type of RF approach plays an important role in accuracy. Methods designed to be adaptive to confounding, when used in parallel with out-of-sample estimation, do best. One method found to be especially promising is counterfactual synthetic forests. We illustrate this new methodology by applying it to a large comparative effectiveness trial, Project Aware, to explore the role drug use plays in sexual risk. The analysis reveals important connections between risky behavior, drug usage, and sexual risk.
AbstractList Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model, which takes the hypothetical stance of asking what if an individual had received both treatments. Making use of random forests (RF) within the counterfactual framework we estimate individual treatment effects by directly modeling the response. We find that accurate estimation of individual treatment effects is possible even in complex heterogenous settings but that the type of RF approach plays an important role in accuracy. Methods designed to be adaptive to confounding, when used in parallel with out-of-sample estimation, do best. One method found to be especially promising is counterfactual synthetic forests. We illustrate this new methodology by applying it to a large comparative effectiveness trial, Project Aware, to explore the role drug use plays in sexual risk. The analysis reveals important connections between risky behavior, drug usage, and sexual risk.
Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model, which takes the hypothetical stance of asking what if an individual had received both treatments. Making use of random forests (RF) within the counterfactual framework we estimate individual treatment effects by directly modeling the response. We find that accurate estimation of individual treatment effects is possible even in complex heterogenous settings but that the type of RF approach plays an important role in accuracy. Methods designed to be adaptive to confounding, when used in parallel with out-of-sample estimation, do best. One method found to be especially promising is counterfactual synthetic forests. We illustrate this new methodology by applying it to a large comparative effectiveness trial, Project Aware, to explore the role drug use plays in sexual risk. The analysis reveals important connections between risky behavior, drug usage, and sexual risk.
Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model, which takes the hypothetical stance of asking what if an individual had received both treatments. Making use of random forests (RF) within the counterfactual framework we estimate individual treatment effects by directly modeling the response. We find that accurate estimation of individual treatment effects is possible even in complex heterogenous settings but that the type of RF approach plays an important role in accuracy. Methods designed to be adaptive to confounding, when used in parallel with out-of-sample estimation, do best. One method found to be especially promising is counterfactual synthetic forests. We illustrate this new methodology by applying it to a large comparative effectiveness trial, Project Aware, to explore the role drug use plays in sexual risk. The analysis reveals important connections between risky behavior, drug usage, and sexual risk.Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model, which takes the hypothetical stance of asking what if an individual had received both treatments. Making use of random forests (RF) within the counterfactual framework we estimate individual treatment effects by directly modeling the response. We find that accurate estimation of individual treatment effects is possible even in complex heterogenous settings but that the type of RF approach plays an important role in accuracy. Methods designed to be adaptive to confounding, when used in parallel with out-of-sample estimation, do best. One method found to be especially promising is counterfactual synthetic forests. We illustrate this new methodology by applying it to a large comparative effectiveness trial, Project Aware, to explore the role drug use plays in sexual risk. The analysis reveals important connections between risky behavior, drug usage, and sexual risk.
Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model, which takes the hypothetical stance of asking what if an individual had received treatments. Making use of random forests (RF) within the counterfactual framework we estimate individual treatment effects by directly modeling the response. We find that accurate estimation of individual treatment effects is possible even in complex heterogenous settings but that the type of RF approach plays an important role in accuracy. Methods designed to be adaptive to confounding, when used in parallel with out-of-sample estimation, do best. One method found to be especially promising is counterfactual synthetic forests. We illustrate this new methodology by applying it to a large comparative effectiveness trial, Project Aware, to explore the role drug use plays in sexual risk. The analysis reveals important connections between risky behavior, drug usage, and sexual risk.
Author Lu, Min
Ishwaran, Hemant
Sadiq, Saad
Feaster, Daniel J.
AuthorAffiliation b Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL
a Division of Biostatistics, University of Miami, Coral Gables, FL
AuthorAffiliation_xml – name: a Division of Biostatistics, University of Miami, Coral Gables, FL
– name: b Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL
Author_xml – sequence: 1
  givenname: Min
  surname: Lu
  fullname: Lu, Min
– sequence: 2
  givenname: Saad
  surname: Sadiq
  fullname: Sadiq, Saad
– sequence: 3
  givenname: Daniel J.
  surname: Feaster
  fullname: Feaster, Daniel J.
– sequence: 4
  givenname: Hemant
  surname: Ishwaran
  fullname: Ishwaran, Hemant
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29706752$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1LHDEUhkOx1I_2J1jmsjezPfmeoVAoulpBEYpC70JmktHITGKT7EL_fTPurmhvvMqBPO95zznvIdrzwVuEjjEsMDTwFYPAjQBYEMBygSkXlPB36ABzKmsiMd8rdWHqGdpHhyk9AAAWrfyA9kkrQUhODtDvZcpu0tn5u-rCG7d2ZqXH6iZanSfrc7UcBtvnyvnquks2rgsafCFOddbVbZp1v7Q3YarOQrQpV1c23weTPqL3gx6T_bR9j9Dt2fLm5Gd9eX1-cfLjsu4ZJ7mmxrbNQC0jBFPStkJ3YHqOjSBWcyCtbqzkDQXddExaAW3HBtMICdxwaAQ9Qt83fR9X3WRNX2aOelSPsWwV_6qgnXr94929ugtrxVsCgs0NvmwbxPBnVTZQk0u9HUftbVglRYAS2WLGmoJ-fun1bLI7ZwG-bYA-hpSiHVTv8tPFirUbFQY1h6d24ak5PLUNr6j5f-qdwVu6443uIeUQn0VlYkGAMfoPrROl6A
CitedBy_id crossref_primary_10_1111_ajt_15265
crossref_primary_10_1002_sim_9191
crossref_primary_10_1002_sim_9507
crossref_primary_10_1093_aje_kwab207
crossref_primary_10_1111_biom_13711
crossref_primary_10_1111_biom_13279
crossref_primary_10_1016_j_jtcvs_2024_07_056
crossref_primary_10_1038_s42256_020_0197_y
crossref_primary_10_1093_jamia_ocy188
crossref_primary_10_1214_23_AOAS1799
crossref_primary_10_3389_fmed_2022_864882
crossref_primary_10_1186_s12874_019_0863_0
crossref_primary_10_1016_j_jebo_2020_07_011
crossref_primary_10_1016_S1470_2045_24_00259_6
crossref_primary_10_3389_fmars_2021_693950
crossref_primary_10_1097_AS9_0000000000000497
crossref_primary_10_1001_jamanetworkopen_2019_0004
crossref_primary_10_1016_j_cct_2021_106434
crossref_primary_10_1080_01621459_2022_2157727
crossref_primary_10_1038_s41598_020_67387_7
crossref_primary_10_1016_j_rvsc_2024_105307
crossref_primary_10_1177_0272989X241263356
crossref_primary_10_1097_SLA_0000000000003598
crossref_primary_10_1002_sim_8347
crossref_primary_10_1186_s12874_023_01889_6
crossref_primary_10_3390_ijerph192214903
crossref_primary_10_1002_sim_9154
crossref_primary_10_1016_j_trc_2023_104371
crossref_primary_10_1111_rssa_12824
crossref_primary_10_1016_j_pmedr_2020_101238
crossref_primary_10_1002_bimj_202100077
crossref_primary_10_1089_neu_2020_7262
crossref_primary_10_1016_j_jenvman_2023_119992
crossref_primary_10_1016_j_jbi_2021_103689
crossref_primary_10_1080_01621459_2020_1811099
crossref_primary_10_2139_ssrn_3048177
crossref_primary_10_1177_09622802231224628
crossref_primary_10_2139_ssrn_3322322
crossref_primary_10_1002_sim_9090
crossref_primary_10_1002_ajhb_23380
crossref_primary_10_1002_sim_8714
crossref_primary_10_1109_ACCESS_2019_2932118
crossref_primary_10_3390_e24091290
crossref_primary_10_1038_s41598_023_41350_8
crossref_primary_10_1080_10618600_2022_2067549
crossref_primary_10_1016_j_jtcvs_2019_07_017
crossref_primary_10_1371_journal_pone_0275054
crossref_primary_10_1016_j_jtcvs_2024_07_033
crossref_primary_10_1002_bimj_202200178
crossref_primary_10_1002_sim_8357
crossref_primary_10_1016_j_artmed_2022_102326
crossref_primary_10_1109_JBHI_2019_2943401
crossref_primary_10_1080_01621459_2020_1772080
crossref_primary_10_1093_jrsssb_qkac001
crossref_primary_10_1134_S1062359023110092
crossref_primary_10_2196_33047
crossref_primary_10_1016_j_artmed_2021_102080
crossref_primary_10_1001_jamanetworkopen_2024_53458
crossref_primary_10_1016_j_jtho_2019_08_004
crossref_primary_10_1080_10543406_2023_2275757
crossref_primary_10_1109_TNNLS_2023_3266429
crossref_primary_10_1016_j_canlet_2019_03_007
crossref_primary_10_1097_EDE_0000000000001684
crossref_primary_10_1109_JSTSP_2018_2848230
crossref_primary_10_1007_s42519_021_00213_z
crossref_primary_10_1038_s41430_023_01350_3
crossref_primary_10_1158_0008_5472_CAN_19_1529
crossref_primary_10_1097_SLA_0000000000005679
crossref_primary_10_1136_bmjopen_2021_059715
crossref_primary_10_1177_10780874221143047
crossref_primary_10_1093_ckj_sfaa126
crossref_primary_10_1186_s12874_022_01822_3
crossref_primary_10_3390_a16050226
crossref_primary_10_1177_17562864231161892
crossref_primary_10_1016_j_surg_2023_10_019
crossref_primary_10_1038_s41598_023_33425_3
Cites_doi 10.1214/09-AOAS285
10.1002/sim.1903
10.1186/1756-0381-7-2
10.1023/A:1010933404324
10.1214/ss/1177012031
10.1080/01621459.1999.10474168
10.1002/sam.11348
10.1037/h0037350
10.1177/0962280215623981
10.1002/sim.6433
10.1001/jama.2013.280034
10.1111/1468-0262.00442
10.1080/01621459.2017.1319839
10.1198/jcgs.2010.08162
10.1007/s10461-015-1074-2
10.1186/s13040-014-0028-y
10.1002/sim.2739
10.1002/sim.3782
10.1007/978-1-4612-1554-7
10.1214/08-AOAS169
10.1002/sim.4322
10.1001/jama.2009.205
10.1093/biomet/70.1.41
10.1111/j.1467-9876.2010.00754.x
ContentType Journal Article
Copyright 2018 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
Copyright_xml – notice: 2018 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1080/10618600.2017.1356325
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 219
ExternalDocumentID PMC5920646
29706752
10_1080_10618600_2017_1356325
44862044
Genre Journal Article
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
2AX
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABQDR
ABTAI
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
ADODI
ADXHL
ADYSH
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMPGV
AMVHM
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HQ6
HZ~
H~P
IPNFZ
IPSME
J.P
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
KYCEM
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAYXX
CITATION
07G
29K
AAIKQ
AAKBW
AAKYL
ACAGQ
ACDIW
ACGEE
ADULT
AELPN
AEUMN
AGCQS
AGLEN
AGROQ
AHMOU
AIHAF
ALCKM
AMATQ
AMEWO
AMXXU
BCCOT
BHOJU
BPLKW
C06
CRFIH
D-I
DMQIW
DWIFK
FEDTE
GIFXF
HGD
HVGLF
IAO
IEA
IGG
IGS
IOF
IVXBP
JSODD
LJTGL
NPM
NUSFT
QCRFL
RNS
TAQ
TFMCV
TOXWX
UB9
Z5M
7X8
TASJS
5PM
ID FETCH-LOGICAL-c452t-3de98f3e422132996ab0dc51d62ea5029a8e75830a8b47e609b4fd86705d50863
ISSN 1061-8600
IngestDate Thu Aug 21 13:52:38 EDT 2025
Sun Aug 24 03:55:07 EDT 2025
Wed Feb 19 02:44:39 EST 2025
Tue Jul 01 02:05:29 EDT 2025
Thu Apr 24 23:09:55 EDT 2025
Thu May 29 09:01:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Individual treatment effect (ITE)
Treatment heterogeneity
Propensity score
Counterfactual model
Synthetic forests
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c452t-3de98f3e422132996ab0dc51d62ea5029a8e75830a8b47e609b4fd86705d50863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29706752
PQID 2032791448
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5920646
proquest_miscellaneous_2032791448
pubmed_primary_29706752
crossref_citationtrail_10_1080_10618600_2017_1356325
crossref_primary_10_1080_10618600_2017_1356325
jstor_primary_44862044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of computational and graphical statistics
PublicationTitleAlternate J Comput Graph Stat
PublicationYear 2018
Publisher American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Publisher_xml – name: American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
References cit0012
cit0010
cit0019
cit0017
cit0018
Lee B. K. (cit0015) 2010; 29
cit0016
cit0013
cit0014
cit0022
cit0001
cit0023
cit0020
cit0021
Ishwaran H. (cit0011) 2016
Chipman H. (cit0003) 2016
Su X. (cit0025) 2009; 10
cit0008
cit0009
cit0006
cit0028
cit0007
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
15351954 - Stat Med. 2004 Oct 15;23(19):2937-60
24150466 - JAMA. 2013 Oct 23;310(16):1701-10
21815180 - Stat Med. 2011 Oct 30;30(24):2867-80
25614764 - BioData Min. 2014 Dec 18;7(1):28
25628185 - Stat Med. 2015 May 10;34(10):1645-58
24581306 - BioData Min. 2014 Mar 01;7(1):2
29403567 - Stat Anal Data Min. 2017 Dec;10 (6):363-377
26988928 - Stat Methods Med Res. 2018 Jan;27(1):142-157
17072897 - Stat Med. 2007 Jan 15;26(1):20-36
19960510 - Stat Med. 2010 Feb 10;29(3):337-46
19244190 - JAMA. 2009 Feb 25;301(8):831-41
25952768 - AIDS Behav. 2016 Jan;20(1):204-14
References_xml – ident: cit0004
  doi: 10.1214/09-AOAS285
– ident: cit0016
  doi: 10.1002/sim.1903
– ident: cit0005
  doi: 10.1186/1756-0381-7-2
– volume-title: BayesTree: Bayesian Additive Regression Trees, R Package Version 0.3-1.4
  year: 2016
  ident: cit0003
– ident: cit0002
  doi: 10.1023/A:1010933404324
– ident: cit0018
  doi: 10.1214/ss/1177012031
– ident: cit0020
  doi: 10.1080/01621459.1999.10474168
– ident: cit0026
  doi: 10.1002/sam.11348
– ident: cit0022
  doi: 10.1037/h0037350
– ident: cit0014
  doi: 10.1177/0962280215623981
– volume-title: Random Forests for Survival, Regression and Classification (RF-SRC), R Package Version 2.2.0
  year: 2016
  ident: cit0011
– ident: cit0007
  doi: 10.1002/sim.6433
– ident: cit0017
  doi: 10.1001/jama.2013.280034
– ident: cit0010
  doi: 10.1111/1468-0262.00442
– ident: cit0028
  doi: 10.1080/01621459.2017.1319839
– ident: cit0009
  doi: 10.1198/jcgs.2010.08162
– ident: cit0008
  doi: 10.1007/s10461-015-1074-2
– ident: cit0013
  doi: 10.1186/s13040-014-0028-y
– ident: cit0023
  doi: 10.1002/sim.2739
– volume: 29
  start-page: 337
  year: 2010
  ident: cit0015
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3782
– ident: cit0019
  doi: 10.1007/978-1-4612-1554-7
– ident: cit0012
  doi: 10.1214/08-AOAS169
– ident: cit0001
– ident: cit0006
  doi: 10.1002/sim.4322
– ident: cit0027
  doi: 10.1001/jama.2009.205
– volume: 10
  start-page: 141
  year: 2009
  ident: cit0025
  publication-title: The Journal of Machine Learning Research
– ident: cit0021
  doi: 10.1093/biomet/70.1.41
– ident: cit0024
  doi: 10.1111/j.1467-9876.2010.00754.x
– reference: 25614764 - BioData Min. 2014 Dec 18;7(1):28
– reference: 29403567 - Stat Anal Data Min. 2017 Dec;10 (6):363-377
– reference: 24150466 - JAMA. 2013 Oct 23;310(16):1701-10
– reference: 24581306 - BioData Min. 2014 Mar 01;7(1):2
– reference: 21815180 - Stat Med. 2011 Oct 30;30(24):2867-80
– reference: 26988928 - Stat Methods Med Res. 2018 Jan;27(1):142-157
– reference: 15351954 - Stat Med. 2004 Oct 15;23(19):2937-60
– reference: 25952768 - AIDS Behav. 2016 Jan;20(1):204-14
– reference: 19960510 - Stat Med. 2010 Feb 10;29(3):337-46
– reference: 25628185 - Stat Med. 2015 May 10;34(10):1645-58
– reference: 19244190 - JAMA. 2009 Feb 25;301(8):831-41
– reference: 17072897 - Stat Med. 2007 Jan 15;26(1):20-36
SSID ssj0001697
Score 2.5122025
Snippet Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 209
SubjectTerms Data Mining
Title Estimating Individual Treatment Effect in Observational Data Using Random Forest Methods
URI https://www.jstor.org/stable/44862044
https://www.ncbi.nlm.nih.gov/pubmed/29706752
https://www.proquest.com/docview/2032791448
https://pubmed.ncbi.nlm.nih.gov/PMC5920646
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeBkPCAaDcJOReKsyHMdxkkeEhgpSh8Q6qW-RE7tapTUdS6pJ_HqOL3ES6MTlJaoc2636fTk55_hcEHoXAYtktRJhLkoZwhuP6CCAOCSq4iuiVM5Nhvf8jM8u2JdlspxMbofZJW15Uv3Ym1fyP6jCGOCqs2T_AVm_KQzAZ8AXroAwXP8K41N4PrXGaQ79fWLVwseOu9LE63r6tfTeVy3nRCumNljgm6jldjPVHTqbdjo3_aSbOzTWynSA6DbRHndT7tomVupxU_PZh_jsbFi-Z9-5kOvv1gst5EAF7XqD2Gz3_pzqc3N5K26sg3amNsJF6DgXRZQNXBRWqoLSEGackKHYtSUBRvRyMtTUS_hdtttgSL2X3kpH5aW6awePbeb0AO_rjQGc5qm2h2j_qvMBiN2te-g-BftC9_yIyZl_hUeuK0_3u7vUr4y83_v9uqS023Gk39gQ133Gy68xuAOlZvEIPXTY4g-WWo_RRNVH6MHcl_JtjtDhuUf2CVr2jMM947BnHLaMw-sajxiHNeOwYRy2jMOWcdgx7im6-HS6-DgLXW-OsGIJbcNYqjxbxYpRGsWg0nBRElklkeRUiYTQXGQKTNGYiKxkqeIkL9lKZjwliQSbgMfH6KDe1uo5wkqlKgGzKRJcMJklZZVKGjO1SnkkKkoDxLp_tKhc4XrdP-WqiFx92w6TQmNSOEwCdOKXXdvKLX9acGzg8rMZy3S3Bhagtx1-BQhffaImarXdNbA8pmkewcQAPbN4-tUdIQKUjpD2E3Rh9_Gden1pCrwnOQVLgb-4c8-X6LB_zl6hg_Zmp16DctyWbwyRfwJpp7Ns
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Individual+Treatment+Effect+in+Observational+Data+Using+Random+Forest+Methods&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Lu%2C+Min&rft.au=Sadiq%2C+Saad&rft.au=Feaster%2C+Daniel+J&rft.au=Ishwaran%2C+Hemant&rft.date=2018-01-01&rft.issn=1061-8600&rft.volume=27&rft.issue=1&rft.spage=209&rft_id=info:doi/10.1080%2F10618600.2017.1356325&rft_id=info%3Apmid%2F29706752&rft.externalDocID=29706752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon