Estimating Individual Treatment Effect in Observational Data Using Random Forest Methods
Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model, which takes the hypothetical stance of asking what if an individual...
Saved in:
Published in | Journal of computational and graphical statistics Vol. 27; no. 1; pp. 209 - 219 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1061-8600 1537-2715 |
DOI | 10.1080/10618600.2017.1356325 |
Cover
Loading…
Abstract | Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model, which takes the hypothetical stance of asking what if an individual had received both treatments. Making use of random forests (RF) within the counterfactual framework we estimate individual treatment effects by directly modeling the response. We find that accurate estimation of individual treatment effects is possible even in complex heterogenous settings but that the type of RF approach plays an important role in accuracy. Methods designed to be adaptive to confounding, when used in parallel with out-of-sample estimation, do best. One method found to be especially promising is counterfactual synthetic forests. We illustrate this new methodology by applying it to a large comparative effectiveness trial, Project Aware, to explore the role drug use plays in sexual risk. The analysis reveals important connections between risky behavior, drug usage, and sexual risk. |
---|---|
AbstractList | Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model, which takes the hypothetical stance of asking what if an individual had received
both
treatments. Making use of random forests (RF) within the counterfactual framework we estimate individual treatment effects by directly modeling the response. We find that accurate estimation of individual treatment effects is possible even in complex heterogenous settings but that the type of RF approach plays an important role in accuracy. Methods designed to be adaptive to confounding, when used in parallel with out-of-sample estimation, do best. One method found to be especially promising is counterfactual synthetic forests. We illustrate this new methodology by applying it to a large comparative effectiveness trial, Project Aware, to explore the role drug use plays in sexual risk. The analysis reveals important connections between risky behavior, drug usage, and sexual risk. Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model, which takes the hypothetical stance of asking what if an individual had received both treatments. Making use of random forests (RF) within the counterfactual framework we estimate individual treatment effects by directly modeling the response. We find that accurate estimation of individual treatment effects is possible even in complex heterogenous settings but that the type of RF approach plays an important role in accuracy. Methods designed to be adaptive to confounding, when used in parallel with out-of-sample estimation, do best. One method found to be especially promising is counterfactual synthetic forests. We illustrate this new methodology by applying it to a large comparative effectiveness trial, Project Aware, to explore the role drug use plays in sexual risk. The analysis reveals important connections between risky behavior, drug usage, and sexual risk. Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model, which takes the hypothetical stance of asking what if an individual had received both treatments. Making use of random forests (RF) within the counterfactual framework we estimate individual treatment effects by directly modeling the response. We find that accurate estimation of individual treatment effects is possible even in complex heterogenous settings but that the type of RF approach plays an important role in accuracy. Methods designed to be adaptive to confounding, when used in parallel with out-of-sample estimation, do best. One method found to be especially promising is counterfactual synthetic forests. We illustrate this new methodology by applying it to a large comparative effectiveness trial, Project Aware, to explore the role drug use plays in sexual risk. The analysis reveals important connections between risky behavior, drug usage, and sexual risk.Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model, which takes the hypothetical stance of asking what if an individual had received both treatments. Making use of random forests (RF) within the counterfactual framework we estimate individual treatment effects by directly modeling the response. We find that accurate estimation of individual treatment effects is possible even in complex heterogenous settings but that the type of RF approach plays an important role in accuracy. Methods designed to be adaptive to confounding, when used in parallel with out-of-sample estimation, do best. One method found to be especially promising is counterfactual synthetic forests. We illustrate this new methodology by applying it to a large comparative effectiveness trial, Project Aware, to explore the role drug use plays in sexual risk. The analysis reveals important connections between risky behavior, drug usage, and sexual risk. Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model, which takes the hypothetical stance of asking what if an individual had received treatments. Making use of random forests (RF) within the counterfactual framework we estimate individual treatment effects by directly modeling the response. We find that accurate estimation of individual treatment effects is possible even in complex heterogenous settings but that the type of RF approach plays an important role in accuracy. Methods designed to be adaptive to confounding, when used in parallel with out-of-sample estimation, do best. One method found to be especially promising is counterfactual synthetic forests. We illustrate this new methodology by applying it to a large comparative effectiveness trial, Project Aware, to explore the role drug use plays in sexual risk. The analysis reveals important connections between risky behavior, drug usage, and sexual risk. |
Author | Lu, Min Ishwaran, Hemant Sadiq, Saad Feaster, Daniel J. |
AuthorAffiliation | b Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL a Division of Biostatistics, University of Miami, Coral Gables, FL |
AuthorAffiliation_xml | – name: a Division of Biostatistics, University of Miami, Coral Gables, FL – name: b Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL |
Author_xml | – sequence: 1 givenname: Min surname: Lu fullname: Lu, Min – sequence: 2 givenname: Saad surname: Sadiq fullname: Sadiq, Saad – sequence: 3 givenname: Daniel J. surname: Feaster fullname: Feaster, Daniel J. – sequence: 4 givenname: Hemant surname: Ishwaran fullname: Ishwaran, Hemant |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29706752$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1LHDEUhkOx1I_2J1jmsjezPfmeoVAoulpBEYpC70JmktHITGKT7EL_fTPurmhvvMqBPO95zznvIdrzwVuEjjEsMDTwFYPAjQBYEMBygSkXlPB36ABzKmsiMd8rdWHqGdpHhyk9AAAWrfyA9kkrQUhODtDvZcpu0tn5u-rCG7d2ZqXH6iZanSfrc7UcBtvnyvnquks2rgsafCFOddbVbZp1v7Q3YarOQrQpV1c23weTPqL3gx6T_bR9j9Dt2fLm5Gd9eX1-cfLjsu4ZJ7mmxrbNQC0jBFPStkJ3YHqOjSBWcyCtbqzkDQXddExaAW3HBtMICdxwaAQ9Qt83fR9X3WRNX2aOelSPsWwV_6qgnXr94929ugtrxVsCgs0NvmwbxPBnVTZQk0u9HUftbVglRYAS2WLGmoJ-fun1bLI7ZwG-bYA-hpSiHVTv8tPFirUbFQY1h6d24ak5PLUNr6j5f-qdwVu6443uIeUQn0VlYkGAMfoPrROl6A |
CitedBy_id | crossref_primary_10_1111_ajt_15265 crossref_primary_10_1002_sim_9191 crossref_primary_10_1002_sim_9507 crossref_primary_10_1093_aje_kwab207 crossref_primary_10_1111_biom_13711 crossref_primary_10_1111_biom_13279 crossref_primary_10_1016_j_jtcvs_2024_07_056 crossref_primary_10_1038_s42256_020_0197_y crossref_primary_10_1093_jamia_ocy188 crossref_primary_10_1214_23_AOAS1799 crossref_primary_10_3389_fmed_2022_864882 crossref_primary_10_1186_s12874_019_0863_0 crossref_primary_10_1016_j_jebo_2020_07_011 crossref_primary_10_1016_S1470_2045_24_00259_6 crossref_primary_10_3389_fmars_2021_693950 crossref_primary_10_1097_AS9_0000000000000497 crossref_primary_10_1001_jamanetworkopen_2019_0004 crossref_primary_10_1016_j_cct_2021_106434 crossref_primary_10_1080_01621459_2022_2157727 crossref_primary_10_1038_s41598_020_67387_7 crossref_primary_10_1016_j_rvsc_2024_105307 crossref_primary_10_1177_0272989X241263356 crossref_primary_10_1097_SLA_0000000000003598 crossref_primary_10_1002_sim_8347 crossref_primary_10_1186_s12874_023_01889_6 crossref_primary_10_3390_ijerph192214903 crossref_primary_10_1002_sim_9154 crossref_primary_10_1016_j_trc_2023_104371 crossref_primary_10_1111_rssa_12824 crossref_primary_10_1016_j_pmedr_2020_101238 crossref_primary_10_1002_bimj_202100077 crossref_primary_10_1089_neu_2020_7262 crossref_primary_10_1016_j_jenvman_2023_119992 crossref_primary_10_1016_j_jbi_2021_103689 crossref_primary_10_1080_01621459_2020_1811099 crossref_primary_10_2139_ssrn_3048177 crossref_primary_10_1177_09622802231224628 crossref_primary_10_2139_ssrn_3322322 crossref_primary_10_1002_sim_9090 crossref_primary_10_1002_ajhb_23380 crossref_primary_10_1002_sim_8714 crossref_primary_10_1109_ACCESS_2019_2932118 crossref_primary_10_3390_e24091290 crossref_primary_10_1038_s41598_023_41350_8 crossref_primary_10_1080_10618600_2022_2067549 crossref_primary_10_1016_j_jtcvs_2019_07_017 crossref_primary_10_1371_journal_pone_0275054 crossref_primary_10_1016_j_jtcvs_2024_07_033 crossref_primary_10_1002_bimj_202200178 crossref_primary_10_1002_sim_8357 crossref_primary_10_1016_j_artmed_2022_102326 crossref_primary_10_1109_JBHI_2019_2943401 crossref_primary_10_1080_01621459_2020_1772080 crossref_primary_10_1093_jrsssb_qkac001 crossref_primary_10_1134_S1062359023110092 crossref_primary_10_2196_33047 crossref_primary_10_1016_j_artmed_2021_102080 crossref_primary_10_1001_jamanetworkopen_2024_53458 crossref_primary_10_1016_j_jtho_2019_08_004 crossref_primary_10_1080_10543406_2023_2275757 crossref_primary_10_1109_TNNLS_2023_3266429 crossref_primary_10_1016_j_canlet_2019_03_007 crossref_primary_10_1097_EDE_0000000000001684 crossref_primary_10_1109_JSTSP_2018_2848230 crossref_primary_10_1007_s42519_021_00213_z crossref_primary_10_1038_s41430_023_01350_3 crossref_primary_10_1158_0008_5472_CAN_19_1529 crossref_primary_10_1097_SLA_0000000000005679 crossref_primary_10_1136_bmjopen_2021_059715 crossref_primary_10_1177_10780874221143047 crossref_primary_10_1093_ckj_sfaa126 crossref_primary_10_1186_s12874_022_01822_3 crossref_primary_10_3390_a16050226 crossref_primary_10_1177_17562864231161892 crossref_primary_10_1016_j_surg_2023_10_019 crossref_primary_10_1038_s41598_023_33425_3 |
Cites_doi | 10.1214/09-AOAS285 10.1002/sim.1903 10.1186/1756-0381-7-2 10.1023/A:1010933404324 10.1214/ss/1177012031 10.1080/01621459.1999.10474168 10.1002/sam.11348 10.1037/h0037350 10.1177/0962280215623981 10.1002/sim.6433 10.1001/jama.2013.280034 10.1111/1468-0262.00442 10.1080/01621459.2017.1319839 10.1198/jcgs.2010.08162 10.1007/s10461-015-1074-2 10.1186/s13040-014-0028-y 10.1002/sim.2739 10.1002/sim.3782 10.1007/978-1-4612-1554-7 10.1214/08-AOAS169 10.1002/sim.4322 10.1001/jama.2009.205 10.1093/biomet/70.1.41 10.1111/j.1467-9876.2010.00754.x |
ContentType | Journal Article |
Copyright | 2018 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America |
Copyright_xml | – notice: 2018 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1080/10618600.2017.1356325 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-2715 |
EndPage | 219 |
ExternalDocumentID | PMC5920646 29706752 10_1080_10618600_2017_1356325 44862044 |
Genre | Journal Article |
GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 2AX 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABQDR ABTAI ABXSQ ABXUL ABXYU ABYWD ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB ADODI ADXHL ADYSH AEGXH AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFRVT AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMPGV AMVHM AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P GTTXZ H13 HF~ HQ6 HZ~ H~P IPNFZ IPSME J.P JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST KYCEM M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ AAYXX CITATION 07G 29K AAIKQ AAKBW AAKYL ACAGQ ACDIW ACGEE ADULT AELPN AEUMN AGCQS AGLEN AGROQ AHMOU AIHAF ALCKM AMATQ AMEWO AMXXU BCCOT BHOJU BPLKW C06 CRFIH D-I DMQIW DWIFK FEDTE GIFXF HGD HVGLF IAO IEA IGG IGS IOF IVXBP JSODD LJTGL NPM NUSFT QCRFL RNS TAQ TFMCV TOXWX UB9 Z5M 7X8 TASJS 5PM |
ID | FETCH-LOGICAL-c452t-3de98f3e422132996ab0dc51d62ea5029a8e75830a8b47e609b4fd86705d50863 |
ISSN | 1061-8600 |
IngestDate | Thu Aug 21 13:52:38 EDT 2025 Sun Aug 24 03:55:07 EDT 2025 Wed Feb 19 02:44:39 EST 2025 Tue Jul 01 02:05:29 EDT 2025 Thu Apr 24 23:09:55 EDT 2025 Thu May 29 09:01:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Individual treatment effect (ITE) Treatment heterogeneity Propensity score Counterfactual model Synthetic forests |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c452t-3de98f3e422132996ab0dc51d62ea5029a8e75830a8b47e609b4fd86705d50863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29706752 |
PQID | 2032791448 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5920646 proquest_miscellaneous_2032791448 pubmed_primary_29706752 crossref_citationtrail_10_1080_10618600_2017_1356325 crossref_primary_10_1080_10618600_2017_1356325 jstor_primary_44862044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of computational and graphical statistics |
PublicationTitleAlternate | J Comput Graph Stat |
PublicationYear | 2018 |
Publisher | American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America |
Publisher_xml | – name: American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America |
References | cit0012 cit0010 cit0019 cit0017 cit0018 Lee B. K. (cit0015) 2010; 29 cit0016 cit0013 cit0014 cit0022 cit0001 cit0023 cit0020 cit0021 Ishwaran H. (cit0011) 2016 Chipman H. (cit0003) 2016 Su X. (cit0025) 2009; 10 cit0008 cit0009 cit0006 cit0028 cit0007 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 15351954 - Stat Med. 2004 Oct 15;23(19):2937-60 24150466 - JAMA. 2013 Oct 23;310(16):1701-10 21815180 - Stat Med. 2011 Oct 30;30(24):2867-80 25614764 - BioData Min. 2014 Dec 18;7(1):28 25628185 - Stat Med. 2015 May 10;34(10):1645-58 24581306 - BioData Min. 2014 Mar 01;7(1):2 29403567 - Stat Anal Data Min. 2017 Dec;10 (6):363-377 26988928 - Stat Methods Med Res. 2018 Jan;27(1):142-157 17072897 - Stat Med. 2007 Jan 15;26(1):20-36 19960510 - Stat Med. 2010 Feb 10;29(3):337-46 19244190 - JAMA. 2009 Feb 25;301(8):831-41 25952768 - AIDS Behav. 2016 Jan;20(1):204-14 |
References_xml | – ident: cit0004 doi: 10.1214/09-AOAS285 – ident: cit0016 doi: 10.1002/sim.1903 – ident: cit0005 doi: 10.1186/1756-0381-7-2 – volume-title: BayesTree: Bayesian Additive Regression Trees, R Package Version 0.3-1.4 year: 2016 ident: cit0003 – ident: cit0002 doi: 10.1023/A:1010933404324 – ident: cit0018 doi: 10.1214/ss/1177012031 – ident: cit0020 doi: 10.1080/01621459.1999.10474168 – ident: cit0026 doi: 10.1002/sam.11348 – ident: cit0022 doi: 10.1037/h0037350 – ident: cit0014 doi: 10.1177/0962280215623981 – volume-title: Random Forests for Survival, Regression and Classification (RF-SRC), R Package Version 2.2.0 year: 2016 ident: cit0011 – ident: cit0007 doi: 10.1002/sim.6433 – ident: cit0017 doi: 10.1001/jama.2013.280034 – ident: cit0010 doi: 10.1111/1468-0262.00442 – ident: cit0028 doi: 10.1080/01621459.2017.1319839 – ident: cit0009 doi: 10.1198/jcgs.2010.08162 – ident: cit0008 doi: 10.1007/s10461-015-1074-2 – ident: cit0013 doi: 10.1186/s13040-014-0028-y – ident: cit0023 doi: 10.1002/sim.2739 – volume: 29 start-page: 337 year: 2010 ident: cit0015 publication-title: Statistics in Medicine doi: 10.1002/sim.3782 – ident: cit0019 doi: 10.1007/978-1-4612-1554-7 – ident: cit0012 doi: 10.1214/08-AOAS169 – ident: cit0001 – ident: cit0006 doi: 10.1002/sim.4322 – ident: cit0027 doi: 10.1001/jama.2009.205 – volume: 10 start-page: 141 year: 2009 ident: cit0025 publication-title: The Journal of Machine Learning Research – ident: cit0021 doi: 10.1093/biomet/70.1.41 – ident: cit0024 doi: 10.1111/j.1467-9876.2010.00754.x – reference: 25614764 - BioData Min. 2014 Dec 18;7(1):28 – reference: 29403567 - Stat Anal Data Min. 2017 Dec;10 (6):363-377 – reference: 24150466 - JAMA. 2013 Oct 23;310(16):1701-10 – reference: 24581306 - BioData Min. 2014 Mar 01;7(1):2 – reference: 21815180 - Stat Med. 2011 Oct 30;30(24):2867-80 – reference: 26988928 - Stat Methods Med Res. 2018 Jan;27(1):142-157 – reference: 15351954 - Stat Med. 2004 Oct 15;23(19):2937-60 – reference: 25952768 - AIDS Behav. 2016 Jan;20(1):204-14 – reference: 19960510 - Stat Med. 2010 Feb 10;29(3):337-46 – reference: 25628185 - Stat Med. 2015 May 10;34(10):1645-58 – reference: 19244190 - JAMA. 2009 Feb 25;301(8):831-41 – reference: 17072897 - Stat Med. 2007 Jan 15;26(1):20-36 |
SSID | ssj0001697 |
Score | 2.5122025 |
Snippet | Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 209 |
SubjectTerms | Data Mining |
Title | Estimating Individual Treatment Effect in Observational Data Using Random Forest Methods |
URI | https://www.jstor.org/stable/44862044 https://www.ncbi.nlm.nih.gov/pubmed/29706752 https://www.proquest.com/docview/2032791448 https://pubmed.ncbi.nlm.nih.gov/PMC5920646 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeBkPCAaDcJOReKsyHMdxkkeEhgpSh8Q6qW-RE7tapTUdS6pJ_HqOL3ES6MTlJaoc2636fTk55_hcEHoXAYtktRJhLkoZwhuP6CCAOCSq4iuiVM5Nhvf8jM8u2JdlspxMbofZJW15Uv3Ym1fyP6jCGOCqs2T_AVm_KQzAZ8AXroAwXP8K41N4PrXGaQ79fWLVwseOu9LE63r6tfTeVy3nRCumNljgm6jldjPVHTqbdjo3_aSbOzTWynSA6DbRHndT7tomVupxU_PZh_jsbFi-Z9-5kOvv1gst5EAF7XqD2Gz3_pzqc3N5K26sg3amNsJF6DgXRZQNXBRWqoLSEGackKHYtSUBRvRyMtTUS_hdtttgSL2X3kpH5aW6awePbeb0AO_rjQGc5qm2h2j_qvMBiN2te-g-BftC9_yIyZl_hUeuK0_3u7vUr4y83_v9uqS023Gk39gQ133Gy68xuAOlZvEIPXTY4g-WWo_RRNVH6MHcl_JtjtDhuUf2CVr2jMM947BnHLaMw-sajxiHNeOwYRy2jMOWcdgx7im6-HS6-DgLXW-OsGIJbcNYqjxbxYpRGsWg0nBRElklkeRUiYTQXGQKTNGYiKxkqeIkL9lKZjwliQSbgMfH6KDe1uo5wkqlKgGzKRJcMJklZZVKGjO1SnkkKkoDxLp_tKhc4XrdP-WqiFx92w6TQmNSOEwCdOKXXdvKLX9acGzg8rMZy3S3Bhagtx1-BQhffaImarXdNbA8pmkewcQAPbN4-tUdIQKUjpD2E3Rh9_Gden1pCrwnOQVLgb-4c8-X6LB_zl6hg_Zmp16DctyWbwyRfwJpp7Ns |
linkProvider | Taylor & Francis |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Individual+Treatment+Effect+in+Observational+Data+Using+Random+Forest+Methods&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Lu%2C+Min&rft.au=Sadiq%2C+Saad&rft.au=Feaster%2C+Daniel+J&rft.au=Ishwaran%2C+Hemant&rft.date=2018-01-01&rft.issn=1061-8600&rft.volume=27&rft.issue=1&rft.spage=209&rft_id=info:doi/10.1080%2F10618600.2017.1356325&rft_id=info%3Apmid%2F29706752&rft.externalDocID=29706752 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |