Triazine herbicide reduced the toxicity of the harmful dinoflagellate Karenia mikimotoi by impairing its photosynthetic systems

Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the growth and reproduction of phytoplankton. However, the influence of these herbicides on microalgal toxin production remains unclear. This stud...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 269; p. 115740
Main Authors Chen, Xiang-Wu, Chen, Heng, Zhao, Hai-Ling, Li, Da-Wei, Ou, Lin-Jian
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the growth and reproduction of phytoplankton. However, the influence of these herbicides on microalgal toxin production remains unclear. This study aimed to examine this relationship by conducting a comprehensive physiological and 4D label-free quantitative proteomic analysis on the harmful dinoflagellate Karenia mikimotoi in the presence of the triazine herbicide dipropetryn. The findings demonstrated a significant decrease in photosynthetic activity and pigment content, as well as reduced levels of unsaturated fatty acids, reactive oxygen species (ROS), and hemolytic toxins in K. mikimotoi when exposed to dipropetryn. The proteomic analysis revealed a down-regulation in proteins associated with photosynthesis, ROS response, and energy metabolism, such as fatty acid biosynthesis, chlorophyll metabolism, and nitrogen metabolism. In contrast, an up-regulation of proteins related to energy-producing processes, such as fatty acid β-oxidation, glycolysis, and the tricarboxylic acid cycle, was observed. This study demonstrated that dipropetryn disrupts the photosynthetic systems of K. mikimotoi, resulting in a notable decrease in algal toxin production. These findings provide valuable insights into the underlying mechanisms of toxin production in toxigenic microalgae and explore the potential effect of herbicide pollution on harmful algal blooms in coastal environments.
AbstractList Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the growth and reproduction of phytoplankton. However, the influence of these herbicides on microalgal toxin production remains unclear. This study aimed to examine this relationship by conducting a comprehensive physiological and 4D label-free quantitative proteomic analysis on the harmful dinoflagellate Karenia mikimotoi in the presence of the triazine herbicide dipropetryn. The findings demonstrated a significant decrease in photosynthetic activity and pigment content, as well as reduced levels of unsaturated fatty acids, reactive oxygen species (ROS), and hemolytic toxins in K. mikimotoi when exposed to dipropetryn. The proteomic analysis revealed a down-regulation in proteins associated with photosynthesis, ROS response, and energy metabolism, such as fatty acid biosynthesis, chlorophyll metabolism, and nitrogen metabolism. In contrast, an up-regulation of proteins related to energy-producing processes, such as fatty acid β-oxidation, glycolysis, and the tricarboxylic acid cycle, was observed. This study demonstrated that dipropetryn disrupts the photosynthetic systems of K. mikimotoi, resulting in a notable decrease in algal toxin production. These findings provide valuable insights into the underlying mechanisms of toxin production in toxigenic microalgae and explore the potential effect of herbicide pollution on harmful algal blooms in coastal environments.
Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the growth and reproduction of phytoplankton. However, the influence of these herbicides on microalgal toxin production remains unclear. This study aimed to examine this relationship by conducting a comprehensive physiological and 4D label-free quantitative proteomic analysis on the harmful dinoflagellate Karenia mikimotoi in the presence of the triazine herbicide dipropetryn. The findings demonstrated a significant decrease in photosynthetic activity and pigment content, as well as reduced levels of unsaturated fatty acids, reactive oxygen species (ROS), and hemolytic toxins in K. mikimotoi when exposed to dipropetryn. The proteomic analysis revealed a down-regulation in proteins associated with photosynthesis, ROS response, and energy metabolism, such as fatty acid biosynthesis, chlorophyll metabolism, and nitrogen metabolism. In contrast, an up-regulation of proteins related to energy-producing processes, such as fatty acid β-oxidation, glycolysis, and the tricarboxylic acid cycle, was observed. This study demonstrated that dipropetryn disrupts the photosynthetic systems of K. mikimotoi, resulting in a notable decrease in algal toxin production. These findings provide valuable insights into the underlying mechanisms of toxin production in toxigenic microalgae and explore the potential effect of herbicide pollution on harmful algal blooms in coastal environments.Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the growth and reproduction of phytoplankton. However, the influence of these herbicides on microalgal toxin production remains unclear. This study aimed to examine this relationship by conducting a comprehensive physiological and 4D label-free quantitative proteomic analysis on the harmful dinoflagellate Karenia mikimotoi in the presence of the triazine herbicide dipropetryn. The findings demonstrated a significant decrease in photosynthetic activity and pigment content, as well as reduced levels of unsaturated fatty acids, reactive oxygen species (ROS), and hemolytic toxins in K. mikimotoi when exposed to dipropetryn. The proteomic analysis revealed a down-regulation in proteins associated with photosynthesis, ROS response, and energy metabolism, such as fatty acid biosynthesis, chlorophyll metabolism, and nitrogen metabolism. In contrast, an up-regulation of proteins related to energy-producing processes, such as fatty acid β-oxidation, glycolysis, and the tricarboxylic acid cycle, was observed. This study demonstrated that dipropetryn disrupts the photosynthetic systems of K. mikimotoi, resulting in a notable decrease in algal toxin production. These findings provide valuable insights into the underlying mechanisms of toxin production in toxigenic microalgae and explore the potential effect of herbicide pollution on harmful algal blooms in coastal environments.
ArticleNumber 115740
Author Chen, Xiang-Wu
Chen, Heng
Li, Da-Wei
Zhao, Hai-Ling
Ou, Lin-Jian
Author_xml – sequence: 1
  givenname: Xiang-Wu
  surname: Chen
  fullname: Chen, Xiang-Wu
– sequence: 2
  givenname: Heng
  surname: Chen
  fullname: Chen, Heng
– sequence: 3
  givenname: Hai-Ling
  surname: Zhao
  fullname: Zhao, Hai-Ling
– sequence: 4
  givenname: Da-Wei
  surname: Li
  fullname: Li, Da-Wei
– sequence: 5
  givenname: Lin-Jian
  surname: Ou
  fullname: Ou, Lin-Jian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38042131$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvFDEQhC0URDaBf4CQj1x2cXs8L24o4hERiUs4Wz12e9fLzHixPRHLhb_ObCbkwAFOlktflVrddcHOxjASYy9BbEBA9Wa_IRNovNtIIYsNQFkr8YStQLRiLRWoM7YSoOp1VUJxzi5S2gshClGWz9h50QgloYAV-3UbPf70I_Edxc4bb4lHspMhy_OOeA4_ZjEfeXD3_x3GwU09t34Mrsct9T1m4p8x0uiRD_6bH0IOnndH7ocD-ujHLfc58cNu1tNxnFOyNzwdU6YhPWdPHfaJXjy8l-zrh_e3V5_WN18-Xl-9u1kbVcq8LjoyElphgRAaQrQdWVNVpXKtaZwkaq1FJYWqRUfUAbqCnMNKqKZpHRSX7HrJtQH3-hD9gPGoA3p9L4S41RjnuXrSXWUqhKpTHYJywjSqlRKcM7WztlL1nPV6yTrE8H2ilPXgkzltYqQwJV0IJVTZNEr8F5VNWzUAtTyhrx7QqRvIPs7451YzoBbAxJBSJPeIgNCnSui9XiqhT5XQSyVm29u_bPM9Mfsw5oi-_7f5N5g2wmw
CitedBy_id crossref_primary_10_1002_tqem_70052
crossref_primary_10_1016_j_aquatox_2024_106851
crossref_primary_10_1016_j_chroma_2024_465606
crossref_primary_10_1016_j_microc_2025_113243
crossref_primary_10_3390_md22090387
Cites_doi 10.1016/j.watres.2020.115584
10.1111/jeu.12201
10.1016/j.hal.2019.101702
10.1038/nmeth.1322
10.1016/j.marpolbul.2009.06.007
10.1111/j.1365-2664.2008.01525.x
10.1007/s10646-009-0446-7
10.1104/pp.112.199992
10.3354/meps195029
10.1186/1754-6834-6-67
10.1093/nar/gkn923
10.1016/j.scitotenv.2004.03.013
10.3390/md19060336
10.1016/j.hal.2016.11.011
10.1016/j.hal.2020.101787
10.1021/es9705811
10.1093/nar/gkm321
10.1016/S0040-4039(02)01171-1
10.1080/01965581.1988.10749544
10.1016/j.biotechadv.2006.11.008
10.3390/md19110606
10.1074/mcp.M114.041947
10.1007/s11120-008-9395-x
10.1007/s10811-020-02218-w
10.1016/j.hal.2018.05.006
10.1016/j.hal.2010.09.002
10.1016/j.envres.2021.111295
10.1146/annurev.arplant.57.032905.105350
10.1007/s11120-014-9997-4
10.3389/fenvs.2017.00050
10.1016/S0025-326X(98)00129-5
10.1016/j.hal.2021.101977
10.1007/s11356-017-8474-y
10.1016/j.tplants.2016.08.002
10.1016/j.watres.2020.116545
10.1016/j.bbabio.2009.05.005
10.1016/S0304-4165(89)80016-9
10.1016/j.hal.2018.11.013
10.1016/0005-2728(93)90134-2
10.3390/ijms24031898
10.1016/j.marpolbul.2011.10.018
10.1007/s11356-015-4923-7
10.1016/j.xplc.2021.100264
10.1016/j.hal.2017.08.003
10.1016/j.tetlet.2005.03.115
10.1016/j.aquabot.2005.02.006
10.1016/j.marpolbul.2011.09.021
10.1016/j.marpolbul.2008.05.023
10.1111/gcb.13262
10.1038/ncomms14865
10.1007/s00227-005-1596-7
10.1016/j.chemosphere.2009.06.017
10.1016/j.aquatox.2021.106042
10.1007/s00343-022-1385-x
10.1016/j.jembe.2007.03.007
10.1146/annurev.arplant.55.031903.141701
10.3390/ijerph16245129
10.1016/j.cca.2005.07.009
10.1016/S0043-1354(02)00621-8
10.1016/j.algal.2018.10.013
10.1016/j.envint.2019.105175
10.1002/lno.11940
10.1016/j.plipres.2019.01.003
ContentType Journal Article
Copyright Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOA
DOI 10.1016/j.ecoenv.2023.115740
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Ecology
EISSN 1090-2414
ExternalDocumentID oai_doaj_org_article_b6c6a16b4ba14f0c849221ffc7fdd647
38042131
10_1016_j_ecoenv_2023_115740
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
AEBSH
AEGFY
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPKN
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CAG
CITATION
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMC
HVGLF
HZ~
H~9
IHE
J1W
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSH
SSJ
SSZ
T5K
VH1
WUQ
XPP
ZMT
ZU3
ZXP
~G-
~KM
AACTN
AFKWA
AJOXV
AMFUW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c452t-3bec2190d1ea18eaadbedc6654f9c8f2ee9dda420470beeb1af3effa604889f13
IEDL.DBID DOA
ISSN 0147-6513
1090-2414
IngestDate Wed Aug 27 01:21:14 EDT 2025
Wed Jul 02 04:51:52 EDT 2025
Thu Jul 10 19:10:07 EDT 2025
Wed Feb 19 02:07:21 EST 2025
Tue Jul 01 02:09:14 EDT 2025
Thu Apr 24 23:01:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Photosynthetic systems
Reactive oxygen species
Triazine herbicide
Hemolytic toxin
Dipropetryn
Karenia mikimotoi
Language English
License Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-3bec2190d1ea18eaadbedc6654f9c8f2ee9dda420470beeb1af3effa604889f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/b6c6a16b4ba14f0c849221ffc7fdd647
PMID 38042131
PQID 2896811720
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b6c6a16b4ba14f0c849221ffc7fdd647
proquest_miscellaneous_3040458840
proquest_miscellaneous_2896811720
pubmed_primary_38042131
crossref_primary_10_1016_j_ecoenv_2023_115740
crossref_citationtrail_10_1016_j_ecoenv_2023_115740
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ecotoxicology and environmental safety
PublicationTitleAlternate Ecotoxicol Environ Saf
PublicationYear 2024
Publisher Elsevier
Publisher_xml – name: Elsevier
References Mittler (10.1016/j.ecoenv.2023.115740_bib42) 2017; 22
Aro (10.1016/j.ecoenv.2023.115740_bib3) 1993; 1143
Yang (10.1016/j.ecoenv.2023.115740_bib64) 2019; 133
Graneli (10.1016/j.ecoenv.2023.115740_bib18) 2011; 10
Guo (10.1016/j.ecoenv.2023.115740_bib21) 2022; 242
Li (10.1016/j.ecoenv.2023.115740_bib34) 2019; 90
McClellan (10.1016/j.ecoenv.2023.115740_bib41) 2008; 45
Kuroda (10.1016/j.ecoenv.2023.115740_bib30) 2005; 141
Zapata (10.1016/j.ecoenv.2023.115740_bib67) 2000; 195
Sakamoto (10.1016/j.ecoenv.2023.115740_bib54) 2021; 102
Bai (10.1016/j.ecoenv.2023.115740_bib4) 2015; 22
Shi (10.1016/j.ecoenv.2023.115740_bib57) 2021; 103
Kroon (10.1016/j.ecoenv.2023.115740_bib28) 2016; 22
Bairoch (10.1016/j.ecoenv.2023.115740_bib5) 2005; 33
Liu (10.1016/j.ecoenv.2023.115740_bib37) 2006; 26
Navarro (10.1016/j.ecoenv.2023.115740_bib44) 2004; 329
Lei (10.1016/j.ecoenv.2023.115740_bib32) 2011; 62
Li-Beisson (10.1016/j.ecoenv.2023.115740_bib36) 2019; 74
Yang (10.1016/j.ecoenv.2023.115740_bib65) 2021; 66
Guillard (10.1016/j.ecoenv.2023.115740_bib19) 1975
Satake (10.1016/j.ecoenv.2023.115740_bib56) 2005; 46
Ralph (10.1016/j.ecoenv.2023.115740_bib52) 2005; 82
Du (10.1016/j.ecoenv.2023.115740_bib12) 2017; 24
Li (10.1016/j.ecoenv.2023.115740_bib35) 2017; 61
Björn (10.1016/j.ecoenv.2023.115740_bib6) 2009; 99
Li (10.1016/j.ecoenv.2023.115740_bib33) 2022; 3
Dang (10.1016/j.ecoenv.2023.115740_bib9) 2015; 62
Apel (10.1016/j.ecoenv.2023.115740_bib1) 2004; 55
Oliver (10.1016/j.ecoenv.2023.115740_bib46) 2014; 120
Moriya (10.1016/j.ecoenv.2023.115740_bib43) 2007; 35
Wang (10.1016/j.ecoenv.2023.115740_bib59) 2021; 198
Marshall (10.1016/j.ecoenv.2023.115740_bib40) 2005; 147
Magnusson (10.1016/j.ecoenv.2023.115740_bib39) 2008; 56
Platt (10.1016/j.ecoenv.2023.115740_bib49) 1980; 38
Lehotay (10.1016/j.ecoenv.2023.115740_bib31) 1998; 37
Ricart (10.1016/j.ecoenv.2023.115740_bib53) 2009; 76
Vera (10.1016/j.ecoenv.2023.115740_bib58) 2010; 19
Hu (10.1016/j.ecoenv.2023.115740_bib24) 2023; 24
Guillard (10.1016/j.ecoenv.2023.115740_bib20) 1973
Pospisil (10.1016/j.ecoenv.2023.115740_bib50) 2009; 1787
Kroon (10.1016/j.ecoenv.2023.115740_bib29) 2012; 65
Wang (10.1016/j.ecoenv.2023.115740_bib60) 2019; 81
Huang (10.1016/j.ecoenv.2023.115740_bib25) 2009; 37
Genty (10.1016/j.ecoenv.2023.115740_bib16) 1989; 990
Eullaffroy (10.1016/j.ecoenv.2023.115740_bib14) 2003; 37
Yang (10.1016/j.ecoenv.2023.115740_bib66) 2013; 6
Aquino-Cruz (10.1016/j.ecoenv.2023.115740_bib2) 2020; 32
Zhang (10.1016/j.ecoenv.2023.115740_bib68) 2020; 173
Du (10.1016/j.ecoenv.2023.115740_bib13) 2015; 14
Kniss (10.1016/j.ecoenv.2023.115740_bib27) 2017; 8
Buser (10.1016/j.ecoenv.2023.115740_bib7) 1998; 32
Wu (10.1016/j.ecoenv.2023.115740_bib63) 2021; 19
Camacho (10.1016/j.ecoenv.2023.115740_bib8) 2007; 25
Wu (10.1016/j.ecoenv.2023.115740_bib62) 2022; 40
He (10.1016/j.ecoenv.2023.115740_bib23) 2019; 16
Dorantes-Aranda (10.1016/j.ecoenv.2023.115740_bib11) 2009; 58
Pérez-Pérez (10.1016/j.ecoenv.2023.115740_bib48) 2012; 160
Price (10.1016/j.ecoenv.2023.115740_bib51) 1989; 6
Liu (10.1016/j.ecoenv.2023.115740_bib38) 2007; 346
Satake (10.1016/j.ecoenv.2023.115740_bib55) 2002; 43
Wisniewski (10.1016/j.ecoenv.2023.115740_bib61) 2009; 6
Han (10.1016/j.ecoenv.2023.115740_bib22) 2018; 36
Ou (10.1016/j.ecoenv.2023.115740_bib47) 2017; 68
Nelson (10.1016/j.ecoenv.2023.115740_bib45) 2006; 57
Gomes (10.1016/j.ecoenv.2023.115740_bib17) 2017; 5
Flood (10.1016/j.ecoenv.2023.115740_bib15) 2018; 76
de Barros (10.1016/j.ecoenv.2023.115740_bib10) 2021; 189
Khaw (10.1016/j.ecoenv.2023.115740_bib26) 2021; 19
References_xml – volume: 173
  year: 2020
  ident: 10.1016/j.ecoenv.2023.115740_bib68
  article-title: A trigger mechanism of herbicides to phytoplankton blooms: from the standpoint of hormesis involving cytochrome b559, reactive oxygen species and nitric oxide
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115584
– volume: 62
  start-page: 470
  issue: 4
  year: 2015
  ident: 10.1016/j.ecoenv.2023.115740_bib9
  article-title: Chemical response of the toxic dinoflagellate Karenia mikimotoi against grazing by three species of Zooplankton
  publication-title: J. Eukaryot. Microbiol.
  doi: 10.1111/jeu.12201
– volume: 90
  year: 2019
  ident: 10.1016/j.ecoenv.2023.115740_bib34
  article-title: A review of Karenia mikimotoi: bloom events, physiology, toxicity and toxic mechanism
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2019.101702
– volume: 6
  start-page: 359
  issue: 5
  year: 2009
  ident: 10.1016/j.ecoenv.2023.115740_bib61
  article-title: Universal sample preparation method for proteome analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1322
– volume: 58
  start-page: 1401
  issue: 9
  year: 2009
  ident: 10.1016/j.ecoenv.2023.115740_bib11
  article-title: Hemolytic activity and fatty acids composition in the ichthyotoxic dinoflagellate Cochlodinium polykrikoides isolated from Bahía de La Paz, Gulf of California
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2009.06.007
– volume: 45
  start-page: 1514
  issue: 5
  year: 2008
  ident: 10.1016/j.ecoenv.2023.115740_bib41
  article-title: Pollution‐induced community tolerance as a measure of species interaction in toxicity assessment
  publication-title: J. Appl. Ecol.
  doi: 10.1111/j.1365-2664.2008.01525.x
– volume: 19
  start-page: 710
  issue: 4
  year: 2010
  ident: 10.1016/j.ecoenv.2023.115740_bib58
  article-title: New evidences of Roundup® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-009-0446-7
– volume: 160
  start-page: 156
  issue: 1
  year: 2012
  ident: 10.1016/j.ecoenv.2023.115740_bib48
  article-title: Reactive oxygen species and autophagy in plants and algae
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.199992
– volume: 195
  start-page: 29
  year: 2000
  ident: 10.1016/j.ecoenv.2023.115740_bib67
  article-title: Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps195029
– volume: 6
  start-page: 27
  year: 2013
  ident: 10.1016/j.ecoenv.2023.115740_bib66
  article-title: Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-6-67
– volume: 37
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.ecoenv.2023.115740_bib25
  article-title: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn923
– volume: 329
  start-page: 87
  issue: 1–3
  year: 2004
  ident: 10.1016/j.ecoenv.2023.115740_bib44
  article-title: Persistence of four s-triazine herbicides in river, sea and groundwater samples exposed to sunlight and darkness under laboratory conditions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2004.03.013
– volume: 19
  start-page: 336
  issue: 6
  year: 2021
  ident: 10.1016/j.ecoenv.2023.115740_bib63
  article-title: Hemolytic activity in relation to the photosynthetic system in Chattonella marina and Chattonella ovata
  publication-title: Mar. Drugs
  doi: 10.3390/md19060336
– volume: 61
  start-page: 1
  year: 2017
  ident: 10.1016/j.ecoenv.2023.115740_bib35
  article-title: Detrimental impacts of the dinoflagellate Karenia mikimotoi in Fujian coastal waters on typical marine organisms
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2016.11.011
– volume: 102
  year: 2021
  ident: 10.1016/j.ecoenv.2023.115740_bib54
  article-title: Harmful algal blooms and associated fisheries damage in East Asia: current status and trends in China, Japan, Korea and Russia
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2020.101787
– volume: 32
  start-page: 188
  issue: 1
  year: 1998
  ident: 10.1016/j.ecoenv.2023.115740_bib7
  article-title: Occurrence of the pharmaceutical drug clofibric acid and the herbicide mecoprop in various Swiss lakes and in the North Sea
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9705811
– volume: 35
  start-page: W182
  issue: suppl_2
  year: 2007
  ident: 10.1016/j.ecoenv.2023.115740_bib43
  article-title: KAAS: an automatic genome annotation and pathway reconstruction server
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm321
– volume: 38
  start-page: 687
  year: 1980
  ident: 10.1016/j.ecoenv.2023.115740_bib49
  article-title: Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton
  publication-title: J. Mar. Res.
– volume: 43
  start-page: 5829
  issue: 33
  year: 2002
  ident: 10.1016/j.ecoenv.2023.115740_bib55
  article-title: Gymnocin-A, a cytotoxic polyether from the notorious red tide dinoflagellate, Gymnodinium mikimotoi
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(02)01171-1
– volume: 6
  start-page: 443
  issue: 5–6
  year: 1989
  ident: 10.1016/j.ecoenv.2023.115740_bib51
  article-title: Preparation and chemistry of the artificial algal culture medium aquil
  publication-title: Biol. Oceanogr.
  doi: 10.1080/01965581.1988.10749544
– volume: 25
  start-page: 176
  issue: 2
  year: 2007
  ident: 10.1016/j.ecoenv.2023.115740_bib8
  article-title: Biotechnological significance of toxic marine dinoflagellates
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2006.11.008
– volume: 19
  start-page: 606
  issue: 11
  year: 2021
  ident: 10.1016/j.ecoenv.2023.115740_bib26
  article-title: The critical studies of fucoxanthin research trends from 1928 to June 2021: a bibliometric review
  publication-title: Mar. Drugs
  doi: 10.3390/md19110606
– volume: 14
  start-page: 227
  issue: 1
  year: 2015
  ident: 10.1016/j.ecoenv.2023.115740_bib13
  article-title: Lysine malonylation is elevated in type 2 diabetic mouse models and enriched in metabolic associated proteins
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.M114.041947
– start-page: 29
  year: 1975
  ident: 10.1016/j.ecoenv.2023.115740_bib19
  article-title: Culture of phytoplankton for feeding marine invertebrates
– start-page: 69
  year: 1973
  ident: 10.1016/j.ecoenv.2023.115740_bib20
  article-title: Methods for microflagellates and nanoplankton
– volume: 99
  start-page: 85
  year: 2009
  ident: 10.1016/j.ecoenv.2023.115740_bib6
  article-title: A viewpoint: why chlorophyll a?
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-008-9395-x
– volume: 32
  start-page: 4029
  issue: 6
  year: 2020
  ident: 10.1016/j.ecoenv.2023.115740_bib2
  article-title: Superoxide production rates and hemolytic activity linked to cellular growth phases in Chattonella species (Raphidophyceae) and Margalefidinium polykrikoides (Dinophyceae)
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-020-02218-w
– volume: 76
  start-page: 66
  year: 2018
  ident: 10.1016/j.ecoenv.2023.115740_bib15
  article-title: Chattonella subsalsa (Raphidophyceae) growth and hemolytic activity in response to agriculturally-derived estuarine contaminants
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2018.05.006
– volume: 10
  start-page: 165
  issue: 2
  year: 2011
  ident: 10.1016/j.ecoenv.2023.115740_bib18
  article-title: Can increases in temperature stimulate blooms of the toxic benthic dinoflagellate Ostreopsis ovata?
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2010.09.002
– volume: 198
  year: 2021
  ident: 10.1016/j.ecoenv.2023.115740_bib59
  article-title: Photocatalytic inactivation and destruction of harmful microalgae Karenia mikimotoi under visible-light irradiation: Insights into physiological response and toxicity assessment
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.111295
– volume: 57
  start-page: 521
  year: 2006
  ident: 10.1016/j.ecoenv.2023.115740_bib45
  article-title: Structure and function of photosystems I and II
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105350
– volume: 120
  start-page: 249
  issue: 3
  year: 2014
  ident: 10.1016/j.ecoenv.2023.115740_bib46
  article-title: Metabolic design for cyanobacterial chemical synthesis
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-014-9997-4
– volume: 5
  year: 2017
  ident: 10.1016/j.ecoenv.2023.115740_bib17
  article-title: Temperature and light modulation of herbicide toxicity on algal and cyanobacterial physiology
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2017.00050
– volume: 33
  start-page: D154
  issue: suppl_1
  year: 2005
  ident: 10.1016/j.ecoenv.2023.115740_bib5
  article-title: The universal protein resource (UniProt)
  publication-title: Nucleic Acids Res.
– volume: 37
  start-page: 32
  issue: 1–2
  year: 1998
  ident: 10.1016/j.ecoenv.2023.115740_bib31
  article-title: Agricultural pesticide residues in oysters and water from two Chesapeake Bay tributaries
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/S0025-326X(98)00129-5
– volume: 26
  start-page: 780
  issue: 3
  year: 2006
  ident: 10.1016/j.ecoenv.2023.115740_bib37
  article-title: Growth and hemolytic activities of Phaeocystis globosa Scherffel at different mutrients condition
  publication-title: Acta Sci. Circum.
– volume: 103
  year: 2021
  ident: 10.1016/j.ecoenv.2023.115740_bib57
  article-title: Transcriptome responses of the dinoflagellate Karenia mikimotoi driven by nitrogen deficiency
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2021.101977
– volume: 24
  start-page: 7752
  issue: 8
  year: 2017
  ident: 10.1016/j.ecoenv.2023.115740_bib12
  article-title: Physiological effects and toxin release in Microcystis aeruginosa and Microcystis viridis exposed to herbicide fenoxaprop-p-ethyl
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-8474-y
– volume: 22
  start-page: 11
  issue: 1
  year: 2017
  ident: 10.1016/j.ecoenv.2023.115740_bib42
  article-title: ROS are good
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.08.002
– volume: 189
  year: 2021
  ident: 10.1016/j.ecoenv.2023.115740_bib10
  article-title: Aqueous chlorination of herbicide metribuzin: Identification and elucidation of “new” disinfection by-products, degradation pathway and toxicity evaluation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116545
– volume: 1787
  start-page: 1151
  issue: 10
  year: 2009
  ident: 10.1016/j.ecoenv.2023.115740_bib50
  article-title: Production of reactive oxygen species by photosystem II
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2009.05.005
– volume: 990
  start-page: 87
  issue: 1
  year: 1989
  ident: 10.1016/j.ecoenv.2023.115740_bib16
  article-title: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence
  publication-title: Biochim. Biophys. Acta Gen. Subj.
  doi: 10.1016/S0304-4165(89)80016-9
– volume: 81
  start-page: 1
  year: 2019
  ident: 10.1016/j.ecoenv.2023.115740_bib60
  article-title: Effects of ocean acidification and solar ultraviolet radiation on physiology and toxicity of dinoflagellate Karenia mikimotoi
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2018.11.013
– volume: 1143
  start-page: 113
  issue: 2
  year: 1993
  ident: 10.1016/j.ecoenv.2023.115740_bib3
  article-title: Photoinhibition of photosystem II. Inactivation, protein damage and turnover
  publication-title: Biochim. Biophys. Acta Bioenergy
  doi: 10.1016/0005-2728(93)90134-2
– volume: 24
  start-page: 1898
  issue: 3
  year: 2023
  ident: 10.1016/j.ecoenv.2023.115740_bib24
  article-title: Advances in genetic engineering in improving photosynthesis and microalgal productivity
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24031898
– volume: 65
  start-page: 167
  issue: 4–9
  year: 2012
  ident: 10.1016/j.ecoenv.2023.115740_bib29
  article-title: River loads of suspended solids, nitrogen, phosphorus and herbicides delivered to the Great Barrier Reef lagoon
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.10.018
– volume: 22
  start-page: 17499
  year: 2015
  ident: 10.1016/j.ecoenv.2023.115740_bib4
  article-title: Effects of atrazine on photosynthesis and defense response and the underlying mechanisms in Phaeodactylum tricornutum
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-4923-7
– volume: 3
  issue: 1
  year: 2022
  ident: 10.1016/j.ecoenv.2023.115740_bib33
  article-title: Chloroplast ROS and stress signaling
  publication-title: Plant Commun.
  doi: 10.1016/j.xplc.2021.100264
– volume: 68
  start-page: 118
  year: 2017
  ident: 10.1016/j.ecoenv.2023.115740_bib47
  article-title: The dinoflagellate Akashiwo sanguinea will benefit from future climate change: the interactive effects of ocean acidification, warming and high irradiance on photophysiology and hemolytic activity
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2017.08.003
– volume: 46
  start-page: 3537
  issue: 20
  year: 2005
  ident: 10.1016/j.ecoenv.2023.115740_bib56
  article-title: Gymnocin-B with the largest contiguous polyether rings from the red tide dinoflagellate, Karenia (formerly Gymnodinium) mikimotoi
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2005.03.115
– volume: 82
  start-page: 222
  issue: 3
  year: 2005
  ident: 10.1016/j.ecoenv.2023.115740_bib52
  article-title: Rapid light curves: a powerful tool to assess photosynthetic activity
  publication-title: Aquat. Bot.
  doi: 10.1016/j.aquabot.2005.02.006
– volume: 62
  start-page: 2692
  issue: 12
  year: 2011
  ident: 10.1016/j.ecoenv.2023.115740_bib32
  article-title: Molecular ecological responses of dinoflagellate, Karenia mikimotoi to environmental nitrate stress
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.09.021
– volume: 56
  start-page: 1545
  issue: 9
  year: 2008
  ident: 10.1016/j.ecoenv.2023.115740_bib39
  article-title: Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2008.05.023
– volume: 22
  start-page: 1985
  issue: 6
  year: 2016
  ident: 10.1016/j.ecoenv.2023.115740_bib28
  article-title: Towards protecting the great barrier reef from land‐based pollution
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13262
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.ecoenv.2023.115740_bib27
  article-title: Long-term trends in the intensity and relative toxicity of herbicide use
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14865
– volume: 147
  start-page: 533
  issue: 2
  year: 2005
  ident: 10.1016/j.ecoenv.2023.115740_bib40
  article-title: Superoxide production by marine microalgae I. Survey of 37 species from 6 classes
  publication-title: Mar. Biol.
  doi: 10.1007/s00227-005-1596-7
– volume: 76
  start-page: 1392
  issue: 10
  year: 2009
  ident: 10.1016/j.ecoenv.2023.115740_bib53
  article-title: Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.06.017
– volume: 242
  year: 2022
  ident: 10.1016/j.ecoenv.2023.115740_bib21
  article-title: The allelopathy and underlying mechanism of Skeletonema costatum on Karenia mikimotoi integrating transcriptomics profiling
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2021.106042
– volume: 40
  start-page: 2164
  issue: 6
  year: 2022
  ident: 10.1016/j.ecoenv.2023.115740_bib62
  article-title: Stress regulation of photosynthetic system of Phaeocystis globosa and their hemolytic activity
  publication-title: J. Oceanol. Limnol.
  doi: 10.1007/s00343-022-1385-x
– volume: 346
  start-page: 76
  issue: 1–2
  year: 2007
  ident: 10.1016/j.ecoenv.2023.115740_bib38
  article-title: Effects of nutrients, salinity, pH and light: dark cycle on the production of reactive oxygen species in the alga Chattonella marina
  publication-title: J. Exp. Mar. Biol. Ecol.
  doi: 10.1016/j.jembe.2007.03.007
– volume: 55
  start-page: 373
  year: 2004
  ident: 10.1016/j.ecoenv.2023.115740_bib1
  article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.55.031903.141701
– volume: 16
  start-page: 5129
  issue: 24
  year: 2019
  ident: 10.1016/j.ecoenv.2023.115740_bib23
  article-title: A review on recent treatment technology for herbicide atrazine in contaminated environment
  publication-title: Int. J. Environ. Res. Public. Health
  doi: 10.3390/ijerph16245129
– volume: 141
  start-page: 297
  issue: 3
  year: 2005
  ident: 10.1016/j.ecoenv.2023.115740_bib30
  article-title: Isolation and characterization of light-dependent hemolytic cytotoxin from harmful red tide phytoplankton Chattonella marina
  publication-title: Comp. Biochem. Physiol. C Toxicol. Pharmacol.
  doi: 10.1016/j.cca.2005.07.009
– volume: 37
  start-page: 1983
  issue: 9
  year: 2003
  ident: 10.1016/j.ecoenv.2023.115740_bib14
  article-title: The F684/F735 chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phytotoxicity in algae
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(02)00621-8
– volume: 36
  start-page: 48
  year: 2018
  ident: 10.1016/j.ecoenv.2023.115740_bib22
  article-title: Reactive oxygen species-mediated caspase-3 pathway involved in cell apoptosis of Karenia mikimotoi induced by linoleic acid
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2018.10.013
– volume: 133
  year: 2019
  ident: 10.1016/j.ecoenv.2023.115740_bib64
  article-title: Environmental risk assessment of triazine herbicides in the Bohai Sea and the Yellow Sea and their toxicity to phytoplankton at environmental concentrations
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.105175
– volume: 66
  start-page: 4028
  issue: 11
  year: 2021
  ident: 10.1016/j.ecoenv.2023.115740_bib65
  article-title: Terrestrial input of herbicides has significant impacts on phytoplankton and bacterioplankton communities in coastal waters
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.11940
– volume: 74
  start-page: 31
  year: 2019
  ident: 10.1016/j.ecoenv.2023.115740_bib36
  article-title: The lipid biochemistry of eukaryotic algae
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2019.01.003
SSID ssj0003055
Score 2.434857
Snippet Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 115740
SubjectTerms biosynthesis
chlorophyll
Dinoflagellida - metabolism
Dipropetryn
ecotoxicology
fatty acids
Fatty Acids - metabolism
glycolysis
Harmful Algal Bloom
Hemolytic toxin
Herbicides - metabolism
Karenia mikimotoi
Microalgae
nitrogen metabolism
Photosynthesis
Photosynthetic systems
phytoplankton
poisonous algae
pollution
Proteomics
Reactive oxygen species
Reactive Oxygen Species - metabolism
reproduction
toxicity
toxins
Triazine herbicide
Triazines - metabolism
Triazines - toxicity
tricarboxylic acid cycle
Title Triazine herbicide reduced the toxicity of the harmful dinoflagellate Karenia mikimotoi by impairing its photosynthetic systems
URI https://www.ncbi.nlm.nih.gov/pubmed/38042131
https://www.proquest.com/docview/2896811720
https://www.proquest.com/docview/3040458840
https://doaj.org/article/b6c6a16b4ba14f0c849221ffc7fdd647
Volume 269
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na90wDDejMBiMsXVfb194sGu6OHac-LiNljLYTi30FpRYZtnektKXV_ZO-9cn2cmjl9LLjjFOUPKTJVuRfhLiQ66rgDW6rKiDzgxYnUFwbWa6sgoBVNCxe8O37_b03Hy9KC9utPrinLBED5w-3MfWdhaUbU0LyoS8q40rChVCVwXvrYl15OTzlsPUbIOZxyolL1aZLZVeiuZiZhed63C4PuLG4UfMNcOBjxtOKXL3377hjI7n5LF4NO8Y5ack6RNxD4dDcf84sk3vDsXDFHiTqZ7oqfh7RirFlNGS0Gj7rvcor5ifFb2kzZ6cxj80OO3kGOI1U1eH7VqSDxvDmqwL6cWEMhaJ9SB_978YzbGX7U5ySWXPgUDZTxt5-YPGN7uBnkKiycQJvXkmzk-Oz76cZnOXhawzZTFlmlAks5V7haBqBPAt-o6bEgfX1aFAdN6DKXJT5S2SaYegkWC0vPZdUPq5OBjGAV8KqbHOA7hKlYBGVRaA7AE4OtWBL8HVK6GXz9x0MwU5d8JYN0uu2c8mgdMwOE0CZyWy_V2XiYLjjvmfGcH9XCbQjgOkVs2sVs1darUS7xf8G1pw_BcFBhy3m4ZOqJarc4v89jmaTGMsAaY5L5Ly7MXRNdlJpdWr_yHma_GA3tykmNAbcTBdbfEt7ZKm9l1cEP8AlvASfQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triazine+herbicide+reduced+the+toxicity+of+the+harmful+dinoflagellate+Karenia+mikimotoi+by+impairing+its+photosynthetic+systems&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Chen%2C+Xiang-Wu&rft.au=Chen%2C+Heng&rft.au=Zhao%2C+Hai-Ling&rft.au=Li%2C+Da-Wei&rft.date=2024-01-01&rft.issn=0147-6513&rft_id=info:doi/10.1016%2Fj.ecoenv.2023.115740&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon