Triazine herbicide reduced the toxicity of the harmful dinoflagellate Karenia mikimotoi by impairing its photosynthetic systems
Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the growth and reproduction of phytoplankton. However, the influence of these herbicides on microalgal toxin production remains unclear. This stud...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 269; p. 115740 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the growth and reproduction of phytoplankton. However, the influence of these herbicides on microalgal toxin production remains unclear. This study aimed to examine this relationship by conducting a comprehensive physiological and 4D label-free quantitative proteomic analysis on the harmful dinoflagellate Karenia mikimotoi in the presence of the triazine herbicide dipropetryn. The findings demonstrated a significant decrease in photosynthetic activity and pigment content, as well as reduced levels of unsaturated fatty acids, reactive oxygen species (ROS), and hemolytic toxins in K. mikimotoi when exposed to dipropetryn. The proteomic analysis revealed a down-regulation in proteins associated with photosynthesis, ROS response, and energy metabolism, such as fatty acid biosynthesis, chlorophyll metabolism, and nitrogen metabolism. In contrast, an up-regulation of proteins related to energy-producing processes, such as fatty acid β-oxidation, glycolysis, and the tricarboxylic acid cycle, was observed. This study demonstrated that dipropetryn disrupts the photosynthetic systems of K. mikimotoi, resulting in a notable decrease in algal toxin production. These findings provide valuable insights into the underlying mechanisms of toxin production in toxigenic microalgae and explore the potential effect of herbicide pollution on harmful algal blooms in coastal environments. |
---|---|
AbstractList | Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the growth and reproduction of phytoplankton. However, the influence of these herbicides on microalgal toxin production remains unclear. This study aimed to examine this relationship by conducting a comprehensive physiological and 4D label-free quantitative proteomic analysis on the harmful dinoflagellate Karenia mikimotoi in the presence of the triazine herbicide dipropetryn. The findings demonstrated a significant decrease in photosynthetic activity and pigment content, as well as reduced levels of unsaturated fatty acids, reactive oxygen species (ROS), and hemolytic toxins in K. mikimotoi when exposed to dipropetryn. The proteomic analysis revealed a down-regulation in proteins associated with photosynthesis, ROS response, and energy metabolism, such as fatty acid biosynthesis, chlorophyll metabolism, and nitrogen metabolism. In contrast, an up-regulation of proteins related to energy-producing processes, such as fatty acid β-oxidation, glycolysis, and the tricarboxylic acid cycle, was observed. This study demonstrated that dipropetryn disrupts the photosynthetic systems of K. mikimotoi, resulting in a notable decrease in algal toxin production. These findings provide valuable insights into the underlying mechanisms of toxin production in toxigenic microalgae and explore the potential effect of herbicide pollution on harmful algal blooms in coastal environments. Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the growth and reproduction of phytoplankton. However, the influence of these herbicides on microalgal toxin production remains unclear. This study aimed to examine this relationship by conducting a comprehensive physiological and 4D label-free quantitative proteomic analysis on the harmful dinoflagellate Karenia mikimotoi in the presence of the triazine herbicide dipropetryn. The findings demonstrated a significant decrease in photosynthetic activity and pigment content, as well as reduced levels of unsaturated fatty acids, reactive oxygen species (ROS), and hemolytic toxins in K. mikimotoi when exposed to dipropetryn. The proteomic analysis revealed a down-regulation in proteins associated with photosynthesis, ROS response, and energy metabolism, such as fatty acid biosynthesis, chlorophyll metabolism, and nitrogen metabolism. In contrast, an up-regulation of proteins related to energy-producing processes, such as fatty acid β-oxidation, glycolysis, and the tricarboxylic acid cycle, was observed. This study demonstrated that dipropetryn disrupts the photosynthetic systems of K. mikimotoi, resulting in a notable decrease in algal toxin production. These findings provide valuable insights into the underlying mechanisms of toxin production in toxigenic microalgae and explore the potential effect of herbicide pollution on harmful algal blooms in coastal environments.Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the growth and reproduction of phytoplankton. However, the influence of these herbicides on microalgal toxin production remains unclear. This study aimed to examine this relationship by conducting a comprehensive physiological and 4D label-free quantitative proteomic analysis on the harmful dinoflagellate Karenia mikimotoi in the presence of the triazine herbicide dipropetryn. The findings demonstrated a significant decrease in photosynthetic activity and pigment content, as well as reduced levels of unsaturated fatty acids, reactive oxygen species (ROS), and hemolytic toxins in K. mikimotoi when exposed to dipropetryn. The proteomic analysis revealed a down-regulation in proteins associated with photosynthesis, ROS response, and energy metabolism, such as fatty acid biosynthesis, chlorophyll metabolism, and nitrogen metabolism. In contrast, an up-regulation of proteins related to energy-producing processes, such as fatty acid β-oxidation, glycolysis, and the tricarboxylic acid cycle, was observed. This study demonstrated that dipropetryn disrupts the photosynthetic systems of K. mikimotoi, resulting in a notable decrease in algal toxin production. These findings provide valuable insights into the underlying mechanisms of toxin production in toxigenic microalgae and explore the potential effect of herbicide pollution on harmful algal blooms in coastal environments. |
ArticleNumber | 115740 |
Author | Chen, Xiang-Wu Chen, Heng Li, Da-Wei Zhao, Hai-Ling Ou, Lin-Jian |
Author_xml | – sequence: 1 givenname: Xiang-Wu surname: Chen fullname: Chen, Xiang-Wu – sequence: 2 givenname: Heng surname: Chen fullname: Chen, Heng – sequence: 3 givenname: Hai-Ling surname: Zhao fullname: Zhao, Hai-Ling – sequence: 4 givenname: Da-Wei surname: Li fullname: Li, Da-Wei – sequence: 5 givenname: Lin-Jian surname: Ou fullname: Ou, Lin-Jian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38042131$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvFDEQhC0URDaBf4CQj1x2cXs8L24o4hERiUs4Wz12e9fLzHixPRHLhb_ObCbkwAFOlktflVrddcHOxjASYy9BbEBA9Wa_IRNovNtIIYsNQFkr8YStQLRiLRWoM7YSoOp1VUJxzi5S2gshClGWz9h50QgloYAV-3UbPf70I_Edxc4bb4lHspMhy_OOeA4_ZjEfeXD3_x3GwU09t34Mrsct9T1m4p8x0uiRD_6bH0IOnndH7ocD-ujHLfc58cNu1tNxnFOyNzwdU6YhPWdPHfaJXjy8l-zrh_e3V5_WN18-Xl-9u1kbVcq8LjoyElphgRAaQrQdWVNVpXKtaZwkaq1FJYWqRUfUAbqCnMNKqKZpHRSX7HrJtQH3-hD9gPGoA3p9L4S41RjnuXrSXWUqhKpTHYJywjSqlRKcM7WztlL1nPV6yTrE8H2ilPXgkzltYqQwJV0IJVTZNEr8F5VNWzUAtTyhrx7QqRvIPs7451YzoBbAxJBSJPeIgNCnSui9XiqhT5XQSyVm29u_bPM9Mfsw5oi-_7f5N5g2wmw |
CitedBy_id | crossref_primary_10_1002_tqem_70052 crossref_primary_10_1016_j_aquatox_2024_106851 crossref_primary_10_1016_j_chroma_2024_465606 crossref_primary_10_1016_j_microc_2025_113243 crossref_primary_10_3390_md22090387 |
Cites_doi | 10.1016/j.watres.2020.115584 10.1111/jeu.12201 10.1016/j.hal.2019.101702 10.1038/nmeth.1322 10.1016/j.marpolbul.2009.06.007 10.1111/j.1365-2664.2008.01525.x 10.1007/s10646-009-0446-7 10.1104/pp.112.199992 10.3354/meps195029 10.1186/1754-6834-6-67 10.1093/nar/gkn923 10.1016/j.scitotenv.2004.03.013 10.3390/md19060336 10.1016/j.hal.2016.11.011 10.1016/j.hal.2020.101787 10.1021/es9705811 10.1093/nar/gkm321 10.1016/S0040-4039(02)01171-1 10.1080/01965581.1988.10749544 10.1016/j.biotechadv.2006.11.008 10.3390/md19110606 10.1074/mcp.M114.041947 10.1007/s11120-008-9395-x 10.1007/s10811-020-02218-w 10.1016/j.hal.2018.05.006 10.1016/j.hal.2010.09.002 10.1016/j.envres.2021.111295 10.1146/annurev.arplant.57.032905.105350 10.1007/s11120-014-9997-4 10.3389/fenvs.2017.00050 10.1016/S0025-326X(98)00129-5 10.1016/j.hal.2021.101977 10.1007/s11356-017-8474-y 10.1016/j.tplants.2016.08.002 10.1016/j.watres.2020.116545 10.1016/j.bbabio.2009.05.005 10.1016/S0304-4165(89)80016-9 10.1016/j.hal.2018.11.013 10.1016/0005-2728(93)90134-2 10.3390/ijms24031898 10.1016/j.marpolbul.2011.10.018 10.1007/s11356-015-4923-7 10.1016/j.xplc.2021.100264 10.1016/j.hal.2017.08.003 10.1016/j.tetlet.2005.03.115 10.1016/j.aquabot.2005.02.006 10.1016/j.marpolbul.2011.09.021 10.1016/j.marpolbul.2008.05.023 10.1111/gcb.13262 10.1038/ncomms14865 10.1007/s00227-005-1596-7 10.1016/j.chemosphere.2009.06.017 10.1016/j.aquatox.2021.106042 10.1007/s00343-022-1385-x 10.1016/j.jembe.2007.03.007 10.1146/annurev.arplant.55.031903.141701 10.3390/ijerph16245129 10.1016/j.cca.2005.07.009 10.1016/S0043-1354(02)00621-8 10.1016/j.algal.2018.10.013 10.1016/j.envint.2019.105175 10.1002/lno.11940 10.1016/j.plipres.2019.01.003 |
ContentType | Journal Article |
Copyright | Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 DOA |
DOI | 10.1016/j.ecoenv.2023.115740 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
ExternalDocumentID | oai_doaj_org_article_b6c6a16b4ba14f0c849221ffc7fdd647 38042131 10_1016_j_ecoenv_2023_115740 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADVLN AEBSH AEGFY AEIPS AEKER AENEX AEUPX AFJKZ AFPKN AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CAG CITATION COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMC HVGLF HZ~ H~9 IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SEN SES SEW SPCBC SSH SSJ SSZ T5K VH1 WUQ XPP ZMT ZU3 ZXP ~G- ~KM AACTN AFKWA AJOXV AMFUW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c452t-3bec2190d1ea18eaadbedc6654f9c8f2ee9dda420470beeb1af3effa604889f13 |
IEDL.DBID | DOA |
ISSN | 0147-6513 1090-2414 |
IngestDate | Wed Aug 27 01:21:14 EDT 2025 Wed Jul 02 04:51:52 EDT 2025 Thu Jul 10 19:10:07 EDT 2025 Wed Feb 19 02:07:21 EST 2025 Tue Jul 01 02:09:14 EDT 2025 Thu Apr 24 23:01:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photosynthetic systems Reactive oxygen species Triazine herbicide Hemolytic toxin Dipropetryn Karenia mikimotoi |
Language | English |
License | Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-3bec2190d1ea18eaadbedc6654f9c8f2ee9dda420470beeb1af3effa604889f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/b6c6a16b4ba14f0c849221ffc7fdd647 |
PMID | 38042131 |
PQID | 2896811720 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b6c6a16b4ba14f0c849221ffc7fdd647 proquest_miscellaneous_3040458840 proquest_miscellaneous_2896811720 pubmed_primary_38042131 crossref_primary_10_1016_j_ecoenv_2023_115740 crossref_citationtrail_10_1016_j_ecoenv_2023_115740 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationTitleAlternate | Ecotoxicol Environ Saf |
PublicationYear | 2024 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Mittler (10.1016/j.ecoenv.2023.115740_bib42) 2017; 22 Aro (10.1016/j.ecoenv.2023.115740_bib3) 1993; 1143 Yang (10.1016/j.ecoenv.2023.115740_bib64) 2019; 133 Graneli (10.1016/j.ecoenv.2023.115740_bib18) 2011; 10 Guo (10.1016/j.ecoenv.2023.115740_bib21) 2022; 242 Li (10.1016/j.ecoenv.2023.115740_bib34) 2019; 90 McClellan (10.1016/j.ecoenv.2023.115740_bib41) 2008; 45 Kuroda (10.1016/j.ecoenv.2023.115740_bib30) 2005; 141 Zapata (10.1016/j.ecoenv.2023.115740_bib67) 2000; 195 Sakamoto (10.1016/j.ecoenv.2023.115740_bib54) 2021; 102 Bai (10.1016/j.ecoenv.2023.115740_bib4) 2015; 22 Shi (10.1016/j.ecoenv.2023.115740_bib57) 2021; 103 Kroon (10.1016/j.ecoenv.2023.115740_bib28) 2016; 22 Bairoch (10.1016/j.ecoenv.2023.115740_bib5) 2005; 33 Liu (10.1016/j.ecoenv.2023.115740_bib37) 2006; 26 Navarro (10.1016/j.ecoenv.2023.115740_bib44) 2004; 329 Lei (10.1016/j.ecoenv.2023.115740_bib32) 2011; 62 Li-Beisson (10.1016/j.ecoenv.2023.115740_bib36) 2019; 74 Yang (10.1016/j.ecoenv.2023.115740_bib65) 2021; 66 Guillard (10.1016/j.ecoenv.2023.115740_bib19) 1975 Satake (10.1016/j.ecoenv.2023.115740_bib56) 2005; 46 Ralph (10.1016/j.ecoenv.2023.115740_bib52) 2005; 82 Du (10.1016/j.ecoenv.2023.115740_bib12) 2017; 24 Li (10.1016/j.ecoenv.2023.115740_bib35) 2017; 61 Björn (10.1016/j.ecoenv.2023.115740_bib6) 2009; 99 Li (10.1016/j.ecoenv.2023.115740_bib33) 2022; 3 Dang (10.1016/j.ecoenv.2023.115740_bib9) 2015; 62 Apel (10.1016/j.ecoenv.2023.115740_bib1) 2004; 55 Oliver (10.1016/j.ecoenv.2023.115740_bib46) 2014; 120 Moriya (10.1016/j.ecoenv.2023.115740_bib43) 2007; 35 Wang (10.1016/j.ecoenv.2023.115740_bib59) 2021; 198 Marshall (10.1016/j.ecoenv.2023.115740_bib40) 2005; 147 Magnusson (10.1016/j.ecoenv.2023.115740_bib39) 2008; 56 Platt (10.1016/j.ecoenv.2023.115740_bib49) 1980; 38 Lehotay (10.1016/j.ecoenv.2023.115740_bib31) 1998; 37 Ricart (10.1016/j.ecoenv.2023.115740_bib53) 2009; 76 Vera (10.1016/j.ecoenv.2023.115740_bib58) 2010; 19 Hu (10.1016/j.ecoenv.2023.115740_bib24) 2023; 24 Guillard (10.1016/j.ecoenv.2023.115740_bib20) 1973 Pospisil (10.1016/j.ecoenv.2023.115740_bib50) 2009; 1787 Kroon (10.1016/j.ecoenv.2023.115740_bib29) 2012; 65 Wang (10.1016/j.ecoenv.2023.115740_bib60) 2019; 81 Huang (10.1016/j.ecoenv.2023.115740_bib25) 2009; 37 Genty (10.1016/j.ecoenv.2023.115740_bib16) 1989; 990 Eullaffroy (10.1016/j.ecoenv.2023.115740_bib14) 2003; 37 Yang (10.1016/j.ecoenv.2023.115740_bib66) 2013; 6 Aquino-Cruz (10.1016/j.ecoenv.2023.115740_bib2) 2020; 32 Zhang (10.1016/j.ecoenv.2023.115740_bib68) 2020; 173 Du (10.1016/j.ecoenv.2023.115740_bib13) 2015; 14 Kniss (10.1016/j.ecoenv.2023.115740_bib27) 2017; 8 Buser (10.1016/j.ecoenv.2023.115740_bib7) 1998; 32 Wu (10.1016/j.ecoenv.2023.115740_bib63) 2021; 19 Camacho (10.1016/j.ecoenv.2023.115740_bib8) 2007; 25 Wu (10.1016/j.ecoenv.2023.115740_bib62) 2022; 40 He (10.1016/j.ecoenv.2023.115740_bib23) 2019; 16 Dorantes-Aranda (10.1016/j.ecoenv.2023.115740_bib11) 2009; 58 Pérez-Pérez (10.1016/j.ecoenv.2023.115740_bib48) 2012; 160 Price (10.1016/j.ecoenv.2023.115740_bib51) 1989; 6 Liu (10.1016/j.ecoenv.2023.115740_bib38) 2007; 346 Satake (10.1016/j.ecoenv.2023.115740_bib55) 2002; 43 Wisniewski (10.1016/j.ecoenv.2023.115740_bib61) 2009; 6 Han (10.1016/j.ecoenv.2023.115740_bib22) 2018; 36 Ou (10.1016/j.ecoenv.2023.115740_bib47) 2017; 68 Nelson (10.1016/j.ecoenv.2023.115740_bib45) 2006; 57 Gomes (10.1016/j.ecoenv.2023.115740_bib17) 2017; 5 Flood (10.1016/j.ecoenv.2023.115740_bib15) 2018; 76 de Barros (10.1016/j.ecoenv.2023.115740_bib10) 2021; 189 Khaw (10.1016/j.ecoenv.2023.115740_bib26) 2021; 19 |
References_xml | – volume: 173 year: 2020 ident: 10.1016/j.ecoenv.2023.115740_bib68 article-title: A trigger mechanism of herbicides to phytoplankton blooms: from the standpoint of hormesis involving cytochrome b559, reactive oxygen species and nitric oxide publication-title: Water Res. doi: 10.1016/j.watres.2020.115584 – volume: 62 start-page: 470 issue: 4 year: 2015 ident: 10.1016/j.ecoenv.2023.115740_bib9 article-title: Chemical response of the toxic dinoflagellate Karenia mikimotoi against grazing by three species of Zooplankton publication-title: J. Eukaryot. Microbiol. doi: 10.1111/jeu.12201 – volume: 90 year: 2019 ident: 10.1016/j.ecoenv.2023.115740_bib34 article-title: A review of Karenia mikimotoi: bloom events, physiology, toxicity and toxic mechanism publication-title: Harmful Algae doi: 10.1016/j.hal.2019.101702 – volume: 6 start-page: 359 issue: 5 year: 2009 ident: 10.1016/j.ecoenv.2023.115740_bib61 article-title: Universal sample preparation method for proteome analysis publication-title: Nat. Methods doi: 10.1038/nmeth.1322 – volume: 58 start-page: 1401 issue: 9 year: 2009 ident: 10.1016/j.ecoenv.2023.115740_bib11 article-title: Hemolytic activity and fatty acids composition in the ichthyotoxic dinoflagellate Cochlodinium polykrikoides isolated from Bahía de La Paz, Gulf of California publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2009.06.007 – volume: 45 start-page: 1514 issue: 5 year: 2008 ident: 10.1016/j.ecoenv.2023.115740_bib41 article-title: Pollution‐induced community tolerance as a measure of species interaction in toxicity assessment publication-title: J. Appl. Ecol. doi: 10.1111/j.1365-2664.2008.01525.x – volume: 19 start-page: 710 issue: 4 year: 2010 ident: 10.1016/j.ecoenv.2023.115740_bib58 article-title: New evidences of Roundup® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems publication-title: Ecotoxicology doi: 10.1007/s10646-009-0446-7 – volume: 160 start-page: 156 issue: 1 year: 2012 ident: 10.1016/j.ecoenv.2023.115740_bib48 article-title: Reactive oxygen species and autophagy in plants and algae publication-title: Plant Physiol. doi: 10.1104/pp.112.199992 – volume: 195 start-page: 29 year: 2000 ident: 10.1016/j.ecoenv.2023.115740_bib67 article-title: Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps195029 – volume: 6 start-page: 27 year: 2013 ident: 10.1016/j.ecoenv.2023.115740_bib66 article-title: Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-6-67 – volume: 37 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.ecoenv.2023.115740_bib25 article-title: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn923 – volume: 329 start-page: 87 issue: 1–3 year: 2004 ident: 10.1016/j.ecoenv.2023.115740_bib44 article-title: Persistence of four s-triazine herbicides in river, sea and groundwater samples exposed to sunlight and darkness under laboratory conditions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2004.03.013 – volume: 19 start-page: 336 issue: 6 year: 2021 ident: 10.1016/j.ecoenv.2023.115740_bib63 article-title: Hemolytic activity in relation to the photosynthetic system in Chattonella marina and Chattonella ovata publication-title: Mar. Drugs doi: 10.3390/md19060336 – volume: 61 start-page: 1 year: 2017 ident: 10.1016/j.ecoenv.2023.115740_bib35 article-title: Detrimental impacts of the dinoflagellate Karenia mikimotoi in Fujian coastal waters on typical marine organisms publication-title: Harmful Algae doi: 10.1016/j.hal.2016.11.011 – volume: 102 year: 2021 ident: 10.1016/j.ecoenv.2023.115740_bib54 article-title: Harmful algal blooms and associated fisheries damage in East Asia: current status and trends in China, Japan, Korea and Russia publication-title: Harmful Algae doi: 10.1016/j.hal.2020.101787 – volume: 32 start-page: 188 issue: 1 year: 1998 ident: 10.1016/j.ecoenv.2023.115740_bib7 article-title: Occurrence of the pharmaceutical drug clofibric acid and the herbicide mecoprop in various Swiss lakes and in the North Sea publication-title: Environ. Sci. Technol. doi: 10.1021/es9705811 – volume: 35 start-page: W182 issue: suppl_2 year: 2007 ident: 10.1016/j.ecoenv.2023.115740_bib43 article-title: KAAS: an automatic genome annotation and pathway reconstruction server publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm321 – volume: 38 start-page: 687 year: 1980 ident: 10.1016/j.ecoenv.2023.115740_bib49 article-title: Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton publication-title: J. Mar. Res. – volume: 43 start-page: 5829 issue: 33 year: 2002 ident: 10.1016/j.ecoenv.2023.115740_bib55 article-title: Gymnocin-A, a cytotoxic polyether from the notorious red tide dinoflagellate, Gymnodinium mikimotoi publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(02)01171-1 – volume: 6 start-page: 443 issue: 5–6 year: 1989 ident: 10.1016/j.ecoenv.2023.115740_bib51 article-title: Preparation and chemistry of the artificial algal culture medium aquil publication-title: Biol. Oceanogr. doi: 10.1080/01965581.1988.10749544 – volume: 25 start-page: 176 issue: 2 year: 2007 ident: 10.1016/j.ecoenv.2023.115740_bib8 article-title: Biotechnological significance of toxic marine dinoflagellates publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2006.11.008 – volume: 19 start-page: 606 issue: 11 year: 2021 ident: 10.1016/j.ecoenv.2023.115740_bib26 article-title: The critical studies of fucoxanthin research trends from 1928 to June 2021: a bibliometric review publication-title: Mar. Drugs doi: 10.3390/md19110606 – volume: 14 start-page: 227 issue: 1 year: 2015 ident: 10.1016/j.ecoenv.2023.115740_bib13 article-title: Lysine malonylation is elevated in type 2 diabetic mouse models and enriched in metabolic associated proteins publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.M114.041947 – start-page: 29 year: 1975 ident: 10.1016/j.ecoenv.2023.115740_bib19 article-title: Culture of phytoplankton for feeding marine invertebrates – start-page: 69 year: 1973 ident: 10.1016/j.ecoenv.2023.115740_bib20 article-title: Methods for microflagellates and nanoplankton – volume: 99 start-page: 85 year: 2009 ident: 10.1016/j.ecoenv.2023.115740_bib6 article-title: A viewpoint: why chlorophyll a? publication-title: Photosynth. Res. doi: 10.1007/s11120-008-9395-x – volume: 32 start-page: 4029 issue: 6 year: 2020 ident: 10.1016/j.ecoenv.2023.115740_bib2 article-title: Superoxide production rates and hemolytic activity linked to cellular growth phases in Chattonella species (Raphidophyceae) and Margalefidinium polykrikoides (Dinophyceae) publication-title: J. Appl. Phycol. doi: 10.1007/s10811-020-02218-w – volume: 76 start-page: 66 year: 2018 ident: 10.1016/j.ecoenv.2023.115740_bib15 article-title: Chattonella subsalsa (Raphidophyceae) growth and hemolytic activity in response to agriculturally-derived estuarine contaminants publication-title: Harmful Algae doi: 10.1016/j.hal.2018.05.006 – volume: 10 start-page: 165 issue: 2 year: 2011 ident: 10.1016/j.ecoenv.2023.115740_bib18 article-title: Can increases in temperature stimulate blooms of the toxic benthic dinoflagellate Ostreopsis ovata? publication-title: Harmful Algae doi: 10.1016/j.hal.2010.09.002 – volume: 198 year: 2021 ident: 10.1016/j.ecoenv.2023.115740_bib59 article-title: Photocatalytic inactivation and destruction of harmful microalgae Karenia mikimotoi under visible-light irradiation: Insights into physiological response and toxicity assessment publication-title: Environ. Res. doi: 10.1016/j.envres.2021.111295 – volume: 57 start-page: 521 year: 2006 ident: 10.1016/j.ecoenv.2023.115740_bib45 article-title: Structure and function of photosystems I and II publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105350 – volume: 120 start-page: 249 issue: 3 year: 2014 ident: 10.1016/j.ecoenv.2023.115740_bib46 article-title: Metabolic design for cyanobacterial chemical synthesis publication-title: Photosynth. Res. doi: 10.1007/s11120-014-9997-4 – volume: 5 year: 2017 ident: 10.1016/j.ecoenv.2023.115740_bib17 article-title: Temperature and light modulation of herbicide toxicity on algal and cyanobacterial physiology publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2017.00050 – volume: 33 start-page: D154 issue: suppl_1 year: 2005 ident: 10.1016/j.ecoenv.2023.115740_bib5 article-title: The universal protein resource (UniProt) publication-title: Nucleic Acids Res. – volume: 37 start-page: 32 issue: 1–2 year: 1998 ident: 10.1016/j.ecoenv.2023.115740_bib31 article-title: Agricultural pesticide residues in oysters and water from two Chesapeake Bay tributaries publication-title: Mar. Pollut. Bull. doi: 10.1016/S0025-326X(98)00129-5 – volume: 26 start-page: 780 issue: 3 year: 2006 ident: 10.1016/j.ecoenv.2023.115740_bib37 article-title: Growth and hemolytic activities of Phaeocystis globosa Scherffel at different mutrients condition publication-title: Acta Sci. Circum. – volume: 103 year: 2021 ident: 10.1016/j.ecoenv.2023.115740_bib57 article-title: Transcriptome responses of the dinoflagellate Karenia mikimotoi driven by nitrogen deficiency publication-title: Harmful Algae doi: 10.1016/j.hal.2021.101977 – volume: 24 start-page: 7752 issue: 8 year: 2017 ident: 10.1016/j.ecoenv.2023.115740_bib12 article-title: Physiological effects and toxin release in Microcystis aeruginosa and Microcystis viridis exposed to herbicide fenoxaprop-p-ethyl publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-8474-y – volume: 22 start-page: 11 issue: 1 year: 2017 ident: 10.1016/j.ecoenv.2023.115740_bib42 article-title: ROS are good publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.08.002 – volume: 189 year: 2021 ident: 10.1016/j.ecoenv.2023.115740_bib10 article-title: Aqueous chlorination of herbicide metribuzin: Identification and elucidation of “new” disinfection by-products, degradation pathway and toxicity evaluation publication-title: Water Res. doi: 10.1016/j.watres.2020.116545 – volume: 1787 start-page: 1151 issue: 10 year: 2009 ident: 10.1016/j.ecoenv.2023.115740_bib50 article-title: Production of reactive oxygen species by photosystem II publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2009.05.005 – volume: 990 start-page: 87 issue: 1 year: 1989 ident: 10.1016/j.ecoenv.2023.115740_bib16 article-title: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence publication-title: Biochim. Biophys. Acta Gen. Subj. doi: 10.1016/S0304-4165(89)80016-9 – volume: 81 start-page: 1 year: 2019 ident: 10.1016/j.ecoenv.2023.115740_bib60 article-title: Effects of ocean acidification and solar ultraviolet radiation on physiology and toxicity of dinoflagellate Karenia mikimotoi publication-title: Harmful Algae doi: 10.1016/j.hal.2018.11.013 – volume: 1143 start-page: 113 issue: 2 year: 1993 ident: 10.1016/j.ecoenv.2023.115740_bib3 article-title: Photoinhibition of photosystem II. Inactivation, protein damage and turnover publication-title: Biochim. Biophys. Acta Bioenergy doi: 10.1016/0005-2728(93)90134-2 – volume: 24 start-page: 1898 issue: 3 year: 2023 ident: 10.1016/j.ecoenv.2023.115740_bib24 article-title: Advances in genetic engineering in improving photosynthesis and microalgal productivity publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms24031898 – volume: 65 start-page: 167 issue: 4–9 year: 2012 ident: 10.1016/j.ecoenv.2023.115740_bib29 article-title: River loads of suspended solids, nitrogen, phosphorus and herbicides delivered to the Great Barrier Reef lagoon publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.10.018 – volume: 22 start-page: 17499 year: 2015 ident: 10.1016/j.ecoenv.2023.115740_bib4 article-title: Effects of atrazine on photosynthesis and defense response and the underlying mechanisms in Phaeodactylum tricornutum publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4923-7 – volume: 3 issue: 1 year: 2022 ident: 10.1016/j.ecoenv.2023.115740_bib33 article-title: Chloroplast ROS and stress signaling publication-title: Plant Commun. doi: 10.1016/j.xplc.2021.100264 – volume: 68 start-page: 118 year: 2017 ident: 10.1016/j.ecoenv.2023.115740_bib47 article-title: The dinoflagellate Akashiwo sanguinea will benefit from future climate change: the interactive effects of ocean acidification, warming and high irradiance on photophysiology and hemolytic activity publication-title: Harmful Algae doi: 10.1016/j.hal.2017.08.003 – volume: 46 start-page: 3537 issue: 20 year: 2005 ident: 10.1016/j.ecoenv.2023.115740_bib56 article-title: Gymnocin-B with the largest contiguous polyether rings from the red tide dinoflagellate, Karenia (formerly Gymnodinium) mikimotoi publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2005.03.115 – volume: 82 start-page: 222 issue: 3 year: 2005 ident: 10.1016/j.ecoenv.2023.115740_bib52 article-title: Rapid light curves: a powerful tool to assess photosynthetic activity publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2005.02.006 – volume: 62 start-page: 2692 issue: 12 year: 2011 ident: 10.1016/j.ecoenv.2023.115740_bib32 article-title: Molecular ecological responses of dinoflagellate, Karenia mikimotoi to environmental nitrate stress publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.09.021 – volume: 56 start-page: 1545 issue: 9 year: 2008 ident: 10.1016/j.ecoenv.2023.115740_bib39 article-title: Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2008.05.023 – volume: 22 start-page: 1985 issue: 6 year: 2016 ident: 10.1016/j.ecoenv.2023.115740_bib28 article-title: Towards protecting the great barrier reef from land‐based pollution publication-title: Glob. Change Biol. doi: 10.1111/gcb.13262 – volume: 8 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.ecoenv.2023.115740_bib27 article-title: Long-term trends in the intensity and relative toxicity of herbicide use publication-title: Nat. Commun. doi: 10.1038/ncomms14865 – volume: 147 start-page: 533 issue: 2 year: 2005 ident: 10.1016/j.ecoenv.2023.115740_bib40 article-title: Superoxide production by marine microalgae I. Survey of 37 species from 6 classes publication-title: Mar. Biol. doi: 10.1007/s00227-005-1596-7 – volume: 76 start-page: 1392 issue: 10 year: 2009 ident: 10.1016/j.ecoenv.2023.115740_bib53 article-title: Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.06.017 – volume: 242 year: 2022 ident: 10.1016/j.ecoenv.2023.115740_bib21 article-title: The allelopathy and underlying mechanism of Skeletonema costatum on Karenia mikimotoi integrating transcriptomics profiling publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2021.106042 – volume: 40 start-page: 2164 issue: 6 year: 2022 ident: 10.1016/j.ecoenv.2023.115740_bib62 article-title: Stress regulation of photosynthetic system of Phaeocystis globosa and their hemolytic activity publication-title: J. Oceanol. Limnol. doi: 10.1007/s00343-022-1385-x – volume: 346 start-page: 76 issue: 1–2 year: 2007 ident: 10.1016/j.ecoenv.2023.115740_bib38 article-title: Effects of nutrients, salinity, pH and light: dark cycle on the production of reactive oxygen species in the alga Chattonella marina publication-title: J. Exp. Mar. Biol. Ecol. doi: 10.1016/j.jembe.2007.03.007 – volume: 55 start-page: 373 year: 2004 ident: 10.1016/j.ecoenv.2023.115740_bib1 article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.55.031903.141701 – volume: 16 start-page: 5129 issue: 24 year: 2019 ident: 10.1016/j.ecoenv.2023.115740_bib23 article-title: A review on recent treatment technology for herbicide atrazine in contaminated environment publication-title: Int. J. Environ. Res. Public. Health doi: 10.3390/ijerph16245129 – volume: 141 start-page: 297 issue: 3 year: 2005 ident: 10.1016/j.ecoenv.2023.115740_bib30 article-title: Isolation and characterization of light-dependent hemolytic cytotoxin from harmful red tide phytoplankton Chattonella marina publication-title: Comp. Biochem. Physiol. C Toxicol. Pharmacol. doi: 10.1016/j.cca.2005.07.009 – volume: 37 start-page: 1983 issue: 9 year: 2003 ident: 10.1016/j.ecoenv.2023.115740_bib14 article-title: The F684/F735 chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phytotoxicity in algae publication-title: Water Res. doi: 10.1016/S0043-1354(02)00621-8 – volume: 36 start-page: 48 year: 2018 ident: 10.1016/j.ecoenv.2023.115740_bib22 article-title: Reactive oxygen species-mediated caspase-3 pathway involved in cell apoptosis of Karenia mikimotoi induced by linoleic acid publication-title: Algal Res. doi: 10.1016/j.algal.2018.10.013 – volume: 133 year: 2019 ident: 10.1016/j.ecoenv.2023.115740_bib64 article-title: Environmental risk assessment of triazine herbicides in the Bohai Sea and the Yellow Sea and their toxicity to phytoplankton at environmental concentrations publication-title: Environ. Int. doi: 10.1016/j.envint.2019.105175 – volume: 66 start-page: 4028 issue: 11 year: 2021 ident: 10.1016/j.ecoenv.2023.115740_bib65 article-title: Terrestrial input of herbicides has significant impacts on phytoplankton and bacterioplankton communities in coastal waters publication-title: Limnol. Oceanogr. doi: 10.1002/lno.11940 – volume: 74 start-page: 31 year: 2019 ident: 10.1016/j.ecoenv.2023.115740_bib36 article-title: The lipid biochemistry of eukaryotic algae publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2019.01.003 |
SSID | ssj0003055 |
Score | 2.434857 |
Snippet | Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 115740 |
SubjectTerms | biosynthesis chlorophyll Dinoflagellida - metabolism Dipropetryn ecotoxicology fatty acids Fatty Acids - metabolism glycolysis Harmful Algal Bloom Hemolytic toxin Herbicides - metabolism Karenia mikimotoi Microalgae nitrogen metabolism Photosynthesis Photosynthetic systems phytoplankton poisonous algae pollution Proteomics Reactive oxygen species Reactive Oxygen Species - metabolism reproduction toxicity toxins Triazine herbicide Triazines - metabolism Triazines - toxicity tricarboxylic acid cycle |
Title | Triazine herbicide reduced the toxicity of the harmful dinoflagellate Karenia mikimotoi by impairing its photosynthetic systems |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38042131 https://www.proquest.com/docview/2896811720 https://www.proquest.com/docview/3040458840 https://doaj.org/article/b6c6a16b4ba14f0c849221ffc7fdd647 |
Volume | 269 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na90wDDejMBiMsXVfb194sGu6OHac-LiNljLYTi30FpRYZtnektKXV_ZO-9cn2cmjl9LLjjFOUPKTJVuRfhLiQ66rgDW6rKiDzgxYnUFwbWa6sgoBVNCxe8O37_b03Hy9KC9utPrinLBED5w-3MfWdhaUbU0LyoS8q40rChVCVwXvrYl15OTzlsPUbIOZxyolL1aZLZVeiuZiZhed63C4PuLG4UfMNcOBjxtOKXL3377hjI7n5LF4NO8Y5ack6RNxD4dDcf84sk3vDsXDFHiTqZ7oqfh7RirFlNGS0Gj7rvcor5ifFb2kzZ6cxj80OO3kGOI1U1eH7VqSDxvDmqwL6cWEMhaJ9SB_978YzbGX7U5ySWXPgUDZTxt5-YPGN7uBnkKiycQJvXkmzk-Oz76cZnOXhawzZTFlmlAks5V7haBqBPAt-o6bEgfX1aFAdN6DKXJT5S2SaYegkWC0vPZdUPq5OBjGAV8KqbHOA7hKlYBGVRaA7AE4OtWBL8HVK6GXz9x0MwU5d8JYN0uu2c8mgdMwOE0CZyWy_V2XiYLjjvmfGcH9XCbQjgOkVs2sVs1darUS7xf8G1pw_BcFBhy3m4ZOqJarc4v89jmaTGMsAaY5L5Ly7MXRNdlJpdWr_yHma_GA3tykmNAbcTBdbfEt7ZKm9l1cEP8AlvASfQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triazine+herbicide+reduced+the+toxicity+of+the+harmful+dinoflagellate+Karenia+mikimotoi+by+impairing+its+photosynthetic+systems&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Chen%2C+Xiang-Wu&rft.au=Chen%2C+Heng&rft.au=Zhao%2C+Hai-Ling&rft.au=Li%2C+Da-Wei&rft.date=2024-01-01&rft.issn=0147-6513&rft_id=info:doi/10.1016%2Fj.ecoenv.2023.115740&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |