A physical model-based approach to detecting sky in photographic images
Sky is among the most important subject matter frequently seen in photographic images. We propose a model-based approach consisting of color classification, region extraction, and physics-motivated sky signature validation. First, the color classification is performed by a multilayer backpropagation...
Saved in:
Published in | IEEE transactions on image processing Vol. 11; no. 3; pp. 201 - 212 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.03.2002
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1057-7149 1941-0042 |
DOI | 10.1109/83.988954 |
Cover
Loading…
Abstract | Sky is among the most important subject matter frequently seen in photographic images. We propose a model-based approach consisting of color classification, region extraction, and physics-motivated sky signature validation. First, the color classification is performed by a multilayer backpropagation neural network trained in a bootstrapping fashion to generate a belief map of sky color. Next, the region extraction algorithm automatically determines an appropriate threshold for the sky color belief map and extracts connected components. Finally, the sky signature validation algorithm determines the orientation of a candidate sky region, classifies one-dimensional (1-D) traces within the region based on a physics-motivated model, and computes the sky belief of the region by the percentage of traces that fit the physics-based sky trace model. A small-scale, yet rigorous test has been conducted to evaluate the algorithm performance. With approximately half of the images containing blue sky regions, the detection rate is 96% with a false positive rate of 2% on a per image basis. |
---|---|
AbstractList | Sky is among the most important subject matter frequently seen in photographic images. We propose a model-based approach consisting of color classification, region extraction, and physics-motivated sky signature validation. First, the color classification is performed by a multilayer backpropagation neural network trained in a bootstrapping fashion to generate a belief map of sky color. Next, the region extraction algorithm automatically determines an appropriate threshold for the sky color belief map and extracts connected components. Finally, the sky signature validation algorithm determines the orientation of a candidate sky region, classifies one-dimensional (1-D) traces within the region based on a physics-motivated model, and computes the sky belief of the region by the percentage of traces that fit the physics-based sky trace model. A small-scale, yet rigorous test has been conducted to evaluate the algorithm performance. With approximately half of the images containing blue sky regions, the detection rate is 96% with a false positive rate of 2% on a per image basis Sky is among the most important subject matter frequently seen in photographic images. We propose a model-based approach consisting of color classification, region extraction, and physics-motivated sky signature validation. First, the color classification is performed by a multilayer backpropagation neural network trained in a bootstrapping fashion to generate a belief map of sky color. Next, the region extraction algorithm automatically determines an appropriate threshold for the sky color belief map and extracts connected components. Finally, the sky signature validation algorithm determines the orientation of a candidate sky region, classifies one-dimensional (1-D) traces within the region based on a physics-motivated model, and computes the sky belief of the region by the percentage of traces that fit the physics-based sky trace model. A small-scale, yet rigorous test has been conducted to evaluate the algorithm performance. With approximately half of the images containing blue sky regions, the detection rate is 96% with a false positive rate of 2% on a per image basis. [...] the color classification is performed by a multilayer backpropagation neural network trained in a bootstrapping fashion to generate a belief map of sky color. Sky is among the most important subject matter frequently seen in photographic images. We propose a model-based approach consisting of color classification, region extraction, and physics-motivated sky signature validation. First, the color classification is performed by a multilayer backpropagation neural network trained in a bootstrapping fashion to generate a belief map of sky color. Next, the region extraction algorithm automatically determines an appropriate threshold for the sky color belief map and extracts connected components. Finally, the sky signature validation algorithm determines the orientation of a candidate sky region, classifies one-dimensional (1-D) traces within the region based on a physics-motivated model, and computes the sky belief of the region by the percentage of traces that fit the physics-based sky trace model. A small-scale, yet rigorous test has been conducted to evaluate the algorithm performance. With approximately half of the images containing blue sky regions, the detection rate is 96% with a false positive rate of 2% on a per image basis.Sky is among the most important subject matter frequently seen in photographic images. We propose a model-based approach consisting of color classification, region extraction, and physics-motivated sky signature validation. First, the color classification is performed by a multilayer backpropagation neural network trained in a bootstrapping fashion to generate a belief map of sky color. Next, the region extraction algorithm automatically determines an appropriate threshold for the sky color belief map and extracts connected components. Finally, the sky signature validation algorithm determines the orientation of a candidate sky region, classifies one-dimensional (1-D) traces within the region based on a physics-motivated model, and computes the sky belief of the region by the percentage of traces that fit the physics-based sky trace model. A small-scale, yet rigorous test has been conducted to evaluate the algorithm performance. With approximately half of the images containing blue sky regions, the detection rate is 96% with a false positive rate of 2% on a per image basis. |
Author | Etz, S.P. Jiebo Luo |
Author_xml | – sequence: 1 surname: Jiebo Luo fullname: Jiebo Luo organization: Res. Labs., Eastman Kodak Co., Rochester, NY, USA – sequence: 2 givenname: S.P. surname: Etz fullname: Etz, S.P. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13518640$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18244624$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0s1rFTEQAPAgFfuhB68eZCmoeNg2k-8cS9EqFLzoOWST7Hup-zZrknd4_70p71mhiD1lIL8Zhpk5RUdzmgNCrwFfAGB9qeiFVkpz9gydgGbQY8zIUYsxl70Epo_RaSl3GAPjIF6gY1CEMUHYCbq56pb1rkRnp26TfJj6wZbgO7ssOVm37mrqfKjB1TivuvJz18W5ZaSaVtku6-i6uLGrUF6i56OdSnh1eM_Qj8-fvl9_6W-_3Xy9vrrtHeOk9nRgSouAFWgBTCmhvCYghZOMKjIA9pSOIx-4GyXnw-i1A0m9ADliCNTTM_RhX7e192sbSjWbWFyYJjuHtC1GY6m5UkQ8KSVloDjWuMn3_5VEcaBtwE9DKThgTBo8fwTv0jbPbTBGKUZbi4Q29PaAtsMmeLPkNsq8M3-W08C7A7Cl7WfMdnax_HWUgxLsvv_LvXM5lZLDaFystsY012zjZACb-zMxipr9mbSMj48yHor-w77Z2xhCeHCHz982Y8Ay |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1016_j_uclim_2019_100572 crossref_primary_10_1109_TCE_2008_4560158 crossref_primary_10_1016_j_patcog_2004_03_003 crossref_primary_10_1109_TIM_2019_2893008 crossref_primary_10_1109_TCSVT_2011_2125450 crossref_primary_10_1007_s00371_020_01830_8 crossref_primary_10_7763_IJFCC_2014_V3_341 crossref_primary_10_1016_j_neucom_2016_04_033 crossref_primary_10_1109_TMM_2006_886372 crossref_primary_10_1016_j_imavis_2003_09_012 crossref_primary_10_1109_TPAMI_2005_96 crossref_primary_10_3390_s23104789 crossref_primary_10_1109_TIP_2010_2088970 crossref_primary_10_1007_s10846_012_9684_7 crossref_primary_10_5772_56884 crossref_primary_10_1111_j_1467_8659_2007_01083_x crossref_primary_10_3763_asre_2009_0015 crossref_primary_10_1109_TIM_2022_3165803 |
Cites_doi | 10.1109/IVL.1998.694464 10.1109/ICCV.1999.790424 10.1109/CVPR.1999.786973 10.1006/gmip.1996.0010 10.1117/12.373573 10.1109/CAIVD.1998.646032 10.1007/978-1-4899-3216-7 10.1109/IVL.1998.694467 10.1002/9783527618156 10.1109/ICIP.1999.822965 10.1119/1.18431 |
ContentType | Journal Article |
Copyright | 2002 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002 |
Copyright_xml | – notice: 2002 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002 |
DBID | RIA RIE AAYXX CITATION IQODW NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
DOI | 10.1109/83.988954 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Computer and Information Systems Abstracts PubMed Technology Research Database Technology Research Database Computer and Information Systems Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 212 |
ExternalDocumentID | 2430166201 18244624 13518640 10_1109_83_988954 988954 |
Genre | Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG IQODW NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c452t-3b4896e08196148868d92176c74382b10d33ff5b5cf755bfd9c173d617f01e3d3 |
IEDL.DBID | RIE |
ISSN | 1057-7149 |
IngestDate | Mon Jul 21 10:55:45 EDT 2025 Fri Jul 11 04:52:23 EDT 2025 Fri Jul 11 04:06:19 EDT 2025 Fri Jul 11 03:23:34 EDT 2025 Fri Jul 25 19:00:01 EDT 2025 Thu Apr 03 06:58:21 EDT 2025 Mon Jul 21 09:18:02 EDT 2025 Thu Apr 24 22:59:51 EDT 2025 Sun Jul 06 05:02:34 EDT 2025 Tue Aug 26 16:34:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Sky Backpropagation Photographic image Image processing Neural network Algorithm Image segmentation Physical model Object detection Feature extraction Gradient method Desaturation Image classification |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-3b4896e08196148868d92176c74382b10d33ff5b5cf755bfd9c173d617f01e3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 18244624 |
PQID | 884379523 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_907958826 pascalfrancis_primary_13518640 proquest_miscellaneous_28513988 pubmed_primary_18244624 ieee_primary_988954 proquest_journals_884379523 proquest_miscellaneous_734185090 crossref_citationtrail_10_1109_83_988954 proquest_miscellaneous_27651002 crossref_primary_10_1109_83_988954 |
PublicationCentury | 2000 |
PublicationDate | 2002-03-01 |
PublicationDateYYYYMMDD | 2002-03-01 |
PublicationDate_xml | – month: 03 year: 2002 text: 2002-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2002 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Paek (ref2) ref14 ref11 ref10 Minnaert (ref12) 1954 ref1 Vailaya (ref6) 2000 ref8 ref7 Warnick (ref15) 1999 ref9 ref4 ref3 ref5 |
References_xml | – volume-title: Semantic classification in image databases year: 2000 ident: ref6 – ident: ref3 doi: 10.1109/IVL.1998.694464 – volume-title: Method and system for detection and characterization of open space in digital images year: 1999 ident: ref15 – ident: ref8 doi: 10.1109/ICCV.1999.790424 – volume-title: Proc. IEEE Int. Workshop on Content-Based Access of Image and Video Database ident: ref2 article-title: Integration of visual and text-based approaches for the content labeling and classification of photographs – ident: ref7 doi: 10.1109/CVPR.1999.786973 – ident: ref5 doi: 10.1006/gmip.1996.0010 – ident: ref9 doi: 10.1117/12.373573 – ident: ref1 doi: 10.1109/CAIVD.1998.646032 – ident: ref14 doi: 10.1007/978-1-4899-3216-7 – ident: ref4 doi: 10.1109/IVL.1998.694467 – ident: ref11 doi: 10.1002/9783527618156 – volume-title: The Nature of Light and Color in the Open Air year: 1954 ident: ref12 – ident: ref10 doi: 10.1109/ICIP.1999.822965 – ident: ref13 doi: 10.1119/1.18431 |
SSID | ssj0014516 |
Score | 1.9346517 |
Snippet | Sky is among the most important subject matter frequently seen in photographic images. We propose a model-based approach consisting of color classification,... [...] the color classification is performed by a multilayer backpropagation neural network trained in a bootstrapping fashion to generate a belief map of sky... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 201 |
SubjectTerms | Algorithms Applied sciences Artificial intelligence Backpropagation algorithms Cathode ray tubes Classification Color Computer science; control theory; systems Content based retrieval Exact sciences and technology Extraction Image processing Image recognition Image retrieval Information, signal and communications theory Laboratories Layout Multi-layer neural network Multilayers Neural networks Pattern recognition. Digital image processing. Computational geometry Physics computing Signal processing Signatures Sky Studies Telecommunications and information theory |
Title | A physical model-based approach to detecting sky in photographic images |
URI | https://ieeexplore.ieee.org/document/988954 https://www.ncbi.nlm.nih.gov/pubmed/18244624 https://www.proquest.com/docview/884379523 https://www.proquest.com/docview/27651002 https://www.proquest.com/docview/28513988 https://www.proquest.com/docview/734185090 https://www.proquest.com/docview/907958826 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RnuBAYXmFQrEQBy7eOnH8yLFClAoJTlTqLYpf0qqQVE32AL-esePdUtRF3KJkRoo9nsw3GfsbgHemcrrjZUddYILWRjlq0OdoxTHYBi06lqiUvnyVZ-f15wtxkXm201kY733afOaX8TLV8t1g1_FX2XGjdSPqPdjDvG0-qrUtGMR-s6mwKRRViPoziVDJmmPNl7PirdCTeqnEnZDdiJMR5i4Wu2FmCjenB_M57jGxFMZdJpfL9WSW9tdfHI7_OZJH8DDDTnIyr5PHcM_3CzjIEJRkBx8X8OAPfsIn8OmEXGU7ktQyh8ag58iGiJxMA3E-liFQnIyXP8mqR41hmnmwV5asfuD3anwK56cfv304o7nzArW1qCbKTa0b6SNciEShWmrXYO4irYp1Q1Myx3kIwggblBAmuMaWijtEQ4GVnjv-DPb7ofcvgFhVSe1RzXe8FrwzmFGGWopgmdfahALeb4zS2kxLHrtjfG9TesKaVvN2nq4C3m5Fr2YujruEFnG6twKbu0e3DH2jz0WpZc0KONxYvs1ePLZaR7ZGTNULeLN9iu4Xaypd74f12FZKishi-w8JxLQc36IAskNC8cggxBq2W6Rh-B6YDMkCns_L8mYEGhGarOqXdw78EO6n_jVp19wr2J-u1_41wqjJHCUH-g3WvBlh |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAPFJZXKLQW4sAlWyd-xDlWFWWBtqdW6i2KX9KqkFRN9kB_fcdOdtuiLuIWJTNS7PFkvsnY3wB81rlVNcvq1HoqUq4Lm2r0uTRnGGy9EjWNVErHJ3J2xn-ci_ORZzuehXHOxc1nbhouYy3ftmYRfpXtlUqVgj-GJxj2RTYc1lqVDELH2VjaFEVaIO4faYQyWu4pNh1U7wWf2E0l7IWsO5wOP_SxWA80Y8A53BpOcneRpzDsM7mYLno9Ndd_sTj-51hewPMReJL9YaW8hEeumcDWCELJ6OLdBDbvMBS-gm_75HK0JIlNc9IQ9ixZUpGTviXWhUIEipPu4g-ZN6jR9gMT9tyQ-W_8YnWv4ezw6-nBLB17L6SGi7xPmeaqlC4AhkAVqqSyJWYv0hShcqgzahnzXmhhfCGE9rY0WcEs4iFPM8csewMbTdu4d0BMkUvlUM3VjAtWa8wpPZfCG-qU0j6BL0ujVGYkJg_9MX5VMUGhZaVYNUxXAp9WopcDG8dDQpMw3SuB5d2de4a-1WciU5LTBLaXlq9GP-4qpQJfIybrCeyunqIDhqpK3bh20VV5IUXgsf2HBKJahm-RAFkjUbDAIURLul6kpPgemA7JBN4Oy_J2BAoxmsz5-wcHvgtPZ6fHR9XR95Of2_AsdrOJe-g-wEZ_tXAfEVT1eic60w2dcByq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+physical+model-based+approach+to+detecting+sky+in+photographic+images&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Luo%2C+Jiebo&rft.au=Etz%2C+S+P&rft.date=2002-03-01&rft.issn=1057-7149&rft.volume=11&rft.issue=3&rft.spage=201&rft.epage=212&rft_id=info:doi/10.1109%2F83.988954&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |