A physical model-based approach to detecting sky in photographic images

Sky is among the most important subject matter frequently seen in photographic images. We propose a model-based approach consisting of color classification, region extraction, and physics-motivated sky signature validation. First, the color classification is performed by a multilayer backpropagation...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 11; no. 3; pp. 201 - 212
Main Authors Jiebo Luo, Etz, S.P.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2002
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
DOI10.1109/83.988954

Cover

Loading…
Abstract Sky is among the most important subject matter frequently seen in photographic images. We propose a model-based approach consisting of color classification, region extraction, and physics-motivated sky signature validation. First, the color classification is performed by a multilayer backpropagation neural network trained in a bootstrapping fashion to generate a belief map of sky color. Next, the region extraction algorithm automatically determines an appropriate threshold for the sky color belief map and extracts connected components. Finally, the sky signature validation algorithm determines the orientation of a candidate sky region, classifies one-dimensional (1-D) traces within the region based on a physics-motivated model, and computes the sky belief of the region by the percentage of traces that fit the physics-based sky trace model. A small-scale, yet rigorous test has been conducted to evaluate the algorithm performance. With approximately half of the images containing blue sky regions, the detection rate is 96% with a false positive rate of 2% on a per image basis.
AbstractList Sky is among the most important subject matter frequently seen in photographic images. We propose a model-based approach consisting of color classification, region extraction, and physics-motivated sky signature validation. First, the color classification is performed by a multilayer backpropagation neural network trained in a bootstrapping fashion to generate a belief map of sky color. Next, the region extraction algorithm automatically determines an appropriate threshold for the sky color belief map and extracts connected components. Finally, the sky signature validation algorithm determines the orientation of a candidate sky region, classifies one-dimensional (1-D) traces within the region based on a physics-motivated model, and computes the sky belief of the region by the percentage of traces that fit the physics-based sky trace model. A small-scale, yet rigorous test has been conducted to evaluate the algorithm performance. With approximately half of the images containing blue sky regions, the detection rate is 96% with a false positive rate of 2% on a per image basis
Sky is among the most important subject matter frequently seen in photographic images. We propose a model-based approach consisting of color classification, region extraction, and physics-motivated sky signature validation. First, the color classification is performed by a multilayer backpropagation neural network trained in a bootstrapping fashion to generate a belief map of sky color. Next, the region extraction algorithm automatically determines an appropriate threshold for the sky color belief map and extracts connected components. Finally, the sky signature validation algorithm determines the orientation of a candidate sky region, classifies one-dimensional (1-D) traces within the region based on a physics-motivated model, and computes the sky belief of the region by the percentage of traces that fit the physics-based sky trace model. A small-scale, yet rigorous test has been conducted to evaluate the algorithm performance. With approximately half of the images containing blue sky regions, the detection rate is 96% with a false positive rate of 2% on a per image basis.
[...] the color classification is performed by a multilayer backpropagation neural network trained in a bootstrapping fashion to generate a belief map of sky color.
Sky is among the most important subject matter frequently seen in photographic images. We propose a model-based approach consisting of color classification, region extraction, and physics-motivated sky signature validation. First, the color classification is performed by a multilayer backpropagation neural network trained in a bootstrapping fashion to generate a belief map of sky color. Next, the region extraction algorithm automatically determines an appropriate threshold for the sky color belief map and extracts connected components. Finally, the sky signature validation algorithm determines the orientation of a candidate sky region, classifies one-dimensional (1-D) traces within the region based on a physics-motivated model, and computes the sky belief of the region by the percentage of traces that fit the physics-based sky trace model. A small-scale, yet rigorous test has been conducted to evaluate the algorithm performance. With approximately half of the images containing blue sky regions, the detection rate is 96% with a false positive rate of 2% on a per image basis.Sky is among the most important subject matter frequently seen in photographic images. We propose a model-based approach consisting of color classification, region extraction, and physics-motivated sky signature validation. First, the color classification is performed by a multilayer backpropagation neural network trained in a bootstrapping fashion to generate a belief map of sky color. Next, the region extraction algorithm automatically determines an appropriate threshold for the sky color belief map and extracts connected components. Finally, the sky signature validation algorithm determines the orientation of a candidate sky region, classifies one-dimensional (1-D) traces within the region based on a physics-motivated model, and computes the sky belief of the region by the percentage of traces that fit the physics-based sky trace model. A small-scale, yet rigorous test has been conducted to evaluate the algorithm performance. With approximately half of the images containing blue sky regions, the detection rate is 96% with a false positive rate of 2% on a per image basis.
Author Etz, S.P.
Jiebo Luo
Author_xml – sequence: 1
  surname: Jiebo Luo
  fullname: Jiebo Luo
  organization: Res. Labs., Eastman Kodak Co., Rochester, NY, USA
– sequence: 2
  givenname: S.P.
  surname: Etz
  fullname: Etz, S.P.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13518640$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18244624$$D View this record in MEDLINE/PubMed
BookMark eNqF0s1rFTEQAPAgFfuhB68eZCmoeNg2k-8cS9EqFLzoOWST7Hup-zZrknd4_70p71mhiD1lIL8Zhpk5RUdzmgNCrwFfAGB9qeiFVkpz9gydgGbQY8zIUYsxl70Epo_RaSl3GAPjIF6gY1CEMUHYCbq56pb1rkRnp26TfJj6wZbgO7ssOVm37mrqfKjB1TivuvJz18W5ZaSaVtku6-i6uLGrUF6i56OdSnh1eM_Qj8-fvl9_6W-_3Xy9vrrtHeOk9nRgSouAFWgBTCmhvCYghZOMKjIA9pSOIx-4GyXnw-i1A0m9ADliCNTTM_RhX7e192sbSjWbWFyYJjuHtC1GY6m5UkQ8KSVloDjWuMn3_5VEcaBtwE9DKThgTBo8fwTv0jbPbTBGKUZbi4Q29PaAtsMmeLPkNsq8M3-W08C7A7Cl7WfMdnax_HWUgxLsvv_LvXM5lZLDaFystsY012zjZACb-zMxipr9mbSMj48yHor-w77Z2xhCeHCHz982Y8Ay
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_uclim_2019_100572
crossref_primary_10_1109_TCE_2008_4560158
crossref_primary_10_1016_j_patcog_2004_03_003
crossref_primary_10_1109_TIM_2019_2893008
crossref_primary_10_1109_TCSVT_2011_2125450
crossref_primary_10_1007_s00371_020_01830_8
crossref_primary_10_7763_IJFCC_2014_V3_341
crossref_primary_10_1016_j_neucom_2016_04_033
crossref_primary_10_1109_TMM_2006_886372
crossref_primary_10_1016_j_imavis_2003_09_012
crossref_primary_10_1109_TPAMI_2005_96
crossref_primary_10_3390_s23104789
crossref_primary_10_1109_TIP_2010_2088970
crossref_primary_10_1007_s10846_012_9684_7
crossref_primary_10_5772_56884
crossref_primary_10_1111_j_1467_8659_2007_01083_x
crossref_primary_10_3763_asre_2009_0015
crossref_primary_10_1109_TIM_2022_3165803
Cites_doi 10.1109/IVL.1998.694464
10.1109/ICCV.1999.790424
10.1109/CVPR.1999.786973
10.1006/gmip.1996.0010
10.1117/12.373573
10.1109/CAIVD.1998.646032
10.1007/978-1-4899-3216-7
10.1109/IVL.1998.694467
10.1002/9783527618156
10.1109/ICIP.1999.822965
10.1119/1.18431
ContentType Journal Article
Copyright 2002 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002
Copyright_xml – notice: 2002 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002
DBID RIA
RIE
AAYXX
CITATION
IQODW
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/83.988954
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts
PubMed
Technology Research Database
Technology Research Database

Computer and Information Systems Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 212
ExternalDocumentID 2430166201
18244624
13518640
10_1109_83_988954
988954
Genre Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c452t-3b4896e08196148868d92176c74382b10d33ff5b5cf755bfd9c173d617f01e3d3
IEDL.DBID RIE
ISSN 1057-7149
IngestDate Mon Jul 21 10:55:45 EDT 2025
Fri Jul 11 04:52:23 EDT 2025
Fri Jul 11 04:06:19 EDT 2025
Fri Jul 11 03:23:34 EDT 2025
Fri Jul 25 19:00:01 EDT 2025
Thu Apr 03 06:58:21 EDT 2025
Mon Jul 21 09:18:02 EDT 2025
Thu Apr 24 22:59:51 EDT 2025
Sun Jul 06 05:02:34 EDT 2025
Tue Aug 26 16:34:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Sky
Backpropagation
Photographic image
Image processing
Neural network
Algorithm
Image segmentation
Physical model
Object detection
Feature extraction
Gradient method
Desaturation
Image classification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-3b4896e08196148868d92176c74382b10d33ff5b5cf755bfd9c173d617f01e3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 18244624
PQID 884379523
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_907958826
pascalfrancis_primary_13518640
proquest_miscellaneous_28513988
pubmed_primary_18244624
ieee_primary_988954
proquest_journals_884379523
proquest_miscellaneous_734185090
crossref_citationtrail_10_1109_83_988954
proquest_miscellaneous_27651002
crossref_primary_10_1109_83_988954
PublicationCentury 2000
PublicationDate 2002-03-01
PublicationDateYYYYMMDD 2002-03-01
PublicationDate_xml – month: 03
  year: 2002
  text: 2002-03-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2002
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Paek (ref2)
ref14
ref11
ref10
Minnaert (ref12) 1954
ref1
Vailaya (ref6) 2000
ref8
ref7
Warnick (ref15) 1999
ref9
ref4
ref3
ref5
References_xml – volume-title: Semantic classification in image databases
  year: 2000
  ident: ref6
– ident: ref3
  doi: 10.1109/IVL.1998.694464
– volume-title: Method and system for detection and characterization of open space in digital images
  year: 1999
  ident: ref15
– ident: ref8
  doi: 10.1109/ICCV.1999.790424
– volume-title: Proc. IEEE Int. Workshop on Content-Based Access of Image and Video Database
  ident: ref2
  article-title: Integration of visual and text-based approaches for the content labeling and classification of photographs
– ident: ref7
  doi: 10.1109/CVPR.1999.786973
– ident: ref5
  doi: 10.1006/gmip.1996.0010
– ident: ref9
  doi: 10.1117/12.373573
– ident: ref1
  doi: 10.1109/CAIVD.1998.646032
– ident: ref14
  doi: 10.1007/978-1-4899-3216-7
– ident: ref4
  doi: 10.1109/IVL.1998.694467
– ident: ref11
  doi: 10.1002/9783527618156
– volume-title: The Nature of Light and Color in the Open Air
  year: 1954
  ident: ref12
– ident: ref10
  doi: 10.1109/ICIP.1999.822965
– ident: ref13
  doi: 10.1119/1.18431
SSID ssj0014516
Score 1.9346517
Snippet Sky is among the most important subject matter frequently seen in photographic images. We propose a model-based approach consisting of color classification,...
[...] the color classification is performed by a multilayer backpropagation neural network trained in a bootstrapping fashion to generate a belief map of sky...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 201
SubjectTerms Algorithms
Applied sciences
Artificial intelligence
Backpropagation algorithms
Cathode ray tubes
Classification
Color
Computer science; control theory; systems
Content based retrieval
Exact sciences and technology
Extraction
Image processing
Image recognition
Image retrieval
Information, signal and communications theory
Laboratories
Layout
Multi-layer neural network
Multilayers
Neural networks
Pattern recognition. Digital image processing. Computational geometry
Physics computing
Signal processing
Signatures
Sky
Studies
Telecommunications and information theory
Title A physical model-based approach to detecting sky in photographic images
URI https://ieeexplore.ieee.org/document/988954
https://www.ncbi.nlm.nih.gov/pubmed/18244624
https://www.proquest.com/docview/884379523
https://www.proquest.com/docview/27651002
https://www.proquest.com/docview/28513988
https://www.proquest.com/docview/734185090
https://www.proquest.com/docview/907958826
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RnuBAYXmFQrEQBy7eOnH8yLFClAoJTlTqLYpf0qqQVE32AL-esePdUtRF3KJkRoo9nsw3GfsbgHemcrrjZUddYILWRjlq0OdoxTHYBi06lqiUvnyVZ-f15wtxkXm201kY733afOaX8TLV8t1g1_FX2XGjdSPqPdjDvG0-qrUtGMR-s6mwKRRViPoziVDJmmPNl7PirdCTeqnEnZDdiJMR5i4Wu2FmCjenB_M57jGxFMZdJpfL9WSW9tdfHI7_OZJH8DDDTnIyr5PHcM_3CzjIEJRkBx8X8OAPfsIn8OmEXGU7ktQyh8ag58iGiJxMA3E-liFQnIyXP8mqR41hmnmwV5asfuD3anwK56cfv304o7nzArW1qCbKTa0b6SNciEShWmrXYO4irYp1Q1Myx3kIwggblBAmuMaWijtEQ4GVnjv-DPb7ofcvgFhVSe1RzXe8FrwzmFGGWopgmdfahALeb4zS2kxLHrtjfG9TesKaVvN2nq4C3m5Fr2YujruEFnG6twKbu0e3DH2jz0WpZc0KONxYvs1ePLZaR7ZGTNULeLN9iu4Xaypd74f12FZKishi-w8JxLQc36IAskNC8cggxBq2W6Rh-B6YDMkCns_L8mYEGhGarOqXdw78EO6n_jVp19wr2J-u1_41wqjJHCUH-g3WvBlh
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAPFJZXKLQW4sAlWyd-xDlWFWWBtqdW6i2KX9KqkFRN9kB_fcdOdtuiLuIWJTNS7PFkvsnY3wB81rlVNcvq1HoqUq4Lm2r0uTRnGGy9EjWNVErHJ3J2xn-ci_ORZzuehXHOxc1nbhouYy3ftmYRfpXtlUqVgj-GJxj2RTYc1lqVDELH2VjaFEVaIO4faYQyWu4pNh1U7wWf2E0l7IWsO5wOP_SxWA80Y8A53BpOcneRpzDsM7mYLno9Ndd_sTj-51hewPMReJL9YaW8hEeumcDWCELJ6OLdBDbvMBS-gm_75HK0JIlNc9IQ9ixZUpGTviXWhUIEipPu4g-ZN6jR9gMT9tyQ-W_8YnWv4ezw6-nBLB17L6SGi7xPmeaqlC4AhkAVqqSyJWYv0hShcqgzahnzXmhhfCGE9rY0WcEs4iFPM8csewMbTdu4d0BMkUvlUM3VjAtWa8wpPZfCG-qU0j6BL0ujVGYkJg_9MX5VMUGhZaVYNUxXAp9WopcDG8dDQpMw3SuB5d2de4a-1WciU5LTBLaXlq9GP-4qpQJfIybrCeyunqIDhqpK3bh20VV5IUXgsf2HBKJahm-RAFkjUbDAIURLul6kpPgemA7JBN4Oy_J2BAoxmsz5-wcHvgtPZ6fHR9XR95Of2_AsdrOJe-g-wEZ_tXAfEVT1eic60w2dcByq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+physical+model-based+approach+to+detecting+sky+in+photographic+images&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Luo%2C+Jiebo&rft.au=Etz%2C+S+P&rft.date=2002-03-01&rft.issn=1057-7149&rft.volume=11&rft.issue=3&rft.spage=201&rft.epage=212&rft_id=info:doi/10.1109%2F83.988954&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon