MOLI: multi-omics late integration with deep neural networks for drug response prediction
Abstract Motivation Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless...
Saved in:
Published in | Bioinformatics Vol. 35; no. 14; pp. i501 - i509 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
15.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1367-4803 1367-4811 1460-2059 1367-4811 |
DOI | 10.1093/bioinformatics/btz318 |
Cover
Loading…
Abstract | Abstract
Motivation
Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless of the integration strategy, clinical utility and translatability are crucial. Thus, we reasoned a multi-omics approach combined with clinical datasets would improve drug response prediction and clinical relevance.
Results
We propose MOLI, a multi-omics late integration method based on deep neural networks. MOLI takes somatic mutation, copy number aberration and gene expression data as input, and integrates them for drug response prediction. MOLI uses type-specific encoding sub-networks to learn features for each omics type, concatenates them into one representation and optimizes this representation via a combined cost function consisting of a triplet loss and a binary cross-entropy loss. The former makes the representations of responder samples more similar to each other and different from the non-responders, and the latter makes this representation predictive of the response values. We validate MOLI on in vitro and in vivo datasets for five chemotherapy agents and two targeted therapeutics. Compared to state-of-the-art single-omics and early integration multi-omics methods, MOLI achieves higher prediction accuracy in external validations. Moreover, a significant improvement in MOLI’s performance is observed for targeted drugs when training on a pan-drug input, i.e. using all the drugs with the same target compared to training only on drug-specific inputs. MOLI’s high predictive power suggests it may have utility in precision oncology.
Availability and implementation
https://github.com/hosseinshn/MOLI.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | Abstract
Motivation
Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless of the integration strategy, clinical utility and translatability are crucial. Thus, we reasoned a multi-omics approach combined with clinical datasets would improve drug response prediction and clinical relevance.
Results
We propose MOLI, a multi-omics late integration method based on deep neural networks. MOLI takes somatic mutation, copy number aberration and gene expression data as input, and integrates them for drug response prediction. MOLI uses type-specific encoding sub-networks to learn features for each omics type, concatenates them into one representation and optimizes this representation via a combined cost function consisting of a triplet loss and a binary cross-entropy loss. The former makes the representations of responder samples more similar to each other and different from the non-responders, and the latter makes this representation predictive of the response values. We validate MOLI on in vitro and in vivo datasets for five chemotherapy agents and two targeted therapeutics. Compared to state-of-the-art single-omics and early integration multi-omics methods, MOLI achieves higher prediction accuracy in external validations. Moreover, a significant improvement in MOLI’s performance is observed for targeted drugs when training on a pan-drug input, i.e. using all the drugs with the same target compared to training only on drug-specific inputs. MOLI’s high predictive power suggests it may have utility in precision oncology.
Availability and implementation
https://github.com/hosseinshn/MOLI.
Supplementary information
Supplementary data are available at Bioinformatics online. Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless of the integration strategy, clinical utility and translatability are crucial. Thus, we reasoned a multi-omics approach combined with clinical datasets would improve drug response prediction and clinical relevance.MOTIVATIONHistorically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless of the integration strategy, clinical utility and translatability are crucial. Thus, we reasoned a multi-omics approach combined with clinical datasets would improve drug response prediction and clinical relevance.We propose MOLI, a multi-omics late integration method based on deep neural networks. MOLI takes somatic mutation, copy number aberration and gene expression data as input, and integrates them for drug response prediction. MOLI uses type-specific encoding sub-networks to learn features for each omics type, concatenates them into one representation and optimizes this representation via a combined cost function consisting of a triplet loss and a binary cross-entropy loss. The former makes the representations of responder samples more similar to each other and different from the non-responders, and the latter makes this representation predictive of the response values. We validate MOLI on in vitro and in vivo datasets for five chemotherapy agents and two targeted therapeutics. Compared to state-of-the-art single-omics and early integration multi-omics methods, MOLI achieves higher prediction accuracy in external validations. Moreover, a significant improvement in MOLI's performance is observed for targeted drugs when training on a pan-drug input, i.e. using all the drugs with the same target compared to training only on drug-specific inputs. MOLI's high predictive power suggests it may have utility in precision oncology.RESULTSWe propose MOLI, a multi-omics late integration method based on deep neural networks. MOLI takes somatic mutation, copy number aberration and gene expression data as input, and integrates them for drug response prediction. MOLI uses type-specific encoding sub-networks to learn features for each omics type, concatenates them into one representation and optimizes this representation via a combined cost function consisting of a triplet loss and a binary cross-entropy loss. The former makes the representations of responder samples more similar to each other and different from the non-responders, and the latter makes this representation predictive of the response values. We validate MOLI on in vitro and in vivo datasets for five chemotherapy agents and two targeted therapeutics. Compared to state-of-the-art single-omics and early integration multi-omics methods, MOLI achieves higher prediction accuracy in external validations. Moreover, a significant improvement in MOLI's performance is observed for targeted drugs when training on a pan-drug input, i.e. using all the drugs with the same target compared to training only on drug-specific inputs. MOLI's high predictive power suggests it may have utility in precision oncology.https://github.com/hosseinshn/MOLI.AVAILABILITY AND IMPLEMENTATIONhttps://github.com/hosseinshn/MOLI.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless of the integration strategy, clinical utility and translatability are crucial. Thus, we reasoned a multi-omics approach combined with clinical datasets would improve drug response prediction and clinical relevance. We propose MOLI, a multi-omics late integration method based on deep neural networks. MOLI takes somatic mutation, copy number aberration and gene expression data as input, and integrates them for drug response prediction. MOLI uses type-specific encoding sub-networks to learn features for each omics type, concatenates them into one representation and optimizes this representation via a combined cost function consisting of a triplet loss and a binary cross-entropy loss. The former makes the representations of responder samples more similar to each other and different from the non-responders, and the latter makes this representation predictive of the response values. We validate MOLI on in vitro and in vivo datasets for five chemotherapy agents and two targeted therapeutics. Compared to state-of-the-art single-omics and early integration multi-omics methods, MOLI achieves higher prediction accuracy in external validations. Moreover, a significant improvement in MOLI's performance is observed for targeted drugs when training on a pan-drug input, i.e. using all the drugs with the same target compared to training only on drug-specific inputs. MOLI's high predictive power suggests it may have utility in precision oncology. https://github.com/hosseinshn/MOLI. Supplementary data are available at Bioinformatics online. |
Author | Sharifi-Noghabi, Hossein Collins, Colin C Ester, Martin Zolotareva, Olga |
AuthorAffiliation | 2 Vancouver Prostate Centre, Vancouver, BC, Canada 4 Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada 3 International Research Training Group Computational Methods for the Analysis of the Diversity and Dynamics of Genomes and Genome Informatics, Faculty of Technology and Center for Biotechnology, Bielefeld University, Germany 1 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada |
AuthorAffiliation_xml | – name: 4 Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada – name: 2 Vancouver Prostate Centre, Vancouver, BC, Canada – name: 3 International Research Training Group Computational Methods for the Analysis of the Diversity and Dynamics of Genomes and Genome Informatics, Faculty of Technology and Center for Biotechnology, Bielefeld University, Germany – name: 1 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada |
Author_xml | – sequence: 1 givenname: Hossein surname: Sharifi-Noghabi fullname: Sharifi-Noghabi, Hossein organization: School of Computing Science, Simon Fraser University, Burnaby, BC, Canada – sequence: 2 givenname: Olga surname: Zolotareva fullname: Zolotareva, Olga organization: International Research Training Group Computational Methods for the Analysis of the Diversity and Dynamics of Genomes and Genome Informatics, Faculty of Technology and Center for Biotechnology, Bielefeld University, Germany – sequence: 3 givenname: Colin C surname: Collins fullname: Collins, Colin C email: ccollins@prostatecentre.com organization: Vancouver Prostate Centre, Vancouver, BC, Canada – sequence: 4 givenname: Martin surname: Ester fullname: Ester, Martin email: ester@cs.sfu.ca organization: School of Computing Science, Simon Fraser University, Burnaby, BC, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31510700$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtP3DAUha0KVB7tTwB52U3AjziPIlVCCCjSIDbtoivLcW5mDIkdbAdEf309zEzFdENX15LPd87VPQdoxzoLCB1RckJJzU8b44ztnB9UNDqcNvE3p9UHtE_zgmSMiHonvXlRZnlF-B46COGeEEHzPP-I9jgVlJSE7KNft3ezm694mPpoMjckK9yrCNjYCHOfvJ3FzyYucAswYguTV30a8dn5h4BTPm79NMcewuhsADx6aI1eYp_Qbqf6AJ_X8xD9vLr8cfE9m91d31yczzKdCxYzrkqteNvoVpGu0kWtqjJXUBVtzrgoGCW6BNF2pGo6ppKuEY1ioiNcUNUIyg_Rt5XvODUDtBpsTDvK0ZtB-RfplJHbP9Ys5Nw9yaKgrKIiGXxZG3j3OEGIcjBBQ98rC24KkrGqFiUr66X0-G3W35DNPZPgbCXQ3oXgoZPaxNcrpmjTS0rksj253Z5ctZdo8Q-9CXiPIyvOTeN_In8A4oK7Ag |
CitedBy_id | crossref_primary_10_1093_bib_bbae088 crossref_primary_10_1016_j_inffus_2023_102077 crossref_primary_10_1093_bib_bbac100 crossref_primary_10_1038_s41467_023_39729_2 crossref_primary_10_1186_s12859_024_05835_1 crossref_primary_10_1093_bioinformatics_btae316 crossref_primary_10_1039_D1MO00411E crossref_primary_10_1016_j_isci_2022_103798 crossref_primary_10_1038_s41598_020_64175_1 crossref_primary_10_1093_bioinformatics_btac383 crossref_primary_10_1093_bioinformatics_btab608 crossref_primary_10_1109_JBHI_2024_3417014 crossref_primary_10_1038_s41525_021_00239_z crossref_primary_10_3389_fgene_2024_1441558 crossref_primary_10_1093_bioinformatics_btad113 crossref_primary_10_3390_v14071373 crossref_primary_10_1093_bib_bbac207 crossref_primary_10_1186_s12859_023_05166_7 crossref_primary_10_1186_s13040_024_00406_9 crossref_primary_10_3389_fgene_2025_1532651 crossref_primary_10_1016_j_procs_2024_09_180 crossref_primary_10_1186_s12859_024_05749_y crossref_primary_10_1016_j_jpha_2024_101128 crossref_primary_10_1109_JBHI_2024_3363081 crossref_primary_10_15252_msb_202010026 crossref_primary_10_1002_pmic_202200275 crossref_primary_10_1093_bioinformatics_btad244 crossref_primary_10_1111_jcmm_18298 crossref_primary_10_1016_j_ymeth_2023_11_018 crossref_primary_10_1093_bib_bbad329 crossref_primary_10_3389_fonc_2020_01030 crossref_primary_10_15252_msb_20209730 crossref_primary_10_3390_ijms232213919 crossref_primary_10_1371_journal_pone_0261630 crossref_primary_10_3390_genes11080888 crossref_primary_10_1016_j_neunet_2023_08_036 crossref_primary_10_1021_acs_analchem_0c04850 crossref_primary_10_3390_s21030764 crossref_primary_10_1093_bib_bbab024 crossref_primary_10_1016_j_csbj_2021_04_060 crossref_primary_10_1016_j_cmpb_2023_107377 crossref_primary_10_1371_journal_pone_0295629 crossref_primary_10_1016_j_ccell_2022_08_011 crossref_primary_10_1038_s41525_022_00328_7 crossref_primary_10_1007_s44007_025_00149_x crossref_primary_10_1109_JBHI_2021_3126339 crossref_primary_10_1093_bib_bbab378 crossref_primary_10_1371_journal_pone_0315924 crossref_primary_10_3390_cancers15102705 crossref_primary_10_3389_frai_2023_1098308 crossref_primary_10_3390_jpm13111590 crossref_primary_10_1093_bfgp_elae013 crossref_primary_10_1186_s13059_022_02739_2 crossref_primary_10_1093_bib_bbab454 crossref_primary_10_1093_bioinformatics_btac177 crossref_primary_10_3345_cep_2021_01438 crossref_primary_10_1093_bib_bbab569 crossref_primary_10_1093_bib_bbac537 crossref_primary_10_1146_annurev_pharmtox_030920_025745 crossref_primary_10_1016_j_neucom_2023_126720 crossref_primary_10_1038_s41467_022_29268_7 crossref_primary_10_3390_cancers14194763 crossref_primary_10_34133_research_0050 crossref_primary_10_1016_j_csbj_2021_06_030 crossref_primary_10_1093_bib_bbaf006 crossref_primary_10_1002_med_21764 crossref_primary_10_1038_s41467_020_19313_8 crossref_primary_10_1038_s41598_022_20646_1 crossref_primary_10_1093_bioinformatics_btab650 crossref_primary_10_1093_bioinformatics_btaa442 crossref_primary_10_1016_j_apsb_2024_06_028 crossref_primary_10_1186_s13059_022_02705_y crossref_primary_10_3389_fgene_2022_1032768 crossref_primary_10_1093_bib_bbz171 crossref_primary_10_1142_S0219720024500136 crossref_primary_10_3390_app14072728 crossref_primary_10_3390_ijms22147721 crossref_primary_10_1007_s11684_024_1085_3 crossref_primary_10_2174_1574892818666221018091415 crossref_primary_10_1186_s12859_024_05723_8 crossref_primary_10_1016_j_eng_2023_01_014 crossref_primary_10_1093_bioinformatics_btac631 crossref_primary_10_1002_aisy_202400180 crossref_primary_10_1093_bib_bbae184 crossref_primary_10_1016_j_patter_2023_100736 crossref_primary_10_1088_1361_6560_ad1271 crossref_primary_10_1093_bioinformatics_btac080 crossref_primary_10_1371_journal_pcbi_1012012 crossref_primary_10_1093_nar_gkae915 crossref_primary_10_1186_s40246_025_00718_9 crossref_primary_10_1093_bioinformatics_btad734 crossref_primary_10_1016_j_aichem_2025_100084 crossref_primary_10_1109_JBHI_2021_3102186 crossref_primary_10_1109_TCBB_2024_3404262 crossref_primary_10_1093_bioinformatics_btae386 crossref_primary_10_1093_bib_bbab461 crossref_primary_10_3389_fgene_2020_564792 crossref_primary_10_3390_ijms22062903 crossref_primary_10_1186_s12885_024_12575_1 crossref_primary_10_1002_wcms_1597 crossref_primary_10_1093_bib_bbab457 crossref_primary_10_1109_TCBB_2021_3096960 crossref_primary_10_1007_s11916_024_01264_0 crossref_primary_10_1016_j_csbj_2023_11_011 crossref_primary_10_1186_s12920_020_00829_3 crossref_primary_10_1360_TB_2024_0416 crossref_primary_10_1093_bib_bbz153 crossref_primary_10_1186_s12864_021_07524_2 crossref_primary_10_1093_bib_bbae242 crossref_primary_10_3389_fmed_2023_1086097 crossref_primary_10_1371_journal_pone_0255337 crossref_primary_10_1016_j_compbiolchem_2024_108175 crossref_primary_10_1093_bioinformatics_btab324 crossref_primary_10_1038_s42256_020_0217_y crossref_primary_10_3389_fonc_2020_588221 crossref_primary_10_1109_ACCESS_2019_2960373 crossref_primary_10_3390_ijms232415490 crossref_primary_10_7717_peerj_cs_2520 crossref_primary_10_1016_j_xplc_2024_101002 crossref_primary_10_3389_fgene_2020_570255 crossref_primary_10_1016_j_compbiomed_2022_106192 crossref_primary_10_1016_j_jbi_2024_104629 crossref_primary_10_1093_bib_bbab408 crossref_primary_10_1016_j_compbiolchem_2023_107906 crossref_primary_10_1136_bmjopen_2022_067447 crossref_primary_10_1080_10643389_2024_2320753 crossref_primary_10_1016_j_neucom_2023_127168 crossref_primary_10_1093_bib_bbac605 crossref_primary_10_3389_fmolb_2022_962743 crossref_primary_10_1093_bioinformatics_btab580 crossref_primary_10_1109_ACCESS_2024_3514912 crossref_primary_10_1016_j_ailsci_2021_100012 crossref_primary_10_1016_j_artmed_2025_103101 crossref_primary_10_1016_j_csbj_2024_06_019 crossref_primary_10_1371_journal_pone_0307649 crossref_primary_10_2174_1574893617666220609114052 crossref_primary_10_3390_math9070772 crossref_primary_10_1093_bib_bbaf116 crossref_primary_10_1007_s10462_022_10306_1 crossref_primary_10_3390_genes12071098 crossref_primary_10_1039_D1MO00158B crossref_primary_10_1089_cmb_2024_0807 crossref_primary_10_1093_bioadv_vbac093 crossref_primary_10_1088_2516_1091_acc2fe crossref_primary_10_1109_TCBB_2021_3065535 crossref_primary_10_1142_S2811032322500047 crossref_primary_10_1186_s12967_021_02910_6 crossref_primary_10_1186_s12859_021_04163_y crossref_primary_10_1016_j_jgg_2021_03_007 crossref_primary_10_1016_j_ebiom_2022_104276 crossref_primary_10_1007_s11306_019_1608_0 crossref_primary_10_3390_ijms22062822 crossref_primary_10_3389_fsysb_2024_1407994 crossref_primary_10_3934_mbe_2024031 crossref_primary_10_1016_j_coemr_2022_100350 crossref_primary_10_3389_fbioe_2023_1156372 crossref_primary_10_1016_j_biosystems_2023_105095 crossref_primary_10_3389_fgene_2023_1217414 crossref_primary_10_1093_bib_bbab534 crossref_primary_10_1186_s12859_023_05622_4 crossref_primary_10_1093_bib_bbac501 crossref_primary_10_1109_RBME_2023_3324264 crossref_primary_10_1093_bioinformatics_btac574 crossref_primary_10_1093_nar_gkaa969 crossref_primary_10_1093_bib_bbab294 crossref_primary_10_1186_s12859_023_05262_8 crossref_primary_10_7717_peerj_cs_1903 crossref_primary_10_3389_fgene_2020_610798 crossref_primary_10_1093_gpbjnl_qzad008 crossref_primary_10_3389_fmed_2022_1109365 crossref_primary_10_1016_j_csbj_2021_07_003 crossref_primary_10_1186_s12885_021_08359_6 crossref_primary_10_1186_s13059_024_03293_9 crossref_primary_10_1002_jcsm_13661 crossref_primary_10_1073_pnas_2106682118 crossref_primary_10_1186_s12911_022_01938_y crossref_primary_10_1016_j_isci_2024_111131 crossref_primary_10_1093_bib_bbac133 crossref_primary_10_1007_s00253_022_11963_6 crossref_primary_10_1371_journal_pcbi_1012748 crossref_primary_10_3390_cancers13133148 crossref_primary_10_1109_JBHI_2023_3284794 crossref_primary_10_3389_fimmu_2022_1098825 crossref_primary_10_1007_s10489_022_03294_w crossref_primary_10_1089_omi_2022_0155 crossref_primary_10_1002_aisy_202200247 crossref_primary_10_1038_s41598_023_39179_2 crossref_primary_10_1016_j_biotechadv_2021_107739 crossref_primary_10_1016_j_compbiomed_2023_106859 crossref_primary_10_3390_jpm14070694 crossref_primary_10_1038_s41598_023_29644_3 crossref_primary_10_1016_j_tifs_2024_104555 crossref_primary_10_1186_s12859_021_04146_z crossref_primary_10_1186_s40635_024_00706_8 crossref_primary_10_3390_cancers16030530 crossref_primary_10_1186_s12859_020_03949_w crossref_primary_10_1038_s42256_021_00408_w crossref_primary_10_1093_bib_bbad003 crossref_primary_10_1186_s12859_023_05273_5 crossref_primary_10_5483_BMBRep_2022_0155 crossref_primary_10_1038_s41467_022_30449_7 crossref_primary_10_1038_s42003_024_06865_4 crossref_primary_10_3389_fonc_2020_01065 crossref_primary_10_3390_diagnostics13122043 crossref_primary_10_3748_wjg_v29_i2_272 |
Cites_doi | 10.1001/jamaoncol.2018.1660 10.1162/NECO_a_00168 10.1093/bioinformatics/bty132 10.1158/1078-0432.CCR-17-0853 10.1093/bioinformatics/bty148 10.1158/1541-7786.MCR-17-0378 10.1038/s41588-018-0209-6 10.1016/j.inffus.2018.09.012 10.1186/1471-2105-12-323 10.1038/nm.3954 10.15252/msb.20178124 10.1038/s41568-018-0043-2 10.1098/rsif.2017.0387 10.1038/nature11003 10.1093/nar/gky889 10.1093/bioinformatics/bty1054 10.1109/TKDE.2009.191 10.1093/biostatistics/kxj037 10.1126/science.1235122 10.1038/ng.2764 10.1038/nmeth.2810 10.1080/23808993.2018.1421858 10.1093/nar/gks1111 10.1038/nm.4333 10.1101/gr.221077.117 10.1093/bioinformatics/btw344 10.1101/gr.221218.117 10.1016/j.cels.2017.09.011 10.1109/TCBB.2014.2377729 10.1016/j.cels.2017.08.013 10.1073/pnas.1208949110 10.1146/annurev-pathol-020712-163923 10.3390/cancers2010190 10.1093/nar/gng015 10.1186/gb-2014-15-3-r47 10.1038/nmeth.4627 10.1016/j.cell.2016.06.017 10.1038/srep31619 10.1093/bioinformatics/btx766 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press. 2019 The Author(s) 2019. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. 2019 – notice: The Author(s) 2019. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/bioinformatics/btz318 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1460-2059 1367-4811 |
EndPage | i509 |
ExternalDocumentID | PMC6612815 31510700 10_1093_bioinformatics_btz318 10.1093/bioinformatics/btz318 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canada Foundation for Innovation grantid: 33440 funderid: 10.13039/501100000196 – fundername: The Canadian Institutes of Health Research grantid: PJT-153073 – fundername: Terry Fox Foundation grantid: 201012TFF funderid: 10.13039/501100002655 – fundername: National Science and Engineering Research Council of Canada grantid: R611347 – fundername: CIHR grantid: PJT-153073 – fundername: ; ; grantid: 201012TFF – fundername: ; grantid: PJT-153073 – fundername: ; grantid: R611347 – fundername: ; ; grantid: 33440 |
GroupedDBID | -~X .2P 5GY AAMVS ABJNI ABPTD ACGFS ADZXQ ALMA_UNASSIGNED_HOLDINGS F5P HW0 Q5Y RD5 TLC TN5 TOX WH7 --- -E4 .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. R44 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM ADRIX AFXEN BCRHZ CGR CUY CVF ECM EIF M49 NPM ROX 7X8 5PM |
ID | FETCH-LOGICAL-c452t-3a7ca3dbcda0f8c69a874ae86d42356210c7e5df08bf2adbcb5ba25f0351ab513 |
IEDL.DBID | TOX |
ISSN | 1367-4803 1367-4811 |
IngestDate | Thu Aug 21 13:36:10 EDT 2025 Thu Jul 10 17:05:00 EDT 2025 Wed Feb 19 02:05:31 EST 2025 Thu Apr 24 23:04:02 EDT 2025 Tue Jul 01 02:33:49 EDT 2025 Wed Apr 02 07:04:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2019. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-3a7ca3dbcda0f8c69a874ae86d42356210c7e5df08bf2adbcb5ba25f0351ab513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1093/bioinformatics/btz318 |
PMID | 31510700 |
PQID | 2289572795 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6612815 proquest_miscellaneous_2289572795 pubmed_primary_31510700 crossref_citationtrail_10_1093_bioinformatics_btz318 crossref_primary_10_1093_bioinformatics_btz318 oup_primary_10_1093_bioinformatics_btz318 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-15 |
PublicationDateYYYYMMDD | 2019-07-15 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | He (2023062712361036600_btz318-B22) 2018; 34 Gonçalves (2023062712361036600_btz318-B18) 2017; 5 Weinstein (2023062712361036600_btz318-B42) 2013; 45 Shrestha (2023062712361036600_btz318-B38) 2017; 27 Argelaguet (2023062712361036600_btz318-B3) 2018; 14 Ding (2023062712361036600_btz318-B11) 2016; 32 Singh (2023062712361036600_btz318-B39) 2019 Chaudhary (2023062712361036600_btz318-B5) 2018; 24 Yuan (2023062712361036600_btz318-B44) 2016; 6 Ching (2023062712361036600_btz318-B7) 2018; 15 Geeleher (2023062712361036600_btz318-B17) 2017; 27 Dimitrakopoulos (2023062712361036600_btz318-B9) 2018; 34 Mishra (2023062712361036600_btz318-B32) 2010; 2 Ali (2023062712361036600_btz318-B1) 2018; 34 Duchi (2023062712361036600_btz318-B12) 2011; 12 Ryan (2023062712361036600_btz318-B36) 2017; 5 Lee (2023062712361036600_btz318-B27) 2018; 50 Geeleher (2023062712361036600_btz318-B16) 2014; 15 Mo (2023062712361036600_btz318-B33) 2013; 110 Cheng (2023062712361036600_btz318-B6) 2018; 18 Gavan (2023062712361036600_btz318-B15) 2018; 3 Rappoport (2023062712361036600_btz318-B35) 2018; 46 Johnson (2023062712361036600_btz318-B25) 2007; 8 Hadsell (2023062712361036600_btz318-B21) 2006 Khakabimamaghani (2023062712361036600_btz318-B26) 2016 Liang (2023062712361036600_btz318-B29) 2015; 12 Goodfellow (2023062712361036600_btz318-B19) 2016 Almendro (2023062712361036600_btz318-B2) 2013; 8 Févotte (2023062712361036600_btz318-B13) 2011; 23 Pan (2023062712361036600_btz318-B34) 2010; 22 Barretina (2023062712361036600_btz318-B4) 2012; 483 Irizarry (2023062712361036600_btz318-B24) 2003; 31 Yang (2023062712361036600_btz318-B43) 2012; 41 Vogelstein (2023062712361036600_btz318-B40) 2013; 339 Gao (2023062712361036600_btz318-B14) 2015; 21 Zehir (2023062712361036600_btz318-B45) 2017; 23 Ding (2023062712361036600_btz318-B10) 2018; 16 Schroff (2023062712361036600_btz318-B37) 2015 Ma (2023062712361036600_btz318-B30) 2018; 15 Wang (2023062712361036600_btz318-B41) 2014; 11 Zitnik (2023062712361036600_btz318-B46) 2019; 50 Marquart (2023062712361036600_btz318-B31) 2018; 4 Cichocki (2023062712361036600_btz318-B8) 2009 Graim (2023062712361036600_btz318-B20) 2019; 24 Iorio (2023062712361036600_btz318-B23) 2016; 166 Li (2023062712361036600_btz318-B28) 2011; 12 |
References_xml | – volume: 4 start-page: 1093 year: 2018 ident: 2023062712361036600_btz318-B31 article-title: Estimation of the percentage of US patients with cancer who benefit from genome-driven oncology publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2018.1660 – volume: 23 start-page: 2421 year: 2011 ident: 2023062712361036600_btz318-B13 article-title: Algorithms for nonnegative matrix factorization with the β-divergence publication-title: Neural Comput doi: 10.1162/NECO_a_00168 – start-page: 1735 year: 2006 ident: 2023062712361036600_btz318-B21 article-title: Dimensionality reduction by learning an invariant mapping – volume: 34 start-page: 2808 year: 2018 ident: 2023062712361036600_btz318-B22 article-title: Kernelized rank learning for personalized drug recommendation publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty132 – volume: 24 start-page: 1248 year: 2018 ident: 2023062712361036600_btz318-B5 article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer publication-title: Clin. Cancer Res doi: 10.1158/1078-0432.CCR-17-0853 – volume: 34 start-page: 2441 year: 2018 ident: 2023062712361036600_btz318-B9 article-title: Network-based integration of multi-omics data for prioritizing cancer genes publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty148 – volume: 16 start-page: 269 year: 2018 ident: 2023062712361036600_btz318-B10 article-title: Precision oncology beyond targeted therapy: combining omics data with machine learning matches the majority of cancer cells to effective therapeutics publication-title: Mol. Cancer Res doi: 10.1158/1541-7786.MCR-17-0378 – volume: 50 start-page: 1399 year: 2018 ident: 2023062712361036600_btz318-B27 article-title: Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy publication-title: Nat. Genet doi: 10.1038/s41588-018-0209-6 – volume: 50 start-page: 71 year: 2019 ident: 2023062712361036600_btz318-B46 article-title: Machine learning for integrating data in biology and medicine: principles, practice, and opportunities publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.09.012 – volume: 12 start-page: 323 year: 2011 ident: 2023062712361036600_btz318-B28 article-title: RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-323 – volume: 21 start-page: 1318 year: 2015 ident: 2023062712361036600_btz318-B14 article-title: High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response publication-title: Nat. Med doi: 10.1038/nm.3954 – volume: 14 start-page: e8124. year: 2018 ident: 2023062712361036600_btz318-B3 article-title: Multi-omics factor analysis a framework for unsupervised integration of multi-omics data sets publication-title: Mol. Syst. Biol doi: 10.15252/msb.20178124 – volume: 18 start-page: 527 year: 2018 ident: 2023062712361036600_btz318-B6 article-title: Clinical tumour sequencing for precision oncology: time for a universal strategy publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0043-2 – volume: 12 start-page: 2121 year: 2011 ident: 2023062712361036600_btz318-B12 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res – volume: 15 start-page: 20170387. year: 2018 ident: 2023062712361036600_btz318-B7 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2017.0387 – volume: 483 start-page: 603 year: 2012 ident: 2023062712361036600_btz318-B4 article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature doi: 10.1038/nature11003 – volume: 46 start-page: 10546 year: 2018 ident: 2023062712361036600_btz318-B35 article-title: Multi-omic and multi-view clustering algorithms: review and cancer benchmark publication-title: Nucleic Acids Res doi: 10.1093/nar/gky889 – year: 2019 ident: 2023062712361036600_btz318-B39 article-title: DIABLO: an integrative approach for identifying key molecular drivers from multi-omic assays publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty1054 – volume: 22 start-page: 1345 year: 2010 ident: 2023062712361036600_btz318-B34 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng doi: 10.1109/TKDE.2009.191 – volume: 8 start-page: 118 year: 2007 ident: 2023062712361036600_btz318-B25 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics doi: 10.1093/biostatistics/kxj037 – volume: 339 start-page: 1546 year: 2013 ident: 2023062712361036600_btz318-B40 article-title: Cancer genome landscapes publication-title: Science doi: 10.1126/science.1235122 – volume: 45 start-page: 1113 year: 2013 ident: 2023062712361036600_btz318-B42 article-title: The Cancer Genome Atlas pan-cancer analysis project publication-title: Nature Genet doi: 10.1038/ng.2764 – volume: 24 start-page: 136 year: 2019 ident: 2023062712361036600_btz318-B20 article-title: PLATYPUS: a multiple-view learning predictive framework for cancer drug sensitivity prediction publication-title: Pac. Symp. Biocomput – volume: 11 start-page: 333 year: 2014 ident: 2023062712361036600_btz318-B41 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nat. Methods doi: 10.1038/nmeth.2810 – start-page: 815 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2015 ident: 2023062712361036600_btz318-B37 – volume: 3 start-page: 1 year: 2018 ident: 2023062712361036600_btz318-B15 article-title: The economic case for precision medicine publication-title: Expert Rev. Precis. Med. Drug Dev doi: 10.1080/23808993.2018.1421858 – volume: 41 start-page: D955 year: 2012 ident: 2023062712361036600_btz318-B43 article-title: Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1111 – volume: 23 start-page: 703 year: 2017 ident: 2023062712361036600_btz318-B45 article-title: Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10, 000 patients publication-title: Nature Medicine doi: 10.1038/nm.4333 – volume: 27 start-page: 1743 year: 2017 ident: 2023062712361036600_btz318-B17 article-title: Discovering novel pharmacogenomic biomarkers by imputing drug response in cancer patients from large genomics studies publication-title: Genome Res doi: 10.1101/gr.221077.117 – volume: 32 start-page: 2891 year: 2016 ident: 2023062712361036600_btz318-B11 article-title: Evaluating the molecule-based prediction of clinical drug responses in cancer publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw344 – volume: 27 start-page: 1573 year: 2017 ident: 2023062712361036600_btz318-B38 article-title: HIT’nDRIVE: patient-specific multidriver gene prioritization for precision oncology publication-title: Genome Res doi: 10.1101/gr.221218.117 – volume: 5 start-page: 399 year: 2017 ident: 2023062712361036600_btz318-B36 article-title: A compendium of co-regulated protein complexes in breast cancer reveals collateral loss events publication-title: Cell Syst doi: 10.1016/j.cels.2017.09.011 – volume: 12 start-page: 928 year: 2015 ident: 2023062712361036600_btz318-B29 article-title: Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform doi: 10.1109/TCBB.2014.2377729 – volume: 5 start-page: 386 year: 2017 ident: 2023062712361036600_btz318-B18 article-title: Widespread post-transcriptional attenuation of genomic copy-number variation in cancer publication-title: Cell Syst doi: 10.1016/j.cels.2017.08.013 – volume: 110 start-page: 4245 year: 2013 ident: 2023062712361036600_btz318-B33 article-title: Pattern discovery and cancer gene identification in integrated cancer genomic data publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1208949110 – volume: 8 start-page: 277 year: 2013 ident: 2023062712361036600_btz318-B2 article-title: Cellular heterogeneity and molecular evolution in cancer publication-title: Ann. Rev. Pathol doi: 10.1146/annurev-pathol-020712-163923 – volume: 2 start-page: 190 year: 2010 ident: 2023062712361036600_btz318-B32 article-title: Cancer biomarkers: are we ready for the prime time? publication-title: Cancers doi: 10.3390/cancers2010190 – volume: 31 start-page: e15 year: 2003 ident: 2023062712361036600_btz318-B24 article-title: Summaries of Affymetrix GeneChip probe level data publication-title: Nucleic Acids Res doi: 10.1093/nar/gng015 – volume: 15 start-page: R47. year: 2014 ident: 2023062712361036600_btz318-B16 article-title: Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines publication-title: Genome Biol doi: 10.1186/gb-2014-15-3-r47 – volume: 15 start-page: 290 year: 2018 ident: 2023062712361036600_btz318-B30 article-title: Using deep learning to model the hierarchical structure and function of a cell publication-title: Nat. Methods doi: 10.1038/nmeth.4627 – volume: 166 start-page: 740 year: 2016 ident: 2023062712361036600_btz318-B23 article-title: A landscape of pharmacogenomic interactions in cancer publication-title: Cell doi: 10.1016/j.cell.2016.06.017 – start-page: 345 volume-title: CC BY: PSB 2016 proceedings are published as Open Access chapters by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution (CC BY) 4.0 License year: 2016 ident: 2023062712361036600_btz318-B26 – volume: 6 start-page: 31619 year: 2016 ident: 2023062712361036600_btz318-B44 article-title: Multitask learning improves prediction of cancer drug sensitivity publication-title: Sci. Rep doi: 10.1038/srep31619 – volume-title: Deep Learning year: 2016 ident: 2023062712361036600_btz318-B19 – volume: 34 start-page: 1353 year: 2018 ident: 2023062712361036600_btz318-B1 article-title: Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx766 – start-page: 708 volume-title: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences year: 2009 ident: 2023062712361036600_btz318-B8 |
SSID | ssj0051444 ssj0005056 |
Score | 2.658693 |
Snippet | Abstract
Motivation
Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that... Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | i501 |
SubjectTerms | Algorithms Antineoplastic Agents Forecasting Humans Ismb/Eccb 2019 Conference Proceedings Neoplasms - drug therapy Neural Networks, Computer Pharmaceutical Preparations Precision Medicine |
Title | MOLI: multi-omics late integration with deep neural networks for drug response prediction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31510700 https://www.proquest.com/docview/2289572795 https://pubmed.ncbi.nlm.nih.gov/PMC6612815 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KQfAivo0vVvDiITbJZvPwJmKpYu2lhXoK-4oKJS1petBf72w2qU1B1GPIzrLM7O58ycx8g9BlJHyuHbvtMlGGGWObi4DYLIxTGQJkUGVLlv5z0Bv5j2M6biGnroVZD-HHpMPfpxWJqCYu7vDiE_YhXLrgiDVZ_nAw_s7pcDQzjHkAJOCblraa2TtySF2_89OUDc_UqHZbAZ3ruZMrzqi7jbYqFIlvjdl3UEtlu2jD9JX82EMv_cHTww0ukwVtXXY8xxPAlLjmhgBbYP0DFkulZlhTWsJkmUkIn2NYMZb54hXnJn9W4VmuwzlabB-NuvfDu55d9VCwhU-9wiYsFIxILiRz0kgEMYtCn6kokICjAPu4jggVlakT8dRjMI5Tzjya6gAj49QlB6idTTN1hHDoBSloNVChdPxU8DhIiYwF4YQwL6bSQn6tv0RUBOO6z8UkMYFukjTVnhi1W-h6KTYzDBu_CVyBcf469qI2YQLnRgdDWKami3niwZcmBfAWUwsdGpMupyQAg-AqdCwUNoy9HKA5uZtvsve3kpsb4I4XufT4H2s8QZuAwnQpme3SU9Qu8oU6A6RT8PNyd38B26MEFw |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOLI%3A+multi-omics+late+integration+with+deep+neural+networks+for+drug+response+prediction&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Sharifi-Noghabi%2C+Hossein&rft.au=Zolotareva%2C+Olga&rft.au=Collins%2C+Colin+C&rft.au=Ester%2C+Martin&rft.date=2019-07-15&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=35&rft.issue=14&rft.spage=i501&rft.epage=i509&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz318&rft_id=info%3Apmid%2F31510700&rft.externalDocID=PMC6612815 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |