MOLI: multi-omics late integration with deep neural networks for drug response prediction

Abstract Motivation Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 35; no. 14; pp. i501 - i509
Main Authors Sharifi-Noghabi, Hossein, Zolotareva, Olga, Collins, Colin C, Ester, Martin
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.07.2019
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/btz318

Cover

Loading…
Abstract Abstract Motivation Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless of the integration strategy, clinical utility and translatability are crucial. Thus, we reasoned a multi-omics approach combined with clinical datasets would improve drug response prediction and clinical relevance. Results We propose MOLI, a multi-omics late integration method based on deep neural networks. MOLI takes somatic mutation, copy number aberration and gene expression data as input, and integrates them for drug response prediction. MOLI uses type-specific encoding sub-networks to learn features for each omics type, concatenates them into one representation and optimizes this representation via a combined cost function consisting of a triplet loss and a binary cross-entropy loss. The former makes the representations of responder samples more similar to each other and different from the non-responders, and the latter makes this representation predictive of the response values. We validate MOLI on in vitro and in vivo datasets for five chemotherapy agents and two targeted therapeutics. Compared to state-of-the-art single-omics and early integration multi-omics methods, MOLI achieves higher prediction accuracy in external validations. Moreover, a significant improvement in MOLI’s performance is observed for targeted drugs when training on a pan-drug input, i.e. using all the drugs with the same target compared to training only on drug-specific inputs. MOLI’s high predictive power suggests it may have utility in precision oncology. Availability and implementation https://github.com/hosseinshn/MOLI. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Abstract Motivation Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless of the integration strategy, clinical utility and translatability are crucial. Thus, we reasoned a multi-omics approach combined with clinical datasets would improve drug response prediction and clinical relevance. Results We propose MOLI, a multi-omics late integration method based on deep neural networks. MOLI takes somatic mutation, copy number aberration and gene expression data as input, and integrates them for drug response prediction. MOLI uses type-specific encoding sub-networks to learn features for each omics type, concatenates them into one representation and optimizes this representation via a combined cost function consisting of a triplet loss and a binary cross-entropy loss. The former makes the representations of responder samples more similar to each other and different from the non-responders, and the latter makes this representation predictive of the response values. We validate MOLI on in vitro and in vivo datasets for five chemotherapy agents and two targeted therapeutics. Compared to state-of-the-art single-omics and early integration multi-omics methods, MOLI achieves higher prediction accuracy in external validations. Moreover, a significant improvement in MOLI’s performance is observed for targeted drugs when training on a pan-drug input, i.e. using all the drugs with the same target compared to training only on drug-specific inputs. MOLI’s high predictive power suggests it may have utility in precision oncology. Availability and implementation https://github.com/hosseinshn/MOLI. Supplementary information Supplementary data are available at Bioinformatics online.
Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless of the integration strategy, clinical utility and translatability are crucial. Thus, we reasoned a multi-omics approach combined with clinical datasets would improve drug response prediction and clinical relevance.MOTIVATIONHistorically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless of the integration strategy, clinical utility and translatability are crucial. Thus, we reasoned a multi-omics approach combined with clinical datasets would improve drug response prediction and clinical relevance.We propose MOLI, a multi-omics late integration method based on deep neural networks. MOLI takes somatic mutation, copy number aberration and gene expression data as input, and integrates them for drug response prediction. MOLI uses type-specific encoding sub-networks to learn features for each omics type, concatenates them into one representation and optimizes this representation via a combined cost function consisting of a triplet loss and a binary cross-entropy loss. The former makes the representations of responder samples more similar to each other and different from the non-responders, and the latter makes this representation predictive of the response values. We validate MOLI on in vitro and in vivo datasets for five chemotherapy agents and two targeted therapeutics. Compared to state-of-the-art single-omics and early integration multi-omics methods, MOLI achieves higher prediction accuracy in external validations. Moreover, a significant improvement in MOLI's performance is observed for targeted drugs when training on a pan-drug input, i.e. using all the drugs with the same target compared to training only on drug-specific inputs. MOLI's high predictive power suggests it may have utility in precision oncology.RESULTSWe propose MOLI, a multi-omics late integration method based on deep neural networks. MOLI takes somatic mutation, copy number aberration and gene expression data as input, and integrates them for drug response prediction. MOLI uses type-specific encoding sub-networks to learn features for each omics type, concatenates them into one representation and optimizes this representation via a combined cost function consisting of a triplet loss and a binary cross-entropy loss. The former makes the representations of responder samples more similar to each other and different from the non-responders, and the latter makes this representation predictive of the response values. We validate MOLI on in vitro and in vivo datasets for five chemotherapy agents and two targeted therapeutics. Compared to state-of-the-art single-omics and early integration multi-omics methods, MOLI achieves higher prediction accuracy in external validations. Moreover, a significant improvement in MOLI's performance is observed for targeted drugs when training on a pan-drug input, i.e. using all the drugs with the same target compared to training only on drug-specific inputs. MOLI's high predictive power suggests it may have utility in precision oncology.https://github.com/hosseinshn/MOLI.AVAILABILITY AND IMPLEMENTATIONhttps://github.com/hosseinshn/MOLI.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless of the integration strategy, clinical utility and translatability are crucial. Thus, we reasoned a multi-omics approach combined with clinical datasets would improve drug response prediction and clinical relevance. We propose MOLI, a multi-omics late integration method based on deep neural networks. MOLI takes somatic mutation, copy number aberration and gene expression data as input, and integrates them for drug response prediction. MOLI uses type-specific encoding sub-networks to learn features for each omics type, concatenates them into one representation and optimizes this representation via a combined cost function consisting of a triplet loss and a binary cross-entropy loss. The former makes the representations of responder samples more similar to each other and different from the non-responders, and the latter makes this representation predictive of the response values. We validate MOLI on in vitro and in vivo datasets for five chemotherapy agents and two targeted therapeutics. Compared to state-of-the-art single-omics and early integration multi-omics methods, MOLI achieves higher prediction accuracy in external validations. Moreover, a significant improvement in MOLI's performance is observed for targeted drugs when training on a pan-drug input, i.e. using all the drugs with the same target compared to training only on drug-specific inputs. MOLI's high predictive power suggests it may have utility in precision oncology. https://github.com/hosseinshn/MOLI. Supplementary data are available at Bioinformatics online.
Author Sharifi-Noghabi, Hossein
Collins, Colin C
Ester, Martin
Zolotareva, Olga
AuthorAffiliation 2 Vancouver Prostate Centre, Vancouver, BC, Canada
4 Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
3 International Research Training Group Computational Methods for the Analysis of the Diversity and Dynamics of Genomes and Genome Informatics, Faculty of Technology and Center for Biotechnology, Bielefeld University, Germany
1 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
AuthorAffiliation_xml – name: 4 Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
– name: 2 Vancouver Prostate Centre, Vancouver, BC, Canada
– name: 3 International Research Training Group Computational Methods for the Analysis of the Diversity and Dynamics of Genomes and Genome Informatics, Faculty of Technology and Center for Biotechnology, Bielefeld University, Germany
– name: 1 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
Author_xml – sequence: 1
  givenname: Hossein
  surname: Sharifi-Noghabi
  fullname: Sharifi-Noghabi, Hossein
  organization: School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
– sequence: 2
  givenname: Olga
  surname: Zolotareva
  fullname: Zolotareva, Olga
  organization: International Research Training Group Computational Methods for the Analysis of the Diversity and Dynamics of Genomes and Genome Informatics, Faculty of Technology and Center for Biotechnology, Bielefeld University, Germany
– sequence: 3
  givenname: Colin C
  surname: Collins
  fullname: Collins, Colin C
  email: ccollins@prostatecentre.com
  organization: Vancouver Prostate Centre, Vancouver, BC, Canada
– sequence: 4
  givenname: Martin
  surname: Ester
  fullname: Ester, Martin
  email: ester@cs.sfu.ca
  organization: School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31510700$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtP3DAUha0KVB7tTwB52U3AjziPIlVCCCjSIDbtoivLcW5mDIkdbAdEf309zEzFdENX15LPd87VPQdoxzoLCB1RckJJzU8b44ztnB9UNDqcNvE3p9UHtE_zgmSMiHonvXlRZnlF-B46COGeEEHzPP-I9jgVlJSE7KNft3ezm694mPpoMjckK9yrCNjYCHOfvJ3FzyYucAswYguTV30a8dn5h4BTPm79NMcewuhsADx6aI1eYp_Qbqf6AJ_X8xD9vLr8cfE9m91d31yczzKdCxYzrkqteNvoVpGu0kWtqjJXUBVtzrgoGCW6BNF2pGo6ppKuEY1ioiNcUNUIyg_Rt5XvODUDtBpsTDvK0ZtB-RfplJHbP9Ys5Nw9yaKgrKIiGXxZG3j3OEGIcjBBQ98rC24KkrGqFiUr66X0-G3W35DNPZPgbCXQ3oXgoZPaxNcrpmjTS0rksj253Z5ctZdo8Q-9CXiPIyvOTeN_In8A4oK7Ag
CitedBy_id crossref_primary_10_1093_bib_bbae088
crossref_primary_10_1016_j_inffus_2023_102077
crossref_primary_10_1093_bib_bbac100
crossref_primary_10_1038_s41467_023_39729_2
crossref_primary_10_1186_s12859_024_05835_1
crossref_primary_10_1093_bioinformatics_btae316
crossref_primary_10_1039_D1MO00411E
crossref_primary_10_1016_j_isci_2022_103798
crossref_primary_10_1038_s41598_020_64175_1
crossref_primary_10_1093_bioinformatics_btac383
crossref_primary_10_1093_bioinformatics_btab608
crossref_primary_10_1109_JBHI_2024_3417014
crossref_primary_10_1038_s41525_021_00239_z
crossref_primary_10_3389_fgene_2024_1441558
crossref_primary_10_1093_bioinformatics_btad113
crossref_primary_10_3390_v14071373
crossref_primary_10_1093_bib_bbac207
crossref_primary_10_1186_s12859_023_05166_7
crossref_primary_10_1186_s13040_024_00406_9
crossref_primary_10_3389_fgene_2025_1532651
crossref_primary_10_1016_j_procs_2024_09_180
crossref_primary_10_1186_s12859_024_05749_y
crossref_primary_10_1016_j_jpha_2024_101128
crossref_primary_10_1109_JBHI_2024_3363081
crossref_primary_10_15252_msb_202010026
crossref_primary_10_1002_pmic_202200275
crossref_primary_10_1093_bioinformatics_btad244
crossref_primary_10_1111_jcmm_18298
crossref_primary_10_1016_j_ymeth_2023_11_018
crossref_primary_10_1093_bib_bbad329
crossref_primary_10_3389_fonc_2020_01030
crossref_primary_10_15252_msb_20209730
crossref_primary_10_3390_ijms232213919
crossref_primary_10_1371_journal_pone_0261630
crossref_primary_10_3390_genes11080888
crossref_primary_10_1016_j_neunet_2023_08_036
crossref_primary_10_1021_acs_analchem_0c04850
crossref_primary_10_3390_s21030764
crossref_primary_10_1093_bib_bbab024
crossref_primary_10_1016_j_csbj_2021_04_060
crossref_primary_10_1016_j_cmpb_2023_107377
crossref_primary_10_1371_journal_pone_0295629
crossref_primary_10_1016_j_ccell_2022_08_011
crossref_primary_10_1038_s41525_022_00328_7
crossref_primary_10_1007_s44007_025_00149_x
crossref_primary_10_1109_JBHI_2021_3126339
crossref_primary_10_1093_bib_bbab378
crossref_primary_10_1371_journal_pone_0315924
crossref_primary_10_3390_cancers15102705
crossref_primary_10_3389_frai_2023_1098308
crossref_primary_10_3390_jpm13111590
crossref_primary_10_1093_bfgp_elae013
crossref_primary_10_1186_s13059_022_02739_2
crossref_primary_10_1093_bib_bbab454
crossref_primary_10_1093_bioinformatics_btac177
crossref_primary_10_3345_cep_2021_01438
crossref_primary_10_1093_bib_bbab569
crossref_primary_10_1093_bib_bbac537
crossref_primary_10_1146_annurev_pharmtox_030920_025745
crossref_primary_10_1016_j_neucom_2023_126720
crossref_primary_10_1038_s41467_022_29268_7
crossref_primary_10_3390_cancers14194763
crossref_primary_10_34133_research_0050
crossref_primary_10_1016_j_csbj_2021_06_030
crossref_primary_10_1093_bib_bbaf006
crossref_primary_10_1002_med_21764
crossref_primary_10_1038_s41467_020_19313_8
crossref_primary_10_1038_s41598_022_20646_1
crossref_primary_10_1093_bioinformatics_btab650
crossref_primary_10_1093_bioinformatics_btaa442
crossref_primary_10_1016_j_apsb_2024_06_028
crossref_primary_10_1186_s13059_022_02705_y
crossref_primary_10_3389_fgene_2022_1032768
crossref_primary_10_1093_bib_bbz171
crossref_primary_10_1142_S0219720024500136
crossref_primary_10_3390_app14072728
crossref_primary_10_3390_ijms22147721
crossref_primary_10_1007_s11684_024_1085_3
crossref_primary_10_2174_1574892818666221018091415
crossref_primary_10_1186_s12859_024_05723_8
crossref_primary_10_1016_j_eng_2023_01_014
crossref_primary_10_1093_bioinformatics_btac631
crossref_primary_10_1002_aisy_202400180
crossref_primary_10_1093_bib_bbae184
crossref_primary_10_1016_j_patter_2023_100736
crossref_primary_10_1088_1361_6560_ad1271
crossref_primary_10_1093_bioinformatics_btac080
crossref_primary_10_1371_journal_pcbi_1012012
crossref_primary_10_1093_nar_gkae915
crossref_primary_10_1186_s40246_025_00718_9
crossref_primary_10_1093_bioinformatics_btad734
crossref_primary_10_1016_j_aichem_2025_100084
crossref_primary_10_1109_JBHI_2021_3102186
crossref_primary_10_1109_TCBB_2024_3404262
crossref_primary_10_1093_bioinformatics_btae386
crossref_primary_10_1093_bib_bbab461
crossref_primary_10_3389_fgene_2020_564792
crossref_primary_10_3390_ijms22062903
crossref_primary_10_1186_s12885_024_12575_1
crossref_primary_10_1002_wcms_1597
crossref_primary_10_1093_bib_bbab457
crossref_primary_10_1109_TCBB_2021_3096960
crossref_primary_10_1007_s11916_024_01264_0
crossref_primary_10_1016_j_csbj_2023_11_011
crossref_primary_10_1186_s12920_020_00829_3
crossref_primary_10_1360_TB_2024_0416
crossref_primary_10_1093_bib_bbz153
crossref_primary_10_1186_s12864_021_07524_2
crossref_primary_10_1093_bib_bbae242
crossref_primary_10_3389_fmed_2023_1086097
crossref_primary_10_1371_journal_pone_0255337
crossref_primary_10_1016_j_compbiolchem_2024_108175
crossref_primary_10_1093_bioinformatics_btab324
crossref_primary_10_1038_s42256_020_0217_y
crossref_primary_10_3389_fonc_2020_588221
crossref_primary_10_1109_ACCESS_2019_2960373
crossref_primary_10_3390_ijms232415490
crossref_primary_10_7717_peerj_cs_2520
crossref_primary_10_1016_j_xplc_2024_101002
crossref_primary_10_3389_fgene_2020_570255
crossref_primary_10_1016_j_compbiomed_2022_106192
crossref_primary_10_1016_j_jbi_2024_104629
crossref_primary_10_1093_bib_bbab408
crossref_primary_10_1016_j_compbiolchem_2023_107906
crossref_primary_10_1136_bmjopen_2022_067447
crossref_primary_10_1080_10643389_2024_2320753
crossref_primary_10_1016_j_neucom_2023_127168
crossref_primary_10_1093_bib_bbac605
crossref_primary_10_3389_fmolb_2022_962743
crossref_primary_10_1093_bioinformatics_btab580
crossref_primary_10_1109_ACCESS_2024_3514912
crossref_primary_10_1016_j_ailsci_2021_100012
crossref_primary_10_1016_j_artmed_2025_103101
crossref_primary_10_1016_j_csbj_2024_06_019
crossref_primary_10_1371_journal_pone_0307649
crossref_primary_10_2174_1574893617666220609114052
crossref_primary_10_3390_math9070772
crossref_primary_10_1093_bib_bbaf116
crossref_primary_10_1007_s10462_022_10306_1
crossref_primary_10_3390_genes12071098
crossref_primary_10_1039_D1MO00158B
crossref_primary_10_1089_cmb_2024_0807
crossref_primary_10_1093_bioadv_vbac093
crossref_primary_10_1088_2516_1091_acc2fe
crossref_primary_10_1109_TCBB_2021_3065535
crossref_primary_10_1142_S2811032322500047
crossref_primary_10_1186_s12967_021_02910_6
crossref_primary_10_1186_s12859_021_04163_y
crossref_primary_10_1016_j_jgg_2021_03_007
crossref_primary_10_1016_j_ebiom_2022_104276
crossref_primary_10_1007_s11306_019_1608_0
crossref_primary_10_3390_ijms22062822
crossref_primary_10_3389_fsysb_2024_1407994
crossref_primary_10_3934_mbe_2024031
crossref_primary_10_1016_j_coemr_2022_100350
crossref_primary_10_3389_fbioe_2023_1156372
crossref_primary_10_1016_j_biosystems_2023_105095
crossref_primary_10_3389_fgene_2023_1217414
crossref_primary_10_1093_bib_bbab534
crossref_primary_10_1186_s12859_023_05622_4
crossref_primary_10_1093_bib_bbac501
crossref_primary_10_1109_RBME_2023_3324264
crossref_primary_10_1093_bioinformatics_btac574
crossref_primary_10_1093_nar_gkaa969
crossref_primary_10_1093_bib_bbab294
crossref_primary_10_1186_s12859_023_05262_8
crossref_primary_10_7717_peerj_cs_1903
crossref_primary_10_3389_fgene_2020_610798
crossref_primary_10_1093_gpbjnl_qzad008
crossref_primary_10_3389_fmed_2022_1109365
crossref_primary_10_1016_j_csbj_2021_07_003
crossref_primary_10_1186_s12885_021_08359_6
crossref_primary_10_1186_s13059_024_03293_9
crossref_primary_10_1002_jcsm_13661
crossref_primary_10_1073_pnas_2106682118
crossref_primary_10_1186_s12911_022_01938_y
crossref_primary_10_1016_j_isci_2024_111131
crossref_primary_10_1093_bib_bbac133
crossref_primary_10_1007_s00253_022_11963_6
crossref_primary_10_1371_journal_pcbi_1012748
crossref_primary_10_3390_cancers13133148
crossref_primary_10_1109_JBHI_2023_3284794
crossref_primary_10_3389_fimmu_2022_1098825
crossref_primary_10_1007_s10489_022_03294_w
crossref_primary_10_1089_omi_2022_0155
crossref_primary_10_1002_aisy_202200247
crossref_primary_10_1038_s41598_023_39179_2
crossref_primary_10_1016_j_biotechadv_2021_107739
crossref_primary_10_1016_j_compbiomed_2023_106859
crossref_primary_10_3390_jpm14070694
crossref_primary_10_1038_s41598_023_29644_3
crossref_primary_10_1016_j_tifs_2024_104555
crossref_primary_10_1186_s12859_021_04146_z
crossref_primary_10_1186_s40635_024_00706_8
crossref_primary_10_3390_cancers16030530
crossref_primary_10_1186_s12859_020_03949_w
crossref_primary_10_1038_s42256_021_00408_w
crossref_primary_10_1093_bib_bbad003
crossref_primary_10_1186_s12859_023_05273_5
crossref_primary_10_5483_BMBRep_2022_0155
crossref_primary_10_1038_s41467_022_30449_7
crossref_primary_10_1038_s42003_024_06865_4
crossref_primary_10_3389_fonc_2020_01065
crossref_primary_10_3390_diagnostics13122043
crossref_primary_10_3748_wjg_v29_i2_272
Cites_doi 10.1001/jamaoncol.2018.1660
10.1162/NECO_a_00168
10.1093/bioinformatics/bty132
10.1158/1078-0432.CCR-17-0853
10.1093/bioinformatics/bty148
10.1158/1541-7786.MCR-17-0378
10.1038/s41588-018-0209-6
10.1016/j.inffus.2018.09.012
10.1186/1471-2105-12-323
10.1038/nm.3954
10.15252/msb.20178124
10.1038/s41568-018-0043-2
10.1098/rsif.2017.0387
10.1038/nature11003
10.1093/nar/gky889
10.1093/bioinformatics/bty1054
10.1109/TKDE.2009.191
10.1093/biostatistics/kxj037
10.1126/science.1235122
10.1038/ng.2764
10.1038/nmeth.2810
10.1080/23808993.2018.1421858
10.1093/nar/gks1111
10.1038/nm.4333
10.1101/gr.221077.117
10.1093/bioinformatics/btw344
10.1101/gr.221218.117
10.1016/j.cels.2017.09.011
10.1109/TCBB.2014.2377729
10.1016/j.cels.2017.08.013
10.1073/pnas.1208949110
10.1146/annurev-pathol-020712-163923
10.3390/cancers2010190
10.1093/nar/gng015
10.1186/gb-2014-15-3-r47
10.1038/nmeth.4627
10.1016/j.cell.2016.06.017
10.1038/srep31619
10.1093/bioinformatics/btx766
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. 2019
The Author(s) 2019. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. 2019
– notice: The Author(s) 2019. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btz318
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage i509
ExternalDocumentID PMC6612815
31510700
10_1093_bioinformatics_btz318
10.1093/bioinformatics/btz318
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canada Foundation for Innovation
  grantid: 33440
  funderid: 10.13039/501100000196
– fundername: The Canadian Institutes of Health Research
  grantid: PJT-153073
– fundername: Terry Fox Foundation
  grantid: 201012TFF
  funderid: 10.13039/501100002655
– fundername: National Science and Engineering Research Council of Canada
  grantid: R611347
– fundername: CIHR
  grantid: PJT-153073
– fundername: ; ;
  grantid: 201012TFF
– fundername: ;
  grantid: PJT-153073
– fundername: ;
  grantid: R611347
– fundername: ; ;
  grantid: 33440
GroupedDBID -~X
.2P
5GY
AAMVS
ABJNI
ABPTD
ACGFS
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
F5P
HW0
Q5Y
RD5
TLC
TN5
TOX
WH7
---
-E4
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
M49
NPM
ROX
7X8
5PM
ID FETCH-LOGICAL-c452t-3a7ca3dbcda0f8c69a874ae86d42356210c7e5df08bf2adbcb5ba25f0351ab513
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 13:36:10 EDT 2025
Thu Jul 10 17:05:00 EDT 2025
Wed Feb 19 02:05:31 EST 2025
Thu Apr 24 23:04:02 EDT 2025
Tue Jul 01 02:33:49 EDT 2025
Wed Apr 02 07:04:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2019. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-3a7ca3dbcda0f8c69a874ae86d42356210c7e5df08bf2adbcb5ba25f0351ab513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btz318
PMID 31510700
PQID 2289572795
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6612815
proquest_miscellaneous_2289572795
pubmed_primary_31510700
crossref_citationtrail_10_1093_bioinformatics_btz318
crossref_primary_10_1093_bioinformatics_btz318
oup_primary_10_1093_bioinformatics_btz318
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-15
PublicationDateYYYYMMDD 2019-07-15
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References He (2023062712361036600_btz318-B22) 2018; 34
Gonçalves (2023062712361036600_btz318-B18) 2017; 5
Weinstein (2023062712361036600_btz318-B42) 2013; 45
Shrestha (2023062712361036600_btz318-B38) 2017; 27
Argelaguet (2023062712361036600_btz318-B3) 2018; 14
Ding (2023062712361036600_btz318-B11) 2016; 32
Singh (2023062712361036600_btz318-B39) 2019
Chaudhary (2023062712361036600_btz318-B5) 2018; 24
Yuan (2023062712361036600_btz318-B44) 2016; 6
Ching (2023062712361036600_btz318-B7) 2018; 15
Geeleher (2023062712361036600_btz318-B17) 2017; 27
Dimitrakopoulos (2023062712361036600_btz318-B9) 2018; 34
Mishra (2023062712361036600_btz318-B32) 2010; 2
Ali (2023062712361036600_btz318-B1) 2018; 34
Duchi (2023062712361036600_btz318-B12) 2011; 12
Ryan (2023062712361036600_btz318-B36) 2017; 5
Lee (2023062712361036600_btz318-B27) 2018; 50
Geeleher (2023062712361036600_btz318-B16) 2014; 15
Mo (2023062712361036600_btz318-B33) 2013; 110
Cheng (2023062712361036600_btz318-B6) 2018; 18
Gavan (2023062712361036600_btz318-B15) 2018; 3
Rappoport (2023062712361036600_btz318-B35) 2018; 46
Johnson (2023062712361036600_btz318-B25) 2007; 8
Hadsell (2023062712361036600_btz318-B21) 2006
Khakabimamaghani (2023062712361036600_btz318-B26) 2016
Liang (2023062712361036600_btz318-B29) 2015; 12
Goodfellow (2023062712361036600_btz318-B19) 2016
Almendro (2023062712361036600_btz318-B2) 2013; 8
Févotte (2023062712361036600_btz318-B13) 2011; 23
Pan (2023062712361036600_btz318-B34) 2010; 22
Barretina (2023062712361036600_btz318-B4) 2012; 483
Irizarry (2023062712361036600_btz318-B24) 2003; 31
Yang (2023062712361036600_btz318-B43) 2012; 41
Vogelstein (2023062712361036600_btz318-B40) 2013; 339
Gao (2023062712361036600_btz318-B14) 2015; 21
Zehir (2023062712361036600_btz318-B45) 2017; 23
Ding (2023062712361036600_btz318-B10) 2018; 16
Schroff (2023062712361036600_btz318-B37) 2015
Ma (2023062712361036600_btz318-B30) 2018; 15
Wang (2023062712361036600_btz318-B41) 2014; 11
Zitnik (2023062712361036600_btz318-B46) 2019; 50
Marquart (2023062712361036600_btz318-B31) 2018; 4
Cichocki (2023062712361036600_btz318-B8) 2009
Graim (2023062712361036600_btz318-B20) 2019; 24
Iorio (2023062712361036600_btz318-B23) 2016; 166
Li (2023062712361036600_btz318-B28) 2011; 12
References_xml – volume: 4
  start-page: 1093
  year: 2018
  ident: 2023062712361036600_btz318-B31
  article-title: Estimation of the percentage of US patients with cancer who benefit from genome-driven oncology
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2018.1660
– volume: 23
  start-page: 2421
  year: 2011
  ident: 2023062712361036600_btz318-B13
  article-title: Algorithms for nonnegative matrix factorization with the β-divergence
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00168
– start-page: 1735
  year: 2006
  ident: 2023062712361036600_btz318-B21
  article-title: Dimensionality reduction by learning an invariant mapping
– volume: 34
  start-page: 2808
  year: 2018
  ident: 2023062712361036600_btz318-B22
  article-title: Kernelized rank learning for personalized drug recommendation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty132
– volume: 24
  start-page: 1248
  year: 2018
  ident: 2023062712361036600_btz318-B5
  article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer
  publication-title: Clin. Cancer Res
  doi: 10.1158/1078-0432.CCR-17-0853
– volume: 34
  start-page: 2441
  year: 2018
  ident: 2023062712361036600_btz318-B9
  article-title: Network-based integration of multi-omics data for prioritizing cancer genes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty148
– volume: 16
  start-page: 269
  year: 2018
  ident: 2023062712361036600_btz318-B10
  article-title: Precision oncology beyond targeted therapy: combining omics data with machine learning matches the majority of cancer cells to effective therapeutics
  publication-title: Mol. Cancer Res
  doi: 10.1158/1541-7786.MCR-17-0378
– volume: 50
  start-page: 1399
  year: 2018
  ident: 2023062712361036600_btz318-B27
  article-title: Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy
  publication-title: Nat. Genet
  doi: 10.1038/s41588-018-0209-6
– volume: 50
  start-page: 71
  year: 2019
  ident: 2023062712361036600_btz318-B46
  article-title: Machine learning for integrating data in biology and medicine: principles, practice, and opportunities
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.09.012
– volume: 12
  start-page: 323
  year: 2011
  ident: 2023062712361036600_btz318-B28
  article-title: RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-323
– volume: 21
  start-page: 1318
  year: 2015
  ident: 2023062712361036600_btz318-B14
  article-title: High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response
  publication-title: Nat. Med
  doi: 10.1038/nm.3954
– volume: 14
  start-page: e8124.
  year: 2018
  ident: 2023062712361036600_btz318-B3
  article-title: Multi-omics factor analysis a framework for unsupervised integration of multi-omics data sets
  publication-title: Mol. Syst. Biol
  doi: 10.15252/msb.20178124
– volume: 18
  start-page: 527
  year: 2018
  ident: 2023062712361036600_btz318-B6
  article-title: Clinical tumour sequencing for precision oncology: time for a universal strategy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0043-2
– volume: 12
  start-page: 2121
  year: 2011
  ident: 2023062712361036600_btz318-B12
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res
– volume: 15
  start-page: 20170387.
  year: 2018
  ident: 2023062712361036600_btz318-B7
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2017.0387
– volume: 483
  start-page: 603
  year: 2012
  ident: 2023062712361036600_btz318-B4
  article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
  publication-title: Nature
  doi: 10.1038/nature11003
– volume: 46
  start-page: 10546
  year: 2018
  ident: 2023062712361036600_btz318-B35
  article-title: Multi-omic and multi-view clustering algorithms: review and cancer benchmark
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky889
– year: 2019
  ident: 2023062712361036600_btz318-B39
  article-title: DIABLO: an integrative approach for identifying key molecular drivers from multi-omic assays
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1054
– volume: 22
  start-page: 1345
  year: 2010
  ident: 2023062712361036600_btz318-B34
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng
  doi: 10.1109/TKDE.2009.191
– volume: 8
  start-page: 118
  year: 2007
  ident: 2023062712361036600_btz318-B25
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj037
– volume: 339
  start-page: 1546
  year: 2013
  ident: 2023062712361036600_btz318-B40
  article-title: Cancer genome landscapes
  publication-title: Science
  doi: 10.1126/science.1235122
– volume: 45
  start-page: 1113
  year: 2013
  ident: 2023062712361036600_btz318-B42
  article-title: The Cancer Genome Atlas pan-cancer analysis project
  publication-title: Nature Genet
  doi: 10.1038/ng.2764
– volume: 24
  start-page: 136
  year: 2019
  ident: 2023062712361036600_btz318-B20
  article-title: PLATYPUS: a multiple-view learning predictive framework for cancer drug sensitivity prediction
  publication-title: Pac. Symp. Biocomput
– volume: 11
  start-page: 333
  year: 2014
  ident: 2023062712361036600_btz318-B41
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2810
– start-page: 815
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2015
  ident: 2023062712361036600_btz318-B37
– volume: 3
  start-page: 1
  year: 2018
  ident: 2023062712361036600_btz318-B15
  article-title: The economic case for precision medicine
  publication-title: Expert Rev. Precis. Med. Drug Dev
  doi: 10.1080/23808993.2018.1421858
– volume: 41
  start-page: D955
  year: 2012
  ident: 2023062712361036600_btz318-B43
  article-title: Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1111
– volume: 23
  start-page: 703
  year: 2017
  ident: 2023062712361036600_btz318-B45
  article-title: Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10, 000 patients
  publication-title: Nature Medicine
  doi: 10.1038/nm.4333
– volume: 27
  start-page: 1743
  year: 2017
  ident: 2023062712361036600_btz318-B17
  article-title: Discovering novel pharmacogenomic biomarkers by imputing drug response in cancer patients from large genomics studies
  publication-title: Genome Res
  doi: 10.1101/gr.221077.117
– volume: 32
  start-page: 2891
  year: 2016
  ident: 2023062712361036600_btz318-B11
  article-title: Evaluating the molecule-based prediction of clinical drug responses in cancer
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw344
– volume: 27
  start-page: 1573
  year: 2017
  ident: 2023062712361036600_btz318-B38
  article-title: HIT’nDRIVE: patient-specific multidriver gene prioritization for precision oncology
  publication-title: Genome Res
  doi: 10.1101/gr.221218.117
– volume: 5
  start-page: 399
  year: 2017
  ident: 2023062712361036600_btz318-B36
  article-title: A compendium of co-regulated protein complexes in breast cancer reveals collateral loss events
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2017.09.011
– volume: 12
  start-page: 928
  year: 2015
  ident: 2023062712361036600_btz318-B29
  article-title: Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform
  doi: 10.1109/TCBB.2014.2377729
– volume: 5
  start-page: 386
  year: 2017
  ident: 2023062712361036600_btz318-B18
  article-title: Widespread post-transcriptional attenuation of genomic copy-number variation in cancer
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2017.08.013
– volume: 110
  start-page: 4245
  year: 2013
  ident: 2023062712361036600_btz318-B33
  article-title: Pattern discovery and cancer gene identification in integrated cancer genomic data
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1208949110
– volume: 8
  start-page: 277
  year: 2013
  ident: 2023062712361036600_btz318-B2
  article-title: Cellular heterogeneity and molecular evolution in cancer
  publication-title: Ann. Rev. Pathol
  doi: 10.1146/annurev-pathol-020712-163923
– volume: 2
  start-page: 190
  year: 2010
  ident: 2023062712361036600_btz318-B32
  article-title: Cancer biomarkers: are we ready for the prime time?
  publication-title: Cancers
  doi: 10.3390/cancers2010190
– volume: 31
  start-page: e15
  year: 2003
  ident: 2023062712361036600_btz318-B24
  article-title: Summaries of Affymetrix GeneChip probe level data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gng015
– volume: 15
  start-page: R47.
  year: 2014
  ident: 2023062712361036600_btz318-B16
  article-title: Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines
  publication-title: Genome Biol
  doi: 10.1186/gb-2014-15-3-r47
– volume: 15
  start-page: 290
  year: 2018
  ident: 2023062712361036600_btz318-B30
  article-title: Using deep learning to model the hierarchical structure and function of a cell
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4627
– volume: 166
  start-page: 740
  year: 2016
  ident: 2023062712361036600_btz318-B23
  article-title: A landscape of pharmacogenomic interactions in cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.017
– start-page: 345
  volume-title: CC BY: PSB 2016 proceedings are published as Open Access chapters by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution (CC BY) 4.0 License
  year: 2016
  ident: 2023062712361036600_btz318-B26
– volume: 6
  start-page: 31619
  year: 2016
  ident: 2023062712361036600_btz318-B44
  article-title: Multitask learning improves prediction of cancer drug sensitivity
  publication-title: Sci. Rep
  doi: 10.1038/srep31619
– volume-title: Deep Learning
  year: 2016
  ident: 2023062712361036600_btz318-B19
– volume: 34
  start-page: 1353
  year: 2018
  ident: 2023062712361036600_btz318-B1
  article-title: Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx766
– start-page: 708
  volume-title: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
  year: 2009
  ident: 2023062712361036600_btz318-B8
SSID ssj0051444
ssj0005056
Score 2.658693
Snippet Abstract Motivation Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that...
Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage i501
SubjectTerms Algorithms
Antineoplastic Agents
Forecasting
Humans
Ismb/Eccb 2019 Conference Proceedings
Neoplasms - drug therapy
Neural Networks, Computer
Pharmaceutical Preparations
Precision Medicine
Title MOLI: multi-omics late integration with deep neural networks for drug response prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/31510700
https://www.proquest.com/docview/2289572795
https://pubmed.ncbi.nlm.nih.gov/PMC6612815
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KQfAivo0vVvDiITbJZvPwJmKpYu2lhXoK-4oKJS1petBf72w2qU1B1GPIzrLM7O58ycx8g9BlJHyuHbvtMlGGGWObi4DYLIxTGQJkUGVLlv5z0Bv5j2M6biGnroVZD-HHpMPfpxWJqCYu7vDiE_YhXLrgiDVZ_nAw_s7pcDQzjHkAJOCblraa2TtySF2_89OUDc_UqHZbAZ3ruZMrzqi7jbYqFIlvjdl3UEtlu2jD9JX82EMv_cHTww0ukwVtXXY8xxPAlLjmhgBbYP0DFkulZlhTWsJkmUkIn2NYMZb54hXnJn9W4VmuwzlabB-NuvfDu55d9VCwhU-9wiYsFIxILiRz0kgEMYtCn6kokICjAPu4jggVlakT8dRjMI5Tzjya6gAj49QlB6idTTN1hHDoBSloNVChdPxU8DhIiYwF4YQwL6bSQn6tv0RUBOO6z8UkMYFukjTVnhi1W-h6KTYzDBu_CVyBcf469qI2YQLnRgdDWKami3niwZcmBfAWUwsdGpMupyQAg-AqdCwUNoy9HKA5uZtvsve3kpsb4I4XufT4H2s8QZuAwnQpme3SU9Qu8oU6A6RT8PNyd38B26MEFw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOLI%3A+multi-omics+late+integration+with+deep+neural+networks+for+drug+response+prediction&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Sharifi-Noghabi%2C+Hossein&rft.au=Zolotareva%2C+Olga&rft.au=Collins%2C+Colin+C&rft.au=Ester%2C+Martin&rft.date=2019-07-15&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=35&rft.issue=14&rft.spage=i501&rft.epage=i509&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz318&rft_id=info%3Apmid%2F31510700&rft.externalDocID=PMC6612815
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon