Preparation of three-dimensional nanoporous Si using dealloying by metallic melt and application as a lithium-ion rechargeable battery negative electrode

Silicon is a promising material for negative electrode in Li-ion batteries because of high gravimetric capacity. A Si nanomaterial that can accommodate volume expansion accompanied by lithiation is needed for practical application in Li-ion batteries. We prepare three-dimensional nanoporous intercon...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 306; pp. 8 - 16
Main Authors Wada, Takeshi, Yamada, Junpei, Kato, Hidemi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 29.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silicon is a promising material for negative electrode in Li-ion batteries because of high gravimetric capacity. A Si nanomaterial that can accommodate volume expansion accompanied by lithiation is needed for practical application in Li-ion batteries. We prepare three-dimensional nanoporous interconnected silicon material with controlled pore and ligament sizes by dealloying using an Mg–Si precursor and Bi melt. The Mg atoms in the precursor selectively dissolve into Bi, and the remaining Si atoms self-organize into a nanoporous structure with characteristic length ranging from several ten to hundred nanometer. The Li-ion battery electrodes made from nanoporous silicon exhibit higher capacities, increased cycle lives, and improved rate performances compared with those made from commercial Si nanoparticles. Measurements on the electrical resistivity and electrode thickness change by lithiation/delithiation suggest that the superior performance of nanoporous Si electrode originates from the following: (1) The nanoporous Si has much lower electrical resistivity compared with that of the nanoparticle Si owing to the n-type dopant incorporated during dealloying. (2) The nanoporous Si-based electrode has higher porosity owing to the presence of intra-particle pores, which can accommodate Si expansion up to higher levels of lithiation. [Display omitted] •Nanoporous interconnected Si was prepared by dealloying in metallic melt.•Nanoporous Si electrodes outperform in capacity and rate characteristics.•Nanoporous Si has high electrical conductivity.•Nanoporous Si-based electrodes accommodate expansion of Si upon lithiation.
AbstractList Silicon is a promising material for negative electrode in Li-ion batteries because of high gravimetric capacity. A Si nanomaterial that can accommodate volume expansion accompanied by lithiation is needed for practical application in Li-ion batteries. We prepare three-dimensional nanoporous interconnected silicon material with controlled pore and ligament sizes by dealloying using an Mg-Si precursor and Bi melt. The Mg atoms in the precursor selectively dissolve into Bi, and the remaining Si atoms self-organize into a nanoporous structure with characteristic length ranging from several ten to hundred nanometer. The Li-ion battery electrodes made from nanoporous silicon exhibit higher capacities, increased cycle lives, and improved rate performances compared with those made from commercial Si nanoparticles. Measurements on the electrical resistivity and electrode thickness change by lithiation/delithiation suggest that the superior performance of nanoporous Si electrode originates from the following: (1) The nanoporous Si has much lower electrical resistivity compared with that of the nanoparticle Si owing to the n-type dopant incorporated during dealloying. (2) The nanoporous Si-based electrode has higher porosity owing to the presence of intra-particle pores, which can accommodate Si expansion up to higher levels of lithiation.
Silicon is a promising material for negative electrode in Li-ion batteries because of high gravimetric capacity. A Si nanomaterial that can accommodate volume expansion accompanied by lithiation is needed for practical application in Li-ion batteries. We prepare three-dimensional nanoporous interconnected silicon material with controlled pore and ligament sizes by dealloying using an Mg–Si precursor and Bi melt. The Mg atoms in the precursor selectively dissolve into Bi, and the remaining Si atoms self-organize into a nanoporous structure with characteristic length ranging from several ten to hundred nanometer. The Li-ion battery electrodes made from nanoporous silicon exhibit higher capacities, increased cycle lives, and improved rate performances compared with those made from commercial Si nanoparticles. Measurements on the electrical resistivity and electrode thickness change by lithiation/delithiation suggest that the superior performance of nanoporous Si electrode originates from the following: (1) The nanoporous Si has much lower electrical resistivity compared with that of the nanoparticle Si owing to the n-type dopant incorporated during dealloying. (2) The nanoporous Si-based electrode has higher porosity owing to the presence of intra-particle pores, which can accommodate Si expansion up to higher levels of lithiation. [Display omitted] •Nanoporous interconnected Si was prepared by dealloying in metallic melt.•Nanoporous Si electrodes outperform in capacity and rate characteristics.•Nanoporous Si has high electrical conductivity.•Nanoporous Si-based electrodes accommodate expansion of Si upon lithiation.
Author Wada, Takeshi
Kato, Hidemi
Yamada, Junpei
Author_xml – sequence: 1
  givenname: Takeshi
  surname: Wada
  fullname: Wada, Takeshi
  email: wada-t@imr.tohoku.ac.jp
– sequence: 2
  givenname: Junpei
  surname: Yamada
  fullname: Yamada, Junpei
– sequence: 3
  givenname: Hidemi
  surname: Kato
  fullname: Kato, Hidemi
BookMark eNqFUctuFDEQtFCQ2IT8QuQjlxnc8_LsDRRBQIoEEuRs9do9u1557MH2BO2n8LfxauHMqR-qKqmqrtmVD54YuwNRg4Dh_bE-LuF3CmusGwF9DVALuX3FNjDKtmpk31-xjWjlWEnZt2_YdUpHIQSAFBv253ukBSNmGzwPE8-HSFQZO5NP5YWOe_RhCTGsif-wfE3W77khdC6czuvuxGfK5bS6LC5z9IbjspT7IoqJI3c2H-w6V-dHJH3AuCfcOeI7zJniiXvaF_gzcXKkcwyG3rLXE7pEt3_nDXv6_Onn_Zfq8dvD1_uPj5Xu-iZXjRn1Flq9HcduBC1Bt6abaByxkwIMTmYSKEUL_YQCGhBG9iMMjcQSwG6Q7Q17d9FdYvi1UspqtkmTc-ipmFYgt23TSRhEgQ4XqI4hpUiTWqKdMZ4UCHXuQh3Vvy7UuQsFoEoXhfjhQqRi5NlSVElb8pqMLWlkZYL9n8QLdeecFg
CitedBy_id crossref_primary_10_1088_2053_1591_ab47ca
crossref_primary_10_3390_met8070515
crossref_primary_10_1021_acsami_7b05255
crossref_primary_10_1016_j_jallcom_2018_05_101
crossref_primary_10_1038_s43246_022_00303_w
crossref_primary_10_1103_PhysRevMaterials_2_055404
crossref_primary_10_1149_1945_7111_ab736b
crossref_primary_10_1103_PhysRevMaterials_5_074003
crossref_primary_10_1016_j_cej_2017_08_061
crossref_primary_10_1016_j_nantod_2021_101146
crossref_primary_10_1016_j_jmrt_2021_10_080
crossref_primary_10_1038_srep42734
crossref_primary_10_1016_j_jpowsour_2024_234739
crossref_primary_10_1016_j_ssi_2020_115406
crossref_primary_10_1038_s41524_023_01047_y
crossref_primary_10_1016_j_mtcomm_2020_102007
crossref_primary_10_1007_s11581_018_2601_8
crossref_primary_10_1016_j_scriptamat_2019_10_013
crossref_primary_10_1016_j_jpowsour_2019_227081
crossref_primary_10_1016_j_surfcoat_2018_11_064
crossref_primary_10_1038_s41598_018_37010_x
crossref_primary_10_2320_materia_55_519
crossref_primary_10_1021_acsami_3c02197
crossref_primary_10_3390_ma14112836
crossref_primary_10_1016_j_actamat_2018_10_057
crossref_primary_10_1016_j_mseb_2020_114838
crossref_primary_10_1103_PhysRevMaterials_3_113601
crossref_primary_10_1002_ente_201700900
crossref_primary_10_1016_j_matpr_2017_09_030
crossref_primary_10_1016_j_matchar_2016_12_013
crossref_primary_10_1016_j_jallcom_2020_154733
crossref_primary_10_1016_j_electacta_2016_04_179
crossref_primary_10_1039_D2TA01342H
crossref_primary_10_1016_j_jpowsour_2018_04_112
crossref_primary_10_1016_j_ceramint_2016_05_144
crossref_primary_10_1007_s12598_020_01528_9
crossref_primary_10_1016_j_scriptamat_2016_03_008
crossref_primary_10_1016_j_pmatsci_2017_07_003
crossref_primary_10_1016_j_actamat_2017_08_054
crossref_primary_10_1016_j_carbon_2020_04_028
crossref_primary_10_1002_adfm_202301109
crossref_primary_10_1016_j_surfcoat_2021_127812
crossref_primary_10_1021_acsanm_2c04593
crossref_primary_10_2320_materia_56_438
crossref_primary_10_1016_j_mtla_2024_102177
crossref_primary_10_1039_D3CE01139A
crossref_primary_10_1002_chem_202100339
crossref_primary_10_1016_j_jallcom_2021_161270
crossref_primary_10_1016_j_scriptamat_2019_09_034
crossref_primary_10_1016_j_jpowsour_2017_07_115
crossref_primary_10_1016_j_electacta_2020_136242
crossref_primary_10_1038_s41467_017_02167_y
crossref_primary_10_1016_j_enchem_2022_100069
crossref_primary_10_2464_jilm_72_58
crossref_primary_10_1021_acsami_6b16447
crossref_primary_10_1002_cssc_201903155
crossref_primary_10_1039_D1QI00273B
crossref_primary_10_1016_j_scriptamat_2017_08_038
crossref_primary_10_1007_s41918_020_00070_7
crossref_primary_10_1016_j_apsusc_2021_149043
crossref_primary_10_1002_ente_201900962
crossref_primary_10_1680_jsuin_20_00055
crossref_primary_10_1007_s10008_016_3226_3
crossref_primary_10_1002_adem_201700519
crossref_primary_10_1016_j_ensm_2020_10_021
crossref_primary_10_1016_j_jallcom_2023_172417
crossref_primary_10_1007_s10853_018_2961_5
crossref_primary_10_1115_1_4046414
crossref_primary_10_1021_acsami_3c05521
crossref_primary_10_1021_acsanm_8b00919
crossref_primary_10_1016_j_matchar_2018_06_032
crossref_primary_10_9773_sosei_58_802
crossref_primary_10_3390_nano9030340
crossref_primary_10_1007_s11837_020_04055_1
crossref_primary_10_1007_s10800_017_1075_0
crossref_primary_10_1039_D1NR03709A
crossref_primary_10_1149_2_1261707jes
crossref_primary_10_1080_14686996_2017_1377047
crossref_primary_10_1016_j_nantod_2021_101094
Cites_doi 10.1557/JMR.1994.2878
10.1016/j.carbon.2015.09.093
10.1038/nnano.2007.411
10.1038/282597a0
10.1557/mrs2009.155
10.1149/2.0071509jes
10.1021/nn405710w
10.1149/1.2123683
10.1039/c2cc31712e
10.1021/nn204476h
10.1038/nnano.2014.6
10.1002/aenm.201200857
10.1016/j.jpowsour.2006.05.049
10.1038/ncomms2941
10.1038/srep00795
10.1016/j.scriptamat.2013.01.011
10.1021/nl300206e
10.1149/1.1596917
10.1007/s10800-008-9774-1
10.1038/nnano.2012.35
10.1021/nl403923s
10.1038/35068529
10.1016/j.jpowsour.2013.02.049
10.1039/C5CC01659B
10.1149/1.2752985
10.1149/1.2402112
10.1557/JMR.2003.0030
10.1021/nl201470j
10.1039/C5TA04857E
10.1039/b919738a
10.1002/adma.201400578
10.1038/nmat2725
10.1038/ncomms5105
10.1149/1.1390899
10.1016/j.matlet.2011.01.054
10.1021/acs.nanolett.5b02842
10.1016/j.electacta.2013.08.123
10.1063/1.4812290
10.1038/srep04605
10.1038/35104644
10.1038/srep08781
10.1021/nn901409q
10.1002/j.1538-7305.1960.tb03928.x
10.1021/nl501500g
10.5796/electrochemistry.80.405
10.1016/j.scriptamat.2011.06.019
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1016/j.jpowsour.2015.11.079
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
EndPage 16
ExternalDocumentID 10_1016_j_jpowsour_2015_11_079
S0378775315305772
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AI.
AKRWK
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
T9H
VH1
VOH
WUQ
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c452t-2d8c913c988481c71c3d4fe88a4701dafdf0a70315fa01210d7581627a117b673
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Sat Oct 26 01:14:03 EDT 2024
Thu Sep 26 16:49:21 EDT 2024
Fri Feb 23 02:27:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium ion battery
Silicon
Anode
Nanoporous
Dealloying
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-2d8c913c988481c71c3d4fe88a4701dafdf0a70315fa01210d7581627a117b673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1793247160
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1793247160
crossref_primary_10_1016_j_jpowsour_2015_11_079
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2015_11_079
PublicationCentury 2000
PublicationDate 2016-02-29
PublicationDateYYYYMMDD 2016-02-29
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-29
  day: 29
PublicationDecade 2010
PublicationTitle Journal of power sources
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Viswanath, Chirayath, Rajaraman, Amarendra, Sundar (bib45) 2013; 102
Kim, Choi, Cho, Byun, Lim, Lee (bib40) 2013; 244
Chan, Patel, O'Connell, Korgel, Cui (bib11) 2010; 4
Lee, Smith, Hayner, Kung (bib5) 2010; 46
Wada, Yubuta, Inoue, Kato (bib36) 2011; 65
Obrovac, Krause (bib2) 2007; 154
P. Villars, (Ed.-in-chief) Pauling File, Binaries ed..; ASM International: Materials Park, OH.
Miyuki, Okuyama, Kojima, Sakai (bib48) 2012; 80
Wu, Chan, Choi, Ryu, Yao, McDowell, Lee, Jackson, Yang, Hu, Cui (bib14) 2012; 7
Shin, Park, Sastry, Lu (bib49) 2015; 162
Huang, Yang, Mao, Chang, Hallac, Fell, Metz, Jiang, Hurley, Chen (bib17) 2014; 26
Wang, Favors, Ionescu, Ye, Bay, Ozkan, Ozkan (bib25) 2015; 5
Obrovac, Christensen, Le, Dahn (bib3) 2007; 154
Lin, Klavetter, Abel, Davy, Snider, Heller, Mullins (bib42) 2012; 48
Sigmund (bib47) 1982; 129
Pugh, Dursun, Corcoran (bib34) 2003; 18
Chan, Peng, Liu, McIlwrath, Zhang, Huggins, Cui (bib10) 2008; 3
Li, Huang, Chen, Wu, Liang (bib4) 1999; 2
Graetz, Ahn, Yazami, Fultz (bib8) 2003; 6
Kim, Han, Choo, Cho (bib19) 2008; 47
Erlebacher, Seshadri (bib31) 2009; 34
Liu, Zhong, Huang, Mao, Zhu, Huang (bib29) 2012; 6
Wada, Setyawan, Yubuta, Kato (bib37) 2011; 65
Bogart, Oka, Lu, Gu, Wang, Korgel (bib13) 2014; 8
Favors, Wang, Bay, George, Ozkan, Ozkan (bib15) 2014; 4
Ge, Lu, Ercius, Rong, Fang, Mecklenburg, Zhou (bib23) 2014; 14
Ge, Rong, Fang, Zhou (bib12) 2012; 12
Chen, Xie, Yu, Wang (bib9) 2009; 39
Yi, Dai, Gordin, Chen, Wang (bib21) 2013; 3
Son, Son, Choi, Ko, Chae, Park, Cho (bib18) 2015; 15
Okamoto (bib43) 2000
He, Tian, Xin, Han (bib28) 2015; 3
Liu, Lu, Zhao, McDowell, Lee, Zhao, Cui (bib7) 2014; 9
Wada, Ichitsubo, Yubuta, Segawa, Yoshida, Kato (bib30) 2014; 14
Tarascon, Armand (bib1) 2001; 414
Magasinski, Dixon, Hertzberg, Kvit, Ayala, Yushin (bib20) 2010; 9
Wu, Zheng, Liu, Carney, Yang, Cui (bib16) 2011; 11
Forty (bib33) 1979; 282
Li, Gu, Hu, Kennard, Yan, Chen, Wang, Sailor, Zhang, Liu (bib24) 2014; 5
Wu, Yu, Pan, Liu, McDowell, Bao, Cui (bib6) 2013; 4
Yu, Yubuta, Wada, Kato (bib39) 2016; 96
Erlebacher, Aziz, Karma, Dimitrov, Sieradzki (bib32) 2001; 410
Choi, Yew, Lee, Sung, Kim, Kim (bib41) 2006; 161
Jiang, Li, Hao, Zhu, Zhang (bib27) 2014; 115
Liang, Li, Hou, Guo, Zhu, Qian (bib26) 2015; 51
Thakur, Sinsabaugh, Isaacson, Wong, Biswal (bib22) 2012; 2
Wada, Kato (bib38) 2013; 68
Min, Li (bib35) 1994; 9
Trumbore (bib46) 1960; 39
Erlebacher (10.1016/j.jpowsour.2015.11.079_bib32) 2001; 410
Wada (10.1016/j.jpowsour.2015.11.079_bib30) 2014; 14
Graetz (10.1016/j.jpowsour.2015.11.079_bib8) 2003; 6
Obrovac (10.1016/j.jpowsour.2015.11.079_bib3) 2007; 154
Ge (10.1016/j.jpowsour.2015.11.079_bib12) 2012; 12
Wada (10.1016/j.jpowsour.2015.11.079_bib38) 2013; 68
Son (10.1016/j.jpowsour.2015.11.079_bib18) 2015; 15
Liu (10.1016/j.jpowsour.2015.11.079_bib29) 2012; 6
Chan (10.1016/j.jpowsour.2015.11.079_bib10) 2008; 3
Wang (10.1016/j.jpowsour.2015.11.079_bib25) 2015; 5
Ge (10.1016/j.jpowsour.2015.11.079_bib23) 2014; 14
Miyuki (10.1016/j.jpowsour.2015.11.079_bib48) 2012; 80
Liang (10.1016/j.jpowsour.2015.11.079_bib26) 2015; 51
Favors (10.1016/j.jpowsour.2015.11.079_bib15) 2014; 4
Yi (10.1016/j.jpowsour.2015.11.079_bib21) 2013; 3
Jiang (10.1016/j.jpowsour.2015.11.079_bib27) 2014; 115
Viswanath (10.1016/j.jpowsour.2015.11.079_bib45) 2013; 102
Tarascon (10.1016/j.jpowsour.2015.11.079_bib1) 2001; 414
Erlebacher (10.1016/j.jpowsour.2015.11.079_bib31) 2009; 34
Trumbore (10.1016/j.jpowsour.2015.11.079_bib46) 1960; 39
Shin (10.1016/j.jpowsour.2015.11.079_bib49) 2015; 162
Li (10.1016/j.jpowsour.2015.11.079_bib4) 1999; 2
He (10.1016/j.jpowsour.2015.11.079_bib28) 2015; 3
Choi (10.1016/j.jpowsour.2015.11.079_bib41) 2006; 161
Sigmund (10.1016/j.jpowsour.2015.11.079_bib47) 1982; 129
Thakur (10.1016/j.jpowsour.2015.11.079_bib22) 2012; 2
Pugh (10.1016/j.jpowsour.2015.11.079_bib34) 2003; 18
Forty (10.1016/j.jpowsour.2015.11.079_bib33) 1979; 282
Bogart (10.1016/j.jpowsour.2015.11.079_bib13) 2014; 8
Huang (10.1016/j.jpowsour.2015.11.079_bib17) 2014; 26
Magasinski (10.1016/j.jpowsour.2015.11.079_bib20) 2010; 9
Wu (10.1016/j.jpowsour.2015.11.079_bib6) 2013; 4
Wu (10.1016/j.jpowsour.2015.11.079_bib16) 2011; 11
Wu (10.1016/j.jpowsour.2015.11.079_bib14) 2012; 7
Wada (10.1016/j.jpowsour.2015.11.079_bib37) 2011; 65
Kim (10.1016/j.jpowsour.2015.11.079_bib19) 2008; 47
Li (10.1016/j.jpowsour.2015.11.079_bib24) 2014; 5
10.1016/j.jpowsour.2015.11.079_bib44
Chan (10.1016/j.jpowsour.2015.11.079_bib11) 2010; 4
Obrovac (10.1016/j.jpowsour.2015.11.079_bib2) 2007; 154
Lin (10.1016/j.jpowsour.2015.11.079_bib42) 2012; 48
Kim (10.1016/j.jpowsour.2015.11.079_bib40) 2013; 244
Min (10.1016/j.jpowsour.2015.11.079_bib35) 1994; 9
Chen (10.1016/j.jpowsour.2015.11.079_bib9) 2009; 39
Lee (10.1016/j.jpowsour.2015.11.079_bib5) 2010; 46
Yu (10.1016/j.jpowsour.2015.11.079_bib39) 2016; 96
Wada (10.1016/j.jpowsour.2015.11.079_bib36) 2011; 65
Okamoto (10.1016/j.jpowsour.2015.11.079_bib43) 2000
Liu (10.1016/j.jpowsour.2015.11.079_bib7) 2014; 9
References_xml – volume: 12
  start-page: 2318
  year: 2012
  end-page: 2323
  ident: bib12
  article-title: Porous doped silicon nanowires for lithium ion battery anode with long cycle life
  publication-title: Nano Lett.
  contributor:
    fullname: Zhou
– volume: 3
  start-page: 31
  year: 2008
  end-page: 35
  ident: bib10
  article-title: High-performance lithium battery anodes using silicon nanowires
  publication-title: Nat. Nanotechnol.
  contributor:
    fullname: Cui
– volume: 96
  start-page: 403
  year: 2016
  end-page: 410
  ident: bib39
  article-title: Three-dimensional bicontinuous porous graphite generated in low temperature metallic liquid
  publication-title: Carbon
  contributor:
    fullname: Kato
– volume: 39
  start-page: 1157
  year: 2009
  end-page: 1162
  ident: bib9
  article-title: An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries
  publication-title: J. Appl. Electrochem.
  contributor:
    fullname: Wang
– year: 2000
  ident: bib43
  article-title: Desk Handbook, Phase Diagrams for Binary Alloys
  contributor:
    fullname: Okamoto
– volume: 4
  start-page: 1943
  year: 2013
  ident: bib6
  article-title: Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
  publication-title: Nat. Commun.
  contributor:
    fullname: Cui
– volume: 4
  start-page: 4605
  year: 2014
  ident: bib15
  article-title: Stable cycling of SiO
  publication-title: Sci. Rep.
  contributor:
    fullname: Ozkan
– volume: 9
  start-page: 187
  year: 2014
  end-page: 192
  ident: bib7
  article-title: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
  publication-title: Nat. Nanotechnol.
  contributor:
    fullname: Cui
– volume: 48
  start-page: 7268
  year: 2012
  end-page: 7270
  ident: bib42
  article-title: High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries
  publication-title: Chem. Commun.
  contributor:
    fullname: Mullins
– volume: 7
  start-page: 310
  year: 2012
  end-page: 315
  ident: bib14
  article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control
  publication-title: Nat. Nanotechnol.
  contributor:
    fullname: Cui
– volume: 80
  start-page: 405
  year: 2012
  end-page: 408
  ident: bib48
  article-title: In-situ measurement of electrode thickness change during charge and discharge of a large capacity SiO anode
  publication-title: Electrochemistry
  contributor:
    fullname: Sakai
– volume: 46
  start-page: 2025
  year: 2010
  end-page: 2027
  ident: bib5
  article-title: Silicon nanoparticles–graphene paper composites for Li ion battery anodes
  publication-title: Chem. Commun.
  contributor:
    fullname: Kung
– volume: 68
  start-page: 723
  year: 2013
  end-page: 726
  ident: bib38
  article-title: Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel
  publication-title: Scr. Mater.
  contributor:
    fullname: Kato
– volume: 34
  start-page: 561
  year: 2009
  end-page: 568
  ident: bib31
  article-title: Hard materials with tunable porosity
  publication-title: MRS Bull.
  contributor:
    fullname: Seshadri
– volume: 6
  start-page: A194
  year: 2003
  end-page: A197
  ident: bib8
  article-title: Highly reversible lithium storage in nanostructured silicon
  publication-title: Electrochem. Solid-State Lett.
  contributor:
    fullname: Fultz
– volume: 410
  start-page: 450
  year: 2001
  end-page: 453
  ident: bib32
  article-title: Evolution of nanoporosity in dealloying
  publication-title: Nature
  contributor:
    fullname: Sieradzki
– volume: 4
  start-page: 1443
  year: 2010
  end-page: 1450
  ident: bib11
  article-title: Solution-grown silicon nanowires for lithium-ion battery anodes
  publication-title: ACS Nano
  contributor:
    fullname: Cui
– volume: 3
  start-page: 17956
  year: 2015
  end-page: 17962
  ident: bib28
  article-title: Scalable fabrication of micro-sized bulk porous Si from Fe–Si alloy as a high performance anode for lithium-ion batteries
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Han
– volume: 6
  start-page: 1522
  year: 2012
  end-page: 1531
  ident: bib29
  article-title: Size-dependent fracture of silicon nanoparticles during lithiation
  publication-title: ACS Nano
  contributor:
    fullname: Huang
– volume: 3
  start-page: 295
  year: 2013
  end-page: 300
  ident: bib21
  article-title: Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Wang
– volume: 8
  start-page: 915
  year: 2014
  end-page: 922
  ident: bib13
  article-title: Lithium ion battery performance of silicon nanowires with carbon skin
  publication-title: ACS Nano
  contributor:
    fullname: Korgel
– volume: 15
  start-page: 6914
  year: 2015
  end-page: 6918
  ident: bib18
  article-title: Hollow silicon nanostructures via the Kirkendall effect
  publication-title: Nano Lett.
  contributor:
    fullname: Cho
– volume: 5
  start-page: 4105
  year: 2014
  ident: bib24
  article-title: Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes
  publication-title: Nat. Commun.
  contributor:
    fullname: Liu
– volume: 129
  start-page: 2809
  year: 1982
  end-page: 2812
  ident: bib47
  article-title: Solubility of magnesium and calcium in silicon
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Sigmund
– volume: 5
  start-page: 8781
  year: 2015
  ident: bib25
  article-title: Monodisperse porous silicon spheres as anode materials for lithium ion batteries
  publication-title: Sci. Rep.
  contributor:
    fullname: Ozkan
– volume: 18
  start-page: 216
  year: 2003
  end-page: 221
  ident: bib34
  article-title: Formation of nanoporous platinum by selective dissolution of Cu from Cu
  publication-title: J. Mater. Res.
  contributor:
    fullname: Corcoran
– volume: 115
  start-page: 393
  year: 2014
  end-page: 398
  ident: bib27
  article-title: An easy way for preparing high performance porous silicon powder by acid etching Al–Si alloy powder for lithium ion battery
  publication-title: Electrochim. Acta
  contributor:
    fullname: Zhang
– volume: 2
  start-page: 547
  year: 1999
  end-page: 549
  ident: bib4
  article-title: A high capacity nano si composite anode material for lithium rechargeable batteries
  publication-title: Electrochem. Solid-State Lett.
  contributor:
    fullname: Liang
– volume: 9
  start-page: 353
  year: 2010
  end-page: 358
  ident: bib20
  article-title: High-performance lithium-ion anodes using a hierarchical bottom-up approach
  publication-title: Nat. Mater.
  contributor:
    fullname: Yushin
– volume: 14
  start-page: 4505
  year: 2014
  end-page: 4510
  ident: bib30
  article-title: Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a Top-Down Process
  publication-title: Nano Lett.
  contributor:
    fullname: Kato
– volume: 244
  start-page: 521
  year: 2013
  end-page: 526
  ident: bib40
  article-title: Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries
  publication-title: J. Power Sources
  contributor:
    fullname: Lee
– volume: 65
  start-page: 532
  year: 2011
  end-page: 535
  ident: bib37
  article-title: Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt
  publication-title: Scr. Mater.
  contributor:
    fullname: Kato
– volume: 39
  start-page: 205
  year: 1960
  end-page: 233
  ident: bib46
  article-title: Solid solubilities of impurity elements in germanium and silicon
  publication-title: Bell Syst. Tech. J.
  contributor:
    fullname: Trumbore
– volume: 51
  start-page: 7230
  year: 2015
  end-page: 7233
  ident: bib26
  article-title: Nanoporous silicon prepared through air-oxidation demagnesiation of Mg
  publication-title: Chem. Commun.
  contributor:
    fullname: Qian
– volume: 47
  start-page: 10151
  year: 2008
  end-page: 10154
  ident: bib19
  article-title: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries
  contributor:
    fullname: Cho
– volume: 14
  start-page: 261
  year: 2014
  end-page: 268
  ident: bib23
  article-title: Large-scale fabrication, 3d tomography, and lithium-ion battery application of porous silicon
  publication-title: Nano Lett.
  contributor:
    fullname: Zhou
– volume: 102
  start-page: 253101
  year: 2013
  ident: bib45
  article-title: Ligament coarsening in nanoporous gold: Insights from positron annihilation study
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Sundar
– volume: 154
  start-page: A103
  year: 2007
  end-page: A108
  ident: bib2
  article-title: Reversible cycling of crystalline silicon powder
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Krause
– volume: 154
  start-page: A849
  year: 2007
  end-page: A855
  ident: bib3
  article-title: Alloy design for lithium-ion battery anodes
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Dahn
– volume: 9
  start-page: 2878
  year: 1994
  end-page: 2883
  ident: bib35
  article-title: The microstructure and dealloying kinetics of a Cu-Mn alloy
  publication-title: J. Mater. Res.
  contributor:
    fullname: Li
– volume: 65
  start-page: 1076
  year: 2011
  end-page: 1078
  ident: bib36
  article-title: Dealloying by metallic melt
  publication-title: Mater. Lett.
  contributor:
    fullname: Kato
– volume: 11
  start-page: 2949
  year: 2011
  end-page: 2954
  ident: bib16
  article-title: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life
  publication-title: Nano Lett.
  contributor:
    fullname: Cui
– volume: 162
  start-page: A1683
  year: 2015
  end-page: A1692
  ident: bib49
  article-title: effects of fluoroethylene carbonate (FEC) on anode and cathode interfaces at elevated temperatures
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Lu
– volume: 26
  start-page: 4326
  year: 2014
  end-page: 4332
  ident: bib17
  article-title: Controllable synthesis of hollow si anode for long-cycle-life lithium-ion batteries
  publication-title: Adv. Mater.
  contributor:
    fullname: Chen
– volume: 282
  start-page: 597
  year: 1979
  end-page: 598
  ident: bib33
  article-title: Corrosion micromorphology of noble metal alloys and depletion gilding
  publication-title: Nature
  contributor:
    fullname: Forty
– volume: 414
  start-page: 359
  year: 2001
  end-page: 367
  ident: bib1
  article-title: Issues and challenges facing rechargeable lithium batteries
  publication-title: Nature
  contributor:
    fullname: Armand
– volume: 2
  start-page: 795
  year: 2012
  ident: bib22
  article-title: Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries
  publication-title: Sci. Rep.
  contributor:
    fullname: Biswal
– volume: 161
  start-page: 1254
  year: 2006
  end-page: 1259
  ident: bib41
  article-title: Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode
  publication-title: J. Power Sources
  contributor:
    fullname: Kim
– volume: 9
  start-page: 2878
  year: 1994
  ident: 10.1016/j.jpowsour.2015.11.079_bib35
  article-title: The microstructure and dealloying kinetics of a Cu-Mn alloy
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1994.2878
  contributor:
    fullname: Min
– volume: 96
  start-page: 403
  year: 2016
  ident: 10.1016/j.jpowsour.2015.11.079_bib39
  article-title: Three-dimensional bicontinuous porous graphite generated in low temperature metallic liquid
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.09.093
  contributor:
    fullname: Yu
– volume: 3
  start-page: 31
  year: 2008
  ident: 10.1016/j.jpowsour.2015.11.079_bib10
  article-title: High-performance lithium battery anodes using silicon nanowires
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.411
  contributor:
    fullname: Chan
– volume: 282
  start-page: 597
  year: 1979
  ident: 10.1016/j.jpowsour.2015.11.079_bib33
  article-title: Corrosion micromorphology of noble metal alloys and depletion gilding
  publication-title: Nature
  doi: 10.1038/282597a0
  contributor:
    fullname: Forty
– volume: 34
  start-page: 561
  year: 2009
  ident: 10.1016/j.jpowsour.2015.11.079_bib31
  article-title: Hard materials with tunable porosity
  publication-title: MRS Bull.
  doi: 10.1557/mrs2009.155
  contributor:
    fullname: Erlebacher
– volume: 162
  start-page: A1683
  year: 2015
  ident: 10.1016/j.jpowsour.2015.11.079_bib49
  article-title: effects of fluoroethylene carbonate (FEC) on anode and cathode interfaces at elevated temperatures
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0071509jes
  contributor:
    fullname: Shin
– volume: 8
  start-page: 915
  year: 2014
  ident: 10.1016/j.jpowsour.2015.11.079_bib13
  article-title: Lithium ion battery performance of silicon nanowires with carbon skin
  publication-title: ACS Nano
  doi: 10.1021/nn405710w
  contributor:
    fullname: Bogart
– volume: 129
  start-page: 2809
  year: 1982
  ident: 10.1016/j.jpowsour.2015.11.079_bib47
  article-title: Solubility of magnesium and calcium in silicon
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2123683
  contributor:
    fullname: Sigmund
– volume: 48
  start-page: 7268
  year: 2012
  ident: 10.1016/j.jpowsour.2015.11.079_bib42
  article-title: High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31712e
  contributor:
    fullname: Lin
– volume: 6
  start-page: 1522
  year: 2012
  ident: 10.1016/j.jpowsour.2015.11.079_bib29
  article-title: Size-dependent fracture of silicon nanoparticles during lithiation
  publication-title: ACS Nano
  doi: 10.1021/nn204476h
  contributor:
    fullname: Liu
– volume: 9
  start-page: 187
  year: 2014
  ident: 10.1016/j.jpowsour.2015.11.079_bib7
  article-title: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.6
  contributor:
    fullname: Liu
– volume: 3
  start-page: 295
  year: 2013
  ident: 10.1016/j.jpowsour.2015.11.079_bib21
  article-title: Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200857
  contributor:
    fullname: Yi
– volume: 161
  start-page: 1254
  year: 2006
  ident: 10.1016/j.jpowsour.2015.11.079_bib41
  article-title: Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.05.049
  contributor:
    fullname: Choi
– volume: 4
  start-page: 1943
  year: 2013
  ident: 10.1016/j.jpowsour.2015.11.079_bib6
  article-title: Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2941
  contributor:
    fullname: Wu
– volume: 2
  start-page: 795
  year: 2012
  ident: 10.1016/j.jpowsour.2015.11.079_bib22
  article-title: Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep00795
  contributor:
    fullname: Thakur
– volume: 68
  start-page: 723
  year: 2013
  ident: 10.1016/j.jpowsour.2015.11.079_bib38
  article-title: Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2013.01.011
  contributor:
    fullname: Wada
– volume: 12
  start-page: 2318
  year: 2012
  ident: 10.1016/j.jpowsour.2015.11.079_bib12
  article-title: Porous doped silicon nanowires for lithium ion battery anode with long cycle life
  publication-title: Nano Lett.
  doi: 10.1021/nl300206e
  contributor:
    fullname: Ge
– volume: 6
  start-page: A194
  year: 2003
  ident: 10.1016/j.jpowsour.2015.11.079_bib8
  article-title: Highly reversible lithium storage in nanostructured silicon
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1596917
  contributor:
    fullname: Graetz
– volume: 39
  start-page: 1157
  year: 2009
  ident: 10.1016/j.jpowsour.2015.11.079_bib9
  article-title: An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-008-9774-1
  contributor:
    fullname: Chen
– volume: 7
  start-page: 310
  year: 2012
  ident: 10.1016/j.jpowsour.2015.11.079_bib14
  article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.35
  contributor:
    fullname: Wu
– volume: 14
  start-page: 261
  year: 2014
  ident: 10.1016/j.jpowsour.2015.11.079_bib23
  article-title: Large-scale fabrication, 3d tomography, and lithium-ion battery application of porous silicon
  publication-title: Nano Lett.
  doi: 10.1021/nl403923s
  contributor:
    fullname: Ge
– volume: 410
  start-page: 450
  year: 2001
  ident: 10.1016/j.jpowsour.2015.11.079_bib32
  article-title: Evolution of nanoporosity in dealloying
  publication-title: Nature
  doi: 10.1038/35068529
  contributor:
    fullname: Erlebacher
– volume: 244
  start-page: 521
  year: 2013
  ident: 10.1016/j.jpowsour.2015.11.079_bib40
  article-title: Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.02.049
  contributor:
    fullname: Kim
– volume: 51
  start-page: 7230
  year: 2015
  ident: 10.1016/j.jpowsour.2015.11.079_bib26
  article-title: Nanoporous silicon prepared through air-oxidation demagnesiation of Mg2Si and properties of its lithium ion batteries
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC01659B
  contributor:
    fullname: Liang
– volume: 154
  start-page: A849
  year: 2007
  ident: 10.1016/j.jpowsour.2015.11.079_bib3
  article-title: Alloy design for lithium-ion battery anodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2752985
  contributor:
    fullname: Obrovac
– volume: 154
  start-page: A103
  year: 2007
  ident: 10.1016/j.jpowsour.2015.11.079_bib2
  article-title: Reversible cycling of crystalline silicon powder
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2402112
  contributor:
    fullname: Obrovac
– volume: 18
  start-page: 216
  year: 2003
  ident: 10.1016/j.jpowsour.2015.11.079_bib34
  article-title: Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2003.0030
  contributor:
    fullname: Pugh
– volume: 11
  start-page: 2949
  year: 2011
  ident: 10.1016/j.jpowsour.2015.11.079_bib16
  article-title: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life
  publication-title: Nano Lett.
  doi: 10.1021/nl201470j
  contributor:
    fullname: Wu
– volume: 3
  start-page: 17956
  year: 2015
  ident: 10.1016/j.jpowsour.2015.11.079_bib28
  article-title: Scalable fabrication of micro-sized bulk porous Si from Fe–Si alloy as a high performance anode for lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04857E
  contributor:
    fullname: He
– volume: 46
  start-page: 2025
  year: 2010
  ident: 10.1016/j.jpowsour.2015.11.079_bib5
  article-title: Silicon nanoparticles–graphene paper composites for Li ion battery anodes
  publication-title: Chem. Commun.
  doi: 10.1039/b919738a
  contributor:
    fullname: Lee
– ident: 10.1016/j.jpowsour.2015.11.079_bib44
– volume: 26
  start-page: 4326
  year: 2014
  ident: 10.1016/j.jpowsour.2015.11.079_bib17
  article-title: Controllable synthesis of hollow si anode for long-cycle-life lithium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400578
  contributor:
    fullname: Huang
– volume: 9
  start-page: 353
  year: 2010
  ident: 10.1016/j.jpowsour.2015.11.079_bib20
  article-title: High-performance lithium-ion anodes using a hierarchical bottom-up approach
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2725
  contributor:
    fullname: Magasinski
– volume: 5
  start-page: 4105
  year: 2014
  ident: 10.1016/j.jpowsour.2015.11.079_bib24
  article-title: Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5105
  contributor:
    fullname: Li
– volume: 2
  start-page: 547
  year: 1999
  ident: 10.1016/j.jpowsour.2015.11.079_bib4
  article-title: A high capacity nano si composite anode material for lithium rechargeable batteries
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1390899
  contributor:
    fullname: Li
– volume: 65
  start-page: 1076
  year: 2011
  ident: 10.1016/j.jpowsour.2015.11.079_bib36
  article-title: Dealloying by metallic melt
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.01.054
  contributor:
    fullname: Wada
– volume: 15
  start-page: 6914
  year: 2015
  ident: 10.1016/j.jpowsour.2015.11.079_bib18
  article-title: Hollow silicon nanostructures via the Kirkendall effect
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02842
  contributor:
    fullname: Son
– volume: 115
  start-page: 393
  year: 2014
  ident: 10.1016/j.jpowsour.2015.11.079_bib27
  article-title: An easy way for preparing high performance porous silicon powder by acid etching Al–Si alloy powder for lithium ion battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.08.123
  contributor:
    fullname: Jiang
– volume: 102
  start-page: 253101
  year: 2013
  ident: 10.1016/j.jpowsour.2015.11.079_bib45
  article-title: Ligament coarsening in nanoporous gold: Insights from positron annihilation study
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4812290
  contributor:
    fullname: Viswanath
– volume: 4
  start-page: 4605
  year: 2014
  ident: 10.1016/j.jpowsour.2015.11.079_bib15
  article-title: Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep04605
  contributor:
    fullname: Favors
– volume: 414
  start-page: 359
  year: 2001
  ident: 10.1016/j.jpowsour.2015.11.079_bib1
  article-title: Issues and challenges facing rechargeable lithium batteries
  publication-title: Nature
  doi: 10.1038/35104644
  contributor:
    fullname: Tarascon
– volume: 47
  start-page: 10151
  year: 2008
  ident: 10.1016/j.jpowsour.2015.11.079_bib19
  article-title: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries
  contributor:
    fullname: Kim
– volume: 5
  start-page: 8781
  year: 2015
  ident: 10.1016/j.jpowsour.2015.11.079_bib25
  article-title: Monodisperse porous silicon spheres as anode materials for lithium ion batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep08781
  contributor:
    fullname: Wang
– volume: 4
  start-page: 1443
  year: 2010
  ident: 10.1016/j.jpowsour.2015.11.079_bib11
  article-title: Solution-grown silicon nanowires for lithium-ion battery anodes
  publication-title: ACS Nano
  doi: 10.1021/nn901409q
  contributor:
    fullname: Chan
– volume: 39
  start-page: 205
  year: 1960
  ident: 10.1016/j.jpowsour.2015.11.079_bib46
  article-title: Solid solubilities of impurity elements in germanium and silicon
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1960.tb03928.x
  contributor:
    fullname: Trumbore
– year: 2000
  ident: 10.1016/j.jpowsour.2015.11.079_bib43
  contributor:
    fullname: Okamoto
– volume: 14
  start-page: 4505
  year: 2014
  ident: 10.1016/j.jpowsour.2015.11.079_bib30
  article-title: Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a Top-Down Process
  publication-title: Nano Lett.
  doi: 10.1021/nl501500g
  contributor:
    fullname: Wada
– volume: 80
  start-page: 405
  year: 2012
  ident: 10.1016/j.jpowsour.2015.11.079_bib48
  article-title: In-situ measurement of electrode thickness change during charge and discharge of a large capacity SiO anode
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.80.405
  contributor:
    fullname: Miyuki
– volume: 65
  start-page: 532
  year: 2011
  ident: 10.1016/j.jpowsour.2015.11.079_bib37
  article-title: Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2011.06.019
  contributor:
    fullname: Wada
SSID ssj0001170
Score 2.5179946
Snippet Silicon is a promising material for negative electrode in Li-ion batteries because of high gravimetric capacity. A Si nanomaterial that can accommodate volume...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 8
SubjectTerms Anode
Dealloying
Electrodes
Lithium batteries
Lithium ion battery
Nanoporous
Nanostructure
Porosity
Rechargeable batteries
Silicon
Three dimensional
Title Preparation of three-dimensional nanoporous Si using dealloying by metallic melt and application as a lithium-ion rechargeable battery negative electrode
URI https://dx.doi.org/10.1016/j.jpowsour.2015.11.079
https://search.proquest.com/docview/1793247160
Volume 306
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEG4WvSQHSYwSTSIl5Nq7834cZXHZGCLCRvDW9PRDZ3F7lnUW8eL_yL-1ah64SsCDt5lhZhiqqusx9dXXjP1UxqrYas2LJPV4lKqMy7CIuVQ0pYkx22tmq_6cJ9PL6OwqvhqwcT8LQ7DKzve3Pr3x1t2VUSfN0bIsRzMvRGPDbBvXLCYdKfnhCMMf2vTw8RnmQTurNJ0ErJbo7o0p4flwvqzu6Sc5QbziIbF5EqTr_wHqlatu4s_kE9vpEkc4ab_tMxsYt8s-btAJfmH_LlampfKuHFQWatST4Zr4-1vuDXDSVZhwY7UPsxII834N2lDvnaadoHiAhcFs_LZUeHBbg3QaNlrcIO9AAibuN-V6wekCyo6olgwNYEHRcHU-gDPXDZ04dHvsaLPHLienf8dT3m29wFUUBzUPdKZyP1R5RnT7KvVVqCNrskxGqedrabX1JFHfx1YSK5ynse7wkyCVKG9Ue7jPtlzlzFcGyvppmNg4TFITRdorMiK9z2Se2ySTMjxgo17eYtkybIgeejYXvYYEaQjLFYEaOmB5rxbxwlYEhoE3nz3u9ShwIVF3RDqDYhfkqQIM1Yl3-I73f2Mf8KzBdQf5d7ZVr9bmB6YtdXHU2OUR2z759Xt6_gQd3vG_
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSyVBDC5ED44HUcfB3Qhzrfd6X44iynNFUMFbUV2L0w-tfmiLePF_-G9NesHnMDAHb01vNEkq-dJJvmLstzJWxVZrXiSpx6NUZVyGRcyloilNjNleM1t1fpGMbqKT2_h2hh30szDUVtn5_tanN966OzPspDmclOXwygvR2BBt45pF0JGiH56LCB-jUQ_ePvs8aGuVppSA6RLdPjUmPB6MJ9UL_SWnHq94QHSe1NP17wj1l69uAtDRElvskCPstx-3zGaMW2ELU3yCP9n75aNpubwrB5WFGhVluCYC_5Z8A5x0FSJuTPfhqgRqer8Dbaj4TuNOULzCg0E4fl8qPLivQToNUzVukE8gAZH7n_L5gdMJFB5xLRmawIKiIet8BWfuGj5x6DbZ0WaV3RwdXh-MeLf3AldRHNQ80JnK_VDlGfHtq9RXoY6syTIZpZ6vpdXWk8R9H1tJtHCexsTDT4JUorxR7-EvNusqZ9YYKOunYWLjMElNFGmvyIj1PpN5bpNMynCdDXt5i0lLsSH63rOx6DUkSEOYrwjU0DrLe7WIL8YiMA7899m9Xo8CVxKVR6QzKHZBrirAWJ14G994_y6bH12fn4mz44vTTfYDrzRN3kG-xWbrx2ezjRimLnYaG_0AwTHzWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+three-dimensional+nanoporous+Si+using+dealloying+by+metallic+melt+and+application+as+a+lithium-ion+rechargeable+battery+negative+electrode&rft.jtitle=Journal+of+power+sources&rft.au=Wada%2C+Takeshi&rft.au=Yamada%2C+Junpei&rft.au=Kato%2C+Hidemi&rft.date=2016-02-29&rft.issn=0378-7753&rft.volume=306&rft.spage=8&rft.epage=16&rft_id=info:doi/10.1016%2Fj.jpowsour.2015.11.079&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2015_11_079
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon