Preparation of three-dimensional nanoporous Si using dealloying by metallic melt and application as a lithium-ion rechargeable battery negative electrode
Silicon is a promising material for negative electrode in Li-ion batteries because of high gravimetric capacity. A Si nanomaterial that can accommodate volume expansion accompanied by lithiation is needed for practical application in Li-ion batteries. We prepare three-dimensional nanoporous intercon...
Saved in:
Published in | Journal of power sources Vol. 306; pp. 8 - 16 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
29.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silicon is a promising material for negative electrode in Li-ion batteries because of high gravimetric capacity. A Si nanomaterial that can accommodate volume expansion accompanied by lithiation is needed for practical application in Li-ion batteries. We prepare three-dimensional nanoporous interconnected silicon material with controlled pore and ligament sizes by dealloying using an Mg–Si precursor and Bi melt. The Mg atoms in the precursor selectively dissolve into Bi, and the remaining Si atoms self-organize into a nanoporous structure with characteristic length ranging from several ten to hundred nanometer. The Li-ion battery electrodes made from nanoporous silicon exhibit higher capacities, increased cycle lives, and improved rate performances compared with those made from commercial Si nanoparticles. Measurements on the electrical resistivity and electrode thickness change by lithiation/delithiation suggest that the superior performance of nanoporous Si electrode originates from the following: (1) The nanoporous Si has much lower electrical resistivity compared with that of the nanoparticle Si owing to the n-type dopant incorporated during dealloying. (2) The nanoporous Si-based electrode has higher porosity owing to the presence of intra-particle pores, which can accommodate Si expansion up to higher levels of lithiation.
[Display omitted]
•Nanoporous interconnected Si was prepared by dealloying in metallic melt.•Nanoporous Si electrodes outperform in capacity and rate characteristics.•Nanoporous Si has high electrical conductivity.•Nanoporous Si-based electrodes accommodate expansion of Si upon lithiation. |
---|---|
AbstractList | Silicon is a promising material for negative electrode in Li-ion batteries because of high gravimetric capacity. A Si nanomaterial that can accommodate volume expansion accompanied by lithiation is needed for practical application in Li-ion batteries. We prepare three-dimensional nanoporous interconnected silicon material with controlled pore and ligament sizes by dealloying using an Mg-Si precursor and Bi melt. The Mg atoms in the precursor selectively dissolve into Bi, and the remaining Si atoms self-organize into a nanoporous structure with characteristic length ranging from several ten to hundred nanometer. The Li-ion battery electrodes made from nanoporous silicon exhibit higher capacities, increased cycle lives, and improved rate performances compared with those made from commercial Si nanoparticles. Measurements on the electrical resistivity and electrode thickness change by lithiation/delithiation suggest that the superior performance of nanoporous Si electrode originates from the following: (1) The nanoporous Si has much lower electrical resistivity compared with that of the nanoparticle Si owing to the n-type dopant incorporated during dealloying. (2) The nanoporous Si-based electrode has higher porosity owing to the presence of intra-particle pores, which can accommodate Si expansion up to higher levels of lithiation. Silicon is a promising material for negative electrode in Li-ion batteries because of high gravimetric capacity. A Si nanomaterial that can accommodate volume expansion accompanied by lithiation is needed for practical application in Li-ion batteries. We prepare three-dimensional nanoporous interconnected silicon material with controlled pore and ligament sizes by dealloying using an Mg–Si precursor and Bi melt. The Mg atoms in the precursor selectively dissolve into Bi, and the remaining Si atoms self-organize into a nanoporous structure with characteristic length ranging from several ten to hundred nanometer. The Li-ion battery electrodes made from nanoporous silicon exhibit higher capacities, increased cycle lives, and improved rate performances compared with those made from commercial Si nanoparticles. Measurements on the electrical resistivity and electrode thickness change by lithiation/delithiation suggest that the superior performance of nanoporous Si electrode originates from the following: (1) The nanoporous Si has much lower electrical resistivity compared with that of the nanoparticle Si owing to the n-type dopant incorporated during dealloying. (2) The nanoporous Si-based electrode has higher porosity owing to the presence of intra-particle pores, which can accommodate Si expansion up to higher levels of lithiation. [Display omitted] •Nanoporous interconnected Si was prepared by dealloying in metallic melt.•Nanoporous Si electrodes outperform in capacity and rate characteristics.•Nanoporous Si has high electrical conductivity.•Nanoporous Si-based electrodes accommodate expansion of Si upon lithiation. |
Author | Wada, Takeshi Kato, Hidemi Yamada, Junpei |
Author_xml | – sequence: 1 givenname: Takeshi surname: Wada fullname: Wada, Takeshi email: wada-t@imr.tohoku.ac.jp – sequence: 2 givenname: Junpei surname: Yamada fullname: Yamada, Junpei – sequence: 3 givenname: Hidemi surname: Kato fullname: Kato, Hidemi |
BookMark | eNqFUctuFDEQtFCQ2IT8QuQjlxnc8_LsDRRBQIoEEuRs9do9u1557MH2BO2n8LfxauHMqR-qKqmqrtmVD54YuwNRg4Dh_bE-LuF3CmusGwF9DVALuX3FNjDKtmpk31-xjWjlWEnZt2_YdUpHIQSAFBv253ukBSNmGzwPE8-HSFQZO5NP5YWOe_RhCTGsif-wfE3W77khdC6czuvuxGfK5bS6LC5z9IbjspT7IoqJI3c2H-w6V-dHJH3AuCfcOeI7zJniiXvaF_gzcXKkcwyG3rLXE7pEt3_nDXv6_Onn_Zfq8dvD1_uPj5Xu-iZXjRn1Flq9HcduBC1Bt6abaByxkwIMTmYSKEUL_YQCGhBG9iMMjcQSwG6Q7Q17d9FdYvi1UspqtkmTc-ipmFYgt23TSRhEgQ4XqI4hpUiTWqKdMZ4UCHXuQh3Vvy7UuQsFoEoXhfjhQqRi5NlSVElb8pqMLWlkZYL9n8QLdeecFg |
CitedBy_id | crossref_primary_10_1088_2053_1591_ab47ca crossref_primary_10_3390_met8070515 crossref_primary_10_1021_acsami_7b05255 crossref_primary_10_1016_j_jallcom_2018_05_101 crossref_primary_10_1038_s43246_022_00303_w crossref_primary_10_1103_PhysRevMaterials_2_055404 crossref_primary_10_1149_1945_7111_ab736b crossref_primary_10_1103_PhysRevMaterials_5_074003 crossref_primary_10_1016_j_cej_2017_08_061 crossref_primary_10_1016_j_nantod_2021_101146 crossref_primary_10_1016_j_jmrt_2021_10_080 crossref_primary_10_1038_srep42734 crossref_primary_10_1016_j_jpowsour_2024_234739 crossref_primary_10_1016_j_ssi_2020_115406 crossref_primary_10_1038_s41524_023_01047_y crossref_primary_10_1016_j_mtcomm_2020_102007 crossref_primary_10_1007_s11581_018_2601_8 crossref_primary_10_1016_j_scriptamat_2019_10_013 crossref_primary_10_1016_j_jpowsour_2019_227081 crossref_primary_10_1016_j_surfcoat_2018_11_064 crossref_primary_10_1038_s41598_018_37010_x crossref_primary_10_2320_materia_55_519 crossref_primary_10_1021_acsami_3c02197 crossref_primary_10_3390_ma14112836 crossref_primary_10_1016_j_actamat_2018_10_057 crossref_primary_10_1016_j_mseb_2020_114838 crossref_primary_10_1103_PhysRevMaterials_3_113601 crossref_primary_10_1002_ente_201700900 crossref_primary_10_1016_j_matpr_2017_09_030 crossref_primary_10_1016_j_matchar_2016_12_013 crossref_primary_10_1016_j_jallcom_2020_154733 crossref_primary_10_1016_j_electacta_2016_04_179 crossref_primary_10_1039_D2TA01342H crossref_primary_10_1016_j_jpowsour_2018_04_112 crossref_primary_10_1016_j_ceramint_2016_05_144 crossref_primary_10_1007_s12598_020_01528_9 crossref_primary_10_1016_j_scriptamat_2016_03_008 crossref_primary_10_1016_j_pmatsci_2017_07_003 crossref_primary_10_1016_j_actamat_2017_08_054 crossref_primary_10_1016_j_carbon_2020_04_028 crossref_primary_10_1002_adfm_202301109 crossref_primary_10_1016_j_surfcoat_2021_127812 crossref_primary_10_1021_acsanm_2c04593 crossref_primary_10_2320_materia_56_438 crossref_primary_10_1016_j_mtla_2024_102177 crossref_primary_10_1039_D3CE01139A crossref_primary_10_1002_chem_202100339 crossref_primary_10_1016_j_jallcom_2021_161270 crossref_primary_10_1016_j_scriptamat_2019_09_034 crossref_primary_10_1016_j_jpowsour_2017_07_115 crossref_primary_10_1016_j_electacta_2020_136242 crossref_primary_10_1038_s41467_017_02167_y crossref_primary_10_1016_j_enchem_2022_100069 crossref_primary_10_2464_jilm_72_58 crossref_primary_10_1021_acsami_6b16447 crossref_primary_10_1002_cssc_201903155 crossref_primary_10_1039_D1QI00273B crossref_primary_10_1016_j_scriptamat_2017_08_038 crossref_primary_10_1007_s41918_020_00070_7 crossref_primary_10_1016_j_apsusc_2021_149043 crossref_primary_10_1002_ente_201900962 crossref_primary_10_1680_jsuin_20_00055 crossref_primary_10_1007_s10008_016_3226_3 crossref_primary_10_1002_adem_201700519 crossref_primary_10_1016_j_ensm_2020_10_021 crossref_primary_10_1016_j_jallcom_2023_172417 crossref_primary_10_1007_s10853_018_2961_5 crossref_primary_10_1115_1_4046414 crossref_primary_10_1021_acsami_3c05521 crossref_primary_10_1021_acsanm_8b00919 crossref_primary_10_1016_j_matchar_2018_06_032 crossref_primary_10_9773_sosei_58_802 crossref_primary_10_3390_nano9030340 crossref_primary_10_1007_s11837_020_04055_1 crossref_primary_10_1007_s10800_017_1075_0 crossref_primary_10_1039_D1NR03709A crossref_primary_10_1149_2_1261707jes crossref_primary_10_1080_14686996_2017_1377047 crossref_primary_10_1016_j_nantod_2021_101094 |
Cites_doi | 10.1557/JMR.1994.2878 10.1016/j.carbon.2015.09.093 10.1038/nnano.2007.411 10.1038/282597a0 10.1557/mrs2009.155 10.1149/2.0071509jes 10.1021/nn405710w 10.1149/1.2123683 10.1039/c2cc31712e 10.1021/nn204476h 10.1038/nnano.2014.6 10.1002/aenm.201200857 10.1016/j.jpowsour.2006.05.049 10.1038/ncomms2941 10.1038/srep00795 10.1016/j.scriptamat.2013.01.011 10.1021/nl300206e 10.1149/1.1596917 10.1007/s10800-008-9774-1 10.1038/nnano.2012.35 10.1021/nl403923s 10.1038/35068529 10.1016/j.jpowsour.2013.02.049 10.1039/C5CC01659B 10.1149/1.2752985 10.1149/1.2402112 10.1557/JMR.2003.0030 10.1021/nl201470j 10.1039/C5TA04857E 10.1039/b919738a 10.1002/adma.201400578 10.1038/nmat2725 10.1038/ncomms5105 10.1149/1.1390899 10.1016/j.matlet.2011.01.054 10.1021/acs.nanolett.5b02842 10.1016/j.electacta.2013.08.123 10.1063/1.4812290 10.1038/srep04605 10.1038/35104644 10.1038/srep08781 10.1021/nn901409q 10.1002/j.1538-7305.1960.tb03928.x 10.1021/nl501500g 10.5796/electrochemistry.80.405 10.1016/j.scriptamat.2011.06.019 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1016/j.jpowsour.2015.11.079 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2755 |
EndPage | 16 |
ExternalDocumentID | 10_1016_j_jpowsour_2015_11_079 S0378775315305772 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFJKZ AI. AKRWK ASPBG AVWKF AZFZN BBWZM CITATION FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW T9H VH1 VOH WUQ 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c452t-2d8c913c988481c71c3d4fe88a4701dafdf0a70315fa01210d7581627a117b673 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Sat Oct 26 01:14:03 EDT 2024 Thu Sep 26 16:49:21 EDT 2024 Fri Feb 23 02:27:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium ion battery Silicon Anode Nanoporous Dealloying |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-2d8c913c988481c71c3d4fe88a4701dafdf0a70315fa01210d7581627a117b673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1793247160 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1793247160 crossref_primary_10_1016_j_jpowsour_2015_11_079 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2015_11_079 |
PublicationCentury | 2000 |
PublicationDate | 2016-02-29 |
PublicationDateYYYYMMDD | 2016-02-29 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-29 day: 29 |
PublicationDecade | 2010 |
PublicationTitle | Journal of power sources |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Viswanath, Chirayath, Rajaraman, Amarendra, Sundar (bib45) 2013; 102 Kim, Choi, Cho, Byun, Lim, Lee (bib40) 2013; 244 Chan, Patel, O'Connell, Korgel, Cui (bib11) 2010; 4 Lee, Smith, Hayner, Kung (bib5) 2010; 46 Wada, Yubuta, Inoue, Kato (bib36) 2011; 65 Obrovac, Krause (bib2) 2007; 154 P. Villars, (Ed.-in-chief) Pauling File, Binaries ed..; ASM International: Materials Park, OH. Miyuki, Okuyama, Kojima, Sakai (bib48) 2012; 80 Wu, Chan, Choi, Ryu, Yao, McDowell, Lee, Jackson, Yang, Hu, Cui (bib14) 2012; 7 Shin, Park, Sastry, Lu (bib49) 2015; 162 Huang, Yang, Mao, Chang, Hallac, Fell, Metz, Jiang, Hurley, Chen (bib17) 2014; 26 Wang, Favors, Ionescu, Ye, Bay, Ozkan, Ozkan (bib25) 2015; 5 Obrovac, Christensen, Le, Dahn (bib3) 2007; 154 Lin, Klavetter, Abel, Davy, Snider, Heller, Mullins (bib42) 2012; 48 Sigmund (bib47) 1982; 129 Pugh, Dursun, Corcoran (bib34) 2003; 18 Chan, Peng, Liu, McIlwrath, Zhang, Huggins, Cui (bib10) 2008; 3 Li, Huang, Chen, Wu, Liang (bib4) 1999; 2 Graetz, Ahn, Yazami, Fultz (bib8) 2003; 6 Kim, Han, Choo, Cho (bib19) 2008; 47 Erlebacher, Seshadri (bib31) 2009; 34 Liu, Zhong, Huang, Mao, Zhu, Huang (bib29) 2012; 6 Wada, Setyawan, Yubuta, Kato (bib37) 2011; 65 Bogart, Oka, Lu, Gu, Wang, Korgel (bib13) 2014; 8 Favors, Wang, Bay, George, Ozkan, Ozkan (bib15) 2014; 4 Ge, Lu, Ercius, Rong, Fang, Mecklenburg, Zhou (bib23) 2014; 14 Ge, Rong, Fang, Zhou (bib12) 2012; 12 Chen, Xie, Yu, Wang (bib9) 2009; 39 Yi, Dai, Gordin, Chen, Wang (bib21) 2013; 3 Son, Son, Choi, Ko, Chae, Park, Cho (bib18) 2015; 15 Okamoto (bib43) 2000 He, Tian, Xin, Han (bib28) 2015; 3 Liu, Lu, Zhao, McDowell, Lee, Zhao, Cui (bib7) 2014; 9 Wada, Ichitsubo, Yubuta, Segawa, Yoshida, Kato (bib30) 2014; 14 Tarascon, Armand (bib1) 2001; 414 Magasinski, Dixon, Hertzberg, Kvit, Ayala, Yushin (bib20) 2010; 9 Wu, Zheng, Liu, Carney, Yang, Cui (bib16) 2011; 11 Forty (bib33) 1979; 282 Li, Gu, Hu, Kennard, Yan, Chen, Wang, Sailor, Zhang, Liu (bib24) 2014; 5 Wu, Yu, Pan, Liu, McDowell, Bao, Cui (bib6) 2013; 4 Yu, Yubuta, Wada, Kato (bib39) 2016; 96 Erlebacher, Aziz, Karma, Dimitrov, Sieradzki (bib32) 2001; 410 Choi, Yew, Lee, Sung, Kim, Kim (bib41) 2006; 161 Jiang, Li, Hao, Zhu, Zhang (bib27) 2014; 115 Liang, Li, Hou, Guo, Zhu, Qian (bib26) 2015; 51 Thakur, Sinsabaugh, Isaacson, Wong, Biswal (bib22) 2012; 2 Wada, Kato (bib38) 2013; 68 Min, Li (bib35) 1994; 9 Trumbore (bib46) 1960; 39 Erlebacher (10.1016/j.jpowsour.2015.11.079_bib32) 2001; 410 Wada (10.1016/j.jpowsour.2015.11.079_bib30) 2014; 14 Graetz (10.1016/j.jpowsour.2015.11.079_bib8) 2003; 6 Obrovac (10.1016/j.jpowsour.2015.11.079_bib3) 2007; 154 Ge (10.1016/j.jpowsour.2015.11.079_bib12) 2012; 12 Wada (10.1016/j.jpowsour.2015.11.079_bib38) 2013; 68 Son (10.1016/j.jpowsour.2015.11.079_bib18) 2015; 15 Liu (10.1016/j.jpowsour.2015.11.079_bib29) 2012; 6 Chan (10.1016/j.jpowsour.2015.11.079_bib10) 2008; 3 Wang (10.1016/j.jpowsour.2015.11.079_bib25) 2015; 5 Ge (10.1016/j.jpowsour.2015.11.079_bib23) 2014; 14 Miyuki (10.1016/j.jpowsour.2015.11.079_bib48) 2012; 80 Liang (10.1016/j.jpowsour.2015.11.079_bib26) 2015; 51 Favors (10.1016/j.jpowsour.2015.11.079_bib15) 2014; 4 Yi (10.1016/j.jpowsour.2015.11.079_bib21) 2013; 3 Jiang (10.1016/j.jpowsour.2015.11.079_bib27) 2014; 115 Viswanath (10.1016/j.jpowsour.2015.11.079_bib45) 2013; 102 Tarascon (10.1016/j.jpowsour.2015.11.079_bib1) 2001; 414 Erlebacher (10.1016/j.jpowsour.2015.11.079_bib31) 2009; 34 Trumbore (10.1016/j.jpowsour.2015.11.079_bib46) 1960; 39 Shin (10.1016/j.jpowsour.2015.11.079_bib49) 2015; 162 Li (10.1016/j.jpowsour.2015.11.079_bib4) 1999; 2 He (10.1016/j.jpowsour.2015.11.079_bib28) 2015; 3 Choi (10.1016/j.jpowsour.2015.11.079_bib41) 2006; 161 Sigmund (10.1016/j.jpowsour.2015.11.079_bib47) 1982; 129 Thakur (10.1016/j.jpowsour.2015.11.079_bib22) 2012; 2 Pugh (10.1016/j.jpowsour.2015.11.079_bib34) 2003; 18 Forty (10.1016/j.jpowsour.2015.11.079_bib33) 1979; 282 Bogart (10.1016/j.jpowsour.2015.11.079_bib13) 2014; 8 Huang (10.1016/j.jpowsour.2015.11.079_bib17) 2014; 26 Magasinski (10.1016/j.jpowsour.2015.11.079_bib20) 2010; 9 Wu (10.1016/j.jpowsour.2015.11.079_bib6) 2013; 4 Wu (10.1016/j.jpowsour.2015.11.079_bib16) 2011; 11 Wu (10.1016/j.jpowsour.2015.11.079_bib14) 2012; 7 Wada (10.1016/j.jpowsour.2015.11.079_bib37) 2011; 65 Kim (10.1016/j.jpowsour.2015.11.079_bib19) 2008; 47 Li (10.1016/j.jpowsour.2015.11.079_bib24) 2014; 5 10.1016/j.jpowsour.2015.11.079_bib44 Chan (10.1016/j.jpowsour.2015.11.079_bib11) 2010; 4 Obrovac (10.1016/j.jpowsour.2015.11.079_bib2) 2007; 154 Lin (10.1016/j.jpowsour.2015.11.079_bib42) 2012; 48 Kim (10.1016/j.jpowsour.2015.11.079_bib40) 2013; 244 Min (10.1016/j.jpowsour.2015.11.079_bib35) 1994; 9 Chen (10.1016/j.jpowsour.2015.11.079_bib9) 2009; 39 Lee (10.1016/j.jpowsour.2015.11.079_bib5) 2010; 46 Yu (10.1016/j.jpowsour.2015.11.079_bib39) 2016; 96 Wada (10.1016/j.jpowsour.2015.11.079_bib36) 2011; 65 Okamoto (10.1016/j.jpowsour.2015.11.079_bib43) 2000 Liu (10.1016/j.jpowsour.2015.11.079_bib7) 2014; 9 |
References_xml | – volume: 12 start-page: 2318 year: 2012 end-page: 2323 ident: bib12 article-title: Porous doped silicon nanowires for lithium ion battery anode with long cycle life publication-title: Nano Lett. contributor: fullname: Zhou – volume: 3 start-page: 31 year: 2008 end-page: 35 ident: bib10 article-title: High-performance lithium battery anodes using silicon nanowires publication-title: Nat. Nanotechnol. contributor: fullname: Cui – volume: 96 start-page: 403 year: 2016 end-page: 410 ident: bib39 article-title: Three-dimensional bicontinuous porous graphite generated in low temperature metallic liquid publication-title: Carbon contributor: fullname: Kato – volume: 39 start-page: 1157 year: 2009 end-page: 1162 ident: bib9 article-title: An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries publication-title: J. Appl. Electrochem. contributor: fullname: Wang – year: 2000 ident: bib43 article-title: Desk Handbook, Phase Diagrams for Binary Alloys contributor: fullname: Okamoto – volume: 4 start-page: 1943 year: 2013 ident: bib6 article-title: Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles publication-title: Nat. Commun. contributor: fullname: Cui – volume: 4 start-page: 4605 year: 2014 ident: bib15 article-title: Stable cycling of SiO publication-title: Sci. Rep. contributor: fullname: Ozkan – volume: 9 start-page: 187 year: 2014 end-page: 192 ident: bib7 article-title: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes publication-title: Nat. Nanotechnol. contributor: fullname: Cui – volume: 48 start-page: 7268 year: 2012 end-page: 7270 ident: bib42 article-title: High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries publication-title: Chem. Commun. contributor: fullname: Mullins – volume: 7 start-page: 310 year: 2012 end-page: 315 ident: bib14 article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control publication-title: Nat. Nanotechnol. contributor: fullname: Cui – volume: 80 start-page: 405 year: 2012 end-page: 408 ident: bib48 article-title: In-situ measurement of electrode thickness change during charge and discharge of a large capacity SiO anode publication-title: Electrochemistry contributor: fullname: Sakai – volume: 46 start-page: 2025 year: 2010 end-page: 2027 ident: bib5 article-title: Silicon nanoparticles–graphene paper composites for Li ion battery anodes publication-title: Chem. Commun. contributor: fullname: Kung – volume: 68 start-page: 723 year: 2013 end-page: 726 ident: bib38 article-title: Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel publication-title: Scr. Mater. contributor: fullname: Kato – volume: 34 start-page: 561 year: 2009 end-page: 568 ident: bib31 article-title: Hard materials with tunable porosity publication-title: MRS Bull. contributor: fullname: Seshadri – volume: 6 start-page: A194 year: 2003 end-page: A197 ident: bib8 article-title: Highly reversible lithium storage in nanostructured silicon publication-title: Electrochem. Solid-State Lett. contributor: fullname: Fultz – volume: 410 start-page: 450 year: 2001 end-page: 453 ident: bib32 article-title: Evolution of nanoporosity in dealloying publication-title: Nature contributor: fullname: Sieradzki – volume: 4 start-page: 1443 year: 2010 end-page: 1450 ident: bib11 article-title: Solution-grown silicon nanowires for lithium-ion battery anodes publication-title: ACS Nano contributor: fullname: Cui – volume: 3 start-page: 17956 year: 2015 end-page: 17962 ident: bib28 article-title: Scalable fabrication of micro-sized bulk porous Si from Fe–Si alloy as a high performance anode for lithium-ion batteries publication-title: J. Mater. Chem. A contributor: fullname: Han – volume: 6 start-page: 1522 year: 2012 end-page: 1531 ident: bib29 article-title: Size-dependent fracture of silicon nanoparticles during lithiation publication-title: ACS Nano contributor: fullname: Huang – volume: 3 start-page: 295 year: 2013 end-page: 300 ident: bib21 article-title: Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries publication-title: Adv. Energy Mater. contributor: fullname: Wang – volume: 8 start-page: 915 year: 2014 end-page: 922 ident: bib13 article-title: Lithium ion battery performance of silicon nanowires with carbon skin publication-title: ACS Nano contributor: fullname: Korgel – volume: 15 start-page: 6914 year: 2015 end-page: 6918 ident: bib18 article-title: Hollow silicon nanostructures via the Kirkendall effect publication-title: Nano Lett. contributor: fullname: Cho – volume: 5 start-page: 4105 year: 2014 ident: bib24 article-title: Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes publication-title: Nat. Commun. contributor: fullname: Liu – volume: 129 start-page: 2809 year: 1982 end-page: 2812 ident: bib47 article-title: Solubility of magnesium and calcium in silicon publication-title: J. Electrochem. Soc. contributor: fullname: Sigmund – volume: 5 start-page: 8781 year: 2015 ident: bib25 article-title: Monodisperse porous silicon spheres as anode materials for lithium ion batteries publication-title: Sci. Rep. contributor: fullname: Ozkan – volume: 18 start-page: 216 year: 2003 end-page: 221 ident: bib34 article-title: Formation of nanoporous platinum by selective dissolution of Cu from Cu publication-title: J. Mater. Res. contributor: fullname: Corcoran – volume: 115 start-page: 393 year: 2014 end-page: 398 ident: bib27 article-title: An easy way for preparing high performance porous silicon powder by acid etching Al–Si alloy powder for lithium ion battery publication-title: Electrochim. Acta contributor: fullname: Zhang – volume: 2 start-page: 547 year: 1999 end-page: 549 ident: bib4 article-title: A high capacity nano si composite anode material for lithium rechargeable batteries publication-title: Electrochem. Solid-State Lett. contributor: fullname: Liang – volume: 9 start-page: 353 year: 2010 end-page: 358 ident: bib20 article-title: High-performance lithium-ion anodes using a hierarchical bottom-up approach publication-title: Nat. Mater. contributor: fullname: Yushin – volume: 14 start-page: 4505 year: 2014 end-page: 4510 ident: bib30 article-title: Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a Top-Down Process publication-title: Nano Lett. contributor: fullname: Kato – volume: 244 start-page: 521 year: 2013 end-page: 526 ident: bib40 article-title: Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries publication-title: J. Power Sources contributor: fullname: Lee – volume: 65 start-page: 532 year: 2011 end-page: 535 ident: bib37 article-title: Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt publication-title: Scr. Mater. contributor: fullname: Kato – volume: 39 start-page: 205 year: 1960 end-page: 233 ident: bib46 article-title: Solid solubilities of impurity elements in germanium and silicon publication-title: Bell Syst. Tech. J. contributor: fullname: Trumbore – volume: 51 start-page: 7230 year: 2015 end-page: 7233 ident: bib26 article-title: Nanoporous silicon prepared through air-oxidation demagnesiation of Mg publication-title: Chem. Commun. contributor: fullname: Qian – volume: 47 start-page: 10151 year: 2008 end-page: 10154 ident: bib19 article-title: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries contributor: fullname: Cho – volume: 14 start-page: 261 year: 2014 end-page: 268 ident: bib23 article-title: Large-scale fabrication, 3d tomography, and lithium-ion battery application of porous silicon publication-title: Nano Lett. contributor: fullname: Zhou – volume: 102 start-page: 253101 year: 2013 ident: bib45 article-title: Ligament coarsening in nanoporous gold: Insights from positron annihilation study publication-title: Appl. Phys. Lett. contributor: fullname: Sundar – volume: 154 start-page: A103 year: 2007 end-page: A108 ident: bib2 article-title: Reversible cycling of crystalline silicon powder publication-title: J. Electrochem. Soc. contributor: fullname: Krause – volume: 154 start-page: A849 year: 2007 end-page: A855 ident: bib3 article-title: Alloy design for lithium-ion battery anodes publication-title: J. Electrochem. Soc. contributor: fullname: Dahn – volume: 9 start-page: 2878 year: 1994 end-page: 2883 ident: bib35 article-title: The microstructure and dealloying kinetics of a Cu-Mn alloy publication-title: J. Mater. Res. contributor: fullname: Li – volume: 65 start-page: 1076 year: 2011 end-page: 1078 ident: bib36 article-title: Dealloying by metallic melt publication-title: Mater. Lett. contributor: fullname: Kato – volume: 11 start-page: 2949 year: 2011 end-page: 2954 ident: bib16 article-title: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life publication-title: Nano Lett. contributor: fullname: Cui – volume: 162 start-page: A1683 year: 2015 end-page: A1692 ident: bib49 article-title: effects of fluoroethylene carbonate (FEC) on anode and cathode interfaces at elevated temperatures publication-title: J. Electrochem. Soc. contributor: fullname: Lu – volume: 26 start-page: 4326 year: 2014 end-page: 4332 ident: bib17 article-title: Controllable synthesis of hollow si anode for long-cycle-life lithium-ion batteries publication-title: Adv. Mater. contributor: fullname: Chen – volume: 282 start-page: 597 year: 1979 end-page: 598 ident: bib33 article-title: Corrosion micromorphology of noble metal alloys and depletion gilding publication-title: Nature contributor: fullname: Forty – volume: 414 start-page: 359 year: 2001 end-page: 367 ident: bib1 article-title: Issues and challenges facing rechargeable lithium batteries publication-title: Nature contributor: fullname: Armand – volume: 2 start-page: 795 year: 2012 ident: bib22 article-title: Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries publication-title: Sci. Rep. contributor: fullname: Biswal – volume: 161 start-page: 1254 year: 2006 end-page: 1259 ident: bib41 article-title: Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode publication-title: J. Power Sources contributor: fullname: Kim – volume: 9 start-page: 2878 year: 1994 ident: 10.1016/j.jpowsour.2015.11.079_bib35 article-title: The microstructure and dealloying kinetics of a Cu-Mn alloy publication-title: J. Mater. Res. doi: 10.1557/JMR.1994.2878 contributor: fullname: Min – volume: 96 start-page: 403 year: 2016 ident: 10.1016/j.jpowsour.2015.11.079_bib39 article-title: Three-dimensional bicontinuous porous graphite generated in low temperature metallic liquid publication-title: Carbon doi: 10.1016/j.carbon.2015.09.093 contributor: fullname: Yu – volume: 3 start-page: 31 year: 2008 ident: 10.1016/j.jpowsour.2015.11.079_bib10 article-title: High-performance lithium battery anodes using silicon nanowires publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.411 contributor: fullname: Chan – volume: 282 start-page: 597 year: 1979 ident: 10.1016/j.jpowsour.2015.11.079_bib33 article-title: Corrosion micromorphology of noble metal alloys and depletion gilding publication-title: Nature doi: 10.1038/282597a0 contributor: fullname: Forty – volume: 34 start-page: 561 year: 2009 ident: 10.1016/j.jpowsour.2015.11.079_bib31 article-title: Hard materials with tunable porosity publication-title: MRS Bull. doi: 10.1557/mrs2009.155 contributor: fullname: Erlebacher – volume: 162 start-page: A1683 year: 2015 ident: 10.1016/j.jpowsour.2015.11.079_bib49 article-title: effects of fluoroethylene carbonate (FEC) on anode and cathode interfaces at elevated temperatures publication-title: J. Electrochem. Soc. doi: 10.1149/2.0071509jes contributor: fullname: Shin – volume: 8 start-page: 915 year: 2014 ident: 10.1016/j.jpowsour.2015.11.079_bib13 article-title: Lithium ion battery performance of silicon nanowires with carbon skin publication-title: ACS Nano doi: 10.1021/nn405710w contributor: fullname: Bogart – volume: 129 start-page: 2809 year: 1982 ident: 10.1016/j.jpowsour.2015.11.079_bib47 article-title: Solubility of magnesium and calcium in silicon publication-title: J. Electrochem. Soc. doi: 10.1149/1.2123683 contributor: fullname: Sigmund – volume: 48 start-page: 7268 year: 2012 ident: 10.1016/j.jpowsour.2015.11.079_bib42 article-title: High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries publication-title: Chem. Commun. doi: 10.1039/c2cc31712e contributor: fullname: Lin – volume: 6 start-page: 1522 year: 2012 ident: 10.1016/j.jpowsour.2015.11.079_bib29 article-title: Size-dependent fracture of silicon nanoparticles during lithiation publication-title: ACS Nano doi: 10.1021/nn204476h contributor: fullname: Liu – volume: 9 start-page: 187 year: 2014 ident: 10.1016/j.jpowsour.2015.11.079_bib7 article-title: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.6 contributor: fullname: Liu – volume: 3 start-page: 295 year: 2013 ident: 10.1016/j.jpowsour.2015.11.079_bib21 article-title: Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200857 contributor: fullname: Yi – volume: 161 start-page: 1254 year: 2006 ident: 10.1016/j.jpowsour.2015.11.079_bib41 article-title: Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.05.049 contributor: fullname: Choi – volume: 4 start-page: 1943 year: 2013 ident: 10.1016/j.jpowsour.2015.11.079_bib6 article-title: Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles publication-title: Nat. Commun. doi: 10.1038/ncomms2941 contributor: fullname: Wu – volume: 2 start-page: 795 year: 2012 ident: 10.1016/j.jpowsour.2015.11.079_bib22 article-title: Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries publication-title: Sci. Rep. doi: 10.1038/srep00795 contributor: fullname: Thakur – volume: 68 start-page: 723 year: 2013 ident: 10.1016/j.jpowsour.2015.11.079_bib38 article-title: Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2013.01.011 contributor: fullname: Wada – volume: 12 start-page: 2318 year: 2012 ident: 10.1016/j.jpowsour.2015.11.079_bib12 article-title: Porous doped silicon nanowires for lithium ion battery anode with long cycle life publication-title: Nano Lett. doi: 10.1021/nl300206e contributor: fullname: Ge – volume: 6 start-page: A194 year: 2003 ident: 10.1016/j.jpowsour.2015.11.079_bib8 article-title: Highly reversible lithium storage in nanostructured silicon publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1596917 contributor: fullname: Graetz – volume: 39 start-page: 1157 year: 2009 ident: 10.1016/j.jpowsour.2015.11.079_bib9 article-title: An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-008-9774-1 contributor: fullname: Chen – volume: 7 start-page: 310 year: 2012 ident: 10.1016/j.jpowsour.2015.11.079_bib14 article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.35 contributor: fullname: Wu – volume: 14 start-page: 261 year: 2014 ident: 10.1016/j.jpowsour.2015.11.079_bib23 article-title: Large-scale fabrication, 3d tomography, and lithium-ion battery application of porous silicon publication-title: Nano Lett. doi: 10.1021/nl403923s contributor: fullname: Ge – volume: 410 start-page: 450 year: 2001 ident: 10.1016/j.jpowsour.2015.11.079_bib32 article-title: Evolution of nanoporosity in dealloying publication-title: Nature doi: 10.1038/35068529 contributor: fullname: Erlebacher – volume: 244 start-page: 521 year: 2013 ident: 10.1016/j.jpowsour.2015.11.079_bib40 article-title: Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.02.049 contributor: fullname: Kim – volume: 51 start-page: 7230 year: 2015 ident: 10.1016/j.jpowsour.2015.11.079_bib26 article-title: Nanoporous silicon prepared through air-oxidation demagnesiation of Mg2Si and properties of its lithium ion batteries publication-title: Chem. Commun. doi: 10.1039/C5CC01659B contributor: fullname: Liang – volume: 154 start-page: A849 year: 2007 ident: 10.1016/j.jpowsour.2015.11.079_bib3 article-title: Alloy design for lithium-ion battery anodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.2752985 contributor: fullname: Obrovac – volume: 154 start-page: A103 year: 2007 ident: 10.1016/j.jpowsour.2015.11.079_bib2 article-title: Reversible cycling of crystalline silicon powder publication-title: J. Electrochem. Soc. doi: 10.1149/1.2402112 contributor: fullname: Obrovac – volume: 18 start-page: 216 year: 2003 ident: 10.1016/j.jpowsour.2015.11.079_bib34 article-title: Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25 publication-title: J. Mater. Res. doi: 10.1557/JMR.2003.0030 contributor: fullname: Pugh – volume: 11 start-page: 2949 year: 2011 ident: 10.1016/j.jpowsour.2015.11.079_bib16 article-title: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life publication-title: Nano Lett. doi: 10.1021/nl201470j contributor: fullname: Wu – volume: 3 start-page: 17956 year: 2015 ident: 10.1016/j.jpowsour.2015.11.079_bib28 article-title: Scalable fabrication of micro-sized bulk porous Si from Fe–Si alloy as a high performance anode for lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04857E contributor: fullname: He – volume: 46 start-page: 2025 year: 2010 ident: 10.1016/j.jpowsour.2015.11.079_bib5 article-title: Silicon nanoparticles–graphene paper composites for Li ion battery anodes publication-title: Chem. Commun. doi: 10.1039/b919738a contributor: fullname: Lee – ident: 10.1016/j.jpowsour.2015.11.079_bib44 – volume: 26 start-page: 4326 year: 2014 ident: 10.1016/j.jpowsour.2015.11.079_bib17 article-title: Controllable synthesis of hollow si anode for long-cycle-life lithium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201400578 contributor: fullname: Huang – volume: 9 start-page: 353 year: 2010 ident: 10.1016/j.jpowsour.2015.11.079_bib20 article-title: High-performance lithium-ion anodes using a hierarchical bottom-up approach publication-title: Nat. Mater. doi: 10.1038/nmat2725 contributor: fullname: Magasinski – volume: 5 start-page: 4105 year: 2014 ident: 10.1016/j.jpowsour.2015.11.079_bib24 article-title: Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes publication-title: Nat. Commun. doi: 10.1038/ncomms5105 contributor: fullname: Li – volume: 2 start-page: 547 year: 1999 ident: 10.1016/j.jpowsour.2015.11.079_bib4 article-title: A high capacity nano si composite anode material for lithium rechargeable batteries publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1390899 contributor: fullname: Li – volume: 65 start-page: 1076 year: 2011 ident: 10.1016/j.jpowsour.2015.11.079_bib36 article-title: Dealloying by metallic melt publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.01.054 contributor: fullname: Wada – volume: 15 start-page: 6914 year: 2015 ident: 10.1016/j.jpowsour.2015.11.079_bib18 article-title: Hollow silicon nanostructures via the Kirkendall effect publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02842 contributor: fullname: Son – volume: 115 start-page: 393 year: 2014 ident: 10.1016/j.jpowsour.2015.11.079_bib27 article-title: An easy way for preparing high performance porous silicon powder by acid etching Al–Si alloy powder for lithium ion battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.08.123 contributor: fullname: Jiang – volume: 102 start-page: 253101 year: 2013 ident: 10.1016/j.jpowsour.2015.11.079_bib45 article-title: Ligament coarsening in nanoporous gold: Insights from positron annihilation study publication-title: Appl. Phys. Lett. doi: 10.1063/1.4812290 contributor: fullname: Viswanath – volume: 4 start-page: 4605 year: 2014 ident: 10.1016/j.jpowsour.2015.11.079_bib15 article-title: Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries publication-title: Sci. Rep. doi: 10.1038/srep04605 contributor: fullname: Favors – volume: 414 start-page: 359 year: 2001 ident: 10.1016/j.jpowsour.2015.11.079_bib1 article-title: Issues and challenges facing rechargeable lithium batteries publication-title: Nature doi: 10.1038/35104644 contributor: fullname: Tarascon – volume: 47 start-page: 10151 year: 2008 ident: 10.1016/j.jpowsour.2015.11.079_bib19 article-title: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries contributor: fullname: Kim – volume: 5 start-page: 8781 year: 2015 ident: 10.1016/j.jpowsour.2015.11.079_bib25 article-title: Monodisperse porous silicon spheres as anode materials for lithium ion batteries publication-title: Sci. Rep. doi: 10.1038/srep08781 contributor: fullname: Wang – volume: 4 start-page: 1443 year: 2010 ident: 10.1016/j.jpowsour.2015.11.079_bib11 article-title: Solution-grown silicon nanowires for lithium-ion battery anodes publication-title: ACS Nano doi: 10.1021/nn901409q contributor: fullname: Chan – volume: 39 start-page: 205 year: 1960 ident: 10.1016/j.jpowsour.2015.11.079_bib46 article-title: Solid solubilities of impurity elements in germanium and silicon publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1960.tb03928.x contributor: fullname: Trumbore – year: 2000 ident: 10.1016/j.jpowsour.2015.11.079_bib43 contributor: fullname: Okamoto – volume: 14 start-page: 4505 year: 2014 ident: 10.1016/j.jpowsour.2015.11.079_bib30 article-title: Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a Top-Down Process publication-title: Nano Lett. doi: 10.1021/nl501500g contributor: fullname: Wada – volume: 80 start-page: 405 year: 2012 ident: 10.1016/j.jpowsour.2015.11.079_bib48 article-title: In-situ measurement of electrode thickness change during charge and discharge of a large capacity SiO anode publication-title: Electrochemistry doi: 10.5796/electrochemistry.80.405 contributor: fullname: Miyuki – volume: 65 start-page: 532 year: 2011 ident: 10.1016/j.jpowsour.2015.11.079_bib37 article-title: Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2011.06.019 contributor: fullname: Wada |
SSID | ssj0001170 |
Score | 2.5179946 |
Snippet | Silicon is a promising material for negative electrode in Li-ion batteries because of high gravimetric capacity. A Si nanomaterial that can accommodate volume... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 8 |
SubjectTerms | Anode Dealloying Electrodes Lithium batteries Lithium ion battery Nanoporous Nanostructure Porosity Rechargeable batteries Silicon Three dimensional |
Title | Preparation of three-dimensional nanoporous Si using dealloying by metallic melt and application as a lithium-ion rechargeable battery negative electrode |
URI | https://dx.doi.org/10.1016/j.jpowsour.2015.11.079 https://search.proquest.com/docview/1793247160 |
Volume | 306 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEG4WvSQHSYwSTSIl5Nq7834cZXHZGCLCRvDW9PRDZ3F7lnUW8eL_yL-1ah64SsCDt5lhZhiqqusx9dXXjP1UxqrYas2LJPV4lKqMy7CIuVQ0pYkx22tmq_6cJ9PL6OwqvhqwcT8LQ7DKzve3Pr3x1t2VUSfN0bIsRzMvRGPDbBvXLCYdKfnhCMMf2vTw8RnmQTurNJ0ErJbo7o0p4flwvqzu6Sc5QbziIbF5EqTr_wHqlatu4s_kE9vpEkc4ab_tMxsYt8s-btAJfmH_LlampfKuHFQWatST4Zr4-1vuDXDSVZhwY7UPsxII834N2lDvnaadoHiAhcFs_LZUeHBbg3QaNlrcIO9AAibuN-V6wekCyo6olgwNYEHRcHU-gDPXDZ04dHvsaLPHLienf8dT3m29wFUUBzUPdKZyP1R5RnT7KvVVqCNrskxGqedrabX1JFHfx1YSK5ynse7wkyCVKG9Ue7jPtlzlzFcGyvppmNg4TFITRdorMiK9z2Se2ySTMjxgo17eYtkybIgeejYXvYYEaQjLFYEaOmB5rxbxwlYEhoE3nz3u9ShwIVF3RDqDYhfkqQIM1Yl3-I73f2Mf8KzBdQf5d7ZVr9bmB6YtdXHU2OUR2z759Xt6_gQd3vG_ |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSyVBDC5ED44HUcfB3Qhzrfd6X44iynNFUMFbUV2L0w-tfmiLePF_-G9NesHnMDAHb01vNEkq-dJJvmLstzJWxVZrXiSpx6NUZVyGRcyloilNjNleM1t1fpGMbqKT2_h2hh30szDUVtn5_tanN966OzPspDmclOXwygvR2BBt45pF0JGiH56LCB-jUQ_ePvs8aGuVppSA6RLdPjUmPB6MJ9UL_SWnHq94QHSe1NP17wj1l69uAtDRElvskCPstx-3zGaMW2ELU3yCP9n75aNpubwrB5WFGhVluCYC_5Z8A5x0FSJuTPfhqgRqer8Dbaj4TuNOULzCg0E4fl8qPLivQToNUzVukE8gAZH7n_L5gdMJFB5xLRmawIKiIet8BWfuGj5x6DbZ0WaV3RwdXh-MeLf3AldRHNQ80JnK_VDlGfHtq9RXoY6syTIZpZ6vpdXWk8R9H1tJtHCexsTDT4JUorxR7-EvNusqZ9YYKOunYWLjMElNFGmvyIj1PpN5bpNMynCdDXt5i0lLsSH63rOx6DUkSEOYrwjU0DrLe7WIL8YiMA7899m9Xo8CVxKVR6QzKHZBrirAWJ14G994_y6bH12fn4mz44vTTfYDrzRN3kG-xWbrx2ezjRimLnYaG_0AwTHzWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+three-dimensional+nanoporous+Si+using+dealloying+by+metallic+melt+and+application+as+a+lithium-ion+rechargeable+battery+negative+electrode&rft.jtitle=Journal+of+power+sources&rft.au=Wada%2C+Takeshi&rft.au=Yamada%2C+Junpei&rft.au=Kato%2C+Hidemi&rft.date=2016-02-29&rft.issn=0378-7753&rft.volume=306&rft.spage=8&rft.epage=16&rft_id=info:doi/10.1016%2Fj.jpowsour.2015.11.079&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2015_11_079 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |