Effect of a short-term diet and exercise intervention on oxidative stress, inflammation, MMP-9, and monocyte chemotactic activity in men with metabolic syndrome factors

1 Department of Physiological Science, University of California, Los Angeles; 2 Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University, Los Angeles; and 3 Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California S...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 100; no. 5; pp. 1657 - 1665
Main Authors Roberts, Christian K, Won, Dean, Pruthi, Sandeep, Kurtovic, Silvia, Sindhu, Ram K, Vaziri, Nosratola D, Barnard, R. James
Format Journal Article
LanguageEnglish
Published Bethesda, MD Am Physiological Soc 01.05.2006
American Physiological Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1 Department of Physiological Science, University of California, Los Angeles; 2 Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University, Los Angeles; and 3 Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California Submitted 6 October 2005 ; accepted in final form 14 December 2005 ABSTRACT The present study was designed to examine the effects of lifestyle modification on key contributing factors to atherogenesis, including oxidative stress, inflammation, chemotaxis, and cell adhesion. Obese men ( n = 31), 15 of whom had metabolic syndrome, were placed on a high-fiber, low-fat diet in a 3-wk residential program where food was provided ad libitum and daily aerobic exercise was performed. In each subject, pre- and postintervention fasting blood was drawn for circulating levels of serum lipids, glucose and insulin (for estimation of insulin sensitivity), oxidative stress-generating enzyme myeloperoxidase and marker 8-isoprostaglandin F 2 , the inflammatory protein C-reactive protein, soluble ICAM-1 as an indicator of endothelial activation, sP-selectin as a marker of platelet activation, the chemokine macrophage inflammatory protein-1 , and total matrix metalloproteinase-9. Using subject sera and human aortic endothelial cell culture systems, we measured VCAM-1 cell surface abundance and monocyte chemotactic protein-1, nitric oxide, superoxide, and hydrogen peroxide production in vitro by fluorometric detection. Also determined in vitro was serum-induced, monocyte adhesion and monocyte chemotactic activity. After 3 wk, significant reductions ( P < 0.05) in body mass index, all serum lipids and lipid ratios, fasting glucose, insulin, homeostasis model assessment for insulin resistance, myeloperoxidase, 8-isoprostaglandin F 2 , C-reactive protein, soluble ICAM-1, soluble P-selectin, macrophage inflammatory protein-1 , and matrix metalloproteinase-9 were noted. In vitro, serum-stimulated cellular VCAM-1 expression, monocyte chemotactic protein-1 production, and fluorometric detection of superoxide and hydrogen peroxide production decreased, whereas a concomitant increase in NO production was noted (all P < 0.01). Additionally, both monocyte adhesion ( P < 0.05) and MCA ( P < 0.01) decreased. Nine of 15 were no longer positive for metabolic syndrome postintervention. Intensive lifestyle modification may ameliorate novel coronary artery disease risk factors in men with metabolic syndrome factors before reversal of obesity. atherosclerosis; lipids; cell adhesion molecules; nitric oxide; matrix metalloproteinase-9 Address for reprint requests and other correspondence: C. K. Roberts, Dept. of Physiological Science, UCLA, 4101 Life Sciences Bldg. 621 Charles E. Young Dr. South, Los Angeles, CA 90095-1606 (e-mail: croberts{at}ucla.edu )
AbstractList The present study was designed to examine the effects of lifestyle modification on key contributing factors to atherogenesis, including oxidative stress, inflammation, chemotaxis, and cell adhesion. Obese men ( n = 31), 15 of whom had metabolic syndrome, were placed on a high-fiber, low-fat diet in a 3-wk residential program where food was provided ad libitum and daily aerobic exercise was performed. In each subject, pre- and postintervention fasting blood was drawn for circulating levels of serum lipids, glucose and insulin (for estimation of insulin sensitivity), oxidative stress-generating enzyme myeloperoxidase and marker 8-isoprostaglandin F 2α , the inflammatory protein C-reactive protein, soluble ICAM-1 as an indicator of endothelial activation, sP-selectin as a marker of platelet activation, the chemokine macrophage inflammatory protein-1α, and total matrix metalloproteinase-9. Using subject sera and human aortic endothelial cell culture systems, we measured VCAM-1 cell surface abundance and monocyte chemotactic protein-1, nitric oxide, superoxide, and hydrogen peroxide production in vitro by fluorometric detection. Also determined in vitro was serum-induced, monocyte adhesion and monocyte chemotactic activity. After 3 wk, significant reductions ( P < 0.05) in body mass index, all serum lipids and lipid ratios, fasting glucose, insulin, homeostasis model assessment for insulin resistance, myeloperoxidase, 8-isoprostaglandin F 2α , C-reactive protein, soluble ICAM-1, soluble P-selectin, macrophage inflammatory protein-1α, and matrix metalloproteinase-9 were noted. In vitro, serum-stimulated cellular VCAM-1 expression, monocyte chemotactic protein-1 production, and fluorometric detection of superoxide and hydrogen peroxide production decreased, whereas a concomitant increase in NO production was noted (all P < 0.01). Additionally, both monocyte adhesion ( P < 0.05) and MCA ( P < 0.01) decreased. Nine of 15 were no longer positive for metabolic syndrome postintervention. Intensive lifestyle modification may ameliorate novel coronary artery disease risk factors in men with metabolic syndrome factors before reversal of obesity.
1 Department of Physiological Science, University of California, Los Angeles; 2 Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University, Los Angeles; and 3 Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California Submitted 6 October 2005 ; accepted in final form 14 December 2005 ABSTRACT The present study was designed to examine the effects of lifestyle modification on key contributing factors to atherogenesis, including oxidative stress, inflammation, chemotaxis, and cell adhesion. Obese men ( n = 31), 15 of whom had metabolic syndrome, were placed on a high-fiber, low-fat diet in a 3-wk residential program where food was provided ad libitum and daily aerobic exercise was performed. In each subject, pre- and postintervention fasting blood was drawn for circulating levels of serum lipids, glucose and insulin (for estimation of insulin sensitivity), oxidative stress-generating enzyme myeloperoxidase and marker 8-isoprostaglandin F 2 , the inflammatory protein C-reactive protein, soluble ICAM-1 as an indicator of endothelial activation, sP-selectin as a marker of platelet activation, the chemokine macrophage inflammatory protein-1 , and total matrix metalloproteinase-9. Using subject sera and human aortic endothelial cell culture systems, we measured VCAM-1 cell surface abundance and monocyte chemotactic protein-1, nitric oxide, superoxide, and hydrogen peroxide production in vitro by fluorometric detection. Also determined in vitro was serum-induced, monocyte adhesion and monocyte chemotactic activity. After 3 wk, significant reductions ( P < 0.05) in body mass index, all serum lipids and lipid ratios, fasting glucose, insulin, homeostasis model assessment for insulin resistance, myeloperoxidase, 8-isoprostaglandin F 2 , C-reactive protein, soluble ICAM-1, soluble P-selectin, macrophage inflammatory protein-1 , and matrix metalloproteinase-9 were noted. In vitro, serum-stimulated cellular VCAM-1 expression, monocyte chemotactic protein-1 production, and fluorometric detection of superoxide and hydrogen peroxide production decreased, whereas a concomitant increase in NO production was noted (all P < 0.01). Additionally, both monocyte adhesion ( P < 0.05) and MCA ( P < 0.01) decreased. Nine of 15 were no longer positive for metabolic syndrome postintervention. Intensive lifestyle modification may ameliorate novel coronary artery disease risk factors in men with metabolic syndrome factors before reversal of obesity. atherosclerosis; lipids; cell adhesion molecules; nitric oxide; matrix metalloproteinase-9 Address for reprint requests and other correspondence: C. K. Roberts, Dept. of Physiological Science, UCLA, 4101 Life Sciences Bldg. 621 Charles E. Young Dr. South, Los Angeles, CA 90095-1606 (e-mail: croberts{at}ucla.edu )
The present study was designed to examine the effects of lifestyle modification on key contributing factors to atherogenesis, including oxidative stress, inflammation, chemotaxis, and cell adhesion. Obese men (n = 31), 15 of whom had metabolic syndrome, were placed on a high-fiber, low-fat diet in a 3-wk residential program where food was provided ad libitum and daily aerobic exercise was performed. In each subject, pre- and postintervention fasting blood was drawn for circulating levels of serum lipids, glucose and insulin (for estimation of insulin sensitivity), oxidative stress-generating enzyme myeloperoxidase and marker 8-isoprostaglandin F2alpha, the inflammatory protein C-reactive protein, soluble ICAM-1 as an indicator of endothelial activation, sP-selectin as a marker of platelet activation, the chemokine macrophage inflammatory protein-1alpha, and total matrix metalloproteinase-9. Using subject sera and human aortic endothelial cell culture systems, we measured VCAM-1 cell surface abundance and monocyte chemotactic protein-1, nitric oxide, superoxide, and hydrogen peroxide production in vitro by fluorometric detection. Also determined in vitro was serum-induced, monocyte adhesion and monocyte chemotactic activity. After 3 wk, significant reductions (P < 0.05) in body mass index, all serum lipids and lipid ratios, fasting glucose, insulin, homeostasis model assessment for insulin resistance, myeloperoxidase, 8-isoprostaglandin F2alpha, C-reactive protein, soluble ICAM-1, soluble P-selectin, macrophage inflammatory protein-1alpha, and matrix metalloproteinase-9 were noted. In vitro, serum-stimulated cellular VCAM-1 expression, monocyte chemotactic protein-1 production, and fluorometric detection of superoxide and hydrogen peroxide production decreased, whereas a concomitant increase in NO production was noted (all P < 0.01). Additionally, both monocyte adhesion (P < 0.05) and MCA (P < 0.01) decreased. Nine of 15 were no longer positive for metabolic syndrome postintervention. Intensive lifestyle modification may ameliorate novel coronary artery disease risk factors in men with metabolic syndrome factors before reversal of obesity.The present study was designed to examine the effects of lifestyle modification on key contributing factors to atherogenesis, including oxidative stress, inflammation, chemotaxis, and cell adhesion. Obese men (n = 31), 15 of whom had metabolic syndrome, were placed on a high-fiber, low-fat diet in a 3-wk residential program where food was provided ad libitum and daily aerobic exercise was performed. In each subject, pre- and postintervention fasting blood was drawn for circulating levels of serum lipids, glucose and insulin (for estimation of insulin sensitivity), oxidative stress-generating enzyme myeloperoxidase and marker 8-isoprostaglandin F2alpha, the inflammatory protein C-reactive protein, soluble ICAM-1 as an indicator of endothelial activation, sP-selectin as a marker of platelet activation, the chemokine macrophage inflammatory protein-1alpha, and total matrix metalloproteinase-9. Using subject sera and human aortic endothelial cell culture systems, we measured VCAM-1 cell surface abundance and monocyte chemotactic protein-1, nitric oxide, superoxide, and hydrogen peroxide production in vitro by fluorometric detection. Also determined in vitro was serum-induced, monocyte adhesion and monocyte chemotactic activity. After 3 wk, significant reductions (P < 0.05) in body mass index, all serum lipids and lipid ratios, fasting glucose, insulin, homeostasis model assessment for insulin resistance, myeloperoxidase, 8-isoprostaglandin F2alpha, C-reactive protein, soluble ICAM-1, soluble P-selectin, macrophage inflammatory protein-1alpha, and matrix metalloproteinase-9 were noted. In vitro, serum-stimulated cellular VCAM-1 expression, monocyte chemotactic protein-1 production, and fluorometric detection of superoxide and hydrogen peroxide production decreased, whereas a concomitant increase in NO production was noted (all P < 0.01). Additionally, both monocyte adhesion (P < 0.05) and MCA (P < 0.01) decreased. Nine of 15 were no longer positive for metabolic syndrome postintervention. Intensive lifestyle modification may ameliorate novel coronary artery disease risk factors in men with metabolic syndrome factors before reversal of obesity.
The present study was designed to examine the effects of lifestyle modification on key contributing factors to atherogenesis, including oxidative stress, inflammation, chemotaxis, and cell adhesion. Obese men (n = 31), 15 of whom had metabolic syndrome, were placed on a high-fiber, low-fat diet in a 3-wk residential program where food was provided ad libitum and daily aerobic exercise was performed. In each subject, pre- and postintervention fasting blood was drawn for circulating levels of serum lipids, glucose and insulin (for estimation of insulin sensitivity), oxidative stress-generating enzyme myeloperoxidase and marker 8-isoprostaglandin F2alpha, the inflammatory protein C-reactive protein, soluble ICAM-1 as an indicator of endothelial activation, sP-selectin as a marker of platelet activation, the chemokine macrophage inflammatory protein-1alpha, and total matrix metalloproteinase-9. Using subject sera and human aortic endothelial cell culture systems, we measured VCAM-1 cell surface abundance and monocyte chemotactic protein-1, nitric oxide, superoxide, and hydrogen peroxide production in vitro by fluorometric detection. Also determined in vitro was serum-induced, monocyte adhesion and monocyte chemotactic activity. After 3 wk, significant reductions (P < 0.05) in body mass index, all serum lipids and lipid ratios, fasting glucose, insulin, homeostasis model assessment for insulin resistance, myeloperoxidase, 8-isoprostaglandin F2alpha, C-reactive protein, soluble ICAM-1, soluble P-selectin, macrophage inflammatory protein-1alpha, and matrix metalloproteinase-9 were noted. In vitro, serum-stimulated cellular VCAM-1 expression, monocyte chemotactic protein-1 production, and fluorometric detection of superoxide and hydrogen peroxide production decreased, whereas a concomitant increase in NO production was noted (all P < 0.01). Additionally, both monocyte adhesion (P < 0.05) and MCA (P < 0.01) decreased. Nine of 15 were no longer positive for metabolic syndrome postintervention. Intensive lifestyle modification may ameliorate novel coronary artery disease risk factors in men with metabolic syndrome factors before reversal of obesity.
The present study was designed to examine the effects of lifestyle modification on key contributing factors to atherogenesis, including oxidative stress, inflammation, chemotaxis, and cell adhesion. Obese men (n = 31), 15 of whom had metabolic syndrome, were placed on a high-fiber, low-fat diet in a 3-wk residential program where food was provided ad libitum and daily aerobic exercise was performed. In each subject, pre- and postintervention fasting blood was drawn for circulating levels of serum lipids, glucose and insulin (for estimation of insulin sensitivity), oxidative stress-generating enzyme myeloperoxidase and marker 8-isoprostaglandin F sub(2 alpha ), the inflammatory protein C-reactive protein, soluble ICAM-1 as an indicator of endothelial activation, sP-selectin as a marker of platelet activation, the chemokine macrophage inflammatory protein-1 alpha , and total matrix metalloproteinase-9. Using subject sera and human aortic endothelial cell culture systems, we measured VCAM-1 cell surface abundance and monocyte chemotactic protein-1, nitric oxide, superoxide, and hydrogen peroxide production in vitro by fluorometric detection. Also determined in vitro was serum-induced, monocyte adhesion and monocyte chemotactic activity. After 3 wk, significant reductions (P < 0.05) in body mass index, all serum lipids and lipid ratios, fasting glucose, insulin, homeostasis model assessment for insulin resistance, myeloperoxidase, 8-isoprostaglandin F sub(2 alpha ), C-reactive protein, soluble ICAM-1, soluble P-selectin, macrophage inflammatory protein-1 alpha , and matrix metalloproteinase-9 were noted. In vitro, serum-stimulated cellular VCAM-1 expression, monocyte chemotactic protein-1 production, and fluorometric detection of superoxide and hydrogen peroxide production decreased, whereas a concomitant increase in NO production was noted (all P < 0.01). Additionally, both monocyte adhesion (P < 0.05) and MCA (P < 0.01) decreased. Nine of 15 were no longer positive for metabolic syndrome postintervention. Intensive lifestyle modification may ameliorate novel coronary artery disease risk factors in men with metabolic syndrome factors before reversal of obesity.
Author Won, Dean
Roberts, Christian K
Pruthi, Sandeep
Vaziri, Nosratola D
Kurtovic, Silvia
Barnard, R. James
Sindhu, Ram K
Author_xml – sequence: 1
  fullname: Roberts, Christian K
– sequence: 2
  fullname: Won, Dean
– sequence: 3
  fullname: Pruthi, Sandeep
– sequence: 4
  fullname: Kurtovic, Silvia
– sequence: 5
  fullname: Sindhu, Ram K
– sequence: 6
  fullname: Vaziri, Nosratola D
– sequence: 7
  fullname: Barnard, R. James
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17729627$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16357066$$D View this record in MEDLINE/PubMed
BookMark eNqFkt2O1CAUgIlZ4_7oKyg3mphMR2BKaS_2wmx21WQ3erFeE0oPWzZtqcDMTt_Ix5TOjK4xMZsQIDnfd4DDOUVHgxsAoTeULCnl7MO9GsdubKdgXbcklFVsyQjhz9BJirKMFoQeoZNScJIJXopjdBrCPSE0zzl9gY5pseKCFMUJ-nlpDOiIncEKh9b5mEXwPW4sRKyGBsMWvLYBsB1SYANDtG7A89jaRkW7ARyihxAWiTCd6ns1Ewt8c_Mtqxa7HL0bnJ4iYN1C76LS0Wo8zxsbp6ThHgb8YGObNlHVrkvhMA2Ndz1gk0Dnw0v03KguwKvDeoa-X13eXnzOrr9--nLx8TrTOWcxo6BNXZqa5kyLQq8KxoXieqXKhlNWNjXXLG-YMKWq60IYoKaGHMqqyjVhvFmdoXf7vKN3P9YQouxt0NB1agC3DrIQZcGoyJ8EqaB5xXmVwNcHcF330MjR2175Sf7-hAS8PQAqaNUZr4ZU8UdOCFYVTCTufM9p70LwYKS2cVft6JXtJCVybg75d3PIXXPIuTmSL_7x_xzxpPl-b7b2rn2wHuQBcnfTLKUERPL0Ij7fkv-fvVp33S1s4yw9OnJszOoX4kvpBQ
CODEN JAPHEV
CitedBy_id crossref_primary_10_1111_j_1365_2362_2009_02091_x
crossref_primary_10_1016_j_ypmed_2008_10_013
crossref_primary_10_1007_s10578_014_0524_9
crossref_primary_10_1016_j_ejim_2011_09_012
crossref_primary_10_1111_j_1463_1326_2007_00692_x
crossref_primary_10_1038_oby_2009_113
crossref_primary_10_1155_2013_729515
crossref_primary_10_29252_jmp_3_71_37
crossref_primary_10_1177_1099800411410870
crossref_primary_10_1016_j_bbi_2021_02_016
crossref_primary_10_1016_j_diabet_2009_11_004
crossref_primary_10_1097_MAJ_0b013e3181c6a980
crossref_primary_10_1016_S0162_0908_08_70143_0
crossref_primary_10_31189_2165_6193_4_1_3
crossref_primary_10_56093_ijans_v86i8_60763
crossref_primary_10_1152_ajpendo_00116_2007
crossref_primary_10_1053_j_gastro_2007_03_059
crossref_primary_10_2217_imt_14_76
crossref_primary_10_1177_1559827609351234
crossref_primary_10_1016_j_atherosclerosis_2014_04_026
crossref_primary_10_1017_S0007114507746871
crossref_primary_10_1111_j_1740_8709_2009_00207_x
crossref_primary_10_1517_14728222_2014_882321
crossref_primary_10_1155_2012_321714
crossref_primary_10_1016_j_metabol_2007_03_009
crossref_primary_10_1038_ncpneph0283
crossref_primary_10_1038_ajh_2008_24
crossref_primary_10_1007_s40279_014_0265_8
crossref_primary_10_1080_07853890600888413
crossref_primary_10_1080_00365510701663350
crossref_primary_10_1038_s41371_018_0055_0
crossref_primary_10_3109_00365510902912747
crossref_primary_10_1097_HJR_0b013e328167239d
crossref_primary_10_1371_journal_pone_0173024
crossref_primary_10_1016_j_numecd_2020_04_012
crossref_primary_10_1186_s12933_017_0638_z
crossref_primary_10_1186_1476_511X_9_148
crossref_primary_10_1080_10623320802228815
crossref_primary_10_1139_cjpp_2016_0663
crossref_primary_10_1093_gerona_63_4_414
crossref_primary_10_1080_13557858_2023_2212147
crossref_primary_10_1016_j_arr_2017_09_001
crossref_primary_10_1007_s00421_009_1140_4
crossref_primary_10_1186_1475_2840_10_42
crossref_primary_10_5402_2012_970629
crossref_primary_10_1016_j_dsx_2017_07_005
crossref_primary_10_1080_07315724_2009_10719803
crossref_primary_10_1016_S1646_3439_12_70008_1
crossref_primary_10_1002_mnfr_201200096
crossref_primary_10_1017_S0007114512005119
crossref_primary_10_1080_07315724_2010_10719814
crossref_primary_10_1007_s12010_014_1351_y
crossref_primary_10_1152_japplphysiol_01586_2005
crossref_primary_10_1113_jphysiol_2013_253195
crossref_primary_10_1152_japplphysiol_00345_2006
crossref_primary_10_1080_08039488_2019_1658126
crossref_primary_10_5812_asjsm_29901
crossref_primary_10_1007_s00421_012_2531_5
crossref_primary_10_1016_j_metabol_2009_07_008
crossref_primary_10_1016_j_scispo_2007_12_014
crossref_primary_10_1038_ejcn_2012_17
crossref_primary_10_1097_HJH_0b013e328165ca67
crossref_primary_10_1111_cbdd_12493
crossref_primary_10_1007_s00392_007_0636_3
crossref_primary_10_1253_circj_CJ_10_0150
crossref_primary_10_1182_asheducation_2018_1_418
crossref_primary_10_1155_2008_767623
crossref_primary_10_1007_s00726_011_0837_y
crossref_primary_10_1161_CIRCULATIONAHA_108_191394
crossref_primary_10_2337_dc18_0049
crossref_primary_10_3389_fimmu_2022_1089621
crossref_primary_10_1152_japplphysiol_00127_2012
crossref_primary_10_1016_j_cardiores_2006_12_006
crossref_primary_10_1016_j_clnu_2006_08_006
crossref_primary_10_1155_2016_6789276
crossref_primary_10_1186_s12889_023_15614_x
crossref_primary_10_4236_jdm_2021_115023
crossref_primary_10_1111_j_1559_4564_2006_05732_x
crossref_primary_10_1157_13109649
crossref_primary_10_1155_2018_3470412
crossref_primary_10_1016_j_amjcard_2007_03_107
crossref_primary_10_1097_HJH_0b013e3282f7677c
crossref_primary_10_1002_pbc_26671
crossref_primary_10_1155_2012_271028
crossref_primary_10_1152_ajpendo_00190_2012
crossref_primary_10_3923_crcpaj_2017_1_16
crossref_primary_10_3390_ijms241310649
crossref_primary_10_1155_2017_2712751
crossref_primary_10_5352_JLS_2010_20_7_1066
crossref_primary_10_2310_JIM_0b013e318294e9da
crossref_primary_10_3389_fphys_2021_751374
crossref_primary_10_1111_j_1600_0838_2006_00631_x
crossref_primary_10_1002_hed_26588
crossref_primary_10_1158_1055_9965_EPI_12_0987
crossref_primary_10_4196_kjpp_2012_16_3_175
crossref_primary_10_1016_j_biopha_2016_06_022
crossref_primary_10_1177_1559827611411646
crossref_primary_10_18632_oncotarget_12330
crossref_primary_10_1038_nutd_2013_30
crossref_primary_10_1002_mnfr_200500170
crossref_primary_10_1177_1357633X14536354
crossref_primary_10_1152_ajpregu_00250_2010
crossref_primary_10_1089_chi_2011_0092
crossref_primary_10_1161_CIRCULATIONAHA_107_710509
crossref_primary_10_1016_j_freeradbiomed_2012_07_015
crossref_primary_10_1016_j_scispo_2009_10_006
crossref_primary_10_1016_j_gastha_2022_05_006
crossref_primary_10_1152_japplphysiol_01080_2011
crossref_primary_10_1161_JAHA_118_010201
crossref_primary_10_1097_MD_0000000000008072
crossref_primary_10_1097_MJT_0b013e3180a724b3
crossref_primary_10_3109_13813455_2012_671333
crossref_primary_10_1007_s00421_015_3308_4
crossref_primary_10_1016_j_lfs_2009_02_026
crossref_primary_10_1016_j_trsl_2012_01_003
crossref_primary_10_18632_oncotarget_16803
crossref_primary_10_1097_HJR_0b013e32833158e4
crossref_primary_10_1159_000479972
crossref_primary_10_1016_j_ijcha_2015_02_003
crossref_primary_10_1007_s12010_014_1231_5
crossref_primary_10_1016_j_bios_2025_117316
crossref_primary_10_1111_bjh_13782
crossref_primary_10_1039_c3fo60207a
crossref_primary_10_1080_13813455_2020_1733026
crossref_primary_10_1186_1471_2458_13_446
crossref_primary_10_1016_j_jnutbio_2013_02_012
crossref_primary_10_3389_fonc_2022_820968
crossref_primary_10_1016_j_metabol_2007_01_011
crossref_primary_10_1042_CS20100015
crossref_primary_10_1186_s40798_015_0031_y
crossref_primary_10_14341_omet12893
crossref_primary_10_1177_1099800411416637
crossref_primary_10_1189_jlb_0607377
crossref_primary_10_1007_s00421_009_1063_0
crossref_primary_10_1111_j_1753_4887_2011_00390_x
crossref_primary_10_1017_S0029665110002533
crossref_primary_10_1186_1472_6793_12_4
crossref_primary_10_1111_jgs_12749
crossref_primary_10_1097_DCR_0000000000001334
crossref_primary_10_1016_j_cger_2009_07_004
crossref_primary_10_1038_s41430_023_01307_6
crossref_primary_10_1002_pmic_200700833
crossref_primary_10_1177_1479164109336375
crossref_primary_10_1371_journal_pone_0066277
crossref_primary_10_1038_sj_ijo_0803794
crossref_primary_10_3389_fonc_2023_1036458
crossref_primary_10_1139_H08_142
crossref_primary_10_1016_j_clinbiochem_2010_04_056
crossref_primary_10_1530_JOE_16_0580
crossref_primary_10_56093_ijans_v86i12_65954
crossref_primary_10_1007_s11357_013_9579_y
crossref_primary_10_4103_bfpt_bfpt_6_18
Cites_doi 10.1161/01.CIR.99.8.993
10.1161/01.ATV.14.11.1751
10.1080/00365510410006054
10.1210/jcem.85.7.6661
10.1161/hc0902.104353
10.1001/jama.1986.03380200073024
10.1074/jbc.M106958200
10.1172/JCI8574
10.1161/01.ATV.0000089012.73180.63
10.1093/clinchem/18.6.499
10.1097/00001648-200209000-00012
10.1016/S0022-2275(20)38461-3
10.1161/01.ATV.21.6.968
10.1001/jama.288.21.2709
10.1172/JCI115532
10.1080/003655102321004495
10.1002/jlb.60.6.692
10.1161/01.ATV.0000030997.02059.BB
10.1097/00041433-200208000-00003
10.1038/34923
10.1161/01.ATV.0000168573.10844.ae
10.1007/s00392-004-0146-5
10.1093/clinchem/47.3.444
10.1172/JCI117342
10.1056/NEJMoa012512
10.4159/harvard.9780674497887
10.1152/japplphysiol.00852.2004
10.1161/01.CIR.0000052617.91920.FD
10.1172/JCI118345
10.1001/jama.287.3.356
10.1161/01.ATV.17.11.2309
10.1161/01.CIR.92.2.197
10.1016/j.metabol.2003.10.016
10.1093/ajcn/53.5.1124
10.1001/archinte.1991.00400070141019
10.1056/NEJM200002173420702
10.1016/S0021-9150(99)00346-9
10.1056/NEJM200003233421202
10.1097/00005768-199905000-00004
10.1093/ajcn/75.3.492
10.1161/01.CIR.0000040584.91836.0D
10.1161/01.CIR.91.9.2488
10.1056/NEJMoa035003
10.1161/01.CIR.103.4.491
10.1016/S0014-5793(98)00440-2
10.1006/jmcc.1997.0497
10.1016/j.freeradbiomed.2004.06.003
10.1161/01.ATV.19.4.972
10.1093/oxfordjournals.aje.a116768
10.1074/jbc.M112400200
10.1001/jama.285.19.2486
10.1161/hc0702.104279
10.1006/abbi.1993.1222
10.1136/jim-51-05-17
10.2337/diacare.26.7.2119
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright_xml – notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TS
7X8
DOI 10.1152/japplphysiol.01292.2005
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Physical Education Index
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Physical Education Index
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE
Physical Education Index
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 1665
ExternalDocumentID 16357066
17729627
10_1152_japplphysiol_01292_2005
jap_100_5_1657
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: F32 HL-68406-01
GroupedDBID -
02
2WC
39C
3O-
4.4
53G
55
5VS
85S
AALRV
ABFLS
ABOCM
ABUFD
ACGFS
ACIWK
ACPRK
ADBBV
ADBIT
AEILP
AENEX
AEULQ
AFDAS
AFRAH
AGCDD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GJ
GX1
H13
H~9
KQ8
L7B
MYA
NEJ
O0-
OHT
OK1
P-O
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
SJN
UHB
UKR
UPT
WH7
WOQ
X
X7M
YCJ
---
-~X
.55
.GJ
18M
1CY
29J
8M5
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ACBEA
ACGFO
ACKIV
ACYGS
ADFNX
ADXHL
AETEA
AFOSN
AGNAY
AI.
AIDAL
AJUXI
BKKCC
BTFSW
C2-
CITATION
EMOBN
ITBOX
J5H
MVM
P6G
RPRKH
TR2
VH1
W8F
XOL
XSW
YBH
YQJ
YQT
YWH
ZXP
~02
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7TS
7X8
ID FETCH-LOGICAL-c452t-1ecfb8fb142c76c36257a5c3a8d5128db5c24d27f8abb67fe1fbe4e8994c025d3
ISSN 8750-7587
IngestDate Fri Jul 11 09:10:48 EDT 2025
Fri Jul 11 02:10:13 EDT 2025
Wed Feb 19 01:45:06 EST 2025
Mon Jul 21 09:16:18 EDT 2025
Tue Jul 01 01:13:16 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Mon May 06 11:51:55 EDT 2019
Tue Jan 05 17:53:17 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Endocrinopathy
Short term
Physical exercise
Oxidative stress
matrix metalloproteinase-9
Cardiovascular disease
Metalloendopeptidases
Lipids
Vascular disease
X Syndrome
Atherosclerosis
Human
cell adhesion molecules
Monocyte
Enzyme
Cell adhesion molecule
Metabolic diseases
Inflammation
Gelatinase B
Feeding
Peptidases
Vertebrata
Mammalia
Diet
Nitric oxide
Hydrolases
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c452t-1ecfb8fb142c76c36257a5c3a8d5128db5c24d27f8abb67fe1fbe4e8994c025d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 16357066
PQID 17149559
PQPubID 23462
PageCount 9
ParticipantIDs crossref_citationtrail_10_1152_japplphysiol_01292_2005
crossref_primary_10_1152_japplphysiol_01292_2005
highwire_physiology_jap_100_5_1657
pascalfrancis_primary_17729627
pubmed_primary_16357066
proquest_miscellaneous_67862174
proquest_miscellaneous_17149559
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-05-01
PublicationDateYYYYMMDD 2006-05-01
PublicationDate_xml – month: 05
  year: 2006
  text: 2006-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2006
Publisher Am Physiological Soc
American Physiological Society
Publisher_xml – name: Am Physiological Soc
– name: American Physiological Society
References R21
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R11
R55
R14
R13
R57
R16
R15
R18
R17
R19
16614361 - J Appl Physiol (1985). 2006 May;100(5):1439-40
References_xml – ident: R55
  doi: 10.1161/01.CIR.99.8.993
– ident: R34
  doi: 10.1161/01.ATV.14.11.1751
– ident: R46
  doi: 10.1080/00365510410006054
– ident: R26
  doi: 10.1210/jcem.85.7.6661
– ident: R33
  doi: 10.1161/hc0902.104353
– ident: R9
  doi: 10.1001/jama.1986.03380200073024
– ident: R22
  doi: 10.1074/jbc.M106958200
– ident: R43
  doi: 10.1172/JCI8574
– ident: R10
  doi: 10.1161/01.ATV.0000089012.73180.63
– ident: R21
  doi: 10.1093/clinchem/18.6.499
– ident: R19
  doi: 10.1097/00001648-200209000-00012
– ident: R18
  doi: 10.1016/S0022-2275(20)38461-3
– ident: R25
  doi: 10.1161/01.ATV.21.6.968
– ident: R32
  doi: 10.1001/jama.288.21.2709
– ident: R40
  doi: 10.1172/JCI115532
– ident: R44
  doi: 10.1080/003655102321004495
– ident: R1
  doi: 10.1002/jlb.60.6.692
– ident: R30
  doi: 10.1161/01.ATV.0000030997.02059.BB
– ident: R39
  doi: 10.1097/00041433-200208000-00003
– ident: R15
  doi: 10.1038/34923
– ident: R13
  doi: 10.1161/01.ATV.0000168573.10844.ae
– ident: R36
  doi: 10.1007/s00392-004-0146-5
– ident: R41
  doi: 10.1093/clinchem/47.3.444
– ident: R12
  doi: 10.1172/JCI117342
– ident: R29
  doi: 10.1056/NEJMoa012512
– ident: R28
  doi: 10.4159/harvard.9780674497887
– ident: R49
  doi: 10.1152/japplphysiol.00852.2004
– ident: R14
  doi: 10.1161/01.CIR.0000052617.91920.FD
– ident: R52
  doi: 10.1172/JCI118345
– ident: R20
  doi: 10.1001/jama.287.3.356
– ident: R42
  doi: 10.1161/01.ATV.17.11.2309
– ident: R11
  doi: 10.1161/01.CIR.92.2.197
– ident: R54
  doi: 10.1016/j.metabol.2003.10.016
– ident: R27
  doi: 10.1093/ajcn/53.5.1124
– ident: R38
– ident: R3
  doi: 10.1001/archinte.1991.00400070141019
– ident: R23
  doi: 10.1056/NEJM200002173420702
– ident: R45
  doi: 10.1016/S0021-9150(99)00346-9
– ident: R48
  doi: 10.1056/NEJM200003233421202
– ident: R6
  doi: 10.1097/00005768-199905000-00004
– ident: R35
  doi: 10.1093/ajcn/75.3.492
– ident: R50
  doi: 10.1161/01.CIR.0000040584.91836.0D
– ident: R5
  doi: 10.1161/01.CIR.91.9.2488
– ident: R7
  doi: 10.1056/NEJMoa035003
– ident: R47
  doi: 10.1161/01.CIR.103.4.491
– ident: R37
  doi: 10.1016/S0014-5793(98)00440-2
– ident: R53
  doi: 10.1006/jmcc.1997.0497
– ident: R2
  doi: 10.1016/j.freeradbiomed.2004.06.003
– ident: R56
  doi: 10.1161/01.ATV.19.4.972
– ident: R31
  doi: 10.1093/oxfordjournals.aje.a116768
– ident: R8
  doi: 10.1074/jbc.M112400200
– ident: R16
  doi: 10.1001/jama.285.19.2486
– ident: R57
  doi: 10.1161/hc0702.104279
– ident: R51
  doi: 10.1006/abbi.1993.1222
– ident: R4
– ident: R17
  doi: 10.1136/jim-51-05-17
– ident: R24
  doi: 10.2337/diacare.26.7.2119
– reference: 16614361 - J Appl Physiol (1985). 2006 May;100(5):1439-40
SSID ssj0014451
Score 2.3060825
Snippet 1 Department of Physiological Science, University of California, Los Angeles; 2 Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew...
The present study was designed to examine the effects of lifestyle modification on key contributing factors to atherogenesis, including oxidative stress,...
SourceID proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1657
SubjectTerms Aged
Biological and medical sciences
Blood Glucose - analysis
C-Reactive Protein - analysis
C-Reactive Protein - physiology
Cell Communication - physiology
Cells, Cultured
Chemokine CCL2 - metabolism
Chemokine CCL2 - physiology
Chemotaxis - physiology
Endothelium, Vascular - pathology
Endothelium, Vascular - physiopathology
Feeding Behavior - physiology
Fundamental and applied biological sciences. Psychology
Humans
Hydrogen Peroxide - metabolism
Inflammation - physiopathology
Insulin - blood
Intercellular Adhesion Molecule-1 - blood
Intercellular Adhesion Molecule-1 - physiology
Lipids - blood
Lipids - physiology
Male
Matrix Metalloproteinase 9 - blood
Matrix Metalloproteinase 9 - physiology
Metabolic Syndrome - blood
Metabolic Syndrome - physiopathology
Metabolic Syndrome - therapy
Middle Aged
Monocytes - pathology
Monocytes - physiology
Motor Activity - physiology
Nitric Oxide - metabolism
Nitric Oxide - physiology
Obesity - blood
Obesity - pathology
Obesity - physiopathology
Oxidative Stress - physiology
P-Selectin - blood
P-Selectin - physiology
Superoxides - metabolism
Vascular Cell Adhesion Molecule-1 - metabolism
Vascular Cell Adhesion Molecule-1 - physiology
Title Effect of a short-term diet and exercise intervention on oxidative stress, inflammation, MMP-9, and monocyte chemotactic activity in men with metabolic syndrome factors
URI http://jap.physiology.org/cgi/content/abstract/100/5/1657
https://www.ncbi.nlm.nih.gov/pubmed/16357066
https://www.proquest.com/docview/17149559
https://www.proquest.com/docview/67862174
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbKkBBfEGy8lJdhIcSXNluaxmnycUKbJlhHEa3YN8t2bFFpa6YtRYxfxC_g93Fnx0kKqwZIUVQldl56j-27y91zhLwWwugMwWvSWAZxykQg5FAERrMsAY3OSJshNz5ODmfxuxN20un8bEUtLUu5o75fm1fyP1KFYyBXzJL9B8nWF4UD8BvkC3uQMOz_SsYV9bBNcbz8Aop0gBNtL59rFzfu6ylZUog6shG3b_PcMX67XBH8o-GBAB0uk9G6SceTIPPBnfBKhboqdQ9kDMK1mVWWh8OWnpgvemdVPjiWpAZcIXW2J0PwNX3W6MGi0oOtj8UxQiF5VJaylpfCBYC36BBwXqo9tJ-Lau5soD65WJa2XnHvE7rJ9Xnrm1VZwPRoT81Pv87F744PH2ZYx4aGAZg7o5XJPAxbqGWtqXmQOCbsP9cMFtlaBfC21ZvuoHfOspSyZpn0oQHHH_jB7OiIT_dPprfI7QjME6yc8f5j8_UKSd-cX9k9YBVXCDfaXXObVa3IM1VjoK64hLFqXJGV9VaQ1Yam98m9Snx0z2HyAenoxSbZ2luIsji7om_opBbmJrkzruI3tsgPh1haGCpog1iKiKUgJ-oRS9uIpbh5xFKH2D5t47VPLVr79hoeq7SFVeqxCt0oYJUiVmmNVeqxSiusPiSzg_3p28OgqhUSqJhFZTDQysjUoEtTjRIFahkbCaaGIs1BpU1zyVQU59HIpELKZGT0wEgd6zTLYgVqfz58RDYWxUI_ITSEs9KMzDANVZxIMIGkDOVAaSZVFuZxlyReVlxVRPpYz-WUW4OaRbwtZG6FjNVeWZeEdcdzxyVzc5cdDwbeDEOO7qkpoBK7AeI544hufp6bLnl1XQdox5uGXbK9gqvmadDWTiJo8NIDjcNyg98QxUIXy0togS4Vlq1vAdpvgn6OLnnsENpcHbkvwcR5emPfZ-RuM-Kfk43yYqlfgPJfym070n4B84ETSw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+a+short-term+diet+and+exercise+intervention+on+oxidative+stress%2C+inflammation%2C+MMP-9%2C+and+monocyte+chemotactic+activity+in+men+with+metabolic+syndrome+factors&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Roberts%2C+Christian+K&rft.au=Won%2C+Dean&rft.au=Pruthi%2C+Sandeep&rft.au=Kurtovic%2C+Silvia&rft.date=2006-05-01&rft.issn=8750-7587&rft.volume=100&rft.issue=5&rft.spage=1657&rft_id=info:doi/10.1152%2Fjapplphysiol.01292.2005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon