Newton's cradle: Cell cycle regulation by two mutually inhibitory oscillators

•Two doubly amplified, negative feedback oscillators control the cell division cycle.•They drive alternating phases of chromosome replication and segregation.•Mutual inhibition between the two oscillators is responsible for their alternation.•Arrest of one oscillator may lead to endocycles or to che...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences Vol. 377; pp. 109291 - None
Main Authors Dragoi, Calin-Mihai, Tyson, John J., Novák, Béla
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2024
American Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Two doubly amplified, negative feedback oscillators control the cell division cycle.•They drive alternating phases of chromosome replication and segregation.•Mutual inhibition between the two oscillators is responsible for their alternation.•Arrest of one oscillator may lead to endocycles or to checkpoint arrest of the cycle.•A ‘toy’ model (4 ODEs) captures all essential dynamical features of the cell cycle. The cell division cycle is a fundamental physiological process displaying a great degree of plasticity during the course of multicellular development. This plasticity is evident in the transition from rapid and stringently-timed divisions of the early embryo to subsequent size-controlled mitotic cycles. Later in development, cells may pause and restart proliferation in response to myriads of internal or external signals, or permanently exit the cell cycle following terminal differentiation or senescence. Beyond this, cells can undergo modified cell division variants, such as endoreplication, which increases their ploidy, or meiosis, which reduces their ploidy. This wealth of behaviours has led to numerous conceptual analogies intended as frameworks for understanding the proliferative program. Here, we aim to unify these mechanisms under one dynamical paradigm. To this end, we take a control theoretical approach to frame the cell cycle as a pair of arrestable and mutually-inhibiting, doubly amplified, negative feedback oscillators controlling chromosome replication and segregation events, respectively. Under appropriate conditions, this framework can reproduce fixed-period oscillations, checkpoint arrests of variable duration, and endocycles. Subsequently, we use phase plane and bifurcation analysis to explain the dynamical basis of these properties. Then, using a physiologically realistic, biochemical model, we show that the very same regulatory structure underpins the diverse functions of the cell cycle control network. We conclude that Newton's cradle may be a suitable mechanical analogy of how the cell cycle is regulated. [Display omitted]
AbstractList The cell division cycle is a fundamental physiological process displaying a great degree of plasticity during the course of multicellular development. This plasticity is evident in the transition from rapid and stringently-timed divisions of the early embryo to subsequent size-controlled mitotic cycles. Later in development, cells may pause and restart proliferation in response to myriads of internal or external signals, or permanently exit the cell cycle following terminal differentiation or senescence. Beyond this, cells can undergo modified cell division variants, such as endoreplication, which increases their ploidy, or meiosis, which reduces their ploidy. This wealth of behaviours has led to numerous conceptual analogies intended as frameworks for understanding the proliferative program. Here, we aim to unify these mechanisms under one dynamical paradigm. To this end, we take a control theoretical approach to frame the cell cycle as a pair of arrestable and mutually-inhibiting, doubly amplified, negative feedback oscillators controlling chromosome replication and segregation events, respectively. Under appropriate conditions, this framework can reproduce fixed-period oscillations, checkpoint arrests of variable duration, and endocycles. Subsequently, we use phase plane and bifurcation analysis to explain the dynamical basis of these properties. Then, using a physiologically realistic, biochemical model, we show that the very same regulatory structure underpins the diverse functions of the cell cycle control network. We conclude that Newton's cradle may be a suitable mechanical analogy of how the cell cycle is regulated.
•Two doubly amplified, negative feedback oscillators control the cell division cycle.•They drive alternating phases of chromosome replication and segregation.•Mutual inhibition between the two oscillators is responsible for their alternation.•Arrest of one oscillator may lead to endocycles or to checkpoint arrest of the cycle.•A ‘toy’ model (4 ODEs) captures all essential dynamical features of the cell cycle. The cell division cycle is a fundamental physiological process displaying a great degree of plasticity during the course of multicellular development. This plasticity is evident in the transition from rapid and stringently-timed divisions of the early embryo to subsequent size-controlled mitotic cycles. Later in development, cells may pause and restart proliferation in response to myriads of internal or external signals, or permanently exit the cell cycle following terminal differentiation or senescence. Beyond this, cells can undergo modified cell division variants, such as endoreplication, which increases their ploidy, or meiosis, which reduces their ploidy. This wealth of behaviours has led to numerous conceptual analogies intended as frameworks for understanding the proliferative program. Here, we aim to unify these mechanisms under one dynamical paradigm. To this end, we take a control theoretical approach to frame the cell cycle as a pair of arrestable and mutually-inhibiting, doubly amplified, negative feedback oscillators controlling chromosome replication and segregation events, respectively. Under appropriate conditions, this framework can reproduce fixed-period oscillations, checkpoint arrests of variable duration, and endocycles. Subsequently, we use phase plane and bifurcation analysis to explain the dynamical basis of these properties. Then, using a physiologically realistic, biochemical model, we show that the very same regulatory structure underpins the diverse functions of the cell cycle control network. We conclude that Newton's cradle may be a suitable mechanical analogy of how the cell cycle is regulated. [Display omitted]
The cell division cycle is a fundamental physiological process displaying a great degree of plasticity during the course of multicellular development. This plasticity is evident in the transition from rapid and stringently-timed divisions of the early embryo to subsequent size-controlled mitotic cycles. Later in development, cells may pause and restart proliferation in response to myriads of internal or external signals, or permanently exit the cell cycle following terminal differentiation or senescence. Beyond this, cells can undergo modified cell division variants, such as endoreplication, which increases their ploidy, or meiosis, which reduces their ploidy. This wealth of behaviours has led to numerous conceptual analogies intended as frameworks for understanding the proliferative program. Here, we aim to unify these mechanisms under one dynamical paradigm. To this end, we take a control theoretical approach to frame the cell cycle as a pair of arrestable and mutually-inhibiting, doubly amplified, negative feedback oscillators controlling chromosome replication and segregation events, respectively. Under appropriate conditions, this framework can reproduce fixed-period oscillations, checkpoint arrests of variable duration, and endocycles. Subsequently, we use phase plane and bifurcation analysis to explain the dynamical basis of these properties. Then, using a physiologically realistic, biochemical model, we show that the very same regulatory structure underpins the diverse functions of the cell cycle control network. We conclude that Newton's cradle may be a suitable mechanical analogy of how the cell cycle is regulated.The cell division cycle is a fundamental physiological process displaying a great degree of plasticity during the course of multicellular development. This plasticity is evident in the transition from rapid and stringently-timed divisions of the early embryo to subsequent size-controlled mitotic cycles. Later in development, cells may pause and restart proliferation in response to myriads of internal or external signals, or permanently exit the cell cycle following terminal differentiation or senescence. Beyond this, cells can undergo modified cell division variants, such as endoreplication, which increases their ploidy, or meiosis, which reduces their ploidy. This wealth of behaviours has led to numerous conceptual analogies intended as frameworks for understanding the proliferative program. Here, we aim to unify these mechanisms under one dynamical paradigm. To this end, we take a control theoretical approach to frame the cell cycle as a pair of arrestable and mutually-inhibiting, doubly amplified, negative feedback oscillators controlling chromosome replication and segregation events, respectively. Under appropriate conditions, this framework can reproduce fixed-period oscillations, checkpoint arrests of variable duration, and endocycles. Subsequently, we use phase plane and bifurcation analysis to explain the dynamical basis of these properties. Then, using a physiologically realistic, biochemical model, we show that the very same regulatory structure underpins the diverse functions of the cell cycle control network. We conclude that Newton's cradle may be a suitable mechanical analogy of how the cell cycle is regulated.
• Two doubly amplified, negative feedback oscillators control the cell division cycle. • They drive alternating phases of chromosome replication and segregation. • Mutual inhibition between the two oscillators is responsible for their alternation. • Arrest of one oscillator may lead to endocycles or to checkpoint arrest of the cycle. • A ‘toy’ model (4 ODEs) captures all essential dynamical features of the cell cycle. The cell division cycle is a fundamental physiological process displaying a great degree of plasticity during the course of multicellular development. This plasticity is evident in the transition from rapid and stringently-timed divisions of the early embryo to subsequent size-controlled mitotic cycles. Later in development, cells may pause and restart proliferation in response to myriads of internal or external signals, or permanently exit the cell cycle following terminal differentiation or senescence. Beyond this, cells can undergo modified cell division variants, such as endoreplication, which increases their ploidy, or meiosis, which reduces their ploidy. This wealth of behaviours has led to numerous conceptual analogies intended as frameworks for understanding the proliferative program. Here, we aim to unify these mechanisms under one dynamical paradigm. To this end, we take a control theoretical approach to frame the cell cycle as a pair of arrestable and mutually-inhibiting, doubly amplified, negative feedback oscillators controlling chromosome replication and segregation events, respectively. Under appropriate conditions, this framework can reproduce fixed-period oscillations, checkpoint arrests of variable duration, and endocycles. Subsequently, we use phase plane and bifurcation analysis to explain the dynamical basis of these properties. Then, using a physiologically realistic, biochemical model, we show that the very same regulatory structure underpins the diverse functions of the cell cycle control network. We conclude that Newton's cradle may be a suitable mechanical analogy of how the cell cycle is regulated. Image, graphical abstract
ArticleNumber 109291
Author Dragoi, Calin-Mihai
Novák, Béla
Tyson, John J.
Author_xml – sequence: 1
  givenname: Calin-Mihai
  surname: Dragoi
  fullname: Dragoi, Calin-Mihai
  organization: Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
– sequence: 2
  givenname: John J.
  surname: Tyson
  fullname: Tyson, John J.
  organization: Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
– sequence: 3
  givenname: Béla
  orcidid: 0000-0002-6961-1366
  surname: Novák
  fullname: Novák, Béla
  email: bela.novak@bioch.ox.ac.uk
  organization: Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39241924$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URKeFH8AGZQebDLl-xAksKjTiJRXYwNpynJvWI8cuttMq_x6XKRWw6MKyLH_nXPucE3Lkg0dCnkOzhQba1_vtPKQtbSgv55728IhsoJN9zYDxI7JpGipqIVp-TE5S2jcNSID2CTlmPeVQ1oZ8-Yo3OfiXqTJRjw7fVDt0rjKrcVhFvFiczjb4alirfBOqecmLdm6trL-0g80hrlVIxrqChZiekseTdgmf3e2n5MeH9993n-rzbx8_796d14YLmmsYKBux5yCkNNIw0XaTHNtJi16OE8VW0oHB1PGGTtK0QggEDsNIOzNo3XfslJwdfK-WYcbRoM9RO3UV7azjqoK26t8bby_VRbhWQCmVDHhxeHXnEMPPBVNWs02mfF17DEtSrAQse06FLOiLv4fdT_kTYgHgAJgYUoo43SPQqNui1F6VotRtUepQVNHI_zTG5t9Rl_da96Dy7UGJJeBri1GV_NEbHG1Ek9UY7APqX-2Drek
CitedBy_id crossref_primary_10_1016_j_mbs_2025_109396
Cites_doi 10.1016/S0022-5193(75)80108-1
10.1038/nrm2530
10.1242/jcs.261364
10.1529/biophysj.106.081240
10.1242/jcs.86.1.191
10.1128/MCB.00669-09
10.1038/ncb1711
10.1016/S0092-8674(01)00334-8
10.1016/0303-2647(90)90001-H
10.1007/BF00268085
10.1016/j.cub.2022.04.016
10.1126/science.2683077
10.1016/0168-9525(96)10041-X
10.1016/j.cels.2019.09.003
10.1093/emboj/cdg627
10.1016/j.molcel.2016.11.018
10.1083/jcb.201002026
10.1038/nature06955
10.1126/science.183.4120.46
10.1073/pnas.88.20.9107
10.1038/43927
10.1016/j.bbcan.2020.188408
10.1091/mbc.e08-02-0172
10.1126/science.1825521
10.4161/cc.2.4.468
10.1016/j.ceb.2020.12.003
10.1016/j.cell.2010.03.021
10.1083/jcb.98.4.1247
10.1091/mbc.e17-06-0349
10.1371/journal.pcbi.1008258
10.1016/0022-5193(75)90034-X
10.1098/rsob.120179
10.1073/pnas.0305937101
10.1091/mbc.e03-11-0794
10.1016/S0092-8674(94)90542-8
10.1016/j.cub.2016.10.022
10.1016/j.coisb.2018.02.004
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.mbs.2024.109291
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1879-3134
EndPage None
ExternalDocumentID PMC12227314
39241924
10_1016_j_mbs_2024_109291
S0025556424001512
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.GJ
.~1
0R~
186
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABTAH
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFJKZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMJ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LW9
M26
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SME
SPCBC
SSA
SSZ
T5K
TN5
UNMZH
WH7
WUQ
XOL
XSW
YQT
ZCG
ZGI
ZXP
ZY4
~G-
~KM
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AETEA
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c452t-1b23de941577c7c3568f7d6fa597df2e672b31f8402f7c6555e141bd28cbaa983
IEDL.DBID .~1
ISSN 0025-5564
1879-3134
IngestDate Thu Aug 21 18:22:33 EDT 2025
Fri Jul 11 02:17:11 EDT 2025
Tue Jul 08 01:40:58 EDT 2025
Thu Jul 10 07:53:55 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Sat Nov 02 15:59:11 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Oscillations
Endocycles
Cell cycle
Checkpoints
Bistability
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-1b23de941577c7c3568f7d6fa597df2e672b31f8402f7c6555e141bd28cbaa983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6961-1366
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0025556424001512
PMID 39241924
PQID 3101794257
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12227314
proquest_miscellaneous_3101794257
pubmed_primary_39241924
crossref_primary_10_1016_j_mbs_2024_109291
crossref_citationtrail_10_1016_j_mbs_2024_109291
elsevier_sciencedirect_doi_10_1016_j_mbs_2024_109291
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-Nov
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Mathematical biosciences
PublicationTitleAlternate Math Biosci
PublicationYear 2024
Publisher Elsevier Inc
American Elsevier
Publisher_xml – name: Elsevier Inc
– name: American Elsevier
References Csikasz-Nagy, Battogtokh, Chen, Novak, Tyson (bib0026) 2006; 90
Moein, Adibi, da Silva Meirelles, Nardi, Gheisari (bib0007) 2020; 1874
Gerhart, Wu, Kirschner (bib0016) 1984; 98
Morgan (bib0001) 2007
Lu, Cross (bib0003) 2010; 141
Novak, Heldt, Tyson (bib0035) 2018; 9
Ozsezen, Papagiannakis, Chen, Niebel, Milias-Argeitis, Heinemann (bib0025) 2019; 9
Woo, Poon (bib0034) 2003; 2
Novak, Mitchison (bib0021) 1986; 86
Kim, Tyson (bib0041) 2020; 16
Novak, Tyson (bib0030) 2022; 32
Yao, Lee, Mori, Nevins, You (bib0033) 2008; 10
Murray, Kirschner (bib0008) 1989; 246
Ma, Tsang, Marxer, Poon (bib0004) 2009; 29
Hartwell, Culotti, Pringle, Reid (bib0011) 1974; 183
Chen, Calzone, Csikasz-Nagy, Cross, Novak, Tyson (bib0027) 2004; 15
Novak, Tyson (bib0036) 2021; 69
Xu, Sheppard, Peng, Yee, Piwnica-Worms (bib0037) 1994; 14
Edgar, Orr-Weaver (bib0006) 2001; 105
Norel, Agur (bib0018) 1991; 251
Haase, Reed (bib0020) 1999; 401
Hyver, Guyader (bib0017) 1990; 24
Manzoni, Montani, Visintin, Caudron, Ciliberto, Visintin (bib0024) 2010; 190
Kraft, Herzog, Gieffers, Mechtler, Hagting, Pines, Peters (bib0038) 2003; 22
Pomerening, Ubersax, Ferrell (bib0005) 2008; 19
Mochida, Rata, Hino, Nagai, Novak (bib0040) 2016; 26
Nurse, Thuriaux, Nasmyth (bib0012) 1976; 146
Dragoi, Kaur, Barr, Tyson, Novak (bib0031) 2024; 137
Gilbert (bib0014) 1974; 5
Li, Long, Lu, Ouyang, Tang (bib0013) 2004; 101
Goldbeter (bib0019) 1991; 88
Papagiannakis, Niebel, Wit, Heinemann (bib0022) 2017; 65
Verdugo, Vinod, Tyson, Novak (bib0028) 2013; 3
Fantes, Grant, Pritchard, Sudbery, Wheals (bib0010) 1975; 50
Nasmyth (bib0032) 1996; 12
Hopkins, Tyson, Novak (bib0029) 2017; 28
Mitchison (bib0009) 1971
Kauffman, Wille (bib0015) 1975; 55
Novak, Tyson (bib0039) 2008; 9
Orlando, Lin, Bernard, Wang, Socolar, Iversen, Hartemink, Haase (bib0023) 2008; 453
Hayles, Fisher, Woollard, Nurse (bib0002) 1994; 78
Hyver (10.1016/j.mbs.2024.109291_bib0017) 1990; 24
Woo (10.1016/j.mbs.2024.109291_bib0034) 2003; 2
Chen (10.1016/j.mbs.2024.109291_bib0027) 2004; 15
Novak (10.1016/j.mbs.2024.109291_bib0036) 2021; 69
Mochida (10.1016/j.mbs.2024.109291_bib0040) 2016; 26
Mitchison (10.1016/j.mbs.2024.109291_bib0009) 1971
Dragoi (10.1016/j.mbs.2024.109291_bib0031) 2024; 137
Ma (10.1016/j.mbs.2024.109291_bib0004) 2009; 29
Norel (10.1016/j.mbs.2024.109291_bib0018) 1991; 251
Gerhart (10.1016/j.mbs.2024.109291_bib0016) 1984; 98
Fantes (10.1016/j.mbs.2024.109291_bib0010) 1975; 50
Csikasz-Nagy (10.1016/j.mbs.2024.109291_bib0026) 2006; 90
Verdugo (10.1016/j.mbs.2024.109291_bib0028) 2013; 3
Lu (10.1016/j.mbs.2024.109291_bib0003) 2010; 141
Edgar (10.1016/j.mbs.2024.109291_bib0006) 2001; 105
Nasmyth (10.1016/j.mbs.2024.109291_bib0032) 1996; 12
Orlando (10.1016/j.mbs.2024.109291_bib0023) 2008; 453
Novak (10.1016/j.mbs.2024.109291_bib0021) 1986; 86
Papagiannakis (10.1016/j.mbs.2024.109291_bib0022) 2017; 65
Novak (10.1016/j.mbs.2024.109291_bib0035) 2018; 9
Pomerening (10.1016/j.mbs.2024.109291_bib0005) 2008; 19
Hartwell (10.1016/j.mbs.2024.109291_bib0011) 1974; 183
Kim (10.1016/j.mbs.2024.109291_bib0041) 2020; 16
Yao (10.1016/j.mbs.2024.109291_bib0033) 2008; 10
Gilbert (10.1016/j.mbs.2024.109291_bib0014) 1974; 5
Murray (10.1016/j.mbs.2024.109291_bib0008) 1989; 246
Manzoni (10.1016/j.mbs.2024.109291_bib0024) 2010; 190
Hopkins (10.1016/j.mbs.2024.109291_bib0029) 2017; 28
Kauffman (10.1016/j.mbs.2024.109291_bib0015) 1975; 55
Hayles (10.1016/j.mbs.2024.109291_bib0002) 1994; 78
Kraft (10.1016/j.mbs.2024.109291_bib0038) 2003; 22
Novak (10.1016/j.mbs.2024.109291_bib0030) 2022; 32
Novak (10.1016/j.mbs.2024.109291_bib0039) 2008; 9
Moein (10.1016/j.mbs.2024.109291_bib0007) 2020; 1874
Xu (10.1016/j.mbs.2024.109291_bib0037) 1994; 14
Li (10.1016/j.mbs.2024.109291_bib0013) 2004; 101
Goldbeter (10.1016/j.mbs.2024.109291_bib0019) 1991; 88
Ozsezen (10.1016/j.mbs.2024.109291_bib0025) 2019; 9
Nurse (10.1016/j.mbs.2024.109291_bib0012) 1976; 146
Morgan (10.1016/j.mbs.2024.109291_bib0001) 2007
Haase (10.1016/j.mbs.2024.109291_bib0020) 1999; 401
References_xml – volume: 3
  year: 2013
  ident: bib0028
  article-title: Molecular mechanisms creating bistable switches at cell cycle transitions
  publication-title: Open Biol.
– volume: 86
  start-page: 191
  year: 1986
  end-page: 206
  ident: bib0021
  article-title: Change in the rate of CO2 production in synchronous cultures of the fission yeast Schizosaccharomyces pombe: a periodic cell cycle event that persists after the DNA-division cycle has been blocked
  publication-title: J. Cell Sci.
– volume: 90
  start-page: 4361
  year: 2006
  end-page: 4379
  ident: bib0026
  article-title: Analysis of a generic model of eukaryotic cell-cycle regulation
  publication-title: Biophys. J.
– volume: 29
  start-page: 6500
  year: 2009
  end-page: 6514
  ident: bib0004
  article-title: Cyclin A2-cyclin-dependent kinase 2 cooperates with the PLK1-SCFbeta-TrCP1-EMI1-anaphase-promoting complex/cyclosome axis to promote genome reduplication in the absence of mitosis
  publication-title: Mol. Cell Biol.
– volume: 55
  start-page: 47
  year: 1975
  end-page: 93
  ident: bib0015
  article-title: The mitotic oscillator in Physarum polycephalum
  publication-title: J. Theor. Biol.
– volume: 14
  start-page: 8420
  year: 1994
  end-page: 8431
  ident: bib0037
  article-title: Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation
  publication-title: Mol. Cell Biol.
– volume: 101
  start-page: 4781
  year: 2004
  end-page: 4786
  ident: bib0013
  article-title: The yeast cell-cycle network is robustly designed
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 69
  start-page: 7
  year: 2021
  end-page: 16
  ident: bib0036
  article-title: Mechanisms of signalling-memory governing progression through the eukaryotic cell cycle
  publication-title: Curr. Opin. Cell Biol.
– volume: 9
  start-page: 981
  year: 2008
  end-page: 991
  ident: bib0039
  article-title: Design principles of biochemical oscillators
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 401
  start-page: 394
  year: 1999
  end-page: 397
  ident: bib0020
  article-title: Evidence that a free-running oscillator drives G1 events in the budding yeast cell cycle
  publication-title: Nature
– volume: 5
  start-page: 197
  year: 1974
  end-page: 206
  ident: bib0014
  article-title: The nature of the cell cycle and the control of cell proliferation
  publication-title: Curr. Mod. Biol.
– volume: 19
  start-page: 3426
  year: 2008
  end-page: 3441
  ident: bib0005
  article-title: Rapid cycling and precocious termination of G1 phase in cells expressing CDK1AF
  publication-title: Mol. Biol. Cell
– volume: 24
  start-page: 85
  year: 1990
  end-page: 90
  ident: bib0017
  article-title: MPF and cyclin: modelling of the cell cycle minimum oscillator
  publication-title: Biosystems
– volume: 9
  start-page: 354
  year: 2019
  end-page: 365.e6
  ident: bib0025
  article-title: Inference of the high-level interaction topology between the metabolic and cell-cycle oscillators from single-cell dynamics
  publication-title: Cell Syst.
– volume: 453
  start-page: 944
  year: 2008
  end-page: 947
  ident: bib0023
  article-title: Global control of cell-cycle transcription by coupled CDK and network oscillators
  publication-title: Nature
– volume: 22
  start-page: 6598
  year: 2003
  end-page: 6609
  ident: bib0038
  article-title: Mitotic regulation of the human anaphase-promoting complex by phosphorylation
  publication-title: EMBO J.
– year: 2007
  ident: bib0001
  article-title: The Cell Cycle: Principles of Control
– volume: 78
  start-page: 813
  year: 1994
  end-page: 822
  ident: bib0002
  article-title: Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc2-mitotic B cyclin complex
  publication-title: Cell
– volume: 146
  start-page: 167
  year: 1976
  end-page: 178
  ident: bib0012
  article-title: Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe
  publication-title: Mol. Gen. Genet.
– volume: 26
  start-page: 3361
  year: 2016
  end-page: 3367
  ident: bib0040
  article-title: Two bistable switches Govern M phase entry
  publication-title: Curr. Biol.
– volume: 16
  year: 2020
  ident: bib0041
  article-title: Misuse of the Michaelis-Menten rate law for protein interaction networks and its remedy
  publication-title: PLoS Comput. Biol.
– volume: 183
  start-page: 46
  year: 1974
  end-page: 51
  ident: bib0011
  article-title: Genetic control of the cell division cycle in yeast
  publication-title: Science
– volume: 50
  start-page: 213
  year: 1975
  end-page: 244
  ident: bib0010
  article-title: The regulation of cell size and the control of mitosis
  publication-title: J. Theor. Biol.
– volume: 141
  start-page: 268
  year: 2010
  end-page: 279
  ident: bib0003
  article-title: Periodic cyclin-Cdk activity entrains an autonomous Cdc14 release oscillator
  publication-title: Cell
– volume: 65
  start-page: 285
  year: 2017
  end-page: 295
  ident: bib0022
  article-title: Autonomous metabolic oscillations robustly gate the early and late cell cycle
  publication-title: Mol. Cell
– volume: 28
  start-page: 3437
  year: 2017
  end-page: 3446
  ident: bib0029
  article-title: Cell-cycle transitions: a common role for stoichiometric inhibitors
  publication-title: Mol. Biol. Cell
– volume: 251
  start-page: 1076
  year: 1991
  end-page: 1078
  ident: bib0018
  article-title: A model for the adjustment of the mitotic clock by cyclin and MPF levels
  publication-title: Science
– volume: 88
  start-page: 9107
  year: 1991
  end-page: 9111
  ident: bib0019
  article-title: A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 1874
  year: 2020
  ident: bib0007
  article-title: Cancer regeneration: polyploid cells are the key drivers of tumor progression
  publication-title: Biochim. Biophys. Acta Rev. Cancer
– volume: 105
  start-page: 297
  year: 2001
  end-page: 306
  ident: bib0006
  article-title: Endoreplication cell cycles: more for less
  publication-title: Cell
– volume: 98
  start-page: 1247
  year: 1984
  end-page: 1255
  ident: bib0016
  article-title: Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs
  publication-title: J. Cell Biol.
– year: 1971
  ident: bib0009
  article-title: The Biology of the Cell Cycle
– volume: 12
  start-page: 405
  year: 1996
  end-page: 412
  ident: bib0032
  article-title: At the heart of the budding yeast cell cycle
  publication-title: Trends Genet.
– volume: 190
  start-page: 209
  year: 2010
  end-page: 222
  ident: bib0024
  article-title: Oscillations in Cdc14 release and sequestration reveal a circuit underlying mitotic exit
  publication-title: J. Cell Biol.
– volume: 2
  start-page: 316
  year: 2003
  end-page: 324
  ident: bib0034
  article-title: Cyclin-dependent kinases and S phase control in mammalian cells
  publication-title: Cell Cycle
– volume: 32
  start-page: 2780
  year: 2022
  end-page: 2785.e2
  ident: bib0030
  article-title: Mitotic kinase oscillation governs the latching of cell cycle switches
  publication-title: Curr. Biol.
– volume: 9
  start-page: 22
  year: 2018
  end-page: 31
  ident: bib0035
  article-title: Genome stability during cell proliferation: a systems analysis of the molecular mechanisms controlling progression through the eukaryotic cell cycle
  publication-title: Curr. Opin. Syst. Biol.
– volume: 10
  start-page: 476
  year: 2008
  end-page: 482
  ident: bib0033
  article-title: A bistable Rb-E2F switch underlies the restriction point
  publication-title: Nat. Cell Biol.
– volume: 137
  year: 2024
  ident: bib0031
  article-title: The oscillation of mitotic kinase governs cell cycle latches in mammalian cells
  publication-title: J. Cell Sci.
– volume: 246
  start-page: 614
  year: 1989
  end-page: 621
  ident: bib0008
  article-title: Dominoes and clocks: the union of two views of the cell cycle
  publication-title: Science
– volume: 15
  start-page: 3841
  year: 2004
  end-page: 3862
  ident: bib0027
  article-title: Integrative analysis of cell cycle control in budding yeast
  publication-title: Mol. Biol. Cell
– volume: 55
  start-page: 47
  year: 1975
  ident: 10.1016/j.mbs.2024.109291_bib0015
  article-title: The mitotic oscillator in Physarum polycephalum
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(75)80108-1
– volume: 9
  start-page: 981
  year: 2008
  ident: 10.1016/j.mbs.2024.109291_bib0039
  article-title: Design principles of biochemical oscillators
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2530
– volume: 137
  year: 2024
  ident: 10.1016/j.mbs.2024.109291_bib0031
  article-title: The oscillation of mitotic kinase governs cell cycle latches in mammalian cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.261364
– volume: 90
  start-page: 4361
  year: 2006
  ident: 10.1016/j.mbs.2024.109291_bib0026
  article-title: Analysis of a generic model of eukaryotic cell-cycle regulation
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.081240
– volume: 86
  start-page: 191
  year: 1986
  ident: 10.1016/j.mbs.2024.109291_bib0021
  article-title: Change in the rate of CO2 production in synchronous cultures of the fission yeast Schizosaccharomyces pombe: a periodic cell cycle event that persists after the DNA-division cycle has been blocked
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.86.1.191
– volume: 29
  start-page: 6500
  year: 2009
  ident: 10.1016/j.mbs.2024.109291_bib0004
  article-title: Cyclin A2-cyclin-dependent kinase 2 cooperates with the PLK1-SCFbeta-TrCP1-EMI1-anaphase-promoting complex/cyclosome axis to promote genome reduplication in the absence of mitosis
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00669-09
– year: 2007
  ident: 10.1016/j.mbs.2024.109291_bib0001
– volume: 10
  start-page: 476
  year: 2008
  ident: 10.1016/j.mbs.2024.109291_bib0033
  article-title: A bistable Rb-E2F switch underlies the restriction point
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1711
– volume: 105
  start-page: 297
  year: 2001
  ident: 10.1016/j.mbs.2024.109291_bib0006
  article-title: Endoreplication cell cycles: more for less
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00334-8
– volume: 24
  start-page: 85
  year: 1990
  ident: 10.1016/j.mbs.2024.109291_bib0017
  article-title: MPF and cyclin: modelling of the cell cycle minimum oscillator
  publication-title: Biosystems
  doi: 10.1016/0303-2647(90)90001-H
– volume: 146
  start-page: 167
  year: 1976
  ident: 10.1016/j.mbs.2024.109291_bib0012
  article-title: Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00268085
– volume: 32
  start-page: 2780
  year: 2022
  ident: 10.1016/j.mbs.2024.109291_bib0030
  article-title: Mitotic kinase oscillation governs the latching of cell cycle switches
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2022.04.016
– volume: 246
  start-page: 614
  year: 1989
  ident: 10.1016/j.mbs.2024.109291_bib0008
  article-title: Dominoes and clocks: the union of two views of the cell cycle
  publication-title: Science
  doi: 10.1126/science.2683077
– volume: 12
  start-page: 405
  year: 1996
  ident: 10.1016/j.mbs.2024.109291_bib0032
  article-title: At the heart of the budding yeast cell cycle
  publication-title: Trends Genet.
  doi: 10.1016/0168-9525(96)10041-X
– volume: 5
  start-page: 197
  year: 1974
  ident: 10.1016/j.mbs.2024.109291_bib0014
  article-title: The nature of the cell cycle and the control of cell proliferation
  publication-title: Curr. Mod. Biol.
– year: 1971
  ident: 10.1016/j.mbs.2024.109291_bib0009
– volume: 9
  start-page: 354
  year: 2019
  ident: 10.1016/j.mbs.2024.109291_bib0025
  article-title: Inference of the high-level interaction topology between the metabolic and cell-cycle oscillators from single-cell dynamics
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2019.09.003
– volume: 22
  start-page: 6598
  year: 2003
  ident: 10.1016/j.mbs.2024.109291_bib0038
  article-title: Mitotic regulation of the human anaphase-promoting complex by phosphorylation
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg627
– volume: 65
  start-page: 285
  year: 2017
  ident: 10.1016/j.mbs.2024.109291_bib0022
  article-title: Autonomous metabolic oscillations robustly gate the early and late cell cycle
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.11.018
– volume: 190
  start-page: 209
  year: 2010
  ident: 10.1016/j.mbs.2024.109291_bib0024
  article-title: Oscillations in Cdc14 release and sequestration reveal a circuit underlying mitotic exit
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201002026
– volume: 453
  start-page: 944
  year: 2008
  ident: 10.1016/j.mbs.2024.109291_bib0023
  article-title: Global control of cell-cycle transcription by coupled CDK and network oscillators
  publication-title: Nature
  doi: 10.1038/nature06955
– volume: 183
  start-page: 46
  year: 1974
  ident: 10.1016/j.mbs.2024.109291_bib0011
  article-title: Genetic control of the cell division cycle in yeast
  publication-title: Science
  doi: 10.1126/science.183.4120.46
– volume: 88
  start-page: 9107
  year: 1991
  ident: 10.1016/j.mbs.2024.109291_bib0019
  article-title: A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.88.20.9107
– volume: 401
  start-page: 394
  year: 1999
  ident: 10.1016/j.mbs.2024.109291_bib0020
  article-title: Evidence that a free-running oscillator drives G1 events in the budding yeast cell cycle
  publication-title: Nature
  doi: 10.1038/43927
– volume: 1874
  year: 2020
  ident: 10.1016/j.mbs.2024.109291_bib0007
  article-title: Cancer regeneration: polyploid cells are the key drivers of tumor progression
  publication-title: Biochim. Biophys. Acta Rev. Cancer
  doi: 10.1016/j.bbcan.2020.188408
– volume: 19
  start-page: 3426
  year: 2008
  ident: 10.1016/j.mbs.2024.109291_bib0005
  article-title: Rapid cycling and precocious termination of G1 phase in cells expressing CDK1AF
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e08-02-0172
– volume: 251
  start-page: 1076
  year: 1991
  ident: 10.1016/j.mbs.2024.109291_bib0018
  article-title: A model for the adjustment of the mitotic clock by cyclin and MPF levels
  publication-title: Science
  doi: 10.1126/science.1825521
– volume: 2
  start-page: 316
  year: 2003
  ident: 10.1016/j.mbs.2024.109291_bib0034
  article-title: Cyclin-dependent kinases and S phase control in mammalian cells
  publication-title: Cell Cycle
  doi: 10.4161/cc.2.4.468
– volume: 69
  start-page: 7
  year: 2021
  ident: 10.1016/j.mbs.2024.109291_bib0036
  article-title: Mechanisms of signalling-memory governing progression through the eukaryotic cell cycle
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2020.12.003
– volume: 141
  start-page: 268
  year: 2010
  ident: 10.1016/j.mbs.2024.109291_bib0003
  article-title: Periodic cyclin-Cdk activity entrains an autonomous Cdc14 release oscillator
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.021
– volume: 98
  start-page: 1247
  year: 1984
  ident: 10.1016/j.mbs.2024.109291_bib0016
  article-title: Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.98.4.1247
– volume: 28
  start-page: 3437
  year: 2017
  ident: 10.1016/j.mbs.2024.109291_bib0029
  article-title: Cell-cycle transitions: a common role for stoichiometric inhibitors
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e17-06-0349
– volume: 16
  year: 2020
  ident: 10.1016/j.mbs.2024.109291_bib0041
  article-title: Misuse of the Michaelis-Menten rate law for protein interaction networks and its remedy
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008258
– volume: 50
  start-page: 213
  year: 1975
  ident: 10.1016/j.mbs.2024.109291_bib0010
  article-title: The regulation of cell size and the control of mitosis
  publication-title: J. Theor. Biol.
  doi: 10.1016/0022-5193(75)90034-X
– volume: 3
  year: 2013
  ident: 10.1016/j.mbs.2024.109291_bib0028
  article-title: Molecular mechanisms creating bistable switches at cell cycle transitions
  publication-title: Open Biol.
  doi: 10.1098/rsob.120179
– volume: 14
  start-page: 8420
  year: 1994
  ident: 10.1016/j.mbs.2024.109291_bib0037
  article-title: Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation
  publication-title: Mol. Cell Biol.
– volume: 101
  start-page: 4781
  year: 2004
  ident: 10.1016/j.mbs.2024.109291_bib0013
  article-title: The yeast cell-cycle network is robustly designed
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0305937101
– volume: 15
  start-page: 3841
  year: 2004
  ident: 10.1016/j.mbs.2024.109291_bib0027
  article-title: Integrative analysis of cell cycle control in budding yeast
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e03-11-0794
– volume: 78
  start-page: 813
  year: 1994
  ident: 10.1016/j.mbs.2024.109291_bib0002
  article-title: Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc2-mitotic B cyclin complex
  publication-title: Cell
  doi: 10.1016/S0092-8674(94)90542-8
– volume: 26
  start-page: 3361
  year: 2016
  ident: 10.1016/j.mbs.2024.109291_bib0040
  article-title: Two bistable switches Govern M phase entry
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.10.022
– volume: 9
  start-page: 22
  year: 2018
  ident: 10.1016/j.mbs.2024.109291_bib0035
  article-title: Genome stability during cell proliferation: a systems analysis of the molecular mechanisms controlling progression through the eukaryotic cell cycle
  publication-title: Curr. Opin. Syst. Biol.
  doi: 10.1016/j.coisb.2018.02.004
SSID ssj0017116
Score 2.4166937
Snippet •Two doubly amplified, negative feedback oscillators control the cell division cycle.•They drive alternating phases of chromosome replication and...
The cell division cycle is a fundamental physiological process displaying a great degree of plasticity during the course of multicellular development. This...
• Two doubly amplified, negative feedback oscillators control the cell division cycle. • They drive alternating phases of chromosome replication and...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109291
SubjectTerms Animals
Bistability
Cell cycle
Cell Cycle - physiology
Checkpoints
Endocycles
Humans
Models, Biological
Oscillations
Title Newton's cradle: Cell cycle regulation by two mutually inhibitory oscillators
URI https://dx.doi.org/10.1016/j.mbs.2024.109291
https://www.ncbi.nlm.nih.gov/pubmed/39241924
https://www.proquest.com/docview/3101794257
https://pubmed.ncbi.nlm.nih.gov/PMC12227314
Volume 377
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KRdAH0fp1WssKgiDEdrObbOJbOVpOj-uDWOxb2N3s0pQ0V-4DuRf_dmeySehZ7IPkISTZDcvMZOYXdmZ-AB9cjoYgvY1EqW0knUiiTBsf2QRjhfCIMQzVO8_O0sm5_HaRXOzAuK-FobTKzvcHn9566-7OYSfNw5uqohpfhMMJ4mdJgb9lGpZSkZV__j2keXDFW_rTlraVRvc7m22O17Whjt2xpKZKcc7_FZvuYs-_UyhvxaTTp_CkA5PsOKz3Gey4Zg8eBnrJzR48ng09WZfPYYb-DIHexyWzC13W7gsbu7pmdoNT2SJQ0qOSmNmw1a85u15TZUm9YVVzWZmK9uIZNb5EsyGCnhdwfnryYzyJOjKFyMokXkXcxKJEzfBEKausSNLMqzL1Gv8oSh-7VMVGcI__e7FXNkXJOi5RUXFmjdZ5Jl7CbjNv3GtguT_Cg3NrEH_53OYuF14rrfGlzpd6BEe9GAvbdRonwou66FPKrgqUfEGSL4LkR_BpmHIT2mzcN1j2uim2bKXAMHDftPe9Hgv8hmhjRDduvl4WIvgl9F4jeBX0OqwC8SNtlMsRZFsaHwZQf-7tJ0112fbp5lRnLLh883_rfQuP6CoUPu7D7mqxdu8QAa3MQWviB_Dg-Ot0ckbn6fef0z8TPAfj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxUxEB5qRdQH0Xo7XiMogrBtk83eBB-kWk5tT59a6FtMsold2e4p50LZF_-Uf9CZveFR7INQ9m03yQ4zycwX5gbw2mW4EaS3QZhrG0gXRkGqjQ9shLYi9IgxDOU7Tw7j8bH8chKdrMHPPheGwio73d_q9EZbd2-2Om5unRcF5fgiHI4QP0sy_Fx0kZX7rr7Ae9v8w94nFPIbIXY_H-2Mg661QGBlJBYBNyLMkU4eJYlNbBjFqU_y2GvE17kXLk6ECbnH24_wiY3xP45LJFuk1midpSGuew2uS1QX1DZh88cQV8IT3vRbbfrEEnm9K7UJKjszVCJcSKriJDL-L2P4N9j9M2bzNyO4exfudOiVfWwZdA_WXLUBN9p-lvUG3J4MRWDn92GCChSR5ds5szOdl-4923FlyWyNU9nMfesahzFTs8XFlJ0tKZWlrFlRnRamIOc_o0qbuE-pI9ADOL4SFj-E9WpaucfAMr-ND-fWIODzmc1cFnqdaI2LOp_rEWz3bFS2K21OHTZK1cewfVfIeUWcVy3nR_BumHLe1vW4bLDsZaNWNqdCu3PZtFe9HBUeWvLE6MpNl3MVtooQ1eUIHrVyHahAwEqeeTmCdEXiwwAqCL76pSpOm8LgnBKbQy6f_B-9L-Hm-GhyoA72Dvefwi360mZdPoP1xWzpniP8WpgXzXZn8PWqz9cvj3tBbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Newton%27s+cradle%3A+Cell+cycle+regulation+by+two+mutually+inhibitory+oscillators&rft.jtitle=Mathematical+biosciences&rft.au=Dragoi%2C+Calin-Mihai&rft.au=Tyson%2C+John+J&rft.au=Nov%C3%A1k%2C+B%C3%A9la&rft.date=2024-11-01&rft.eissn=1879-3134&rft.volume=377&rft.spage=109291&rft_id=info:doi/10.1016%2Fj.mbs.2024.109291&rft_id=info%3Apmid%2F39241924&rft.externalDocID=39241924
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5564&client=summon