DeepIPs: comprehensive assessment and computational identification of phosphorylation sites of SARS-CoV-2 infection using a deep learning-based approach

The rapid spread of SARS-CoV-2 infection around the globe has caused a massive health and socioeconomic crisis. Identification of phosphorylation sites is an important step for understanding the molecular mechanisms of SARS-CoV-2 infection and the changes within the host cells pathways. In this stud...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 6
Main Authors Lv, Hao, Dao, Fu-Ying, Zulfiqar, Hasan, Lin, Hao
Format Journal Article
LanguageEnglish
Published Oxford University Press 28.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The rapid spread of SARS-CoV-2 infection around the globe has caused a massive health and socioeconomic crisis. Identification of phosphorylation sites is an important step for understanding the molecular mechanisms of SARS-CoV-2 infection and the changes within the host cells pathways. In this study, we present DeepIPs, a first specific deep-learning architecture to identify phosphorylation sites in host cells infected with SARS-CoV-2. DeepIPs consists of the most popular word embedding method and convolutional neural network-long short-term memory network architecture to make the final prediction. The independent test demonstrates that DeepIPs improves the prediction performance compared with other existing tools for general phosphorylation sites prediction. Based on the proposed model, a web-server called DeepIPs was established and is freely accessible at http://lin-group.cn/server/DeepIPs. The source code of DeepIPs is freely available at the repository https://github.com/linDing-group/DeepIPs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1467-5463
1477-4054
1477-4054
DOI:10.1093/bib/bbab244