Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology

Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to perform well. These niching parameters, often used to inform a niching algorithm how far apart between two closest optima or the number of opti...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 14; no. 1; pp. 150 - 169
Main Author Li, Xiaodong
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to perform well. These niching parameters, often used to inform a niching algorithm how far apart between two closest optima or the number of optima in the search space, are typically difficult to set as they are problem dependent. This paper describes a simple yet effective niching algorithm, a particle swarm optimization (PSO) algorithm using a ring neighborhood topology, which does not require any niching parameters. A PSO algorithm using the ring topology can operate as a niching algorithm by using individual particles' local memories to form a stable network retaining the best positions found so far, while these particles explore the search space more broadly. Given a reasonably large population uniformly distributed in the search space, PSO algorithms using the ring topology are able to form stable niches across different local neighborhoods, eventually locating multiple global/local optima. The complexity of these niching algorithms is only O ( N ), where N is the population size. Experimental results suggest that PSO algorithms using the ring topology are able to provide superior and more consistent performance over some existing PSO niching algorithms that require niching parameters.
AbstractList Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to perform well. These niching parameters, often used to inform a niching algorithm how far apart between two closest optima or the number of optima in the search space, are typically difficult to set as they are problem dependent. This paper describes a simple yet effective niching algorithm, a particle swarm optimization (PSO) algorithm using a ring neighborhood topology, which does not require any niching parameters. A PSO algorithm using the ring topology can operate as a niching algorithm by using individual particles' local memories to form a stable network retaining the best positions found so far, while these particles explore the search space more broadly. Given a reasonably large population uniformly distributed in the search space, PSO algorithms using the ring topology are able to form stable niches across different local neighborhoods, eventually locating multiple global/local optima. The complexity of these niching algorithms is only O ( N ), where N is the population size. Experimental results suggest that PSO algorithms using the ring topology are able to provide superior and more consistent performance over some existing PSO niching algorithms that require niching parameters.
Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to perform well. These niching parameters, often used to inform a niching algorithm how far apart between two closest optima or the number of optima in the search space, are typically difficult to set as they are problem dependent. This paper describes a simple yet effective niching algorithm, a particle swarm optimization (PSO) algorithm using a ring neighborhood topology, which does not require any niching parameters. A PSO algorithm using the ring topology can operate as a niching algorithm by using individual particles' local memories to form a stable network retaining the best positions found so far, while these particles explore the search space more broadly. Given a reasonably large population uniformly distributed in the search space, PSO algorithms using the ring topology are able to form stable niches across different local neighborhoods, eventually locating multiple global/local optima. The complexity of these niching algorithms is only cal O ( N ) , where N is the population size. Experimental results suggest that PSO algorithms using the ring topology are able to provide superior and more consistent performance over some existing PSO niching algorithms that require niching parameters.
Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to perform well. These niching parameters, often used to inform a niching algorithm how far apart between two closest optima or the number of optima in the search space, are typically difficult to set as they are problem dependent. This paper describes a simple yet effective niching algorithm, a particle swarm optimization (PSO) algorithm using a ring neighborhood topology, which does not require any niching parameters. A PSO algorithm using the ring topology can operate as a niching algorithm by using individual particles' local memories to form a stable network retaining the best positions found so far, while these particles explore the search space more broadly. Given a reasonably large population uniformly distributed in the search space, PSO algorithms using the ring topology are able to form stable niches across different local neighborhoods, eventually locating multiple global/local optima. The complexity of these niching algorithms is only [Formula Omitted], where [Formula Omitted] is the population size. Experimental results suggest that PSO algorithms using the ring topology are able to provide superior and more consistent performance over some existing PSO niching algorithms that require niching parameters.
Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to perform well. These niching parameters, often used to inform a niching algorithm how far apart between two closest optima or the number of optima in the search space, are typically difficult to set as they are problem dependent. This paper describes a simple yet effective niching algorithm, a particle swarm optimization (PSO) algorithm using a ring neighborhood topology, which does not require any niching parameters. A PSO algorithm using the ring topology can operate as a niching algorithm by using individual particles' local memories to form a stable network retaining the best positions found so far, while these particles explore the search space more broadly. Given a reasonably large population uniformly distributed in the search space, PSO algorithms using the ring topology are able to form stable niches across different local neighborhoods, eventually locating multiple global/local optima. The complexity of these niching algorithms is only calO(N), where N is the population size. Experimental results suggest that PSO algorithms using the ring topology are able to provide superior and more consistent performance over some existing PSO niching algorithms that require niching parameters.
Author Xiaodong Li
Author_xml – sequence: 1
  givenname: Xiaodong
  surname: Li
  fullname: Li, Xiaodong
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22380520$$DView record in Pascal Francis
BookMark eNqFkU1v1DAQhi1UJNrCD0BcIiTEKWVsx3HMDa3Kh1RRBLvAzZpYk9ZVEi-2V6j8ehx26aEHuHhmpOedGc97wo7mMBNjTzmccQ7m1fr86-pMAJjyiFZoeMCOuWl4DaU8Kjl0pta6-_6InaR0A8Abxc0x23z07trPV9U3n6_DLld_608YcaJMMb1e8uzdSNWXnxin6nKb_eR_YfZhrjZpobH6vIR12IYxXN0-Zg8HHBM9OcRTtnl7vl69ry8u331YvbmoXaNErsuCnRmg1YJzkppj1wtnACRJJBQ4GKEHOWghGwLF-37Q_SIhbKA1open7OW-7zaGHztK2U4-ORpHnCnsku20AiVk2_6X1I3U5VJKFfL5PfIm7OJcvmE71bZgWrG0e3GAMDkch4iz88luo58w3lohZFcGQ-H4nnMxpBRpuEM42MU4uxhnF-Pswbii0fc0zuc_x84R_fhP5bO90hPR3SQlywmkkr8BvcGlsw
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_ins_2024_120879
crossref_primary_10_1016_j_swevo_2019_06_001
crossref_primary_10_1109_TCYB_2021_3117359
crossref_primary_10_1016_j_ins_2013_06_037
crossref_primary_10_1016_j_ejor_2017_03_031
crossref_primary_10_1109_TCYB_2020_2972907
crossref_primary_10_1007_s11047_013_9408_3
crossref_primary_10_1109_TETCI_2021_3051970
crossref_primary_10_1007_s00521_018_3949_4
crossref_primary_10_1007_s00521_019_04113_z
crossref_primary_10_1007_s11704_016_5373_1
crossref_primary_10_1007_s11831_024_10136_0
crossref_primary_10_1007_s11554_012_0256_7
crossref_primary_10_1007_s11783_015_0776_z
crossref_primary_10_1016_j_asoc_2021_107156
crossref_primary_10_1016_j_knosys_2016_06_029
crossref_primary_10_1007_s00500_018_3536_8
crossref_primary_10_1109_TEVC_2023_3277501
crossref_primary_10_1016_j_swevo_2018_04_006
crossref_primary_10_1007_s11071_019_05414_7
crossref_primary_10_1007_s10462_016_9462_1
crossref_primary_10_1109_TCYB_2021_3123625
crossref_primary_10_1007_s00500_014_1458_7
crossref_primary_10_4018_IJSIR_2020100104
crossref_primary_10_1007_s11721_012_0069_0
crossref_primary_10_1016_j_cnsns_2013_03_011
crossref_primary_10_5370_JEET_2013_8_1_031
crossref_primary_10_1016_j_cja_2018_05_002
crossref_primary_10_1016_j_swevo_2013_08_001
crossref_primary_10_1109_TEVC_2021_3117116
crossref_primary_10_1016_j_eswa_2023_122135
crossref_primary_10_1016_j_ins_2014_02_143
crossref_primary_10_1007_s00521_019_04527_9
crossref_primary_10_1007_s00500_013_1138_z
crossref_primary_10_1016_j_asoc_2019_105886
crossref_primary_10_1016_j_asoc_2021_107887
crossref_primary_10_1080_18756891_2013_807108
crossref_primary_10_1109_TETCI_2023_3301794
crossref_primary_10_1016_j_ins_2020_09_008
crossref_primary_10_1016_j_ins_2019_01_084
crossref_primary_10_1007_s11047_017_9639_9
crossref_primary_10_1007_s13042_018_0810_0
crossref_primary_10_1109_TEVC_2023_3316723
crossref_primary_10_1016_j_eswa_2020_113261
crossref_primary_10_1587_nolta_5_523
crossref_primary_10_1587_nolta_6_181
crossref_primary_10_1007_s11227_021_03721_8
crossref_primary_10_1109_TMAG_2014_2360626
crossref_primary_10_1016_j_amc_2014_06_046
crossref_primary_10_1007_s00500_014_1262_4
crossref_primary_10_1016_j_swevo_2023_101412
crossref_primary_10_1016_j_ins_2023_119359
crossref_primary_10_1007_s00500_013_1183_7
crossref_primary_10_1016_j_asoc_2015_09_005
crossref_primary_10_1007_s10462_016_9463_0
crossref_primary_10_1109_TEVC_2023_3250347
crossref_primary_10_5687_iscie_33_16
crossref_primary_10_1016_j_asoc_2014_04_042
crossref_primary_10_1155_2012_578064
crossref_primary_10_1016_j_swevo_2019_04_008
crossref_primary_10_1016_j_ins_2010_05_025
crossref_primary_10_2478_cait_2024_0025
crossref_primary_10_1007_s11390_012_1274_4
crossref_primary_10_1016_j_swevo_2017_03_002
crossref_primary_10_1016_j_asoc_2023_110589
crossref_primary_10_1016_j_swevo_2024_101726
crossref_primary_10_1007_s00138_013_0513_1
crossref_primary_10_1016_j_swevo_2024_101568
crossref_primary_10_1016_j_engappai_2014_02_018
crossref_primary_10_1155_2014_402616
crossref_primary_10_1016_j_swevo_2015_07_003
crossref_primary_10_1016_j_ins_2013_11_025
crossref_primary_10_15248_proc_1_162
crossref_primary_10_1631_jzus_C1300005
crossref_primary_10_1016_j_ins_2015_09_055
crossref_primary_10_1587_transfun_E95_A_406
crossref_primary_10_1155_2014_672983
crossref_primary_10_1016_j_swevo_2023_101278
crossref_primary_10_1016_j_swevo_2023_101277
crossref_primary_10_1016_j_knosys_2021_107972
crossref_primary_10_1016_j_ins_2016_05_049
crossref_primary_10_1016_j_patcog_2016_05_008
crossref_primary_10_1109_TCYB_2020_3032995
crossref_primary_10_1155_2013_560614
crossref_primary_10_1109_TCYB_2021_3071462
crossref_primary_10_1016_j_asoc_2017_04_006
crossref_primary_10_1007_s10994_015_5522_z
crossref_primary_10_1109_TCYB_2020_3038694
crossref_primary_10_1007_s11431_020_1587_y
crossref_primary_10_1111_jwas_12069
crossref_primary_10_1007_s00500_016_2413_6
crossref_primary_10_1016_j_probengmech_2025_103729
crossref_primary_10_1016_j_procs_2015_07_071
crossref_primary_10_7498_aps_62_190202
crossref_primary_10_1177_0954410011413693
crossref_primary_10_1016_j_ins_2020_01_049
crossref_primary_10_1016_j_ins_2021_04_093
crossref_primary_10_1007_s00500_016_2360_2
crossref_primary_10_1515_math_2018_0132
crossref_primary_10_1162_evco_a_00182
crossref_primary_10_1109_TMC_2022_3230712
crossref_primary_10_1016_j_knosys_2020_105568
crossref_primary_10_1016_j_swevo_2021_100849
crossref_primary_10_1016_j_engappai_2015_06_013
crossref_primary_10_1007_s00500_015_1784_4
crossref_primary_10_1016_j_knosys_2015_10_021
crossref_primary_10_1002_asjc_1050
crossref_primary_10_3934_mbe_2022279
crossref_primary_10_1016_j_asoc_2019_02_015
crossref_primary_10_1371_journal_pone_0248470
crossref_primary_10_1016_j_asoc_2023_111105
crossref_primary_10_1016_j_knosys_2018_07_045
crossref_primary_10_1109_TCYB_2013_2292971
crossref_primary_10_1007_s12065_020_00547_w
crossref_primary_10_1016_j_swevo_2019_100628
crossref_primary_10_1016_j_engappai_2023_106039
crossref_primary_10_1016_j_swevo_2016_09_002
crossref_primary_10_1016_j_ins_2014_01_002
crossref_primary_10_1016_j_neucom_2014_06_003
crossref_primary_10_7717_peerj_cs_1839
crossref_primary_10_1016_j_asoc_2023_110264
crossref_primary_10_1016_j_neucom_2019_01_006
crossref_primary_10_1016_j_swevo_2022_101206
crossref_primary_10_1016_j_jss_2013_11_1113
crossref_primary_10_1155_2014_136920
crossref_primary_10_1016_j_knosys_2020_105789
Cites_doi 10.1145/1143997.1144200
10.1109/4235.985692
10.1109/TEVC.2005.859468
10.1785/BSSA0890040978
10.1007/978-3-7091-6230-9_80
10.1109/ICSMC.2002.1176019
10.1016/j.amc.2006.12.066
10.1162/evco.1993.1.2.101
10.1109/CEC.2006.1688399
10.1109/SIS.2007.368039
10.1109/ICEC.1994.350037
10.1109/ICEC.1995.489138
10.1109/TEVC.2004.826076
10.1109/ICEC.1996.542703
10.1109/CEC.2002.1004493
10.1145/1143997.1143999
10.1162/106365602760234081
10.1007/978-3-7091-7533-0_65
10.1109/SIS.2005.1501650
10.1002/9780470612163
10.1016/S0004-3702(97)00071-4
10.1109/MHS.1995.494215
10.1109/4235.735432
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TEVC.2009.2026270
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1941-0026
EndPage 169
ExternalDocumentID 2289785511
22380520
10_1109_TEVC_2009_2026270
5352335
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c452t-19489f067211e371a8b2c9003e3aea2af927f3f7234e051bbf7b9489ea40692b3
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Fri Jul 11 12:12:50 EDT 2025
Thu Jul 10 23:42:14 EDT 2025
Sun Jun 29 12:38:48 EDT 2025
Mon Jul 21 09:13:05 EDT 2025
Tue Jul 01 01:56:19 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Tue Aug 26 17:07:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Local search
niching algorithms
Evolutionary algorithm
Evolutionary computation
Neural network
Topology
Experimental study
Particle swarm optimization
Search algorithm
multimodal optimization
Ring
Ecological niche
Population size
Swarm intelligence
Localization
particle swarm optimization (PSO)
Artificial intelligence
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-19489f067211e371a8b2c9003e3aea2af927f3f7234e051bbf7b9489ea40692b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 856609626
PQPubID 23500
PageCount 20
ParticipantIDs pascalfrancis_primary_22380520
ieee_primary_5352335
proquest_journals_856609626
crossref_primary_10_1109_TEVC_2009_2026270
crossref_citationtrail_10_1109_TEVC_2009_2026270
proquest_miscellaneous_875052366
proquest_miscellaneous_743702655
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-02-01
PublicationDateYYYYMMDD 2010-02-01
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2010
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref36
goldberg (ref27) 1992
ref30
ref33
ref11
iorio (ref44) 0
ref32
mahfoud (ref2) 1995
goldberg (ref7) 1987
harik (ref9) 1995
ref16
engelbrecht (ref20) 2005
ref19
ref18
mahfoud (ref6) 1992
cavicchio (ref25) 1970
trn (ref47) 1987; 350
deb (ref42) 1989
de jong (ref5) 1975
li (ref15) 0; lncs 3102
kennedy (ref17) 2000
ref24
shir (ref31) 2006; lncs 4193
ref23
ref48
schoeman (ref39) 2004
davidor (ref40) 1991
holland (ref26) 1975
ref22
ref21
brits (ref14) 2002
ackley (ref45) 1987
bessaou (ref10) 2000
ref28
kennedy (ref1) 2001
michalewicz (ref46) 1996
ref29
ref8
perry (ref41) 1984
ref4
li (ref38) 0
koper (ref3) 1999; 89
deb (ref43) 1989
References_xml – ident: ref29
  doi: 10.1145/1143997.1144200
– year: 2001
  ident: ref1
  publication-title: Swarm Intelligence
– year: 1989
  ident: ref42
  publication-title: Genetic Algorithms in Multimodal Function Optimization the Clearinghouse for Genetic Algorithms
– ident: ref34
  doi: 10.1109/4235.985692
– ident: ref16
  doi: 10.1109/TEVC.2005.859468
– start-page: 27
  year: 1992
  ident: ref6
  article-title: crowding and preselection revisited
  publication-title: Proc Parall Prob Solv Nat 2
– volume: 89
  start-page: 978
  year: 1999
  ident: ref3
  article-title: multimodal function optimization with a niching genetic algorithm: a seis-mological example
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/BSSA0890040978
– ident: ref35
  doi: 10.1007/978-3-7091-6230-9_80
– start-page: 78
  year: 0
  ident: ref38
  article-title: multimodal function optimization based on fitness-euclidean distance ratio
  publication-title: Proc 2007 Conf Genetic Evol Comput
– ident: ref37
  doi: 10.1109/ICSMC.2002.1176019
– ident: ref18
  doi: 10.1016/j.amc.2006.12.066
– year: 1995
  ident: ref2
  publication-title: Niching methods for genetic algorithms
– start-page: 24
  year: 1995
  ident: ref9
  article-title: finding multimodal solutions using restricted tournament selection
  publication-title: Proc 7th Int Conf Genetic Algorithms
– year: 1992
  ident: ref27
  article-title: massive multimodality, deception, and genetic algorithms
  publication-title: Proc Parall Prob Solv Nat 2 (PPSN 2)
– ident: ref8
  doi: 10.1162/evco.1993.1.2.101
– year: 1996
  ident: ref46
  publication-title: Gene
– ident: ref33
  doi: 10.1109/CEC.2006.1688399
– ident: ref48
  doi: 10.1109/SIS.2007.368039
– start-page: 41
  year: 1987
  ident: ref7
  article-title: genetic algorithms with sharing for multimodal function optimization
  publication-title: Proc 3rd Intl Conf on Genetic Algorithms
– year: 1970
  ident: ref25
  publication-title: Adaptive search using simulated evolution
– start-page: 303
  year: 2000
  ident: ref17
  article-title: stereotyping: improving particle swarm performance with cluster analysis
  publication-title: Proc IEEE Int Conf Evol Comput
– volume: lncs 4193
  start-page: 142
  year: 2006
  ident: ref31
  article-title: niche radius adaptation in the cms-es niching algorithm
  publication-title: Proc 9th Int Conf Parall Prob Solv Nat (PPSN)
– ident: ref4
  doi: 10.1109/ICEC.1994.350037
– ident: ref28
  doi: 10.1109/ICEC.1995.489138
– start-page: 170
  year: 1987
  ident: ref45
  article-title: an empirical study of bit vector function optimization
  publication-title: Genetic Algorithms Simulated Annealing
– volume: lncs 3102
  start-page: 105
  year: 0
  ident: ref15
  article-title: adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization
  publication-title: Proc 2004 Genetic Evol Comput Congr
– ident: ref36
  doi: 10.1109/TEVC.2004.826076
– year: 1975
  ident: ref26
  publication-title: Adaptation in Natural and Artificial Systems
– ident: ref12
  doi: 10.1109/ICEC.1996.542703
– start-page: 692
  year: 2002
  ident: ref14
  article-title: a niching particle swarm optimizer
  publication-title: Proc 4th Asia-Pacific Conf Simulated Evol Learn SEAL 2002
– ident: ref23
  doi: 10.1109/CEC.2002.1004493
– ident: ref32
  doi: 10.1145/1143997.1143999
– start-page: 683
  year: 0
  ident: ref44
  article-title: rotated test problems for assessing the performance of multiobjective optimization algorithms
  publication-title: Proc 8th Annu Conf Genet Evol Comput (GECCO '06)
– ident: ref13
  doi: 10.1162/106365602760234081
– ident: ref11
  doi: 10.1007/978-3-7091-7533-0_65
– year: 2005
  ident: ref20
  publication-title: Fundamentals of Computational Swarm Intelligence
– ident: ref24
  doi: 10.1109/SIS.2005.1501650
– start-page: 42
  year: 1989
  ident: ref43
  article-title: an investigation of niche and species formation in genetic function optimization
  publication-title: Proc 3rd Intl Conf on Genetic Algorithms
– start-page: 361
  year: 2004
  ident: ref39
  article-title: using vector operations to identify niches for particle swarm optimization
  publication-title: Proc 2004 IEEE Conf Cybernet Intell Syst
– year: 1975
  ident: ref5
  publication-title: An Analysis of the Behavior of a Class of Genetic Adaptive Systems
– ident: ref21
  doi: 10.1002/9780470612163
– ident: ref30
  doi: 10.1016/S0004-3702(97)00071-4
– ident: ref22
  doi: 10.1109/MHS.1995.494215
– volume: 350
  year: 1987
  ident: ref47
  publication-title: Global Optimization
– year: 1984
  ident: ref41
  publication-title: Experimental study of speciation in ecological niche theory using genetic algorithms (doctoral dissertation)
– start-page: 16
  year: 2000
  ident: ref10
  article-title: island model cooperating with speciation for multimodal optimization
  publication-title: Proc 6th Int Conf Parall Prob Solv from Nat PPSN VI
– start-page: 257
  year: 1991
  ident: ref40
  article-title: a naturally occurring niche & species phenomenon: the model and first results
  publication-title: Proc Int Conf of Genetic Algorithm
– ident: ref19
  doi: 10.1109/4235.735432
SSID ssj0014519
Score 2.4826396
Snippet Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 150
SubjectTerms Algorithms
Applied sciences
Artificial intelligence
Australia
Computer science
Computer science; control theory; systems
Evolutionary algorithms
Evolutionary computation
Exact sciences and technology
Information technology
Learning and adaptive systems
Machine learning
multimodal optimization
Network topology
Networks
niching algorithms
Optimization
Optimization methods
Particle swarm optimization
particle swarm optimization (PSO)
Robustness
Searching
Space exploration
Specifications
swarm intelligence
Topology
Title Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology
URI https://ieeexplore.ieee.org/document/5352335
https://www.proquest.com/docview/856609626
https://www.proquest.com/docview/743702655
https://www.proquest.com/docview/875052366
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3LgWcSWh3zoCTVL4jwcc0MIhCrRVrDb7i2ys7ZaAbsVmwjRX98Z24mgL_WURLHjJOOx5_0BvCXkAFzkimhalyrKhM0jZayMhJS2wNVQ5S4p7OpDcTnO3k_yyRK863NhjDEu-MwM6dT58qfzuiVT2TGVIknTfBmWUXHzuVq9x4DKpPhgehxIlJPgwUxieTw6_3zmK1Oipl9wwiV-tgc5UBUKiVQL_CvWw1n8tjK77eZiHa66F_VRJrfDttHD-scvNRz_90s2YC3InezUT5RNWDKzLVjvMB1YYPEtWH1WoHAbxjhRyETFvnxrvs7bhnXXnxQFdVFlzhM6dw9lN4_q4Z59xEXoPmR3MheRwBS7psPIAzI8vYbxxfno7DIKQAxRneW8iRKZldKS0zZJTCoSVWpekwnUpMoorqzkwqZW8DQzyORaW6Gpi1GUV8t1ugMrs_nM7ALLtCmwlUqndZ1ppaWIhcVH28TGOJn4AOKONFUdqpQTWMZd5bSVWFZETQLPlFWg5gCO-i7ffYmOfzXeJmr0DQMhBnD4gv79fZSeCPQB--11E6IKXL6oSpSFUQXkxQBYfxfZk3wuambm7aJCAU3gyHn-9yaoMZJtvije_Pnd9uCVD1mgGJp9WGkeWnOAklCjDx0L_ASZXgRm
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V9gA9UGhBXQrFB7ggZZs4D8dIHFBptaUPEOzC3oKdtdUKuou6iaryW_gr_DdmYidqed0qcdqsYns38Xg84_lmPoAnxByASi4LJmWugkTYNFDGykBIaTPUhiptksIOj7LBKHk9TscL8L3LhTHGNOAz06fLJpY_mZU1HZVtUSmSOG4hlPvm4hwdtPmLvVc4m085390Zbg8CzyEQlEnKqwB99FxaijdGkYlFpHLNSzq9M7EyiisrubCxFTxODMqn1lZo6mIUpYRyHeO4N2AJ7YyUu-ywLkZBhVkcfB8fTeRjHzONQrk13Pmw7WphcvRxODEhX9r1GhoXAmGqOc6DdQQav-0FzQa3uwI_2lfjcC2f-3Wl--W3X6pG_q_v7g7c9pY1e-mWwl1YMNNVWGlZK5hXYquwfKkE4xqMcCnQIRz7eFIdz-qKtd_fKoKtUe3R53TdDMren6uzU_YG1eypz19lDeaCKfaOPoaOcuLiHoyu5VHvw-J0NjXrwBJtMmyl4klZJlppKUJhcWgb2RCXC-9B2IpCUfo67EQH8qVo_LFQFiQ9RA8qCy89PXjWdfnqipD8q_EazX7X0E98DzavyFt3H-1DorXAfhutABZej82LHK19dHJ51gPW3UUFRFElNTWzel6gCSrwl9P0703QJ6boQ5Y9-PN_eww3B8PDg-Jg72h_A245gAYhhh7CYnVWm0do91V6s1l-DD5dt8z-BFp_X9s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Niching+Without+Niching+Parameters%3A+Particle+Swarm+Optimization+Using+a+Ring+Topology&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Xiaodong+Li&rft.date=2010-02-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=14&rft.issue=1&rft.spage=150&rft.epage=169&rft_id=info:doi/10.1109%2FTEVC.2009.2026270&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2009_2026270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon