Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology
Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to perform well. These niching parameters, often used to inform a niching algorithm how far apart between two closest optima or the number of opti...
Saved in:
Published in | IEEE transactions on evolutionary computation Vol. 14; no. 1; pp. 150 - 169 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.02.2010
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to perform well. These niching parameters, often used to inform a niching algorithm how far apart between two closest optima or the number of optima in the search space, are typically difficult to set as they are problem dependent. This paper describes a simple yet effective niching algorithm, a particle swarm optimization (PSO) algorithm using a ring neighborhood topology, which does not require any niching parameters. A PSO algorithm using the ring topology can operate as a niching algorithm by using individual particles' local memories to form a stable network retaining the best positions found so far, while these particles explore the search space more broadly. Given a reasonably large population uniformly distributed in the search space, PSO algorithms using the ring topology are able to form stable niches across different local neighborhoods, eventually locating multiple global/local optima. The complexity of these niching algorithms is only O ( N ), where N is the population size. Experimental results suggest that PSO algorithms using the ring topology are able to provide superior and more consistent performance over some existing PSO niching algorithms that require niching parameters. |
---|---|
AbstractList | Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to perform well. These niching parameters, often used to inform a niching algorithm how far apart between two closest optima or the number of optima in the search space, are typically difficult to set as they are problem dependent. This paper describes a simple yet effective niching algorithm, a particle swarm optimization (PSO) algorithm using a ring neighborhood topology, which does not require any niching parameters. A PSO algorithm using the ring topology can operate as a niching algorithm by using individual particles' local memories to form a stable network retaining the best positions found so far, while these particles explore the search space more broadly. Given a reasonably large population uniformly distributed in the search space, PSO algorithms using the ring topology are able to form stable niches across different local neighborhoods, eventually locating multiple global/local optima. The complexity of these niching algorithms is only O ( N ), where N is the population size. Experimental results suggest that PSO algorithms using the ring topology are able to provide superior and more consistent performance over some existing PSO niching algorithms that require niching parameters. Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to perform well. These niching parameters, often used to inform a niching algorithm how far apart between two closest optima or the number of optima in the search space, are typically difficult to set as they are problem dependent. This paper describes a simple yet effective niching algorithm, a particle swarm optimization (PSO) algorithm using a ring neighborhood topology, which does not require any niching parameters. A PSO algorithm using the ring topology can operate as a niching algorithm by using individual particles' local memories to form a stable network retaining the best positions found so far, while these particles explore the search space more broadly. Given a reasonably large population uniformly distributed in the search space, PSO algorithms using the ring topology are able to form stable niches across different local neighborhoods, eventually locating multiple global/local optima. The complexity of these niching algorithms is only cal O ( N ) , where N is the population size. Experimental results suggest that PSO algorithms using the ring topology are able to provide superior and more consistent performance over some existing PSO niching algorithms that require niching parameters. Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to perform well. These niching parameters, often used to inform a niching algorithm how far apart between two closest optima or the number of optima in the search space, are typically difficult to set as they are problem dependent. This paper describes a simple yet effective niching algorithm, a particle swarm optimization (PSO) algorithm using a ring neighborhood topology, which does not require any niching parameters. A PSO algorithm using the ring topology can operate as a niching algorithm by using individual particles' local memories to form a stable network retaining the best positions found so far, while these particles explore the search space more broadly. Given a reasonably large population uniformly distributed in the search space, PSO algorithms using the ring topology are able to form stable niches across different local neighborhoods, eventually locating multiple global/local optima. The complexity of these niching algorithms is only [Formula Omitted], where [Formula Omitted] is the population size. Experimental results suggest that PSO algorithms using the ring topology are able to provide superior and more consistent performance over some existing PSO niching algorithms that require niching parameters. Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to perform well. These niching parameters, often used to inform a niching algorithm how far apart between two closest optima or the number of optima in the search space, are typically difficult to set as they are problem dependent. This paper describes a simple yet effective niching algorithm, a particle swarm optimization (PSO) algorithm using a ring neighborhood topology, which does not require any niching parameters. A PSO algorithm using the ring topology can operate as a niching algorithm by using individual particles' local memories to form a stable network retaining the best positions found so far, while these particles explore the search space more broadly. Given a reasonably large population uniformly distributed in the search space, PSO algorithms using the ring topology are able to form stable niches across different local neighborhoods, eventually locating multiple global/local optima. The complexity of these niching algorithms is only calO(N), where N is the population size. Experimental results suggest that PSO algorithms using the ring topology are able to provide superior and more consistent performance over some existing PSO niching algorithms that require niching parameters. |
Author | Xiaodong Li |
Author_xml | – sequence: 1 givenname: Xiaodong surname: Li fullname: Li, Xiaodong |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22380520$$DView record in Pascal Francis |
BookMark | eNqFkU1v1DAQhi1UJNrCD0BcIiTEKWVsx3HMDa3Kh1RRBLvAzZpYk9ZVEi-2V6j8ehx26aEHuHhmpOedGc97wo7mMBNjTzmccQ7m1fr86-pMAJjyiFZoeMCOuWl4DaU8Kjl0pta6-_6InaR0A8Abxc0x23z07trPV9U3n6_DLld_608YcaJMMb1e8uzdSNWXnxin6nKb_eR_YfZhrjZpobH6vIR12IYxXN0-Zg8HHBM9OcRTtnl7vl69ry8u331YvbmoXaNErsuCnRmg1YJzkppj1wtnACRJJBQ4GKEHOWghGwLF-37Q_SIhbKA1open7OW-7zaGHztK2U4-ORpHnCnsku20AiVk2_6X1I3U5VJKFfL5PfIm7OJcvmE71bZgWrG0e3GAMDkch4iz88luo58w3lohZFcGQ-H4nnMxpBRpuEM42MU4uxhnF-Pswbii0fc0zuc_x84R_fhP5bO90hPR3SQlywmkkr8BvcGlsw |
CODEN | ITEVF5 |
CitedBy_id | crossref_primary_10_1016_j_ins_2024_120879 crossref_primary_10_1016_j_swevo_2019_06_001 crossref_primary_10_1109_TCYB_2021_3117359 crossref_primary_10_1016_j_ins_2013_06_037 crossref_primary_10_1016_j_ejor_2017_03_031 crossref_primary_10_1109_TCYB_2020_2972907 crossref_primary_10_1007_s11047_013_9408_3 crossref_primary_10_1109_TETCI_2021_3051970 crossref_primary_10_1007_s00521_018_3949_4 crossref_primary_10_1007_s00521_019_04113_z crossref_primary_10_1007_s11704_016_5373_1 crossref_primary_10_1007_s11831_024_10136_0 crossref_primary_10_1007_s11554_012_0256_7 crossref_primary_10_1007_s11783_015_0776_z crossref_primary_10_1016_j_asoc_2021_107156 crossref_primary_10_1016_j_knosys_2016_06_029 crossref_primary_10_1007_s00500_018_3536_8 crossref_primary_10_1109_TEVC_2023_3277501 crossref_primary_10_1016_j_swevo_2018_04_006 crossref_primary_10_1007_s11071_019_05414_7 crossref_primary_10_1007_s10462_016_9462_1 crossref_primary_10_1109_TCYB_2021_3123625 crossref_primary_10_1007_s00500_014_1458_7 crossref_primary_10_4018_IJSIR_2020100104 crossref_primary_10_1007_s11721_012_0069_0 crossref_primary_10_1016_j_cnsns_2013_03_011 crossref_primary_10_5370_JEET_2013_8_1_031 crossref_primary_10_1016_j_cja_2018_05_002 crossref_primary_10_1016_j_swevo_2013_08_001 crossref_primary_10_1109_TEVC_2021_3117116 crossref_primary_10_1016_j_eswa_2023_122135 crossref_primary_10_1016_j_ins_2014_02_143 crossref_primary_10_1007_s00521_019_04527_9 crossref_primary_10_1007_s00500_013_1138_z crossref_primary_10_1016_j_asoc_2019_105886 crossref_primary_10_1016_j_asoc_2021_107887 crossref_primary_10_1080_18756891_2013_807108 crossref_primary_10_1109_TETCI_2023_3301794 crossref_primary_10_1016_j_ins_2020_09_008 crossref_primary_10_1016_j_ins_2019_01_084 crossref_primary_10_1007_s11047_017_9639_9 crossref_primary_10_1007_s13042_018_0810_0 crossref_primary_10_1109_TEVC_2023_3316723 crossref_primary_10_1016_j_eswa_2020_113261 crossref_primary_10_1587_nolta_5_523 crossref_primary_10_1587_nolta_6_181 crossref_primary_10_1007_s11227_021_03721_8 crossref_primary_10_1109_TMAG_2014_2360626 crossref_primary_10_1016_j_amc_2014_06_046 crossref_primary_10_1007_s00500_014_1262_4 crossref_primary_10_1016_j_swevo_2023_101412 crossref_primary_10_1016_j_ins_2023_119359 crossref_primary_10_1007_s00500_013_1183_7 crossref_primary_10_1016_j_asoc_2015_09_005 crossref_primary_10_1007_s10462_016_9463_0 crossref_primary_10_1109_TEVC_2023_3250347 crossref_primary_10_5687_iscie_33_16 crossref_primary_10_1016_j_asoc_2014_04_042 crossref_primary_10_1155_2012_578064 crossref_primary_10_1016_j_swevo_2019_04_008 crossref_primary_10_1016_j_ins_2010_05_025 crossref_primary_10_2478_cait_2024_0025 crossref_primary_10_1007_s11390_012_1274_4 crossref_primary_10_1016_j_swevo_2017_03_002 crossref_primary_10_1016_j_asoc_2023_110589 crossref_primary_10_1016_j_swevo_2024_101726 crossref_primary_10_1007_s00138_013_0513_1 crossref_primary_10_1016_j_swevo_2024_101568 crossref_primary_10_1016_j_engappai_2014_02_018 crossref_primary_10_1155_2014_402616 crossref_primary_10_1016_j_swevo_2015_07_003 crossref_primary_10_1016_j_ins_2013_11_025 crossref_primary_10_15248_proc_1_162 crossref_primary_10_1631_jzus_C1300005 crossref_primary_10_1016_j_ins_2015_09_055 crossref_primary_10_1587_transfun_E95_A_406 crossref_primary_10_1155_2014_672983 crossref_primary_10_1016_j_swevo_2023_101278 crossref_primary_10_1016_j_swevo_2023_101277 crossref_primary_10_1016_j_knosys_2021_107972 crossref_primary_10_1016_j_ins_2016_05_049 crossref_primary_10_1016_j_patcog_2016_05_008 crossref_primary_10_1109_TCYB_2020_3032995 crossref_primary_10_1155_2013_560614 crossref_primary_10_1109_TCYB_2021_3071462 crossref_primary_10_1016_j_asoc_2017_04_006 crossref_primary_10_1007_s10994_015_5522_z crossref_primary_10_1109_TCYB_2020_3038694 crossref_primary_10_1007_s11431_020_1587_y crossref_primary_10_1111_jwas_12069 crossref_primary_10_1007_s00500_016_2413_6 crossref_primary_10_1016_j_probengmech_2025_103729 crossref_primary_10_1016_j_procs_2015_07_071 crossref_primary_10_7498_aps_62_190202 crossref_primary_10_1177_0954410011413693 crossref_primary_10_1016_j_ins_2020_01_049 crossref_primary_10_1016_j_ins_2021_04_093 crossref_primary_10_1007_s00500_016_2360_2 crossref_primary_10_1515_math_2018_0132 crossref_primary_10_1162_evco_a_00182 crossref_primary_10_1109_TMC_2022_3230712 crossref_primary_10_1016_j_knosys_2020_105568 crossref_primary_10_1016_j_swevo_2021_100849 crossref_primary_10_1016_j_engappai_2015_06_013 crossref_primary_10_1007_s00500_015_1784_4 crossref_primary_10_1016_j_knosys_2015_10_021 crossref_primary_10_1002_asjc_1050 crossref_primary_10_3934_mbe_2022279 crossref_primary_10_1016_j_asoc_2019_02_015 crossref_primary_10_1371_journal_pone_0248470 crossref_primary_10_1016_j_asoc_2023_111105 crossref_primary_10_1016_j_knosys_2018_07_045 crossref_primary_10_1109_TCYB_2013_2292971 crossref_primary_10_1007_s12065_020_00547_w crossref_primary_10_1016_j_swevo_2019_100628 crossref_primary_10_1016_j_engappai_2023_106039 crossref_primary_10_1016_j_swevo_2016_09_002 crossref_primary_10_1016_j_ins_2014_01_002 crossref_primary_10_1016_j_neucom_2014_06_003 crossref_primary_10_7717_peerj_cs_1839 crossref_primary_10_1016_j_asoc_2023_110264 crossref_primary_10_1016_j_neucom_2019_01_006 crossref_primary_10_1016_j_swevo_2022_101206 crossref_primary_10_1016_j_jss_2013_11_1113 crossref_primary_10_1155_2014_136920 crossref_primary_10_1016_j_knosys_2020_105789 |
Cites_doi | 10.1145/1143997.1144200 10.1109/4235.985692 10.1109/TEVC.2005.859468 10.1785/BSSA0890040978 10.1007/978-3-7091-6230-9_80 10.1109/ICSMC.2002.1176019 10.1016/j.amc.2006.12.066 10.1162/evco.1993.1.2.101 10.1109/CEC.2006.1688399 10.1109/SIS.2007.368039 10.1109/ICEC.1994.350037 10.1109/ICEC.1995.489138 10.1109/TEVC.2004.826076 10.1109/ICEC.1996.542703 10.1109/CEC.2002.1004493 10.1145/1143997.1143999 10.1162/106365602760234081 10.1007/978-3-7091-7533-0_65 10.1109/SIS.2005.1501650 10.1002/9780470612163 10.1016/S0004-3702(97)00071-4 10.1109/MHS.1995.494215 10.1109/4235.735432 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TEVC.2009.2026270 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Applied Sciences |
EISSN | 1941-0026 |
EndPage | 169 |
ExternalDocumentID | 2289785511 22380520 10_1109_TEVC_2009_2026270 5352335 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYOK AAYXX CITATION RIG IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c452t-19489f067211e371a8b2c9003e3aea2af927f3f7234e051bbf7b9489ea40692b3 |
IEDL.DBID | RIE |
ISSN | 1089-778X |
IngestDate | Fri Jul 11 12:12:50 EDT 2025 Thu Jul 10 23:42:14 EDT 2025 Sun Jun 29 12:38:48 EDT 2025 Mon Jul 21 09:13:05 EDT 2025 Tue Jul 01 01:56:19 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Tue Aug 26 17:07:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Local search niching algorithms Evolutionary algorithm Evolutionary computation Neural network Topology Experimental study Particle swarm optimization Search algorithm multimodal optimization Ring Ecological niche Population size Swarm intelligence Localization particle swarm optimization (PSO) Artificial intelligence |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-19489f067211e371a8b2c9003e3aea2af927f3f7234e051bbf7b9489ea40692b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 856609626 |
PQPubID | 23500 |
PageCount | 20 |
ParticipantIDs | pascalfrancis_primary_22380520 ieee_primary_5352335 proquest_journals_856609626 crossref_primary_10_1109_TEVC_2009_2026270 crossref_citationtrail_10_1109_TEVC_2009_2026270 proquest_miscellaneous_875052366 proquest_miscellaneous_743702655 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-02-01 |
PublicationDateYYYYMMDD | 2010-02-01 |
PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on evolutionary computation |
PublicationTitleAbbrev | TEVC |
PublicationYear | 2010 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref36 goldberg (ref27) 1992 ref30 ref33 ref11 iorio (ref44) 0 ref32 mahfoud (ref2) 1995 goldberg (ref7) 1987 harik (ref9) 1995 ref16 engelbrecht (ref20) 2005 ref19 ref18 mahfoud (ref6) 1992 cavicchio (ref25) 1970 trn (ref47) 1987; 350 deb (ref42) 1989 de jong (ref5) 1975 li (ref15) 0; lncs 3102 kennedy (ref17) 2000 ref24 shir (ref31) 2006; lncs 4193 ref23 ref48 schoeman (ref39) 2004 davidor (ref40) 1991 holland (ref26) 1975 ref22 ref21 brits (ref14) 2002 ackley (ref45) 1987 bessaou (ref10) 2000 ref28 kennedy (ref1) 2001 michalewicz (ref46) 1996 ref29 ref8 perry (ref41) 1984 ref4 li (ref38) 0 koper (ref3) 1999; 89 deb (ref43) 1989 |
References_xml | – ident: ref29 doi: 10.1145/1143997.1144200 – year: 2001 ident: ref1 publication-title: Swarm Intelligence – year: 1989 ident: ref42 publication-title: Genetic Algorithms in Multimodal Function Optimization the Clearinghouse for Genetic Algorithms – ident: ref34 doi: 10.1109/4235.985692 – ident: ref16 doi: 10.1109/TEVC.2005.859468 – start-page: 27 year: 1992 ident: ref6 article-title: crowding and preselection revisited publication-title: Proc Parall Prob Solv Nat 2 – volume: 89 start-page: 978 year: 1999 ident: ref3 article-title: multimodal function optimization with a niching genetic algorithm: a seis-mological example publication-title: Bull Seismol Soc Am doi: 10.1785/BSSA0890040978 – ident: ref35 doi: 10.1007/978-3-7091-6230-9_80 – start-page: 78 year: 0 ident: ref38 article-title: multimodal function optimization based on fitness-euclidean distance ratio publication-title: Proc 2007 Conf Genetic Evol Comput – ident: ref37 doi: 10.1109/ICSMC.2002.1176019 – ident: ref18 doi: 10.1016/j.amc.2006.12.066 – year: 1995 ident: ref2 publication-title: Niching methods for genetic algorithms – start-page: 24 year: 1995 ident: ref9 article-title: finding multimodal solutions using restricted tournament selection publication-title: Proc 7th Int Conf Genetic Algorithms – year: 1992 ident: ref27 article-title: massive multimodality, deception, and genetic algorithms publication-title: Proc Parall Prob Solv Nat 2 (PPSN 2) – ident: ref8 doi: 10.1162/evco.1993.1.2.101 – year: 1996 ident: ref46 publication-title: Gene – ident: ref33 doi: 10.1109/CEC.2006.1688399 – ident: ref48 doi: 10.1109/SIS.2007.368039 – start-page: 41 year: 1987 ident: ref7 article-title: genetic algorithms with sharing for multimodal function optimization publication-title: Proc 3rd Intl Conf on Genetic Algorithms – year: 1970 ident: ref25 publication-title: Adaptive search using simulated evolution – start-page: 303 year: 2000 ident: ref17 article-title: stereotyping: improving particle swarm performance with cluster analysis publication-title: Proc IEEE Int Conf Evol Comput – volume: lncs 4193 start-page: 142 year: 2006 ident: ref31 article-title: niche radius adaptation in the cms-es niching algorithm publication-title: Proc 9th Int Conf Parall Prob Solv Nat (PPSN) – ident: ref4 doi: 10.1109/ICEC.1994.350037 – ident: ref28 doi: 10.1109/ICEC.1995.489138 – start-page: 170 year: 1987 ident: ref45 article-title: an empirical study of bit vector function optimization publication-title: Genetic Algorithms Simulated Annealing – volume: lncs 3102 start-page: 105 year: 0 ident: ref15 article-title: adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization publication-title: Proc 2004 Genetic Evol Comput Congr – ident: ref36 doi: 10.1109/TEVC.2004.826076 – year: 1975 ident: ref26 publication-title: Adaptation in Natural and Artificial Systems – ident: ref12 doi: 10.1109/ICEC.1996.542703 – start-page: 692 year: 2002 ident: ref14 article-title: a niching particle swarm optimizer publication-title: Proc 4th Asia-Pacific Conf Simulated Evol Learn SEAL 2002 – ident: ref23 doi: 10.1109/CEC.2002.1004493 – ident: ref32 doi: 10.1145/1143997.1143999 – start-page: 683 year: 0 ident: ref44 article-title: rotated test problems for assessing the performance of multiobjective optimization algorithms publication-title: Proc 8th Annu Conf Genet Evol Comput (GECCO '06) – ident: ref13 doi: 10.1162/106365602760234081 – ident: ref11 doi: 10.1007/978-3-7091-7533-0_65 – year: 2005 ident: ref20 publication-title: Fundamentals of Computational Swarm Intelligence – ident: ref24 doi: 10.1109/SIS.2005.1501650 – start-page: 42 year: 1989 ident: ref43 article-title: an investigation of niche and species formation in genetic function optimization publication-title: Proc 3rd Intl Conf on Genetic Algorithms – start-page: 361 year: 2004 ident: ref39 article-title: using vector operations to identify niches for particle swarm optimization publication-title: Proc 2004 IEEE Conf Cybernet Intell Syst – year: 1975 ident: ref5 publication-title: An Analysis of the Behavior of a Class of Genetic Adaptive Systems – ident: ref21 doi: 10.1002/9780470612163 – ident: ref30 doi: 10.1016/S0004-3702(97)00071-4 – ident: ref22 doi: 10.1109/MHS.1995.494215 – volume: 350 year: 1987 ident: ref47 publication-title: Global Optimization – year: 1984 ident: ref41 publication-title: Experimental study of speciation in ecological niche theory using genetic algorithms (doctoral dissertation) – start-page: 16 year: 2000 ident: ref10 article-title: island model cooperating with speciation for multimodal optimization publication-title: Proc 6th Int Conf Parall Prob Solv from Nat PPSN VI – start-page: 257 year: 1991 ident: ref40 article-title: a naturally occurring niche & species phenomenon: the model and first results publication-title: Proc Int Conf of Genetic Algorithm – ident: ref19 doi: 10.1109/4235.735432 |
SSID | ssj0014519 |
Score | 2.4826396 |
Snippet | Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 150 |
SubjectTerms | Algorithms Applied sciences Artificial intelligence Australia Computer science Computer science; control theory; systems Evolutionary algorithms Evolutionary computation Exact sciences and technology Information technology Learning and adaptive systems Machine learning multimodal optimization Network topology Networks niching algorithms Optimization Optimization methods Particle swarm optimization particle swarm optimization (PSO) Robustness Searching Space exploration Specifications swarm intelligence Topology |
Title | Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology |
URI | https://ieeexplore.ieee.org/document/5352335 https://www.proquest.com/docview/856609626 https://www.proquest.com/docview/743702655 https://www.proquest.com/docview/875052366 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3LgWcSWh3zoCTVL4jwcc0MIhCrRVrDb7i2ys7ZaAbsVmwjRX98Z24mgL_WURLHjJOOx5_0BvCXkAFzkimhalyrKhM0jZayMhJS2wNVQ5S4p7OpDcTnO3k_yyRK863NhjDEu-MwM6dT58qfzuiVT2TGVIknTfBmWUXHzuVq9x4DKpPhgehxIlJPgwUxieTw6_3zmK1Oipl9wwiV-tgc5UBUKiVQL_CvWw1n8tjK77eZiHa66F_VRJrfDttHD-scvNRz_90s2YC3InezUT5RNWDKzLVjvMB1YYPEtWH1WoHAbxjhRyETFvnxrvs7bhnXXnxQFdVFlzhM6dw9lN4_q4Z59xEXoPmR3MheRwBS7psPIAzI8vYbxxfno7DIKQAxRneW8iRKZldKS0zZJTCoSVWpekwnUpMoorqzkwqZW8DQzyORaW6Gpi1GUV8t1ugMrs_nM7ALLtCmwlUqndZ1ppaWIhcVH28TGOJn4AOKONFUdqpQTWMZd5bSVWFZETQLPlFWg5gCO-i7ffYmOfzXeJmr0DQMhBnD4gv79fZSeCPQB--11E6IKXL6oSpSFUQXkxQBYfxfZk3wuambm7aJCAU3gyHn-9yaoMZJtvije_Pnd9uCVD1mgGJp9WGkeWnOAklCjDx0L_ASZXgRm |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V9gA9UGhBXQrFB7ggZZs4D8dIHFBptaUPEOzC3oKdtdUKuou6iaryW_gr_DdmYidqed0qcdqsYns38Xg84_lmPoAnxByASi4LJmWugkTYNFDGykBIaTPUhiptksIOj7LBKHk9TscL8L3LhTHGNOAz06fLJpY_mZU1HZVtUSmSOG4hlPvm4hwdtPmLvVc4m085390Zbg8CzyEQlEnKqwB99FxaijdGkYlFpHLNSzq9M7EyiisrubCxFTxODMqn1lZo6mIUpYRyHeO4N2AJ7YyUu-ywLkZBhVkcfB8fTeRjHzONQrk13Pmw7WphcvRxODEhX9r1GhoXAmGqOc6DdQQav-0FzQa3uwI_2lfjcC2f-3Wl--W3X6pG_q_v7g7c9pY1e-mWwl1YMNNVWGlZK5hXYquwfKkE4xqMcCnQIRz7eFIdz-qKtd_fKoKtUe3R53TdDMren6uzU_YG1eypz19lDeaCKfaOPoaOcuLiHoyu5VHvw-J0NjXrwBJtMmyl4klZJlppKUJhcWgb2RCXC-9B2IpCUfo67EQH8qVo_LFQFiQ9RA8qCy89PXjWdfnqipD8q_EazX7X0E98DzavyFt3H-1DorXAfhutABZej82LHK19dHJ51gPW3UUFRFElNTWzel6gCSrwl9P0703QJ6boQ5Y9-PN_eww3B8PDg-Jg72h_A245gAYhhh7CYnVWm0do91V6s1l-DD5dt8z-BFp_X9s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Niching+Without+Niching+Parameters%3A+Particle+Swarm+Optimization+Using+a+Ring+Topology&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Xiaodong+Li&rft.date=2010-02-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=14&rft.issue=1&rft.spage=150&rft.epage=169&rft_id=info:doi/10.1109%2FTEVC.2009.2026270&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2009_2026270 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |