Crop genome‐wide association study: a harvest of biological relevance
Summary With the advent of rapid genotyping and next‐generation sequencing technologies, genome‐wide association study (GWAS) has become a routine strategy for decoding genotype–phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotyp...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 97; no. 1; pp. 8 - 18 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
With the advent of rapid genotyping and next‐generation sequencing technologies, genome‐wide association study (GWAS) has become a routine strategy for decoding genotype–phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotype–phenotype associations in crops and provided unparalleled opportunities to probe functional genomics. Beyond the many ‘hits’ obtained, this review summarizes recent efforts to increase our understanding of the genetic architecture of complex traits by focusing on non‐main effects including epistasis, pleiotropy, and phenotypic plasticity. We also discuss how these achievements and the remaining gaps in our knowledge will guide future studies. Synthetic association is highlighted as leading to false causality, which is prevalent but largely underestimated. Furthermore, validation evidence is appealing for future GWAS, especially in the context of emerging genome‐editing technologies.
Significance Statement
This review summarizes the latest advances in generating an overall view of the genetic architecture associated with crop complex traits, and discusses how these updated insights will guide future studies. A multiple‐causal‐allele hypothesis was formulated to explain the increasingly common artifact/synthetic associations. |
---|---|
AbstractList | With the advent of rapid genotyping and next-generation sequencing technologies, genome-wide association study (GWAS) has become a routine strategy for decoding genotype-phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotype-phenotype associations in crops and provided unparalleled opportunities to probe functional genomics. Beyond the many 'hits' obtained, this review summarizes recent efforts to increase our understanding of the genetic architecture of complex traits by focusing on non-main effects including epistasis, pleiotropy, and phenotypic plasticity. We also discuss how these achievements and the remaining gaps in our knowledge will guide future studies. Synthetic association is highlighted as leading to false causality, which is prevalent but largely underestimated. Furthermore, validation evidence is appealing for future GWAS, especially in the context of emerging genome-editing technologies. Summary With the advent of rapid genotyping and next‐generation sequencing technologies, genome‐wide association study (GWAS) has become a routine strategy for decoding genotype–phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotype–phenotype associations in crops and provided unparalleled opportunities to probe functional genomics. Beyond the many ‘hits’ obtained, this review summarizes recent efforts to increase our understanding of the genetic architecture of complex traits by focusing on non‐main effects including epistasis, pleiotropy, and phenotypic plasticity. We also discuss how these achievements and the remaining gaps in our knowledge will guide future studies. Synthetic association is highlighted as leading to false causality, which is prevalent but largely underestimated. Furthermore, validation evidence is appealing for future GWAS, especially in the context of emerging genome‐editing technologies. Significance Statement This review summarizes the latest advances in generating an overall view of the genetic architecture associated with crop complex traits, and discusses how these updated insights will guide future studies. A multiple‐causal‐allele hypothesis was formulated to explain the increasingly common artifact/synthetic associations. With the advent of rapid genotyping and next‐generation sequencing technologies, genome‐wide association study ( GWAS ) has become a routine strategy for decoding genotype–phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotype–phenotype associations in crops and provided unparalleled opportunities to probe functional genomics. Beyond the many ‘hits’ obtained, this review summarizes recent efforts to increase our understanding of the genetic architecture of complex traits by focusing on non‐main effects including epistasis, pleiotropy, and phenotypic plasticity. We also discuss how these achievements and the remaining gaps in our knowledge will guide future studies. Synthetic association is highlighted as leading to false causality, which is prevalent but largely underestimated. Furthermore, validation evidence is appealing for future GWAS , especially in the context of emerging genome‐editing technologies. This review summarizes the latest advances in generating an overall view of the genetic architecture associated with crop complex traits, and discusses how these updated insights will guide future studies. A multiple‐causal‐allele hypothesis was formulated to explain the increasingly common artifact/synthetic associations. With the advent of rapid genotyping and next-generation sequencing technologies, genome-wide association study (GWAS) has become a routine strategy for decoding genotype-phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotype-phenotype associations in crops and provided unparalleled opportunities to probe functional genomics. Beyond the many 'hits' obtained, this review summarizes recent efforts to increase our understanding of the genetic architecture of complex traits by focusing on non-main effects including epistasis, pleiotropy, and phenotypic plasticity. We also discuss how these achievements and the remaining gaps in our knowledge will guide future studies. Synthetic association is highlighted as leading to false causality, which is prevalent but largely underestimated. Furthermore, validation evidence is appealing for future GWAS, especially in the context of emerging genome-editing technologies.With the advent of rapid genotyping and next-generation sequencing technologies, genome-wide association study (GWAS) has become a routine strategy for decoding genotype-phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotype-phenotype associations in crops and provided unparalleled opportunities to probe functional genomics. Beyond the many 'hits' obtained, this review summarizes recent efforts to increase our understanding of the genetic architecture of complex traits by focusing on non-main effects including epistasis, pleiotropy, and phenotypic plasticity. We also discuss how these achievements and the remaining gaps in our knowledge will guide future studies. Synthetic association is highlighted as leading to false causality, which is prevalent but largely underestimated. Furthermore, validation evidence is appealing for future GWAS, especially in the context of emerging genome-editing technologies. |
Author | Yan, Jianbing Liu, Hai‐Jun |
Author_xml | – sequence: 1 givenname: Hai‐Jun surname: Liu fullname: Liu, Hai‐Jun email: heroalone@webmail.hzau.edu.cn organization: Huazhong Agricultural University – sequence: 2 givenname: Jianbing surname: Yan fullname: Yan, Jianbing email: yjianbing@mail.hzau.edu.cn organization: Huazhong Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30368955$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0bFO5DAQBmALgWDhKHgBFIkGioDHdpw1HVodcAiJK0Cii2xnAl5l48VOQNvdI_CMPAmG5a5A4nDj5pvxeP5Nstr5DgnZAXoI6Rz18-khCOBqhYyAyyLnwG9XyYgqSfNSANsgmzFOKYWSS7FONjjlcqyKYkTOJsHPszvs_Axf_jw_uRozHaO3TvfOd1nsh3pxnOnsXodHjH3mm8w43_o7Z3WbBWzxUXcWf5C1RrcRtz_uLXJz-vN6cp5fXp39mpxc5lYUTOU1N6ahzAA3wAwqxqxgTNclK5RipdWqLJpS1aYZgyjFWDBeKDQItG7GIo2_RfaXfefBPwxpoGrmosW21R36IVaMMaoAOLDvKTCpqBJSJbr3iU79ELr0kaSk5JIq9fb27ocazAzrah7cTIdF9XebCRwsgQ0-xoDNPwK0ekuqSklV70kle_TJWte_77wP2rX_q3hyLS6-bl1d_75YVrwCFJWi8A |
CitedBy_id | crossref_primary_10_1007_s00122_020_03563_7 crossref_primary_10_1105_tpc_19_00934 crossref_primary_10_3389_fpls_2023_1222681 crossref_primary_10_1007_s00344_019_09977_y crossref_primary_10_1007_s10722_023_01823_1 crossref_primary_10_1016_j_xplc_2021_100270 crossref_primary_10_1016_j_jplph_2020_153352 crossref_primary_10_1139_cjps_2024_0155 crossref_primary_10_1016_j_xplc_2019_100010 crossref_primary_10_1016_j_plantsci_2022_111435 crossref_primary_10_1093_plphys_kiae248 crossref_primary_10_1186_s12870_020_02360_0 crossref_primary_10_1007_s00018_021_03844_4 crossref_primary_10_1007_s00018_021_03868_w crossref_primary_10_3390_agronomy10030368 crossref_primary_10_1016_j_eng_2024_11_034 crossref_primary_10_1080_17474086_2022_2103534 crossref_primary_10_1111_mec_15989 crossref_primary_10_3389_fpls_2023_1170641 crossref_primary_10_1038_s41598_021_02488_5 crossref_primary_10_1111_nph_18021 crossref_primary_10_1007_s10142_023_01224_8 crossref_primary_10_1038_s41598_020_66604_7 crossref_primary_10_3389_fpls_2019_01759 crossref_primary_10_3390_plants10102220 crossref_primary_10_3390_plants11233342 crossref_primary_10_3390_ijms21238964 crossref_primary_10_3389_fpls_2024_1449579 crossref_primary_10_1038_s41438_021_00657_1 crossref_primary_10_1111_pbr_13010 crossref_primary_10_1093_jxb_eraa029 crossref_primary_10_1111_jipb_13489 crossref_primary_10_3389_fpls_2023_1308830 crossref_primary_10_1093_g3journal_jkae233 crossref_primary_10_1007_s11032_022_01295_8 crossref_primary_10_1007_s00122_021_03856_5 crossref_primary_10_1016_j_xplc_2021_100211 crossref_primary_10_1038_s41598_021_96576_1 crossref_primary_10_1007_s11627_021_10213_0 crossref_primary_10_1093_jxb_erac236 crossref_primary_10_3389_fgene_2021_673069 crossref_primary_10_1016_j_plantsci_2022_111539 crossref_primary_10_3389_fpls_2022_1014282 crossref_primary_10_1111_jipb_13791 crossref_primary_10_1016_j_plantsci_2023_111698 crossref_primary_10_1186_s12284_019_0302_1 crossref_primary_10_1007_s00122_021_04014_7 crossref_primary_10_1016_j_cj_2022_05_004 crossref_primary_10_1093_plcell_koac322 crossref_primary_10_3390_ijms25031918 crossref_primary_10_1093_g3journal_jkac237 crossref_primary_10_1111_nph_15895 crossref_primary_10_3389_fgene_2022_831656 crossref_primary_10_1007_s00122_021_03907_x crossref_primary_10_1146_annurev_genet_022123_110824 crossref_primary_10_1186_s43141_021_00274_4 crossref_primary_10_3389_fpls_2021_788433 crossref_primary_10_3390_plants13162179 crossref_primary_10_1016_j_scienta_2021_110629 crossref_primary_10_1016_j_tplants_2019_12_011 crossref_primary_10_1111_tpj_14219 crossref_primary_10_1186_s13059_021_02392_1 crossref_primary_10_1111_jipb_13380 crossref_primary_10_1016_j_xplc_2024_101197 crossref_primary_10_1016_j_jia_2023_07_021 crossref_primary_10_1016_j_copbio_2021_05_010 crossref_primary_10_1534_g3_120_401618 crossref_primary_10_1007_s10722_022_01512_5 crossref_primary_10_3835_plantgenome2019_06_0039 crossref_primary_10_1139_cjps_2022_0183 crossref_primary_10_1270_jsbbs_22004 crossref_primary_10_1007_s11032_022_01345_1 crossref_primary_10_1093_molbev_msae028 crossref_primary_10_1111_tpj_17012 crossref_primary_10_3389_fgene_2022_873060 crossref_primary_10_1002_fes3_436 crossref_primary_10_3390_epigenomes5020012 crossref_primary_10_3390_ijms21239280 crossref_primary_10_2174_0115680266289248240322061723 crossref_primary_10_1111_tpj_14429 crossref_primary_10_1093_hr_uhad283 crossref_primary_10_1111_jipb_13172 crossref_primary_10_3390_cells11010064 crossref_primary_10_1007_s00425_021_03814_x crossref_primary_10_3390_agronomy12050991 crossref_primary_10_1111_tpj_14786 crossref_primary_10_1007_s00122_021_03889_w crossref_primary_10_1016_j_plantsci_2024_112281 crossref_primary_10_1038_s41467_019_09462_w crossref_primary_10_1186_s12284_021_00495_8 crossref_primary_10_1093_nar_gkz828 crossref_primary_10_3389_fpls_2021_718081 crossref_primary_10_1093_jxb_erad177 crossref_primary_10_1016_j_csbj_2021_03_008 crossref_primary_10_1016_j_isci_2023_108709 crossref_primary_10_1186_s12864_022_09031_4 crossref_primary_10_3390_jimaging9120258 crossref_primary_10_1007_s00122_019_03492_0 crossref_primary_10_3390_plants9121655 crossref_primary_10_1007_s00122_019_03523_w crossref_primary_10_3390_cimb44100301 crossref_primary_10_1111_gcbb_12620 crossref_primary_10_3389_fpls_2022_1043784 crossref_primary_10_1186_s13059_021_02370_7 crossref_primary_10_1111_tpj_15173 crossref_primary_10_3390_genes14010123 crossref_primary_10_3389_fpls_2022_1063056 crossref_primary_10_1016_j_compag_2020_105672 crossref_primary_10_3390_plants10081667 crossref_primary_10_1093_plphys_kiab395 crossref_primary_10_3390_agronomy11081670 crossref_primary_10_1093_bib_bbaa263 crossref_primary_10_1093_jxb_erac395 crossref_primary_10_1007_s11295_022_01570_x crossref_primary_10_3389_fgene_2020_00447 crossref_primary_10_1186_s12864_022_08640_3 crossref_primary_10_1146_annurev_arplant_080720_090632 crossref_primary_10_1038_s42003_024_05769_7 crossref_primary_10_1007_s00122_021_03820_3 crossref_primary_10_1111_pbi_13133 crossref_primary_10_1093_plphys_kiab554 crossref_primary_10_1371_journal_pone_0247607 crossref_primary_10_1038_s41598_023_42182_2 crossref_primary_10_1016_j_ygeno_2021_04_009 crossref_primary_10_1186_s13059_020_1930_x crossref_primary_10_3389_fpls_2022_826875 crossref_primary_10_1016_j_jare_2025_01_011 crossref_primary_10_1186_s12864_020_07213_6 crossref_primary_10_34133_2022_9787643 crossref_primary_10_3389_fpls_2025_1530585 crossref_primary_10_1016_j_molp_2024_06_005 crossref_primary_10_1093_g3journal_jkad082 crossref_primary_10_1111_pce_14342 crossref_primary_10_1186_s12870_024_04960_6 crossref_primary_10_3390_genes14071315 crossref_primary_10_1038_s41588_021_00866_3 crossref_primary_10_1002_tpg2_20077 crossref_primary_10_1186_s12870_019_1989_2 |
Cites_doi | 10.1016/S0065-2660(08)60048-6 10.1105/tpc.18.00109 10.1016/j.molp.2016.12.008 10.1016/j.tplants.2018.07.004 10.1007/s00122-011-1653-1 10.3389/fgene.2017.00015 10.1007/s00122-006-0218-1 10.1534/genetics.117.300546 10.4238/2015.December.23.35 10.1016/j.molp.2017.06.007 10.2527/jas.2005-517 10.1186/s12864-015-2217-6 10.1038/ng.2612 10.1038/hdy.1973.90 10.1016/j.tplants.2010.09.008 10.1038/nrg3118 10.1186/s12864-015-1459-7 10.1126/science.1259215 10.1186/1746-4811-9-29 10.1016/j.ajhg.2017.04.013 10.1093/bib/bbs009 10.1038/ng.3636 10.1104/pp.15.01444 10.1046/j.1420-9101.1993.6010031.x 10.1186/s13059-015-0716-z 10.1016/j.cell.2017.04.032 10.1098/rspb.2012.1051 10.1007/s00122-016-2840-x 10.1016/j.plrev.2015.02.007 10.1098/rsob.170125 10.1002/j.1537-2197.1984.tb12511.x 10.1186/1471-2164-15-809 10.1073/pnas.1718058115 10.1038/nrg3461 10.1038/nature08800 10.1534/g3.111.000364 10.1016/j.cell.2017.12.019 10.1016/j.compbiolchem.2014.01.005 10.1038/ncomms12767 10.1016/j.tvjl.2014.09.013 10.1016/j.molp.2018.03.018 10.1038/ng.2620 10.1073/pnas.1203189109 10.1093/bib/bby058 10.1186/1471-2164-15-1 10.1093/bib/bbt089 10.1534/genetics.111.136903 10.1371/journal.pone.0105228 10.1186/s12864-017-3778-3 10.1016/j.cub.2017.05.055 10.1126/science.aat1577 10.7554/eLife.22502 10.1073/pnas.1014419107 10.1038/ng.2281 10.1371/journal.pone.0034021 10.1038/ncomms3832 10.1093/bioinformatics/btr172 10.3389/fpls.2018.00974 10.1186/s13059-017-1289-9 10.1038/nrg3627 10.1104/pp.108.131888 10.1073/pnas.94.17.9226 10.1126/science.1174276 10.1146/annurev-arplant-050213-035715 10.1371/journal.pcbi.1004925 10.1038/s41588-018-0116-x 10.1038/ng.3784 10.1038/ncomms9609 10.1038/s41467-017-02445-9 10.1111/nph.14688 10.1038/ng.3807 10.1111/tpj.13069 10.1093/genetics/158.4.1737 10.1016/j.cell.2017.06.008 10.1038/90135 10.1104/pp.15.00025 10.3389/fpls.2017.01611 10.1038/ng.695 10.1534/genetics.111.126508 10.1093/genetics/165.1.353 10.2135/cropsci1966.0011183X000600010011x 10.1038/s10038-017-0350-6 10.1038/ng.3007 10.1016/S0169-5347(97)01274-3 10.1007/978-1-62703-447-0_6 10.1038/ng.2484 10.1038/ng.3538 10.1073/pnas.1310949110 10.1371/journal.pbio.1000294 10.1016/j.molp.2017.06.006 10.1534/genetics.110.122549 10.2307/1936264 10.1371/journal.pcbi.1002600 10.1186/s12864-016-3397-4 10.1073/pnas.1219776110 10.1038/s41467-017-02769-6 10.1016/j.molp.2015.02.014 10.1146/annurev.es.17.110186.003315 10.1038/ng.143 10.1534/genetics.115.182444 10.1534/genetics.107.082867 10.1038/ncomms4438 10.1534/genetics.107.080564 10.1038/ng.746 10.1093/bioinformatics/bts304 10.1038/ncomms7258 10.1038/s41588-018-0119-7 10.1111/pce.12608 10.1186/1471-2105-15-102 10.1038/ng.3887 10.1038/ncomms13246 10.1111/nph.13814 10.1105/tpc.114.135848 10.1146/annurev.es.24.110193.000343 10.1016/j.pbi.2013.03.005 10.1038/ng.1018 10.3724/SP.J.1005.2012.00901 10.1080/12538078.2013.807302 10.1146/annurev.ecolsys.37.091305.110224 10.1111/nph.15103 10.1093/jxb/erx214 10.1186/s12859-017-1530-2 10.1038/ng.3974 10.1104/pp.113.231308 10.1111/nph.12458 10.1038/ng.3117 10.1093/jxb/erv182 10.1104/pp.17.00708 10.1038/s41477-017-0007-7 10.1073/pnas.1718326115 10.1038/ng.3596 10.1016/j.plantsci.2013.10.004 10.1126/science.aal1556 10.1186/s13040-015-0069-x 10.1016/j.ajhg.2009.11.004 10.1093/nar/gkx505 |
ContentType | Journal Article |
Copyright | 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd. Copyright © 2019 John Wiley & Sons Ltd and the Society for Experimental Biology |
Copyright_xml | – notice: 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd – notice: 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd. – notice: Copyright © 2019 John Wiley & Sons Ltd and the Society for Experimental Biology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/tpj.14139 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Genetics Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1365-313X |
EndPage | 18 |
ExternalDocumentID | 30368955 10_1111_tpj_14139 TPJ14139 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Hubei Provincial Natural Science Foundation of China funderid: 2015CFA008 – fundername: National Key Research and Development Program of China funderid: 2016YFD0100803; 2016YFD0101003 – fundername: Postdoctoral Talent Innovation Program of China funderid: BX201700092 – fundername: National Natural Science Foundation of China funderid: 31525017 |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4529-d3bbf02b13b12be922c422ad7259927ca975f79dbf81474842359ebe10df84173 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 1365-313X |
IngestDate | Fri Jul 11 18:28:25 EDT 2025 Fri Jul 11 15:32:00 EDT 2025 Fri Jul 25 10:47:15 EDT 2025 Mon Jul 21 06:06:02 EDT 2025 Tue Jul 01 03:57:28 EDT 2025 Thu Apr 24 22:55:10 EDT 2025 Wed Jan 22 16:48:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | genome editing GWAS epistasis synthetic association genetic architecture phenotypic plasticity pleiotropy |
Language | English |
License | 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4529-d3bbf02b13b12be922c422ad7259927ca975f79dbf81474842359ebe10df84173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 30368955 |
PQID | 2166360997 |
PQPubID | 31702 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2220911312 proquest_miscellaneous_2126909469 proquest_journals_2166360997 pubmed_primary_30368955 crossref_primary_10_1111_tpj_14139 crossref_citationtrail_10_1111_tpj_14139 wiley_primary_10_1111_tpj_14139_TPJ14139 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2019 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2018; 164 1993; 24 2009; 85 2013; 4 2010; 15 1965; 13 2017a; 215 2010; 107 2015b; 8 2010; 465 2006; 37 2010; 186 2018; 208 2012; 13 2016; 39 2013; 9 2018; 9 2017b; 8 2018; 172 2007; 177 2015c; 27 2014; 15 2013a; 110 2018; 30 2012; 28 2018; 219 2017; 169 2016; 48 2011; 123 2003; 165 2014a; 5 1998; 13 2010; 8 1973; 31 2011; 1 2017; 68 1986; 17 2014; 46 2017; 130 2001; 28 2018; 23 2012; 34 2006; 112 2017a; 18 2012; 109 2016; 12 2016; 5 2016; 7 2010; 42 2012; 190 2018; 115 2015; 66 2016; 210 2018; 11 2016; 170 2008; 40 2012; 44 2001; 158 2013; 1019 2018; 361 2017a; 8 2017; 7 2013b; 16 2017; 8 2014; 215–216 2017; 3 2017b; 49 2018b; 50 2017; 49 2017; 45 2009; 150 2017; 355 2013; 160 2014; 65 1993; 6 2013; 14 1997; 94 2014b; 15 2014; 9 2011; 27 2014; 50 2014; 164 2014; 202 2009; 325 2014; 201 2015; 13 2015; 14 2015; 6 2015; 16 1969; 50 2015a; 84 2013; 45 2015; 201 2017; 27 1966; 6 2017; 170 2018; 63 2017; 175 2015; 8 2008; 180 2015a; 16 1984; 71 2006; 84 2017; 10 2011; 44 2018 2011; 43 2015b; 168 2017; 18 2018; 50 2012; 279 2017; 100 2012; 7 2018a; 9 2014; 346 2011; 188 2012; 8 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_118_1 e_1_2_11_29_1 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_102_1 Cockram J. (e_1_2_11_13_1) 2018; 164 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_117_1 e_1_2_11_136_1 e_1_2_11_59_1 e_1_2_11_113_1 e_1_2_11_132_1 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_126_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_122_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_110_1 e_1_2_11_39_1 e_1_2_11_133_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_127_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_123_1 Ungerer M.C. (e_1_2_11_103_1) 2003; 165 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_130_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_120_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_116_1 e_1_2_11_37_1 e_1_2_11_135_1 e_1_2_11_112_1 e_1_2_11_131_1 |
References_xml | – volume: 45 start-page: e131 issue: 14 year: 2017 article-title: Prioritizing tests of epistasis through hierarchical representation of genomic redundancies publication-title: Nucleic Acids Res. – volume: 215–216 start-page: 11 year: 2014 end-page: 18 article-title: Dominance and epistasis are the main contributors to heterosis for plant height in rice publication-title: Plant Sci. – volume: 17 start-page: 667 year: 1986 end-page: 693 article-title: The evolution of phenotypic plasticity in plants publication-title: Annu. Rev. Ecol. Syst. – volume: 361 start-page: 181 year: 2018 end-page: 186 article-title: Ethylene‐gibberellin signaling underlies adaptation of rice to periodic flooding publication-title: Science – volume: 6 start-page: 36 year: 1966 end-page: 40 article-title: Stability parameters for comparing varieties publication-title: Crop Sci. – volume: 46 start-page: 1220 year: 2014 end-page: 1226 article-title: Genomic analyses provide insights into the history of tomato breeding publication-title: Nat. Genet. – volume: 48 start-page: 1233 year: 2016 end-page: 1241 article-title: Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings publication-title: Nat. Genet. – volume: 215 start-page: 1503 year: 2017a end-page: 1515 article-title: A transposon‐directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize publication-title: New Phytol. – volume: 16 start-page: 167 year: 2015 article-title: Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in publication-title: Genome Biol. – volume: 158 start-page: 1737 year: 2001 end-page: 1753 article-title: Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield publication-title: Genetics – volume: 13 start-page: 135 year: 2012 end-page: 145 article-title: Rare and common variants: twenty arguments publication-title: Nat. Rev. Genet. – volume: 5 start-page: 3438 year: 2014a article-title: Metabolome‐based genome‐wide association study of maize kernel leads to novel biochemical insights publication-title: Nat. Commun. – volume: 27 start-page: 1462 year: 2011 end-page: 1465 article-title: EpiGPU: exhaustive pairwise epistasis scans parallelized on consumer level graphics cards publication-title: Bioinformatics – volume: 165 start-page: 353 issue: 1 year: 2003 end-page: 365 article-title: Genotype−environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana publication-title: Genetics – volume: 14 start-page: 82 year: 2013 end-page: 95 article-title: A dynamic framework for quantifying the genetic architecture of phenotypic plasticity publication-title: Brief. Bioinform. – volume: 45 start-page: 707 year: 2013 end-page: 711 article-title: Loss of function of the IAA‐glucose hydrolase gene TGW6 enhances rice grain weight and increases yield publication-title: Nat. Genet. – volume: 43 start-page: 159 issue: 2 year: 2011 end-page: 162 article-title: Genome‐wide association study of leaf architecture in the maize nested association mapping population publication-title: Nat. Genet. – year: 2018 article-title: An efficient multi‐locus mixed model framework for the detection of small and linked QTLs in F2 publication-title: Brief. Bioinform. – volume: 208 start-page: 525 year: 2018 end-page: 536 article-title: Detection of epistasis for flowering time using Bayesian multilocus estimation in a barley MAGIC population publication-title: Genetics – volume: 15 start-page: 809 year: 2014b article-title: Genome‐wide association mapping of quantitative resistance to sudden death syndrome in soybean publication-title: BMC Genom. – volume: 202 start-page: 543 year: 2014 end-page: 549 article-title: Risk of false positive genetic associations in complex traits with underlying population structure: a case study publication-title: Vet. J. – volume: 46 start-page: 714 year: 2014 end-page: 721 article-title: Genome‐wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism publication-title: Nat. Genet. – volume: 37 start-page: 123 issue: 1 year: 2006 end-page: 157 article-title: The evolution of genetic architecture publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 7 start-page: pii: 170125 year: 2017 article-title: Statistical methods to detect pleiotropy in human complex traits publication-title: Open Biol. – volume: 94 start-page: 9226 year: 1997 end-page: 9231 article-title: Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid publication-title: Proc. Natl. Acad. Sci. USA – volume: 45 start-page: 43 year: 2013 end-page: 50 article-title: Genome‐wide association study dissects the genetic architecture of oil biosynthesis in maize kernels publication-title: Nat. Genet. – volume: 24 start-page: 35 year: 1993 end-page: 68 article-title: Genetics and evolution of phenotypic plasticity publication-title: Annu. Rev. Ecol. Syst. – volume: 85 start-page: 847 year: 2009 end-page: 861 article-title: Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces false‐positive associations for genome‐wide association studies publication-title: Am. J. Hum. Genet. – volume: 50 start-page: 19 year: 2014 end-page: 28 article-title: Fast detection of high‐order epistatic interactions in genome‐wide association studies using information theoretic measure publication-title: Comput. Biol. Chem. – volume: 170 start-page: 114 year: 2017 end-page: 126 e15 article-title: A natural allele of a transcription factor in rice confers broad‐spectrum blast resistance publication-title: Cell – volume: 11 start-page: 789 year: 2018 end-page: 805 article-title: Genome‐wide association studies of image traits reveal genetic architecture of drought resistance in rice publication-title: Mol. Plant – volume: 150 start-page: 506 year: 2009 end-page: 520 article-title: Epistatic interactions between Opaque2 transcriptional activator and its target gene CyPPDK1 control kernel trait variation in maize publication-title: Plant Physiol. – volume: 7 start-page: 12767 year: 2016 article-title: Comparative and parallel genome‐wide association studies for metabolic and agronomic traits in cereals publication-title: Nat. Commun. – volume: 100 start-page: 954 issue: 6 year: 2017 end-page: 959 article-title: Pleiotropic effects of trait‐associated genetic variation on DNA methylation: utility for refining GWAS loci publication-title: Am. J. Hum. Genet. – volume: 9 start-page: 974 year: 2018a article-title: Genome‐wide association study of haploid male fertility in maize ( L.) publication-title: Front. Plant Sci. – volume: 31 start-page: 339 year: 1973 end-page: 354 article-title: Statistical methods for the analysis of genotype−environment interactions publication-title: Heredity (Edinb) – volume: 8 start-page: 2264 year: 2017a article-title: RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis publication-title: Nat. Commun. – volume: 34 start-page: 901 year: 2012 end-page: 906 article-title: Ghd7, a pleiotropic gene controlling flag leaf area in rice publication-title: Yi Chuan – volume: 42 start-page: 961 year: 2010 end-page: 967 article-title: Genome‐wide association studies of 14 agronomic traits in rice landraces publication-title: Nat. Genet. – volume: 5 start-page: e22502 year: 2016 article-title: Multiple alleles at a single locus control seed dormancy in Swedish Arabidopsis publication-title: Elife – volume: 188 start-page: 673 issue: 3 year: 2011 end-page: 681 article-title: Do large effect QTL fractionate? A case study at the maize domestication QTL teosinte branched1 publication-title: Genetics – volume: 45 start-page: 470 year: 2013 end-page: 471 article-title: FaST‐LMM‐Select for addressing confounding from spatial structure and rare variants publication-title: Nat. Genet. – volume: 18 start-page: 110 year: 2017 article-title: MARV: a tool for genome‐wide multi‐phenotype analysis of rare variants publication-title: BMC Bioinformatics – volume: 49 start-page: 1089 year: 2017b end-page: 1098 article-title: Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits publication-title: Nat. Genet. – volume: 15 start-page: 684 year: 2010 end-page: 692 article-title: Plant phenotypic plasticity in a changing climate publication-title: Trends Plant Sci. – volume: 107 start-page: 19579 year: 2010 end-page: 19584 article-title: Linking differential domain functions of the GS3 protein to natural variation of grain size in rice publication-title: Proc. Natl. Acad. Sci. USA – volume: 68 start-page: 4089 year: 2017 end-page: 4101 article-title: The roles of pleiotropy and close linkage as revealed by association mapping of yield and correlated traits of wheat ( L.) publication-title: J. Exp. Bot. – volume: 7 start-page: 13246 year: 2016 article-title: Genome‐wide association study of 12 agronomic traits in peach publication-title: Nat. Commun. – volume: 112 start-page: 1164 year: 2006 end-page: 1171 article-title: GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein publication-title: Theor. Appl. Genet. – volume: 16 start-page: 24 year: 2015 end-page: 31 article-title: A QTL model to map the common genetic basis for correlative phenotypic plasticity publication-title: Brief. Bioinform. – volume: 44 start-page: 32 year: 2011 end-page: 39 article-title: Genome‐wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm publication-title: Nat. Genet. – volume: 1 start-page: 233 year: 2011 end-page: 243 article-title: Integrating rare‐variant testing, function prediction, and gene network in composite resequencing‐based genome‐wide association studies (CR‐GWAS) publication-title: G3 (Bethesda) – volume: 346 start-page: 1084 year: 2014 end-page: 1088 article-title: Biosynthesis, regulation, and domestication of bitterness in cucumber publication-title: Science – volume: 170 start-page: 136 year: 2016 end-page: 146 article-title: Combining quantitative genetics approaches with regulatory network analysis to dissect the complex metabolism of the maize kernel publication-title: Plant Physiol. – volume: 28 start-page: 1957 year: 2012 end-page: 1964 article-title: High‐throughput analysis of epistasis in genome‐wide association studies with BiForce publication-title: Bioinformatics – volume: 130 start-page: 635 year: 2017 end-page: 647 article-title: Genome‐wide mapping and prediction suggests presence of local epistasis in a vast elite winter wheat populations adapted to Central Europe publication-title: Theor. Appl. Genet. – volume: 201 start-page: 865 year: 2015 end-page: 870 article-title: An efficient genome‐wide multilocus epistasis search publication-title: Genetics – volume: 48 start-page: 927 year: 2016 end-page: 934 article-title: Genome‐wide association study using whole‐genome sequencing rapidly identifies new genes influencing agronomic traits in rice publication-title: Nat. Genet. – volume: 10 start-page: 1242 year: 2017 end-page: 1245 article-title: Genome‐wide targeted mutagenesis in rice using the CRISPR/Cas9 system publication-title: Mol. Plant – volume: 172 start-page: 249 year: 2018 end-page: 261.e12 article-title: Rewiring of the fruit metabolome in tomato breeding publication-title: Cell – volume: 13 start-page: 77 year: 1998 end-page: 81 article-title: Costs and limits of phenotypic plasticity publication-title: Trends Ecol. Evol. – volume: 28 start-page: 286 year: 2001 end-page: 289 article-title: Dwarf8 polymorphisms associate with variation in flowering time publication-title: Nat. Genet. – volume: 6 start-page: 8609 year: 2015 article-title: Genetic discovery for oil production and quality in sesame publication-title: Nat. Commun. – volume: 180 start-page: 1707 issue: 3 year: 2008 end-page: 1724 article-title: Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice publication-title: Genetics – volume: 49 start-page: 579 year: 2017b end-page: 587 article-title: Asymmetric subgenome selection and cis‐regulatory divergence during cotton domestication publication-title: Nat. Genet. – volume: 66 start-page: 3791 year: 2015 end-page: 3802 article-title: A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize publication-title: J. Exp. Bot. – volume: 30 start-page: 1404 year: 2018 end-page: 1423 article-title: Genome‐wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in maize publication-title: Plant Cell – volume: 10 start-page: 359 issue: 3 year: 2017 end-page: 374 article-title: Genome‐wide association studies in maize: praise and stargaze publication-title: Mol. Plant – volume: 8 start-page: 15 year: 2017 article-title: Genomic prediction of genotypic effects with epistasis and environment interactions for yield‐related traits of rapeseed ( L.) publication-title: Front. Genet. – volume: 164 start-page: 735 year: 2014 end-page: 747 article-title: Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response publication-title: Plant Physiol. – volume: 110 start-page: 16969 year: 2013a end-page: 16974 article-title: CACTA‐like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize publication-title: Proc. Natl Acad. Sci. – volume: 27 start-page: 1595 year: 2015c end-page: 1604 article-title: Genome‐wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber publication-title: Plant Cell – volume: 186 start-page: 767 year: 2010 end-page: 773 article-title: One hundred years of pleiotropy: a retrospective publication-title: Genetics – volume: 8 start-page: 1611 year: 2017b article-title: Genome‐wide association study of major agronomic traits related to domestication in peanut publication-title: Front. Plant Sci. – volume: 175 start-page: 774 year: 2017 end-page: 785 article-title: The conserved and unique genetic architecture of kernel size and weight in maize and rice publication-title: Plant Physiol. – volume: 15 start-page: 22 issue: 1 year: 2014 end-page: 33 article-title: Epistasis and quantitative traits: using model organisms to study gene‐gene interactions publication-title: Nat. Rev. Genet. – volume: 109 start-page: E1913 year: 2012 end-page: E1921 article-title: ZmCCT and the genetic basis of day‐length adaptation underlying the postdomestication spread of maize publication-title: Proc. Natl Acad. Sci. – volume: 177 start-page: 1827 year: 2007 end-page: 1837 article-title: Genetic basis of heterosis for growth‐related traits in Arabidopsis investigated by testcross progenies of near‐isogenic lines reveals a significant role of epistasis publication-title: Genetics – volume: 84 start-page: 1124 year: 2015a end-page: 1136 article-title: Genome‐wide association and epistasis studies unravel the genetic architecture of sudden death syndrome resistance in soybean publication-title: Plant J. – volume: 14 start-page: 18471 year: 2015 end-page: 18484 article-title: Genome‐wide prediction of maize single‐cross performance, considering non‐additive genetic effects publication-title: Genet. Mol. Res. – volume: 16 start-page: 290 year: 2015 article-title: Modelling the genetic architecture of flowering time control in barley through nested association mapping publication-title: BMC Genom. – volume: 6 start-page: 6258 year: 2015 article-title: Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis publication-title: Nat. Commun. – volume: 15 start-page: 1 year: 2014 article-title: A genome‐wide association study of seed protein and oil content in soybean publication-title: BMC Genom. – volume: 9 start-page: 29 year: 2013 article-title: The advantages and limitations of trait analysis with GWAS: a review publication-title: Plant Methods – volume: 115 start-page: 6679 year: 2018 end-page: 6684 article-title: Genomic and environmental determinants and their interplay underlying phenotypic plasticity publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 1238 issue: 9 year: 2017 end-page: 1241 article-title: Construction of a genome‐wide mutant library in rice using CRISPR/Cas9 publication-title: Mol. Plant – volume: 9 start-page: e105228 year: 2014 article-title: Genomewide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi‐arid tropics of the world publication-title: PLoS One – volume: 50 start-page: 710 year: 1969 end-page: 713 article-title: Morphological changes in swine associated with environmental temperature publication-title: Ecology – volume: 44 start-page: 720 year: 2012 end-page: 724 article-title: Parallel domestication of the Shattering1 genes in cereals publication-title: Nat. Genet. – volume: 16 start-page: 1011 year: 2015a article-title: A Bayesian model for detection of high‐order interactions among genetic variants in genome‐wide association studies publication-title: BMC Genom. – volume: 201 start-page: 357 year: 2014 end-page: 365 article-title: A synthetic framework for modeling the genetic basis of phenotypic plasticity and its costs publication-title: New Phytol. – volume: 49 start-page: 1741 issue: 12 year: 2017 end-page: 1746 article-title: A quantitative genetic framework highlights the role of epistatic effects for grain‐yield heterosis in bread wheat publication-title: Nat. Genet. – volume: 18 start-page: 415 year: 2017 article-title: Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo‐thermal conditions publication-title: BMC Genom. – volume: 27 start-page: R770 year: 2017 end-page: R783 article-title: Plant phenomics, from sensors to knowledge publication-title: Curr. Biol. – volume: 48 start-page: 481 year: 2016 end-page: 487 article-title: Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets publication-title: Nat. Genet. – volume: 9 start-page: 989 year: 2018 article-title: Improving genetic prediction by leveraging genetic correlations among human diseases and traits publication-title: Nat. Commun. – volume: 7 start-page: e34021 year: 2012 article-title: Evolution and association analysis of Ghd7 in rice publication-title: PLoS One – volume: 465 start-page: 627 year: 2010 end-page: 631 article-title: Genome‐wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines publication-title: Nature – volume: 8 start-page: e1000294 issue: 1 year: 2010 article-title: Rare variants create synthetic genome‐wide associations publication-title: PLoS Biol. – volume: 65 start-page: 531 year: 2014 end-page: 551 article-title: Natural variations and genome‐wide association studies in crop plants publication-title: Annu. Rev. Plant Biol. – volume: 40 start-page: 761 year: 2008 end-page: 767 article-title: Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice publication-title: Nat. Genet. – volume: 15 start-page: 102 year: 2014 article-title: Cloud computing for detecting high‐order genome‐wide epistatic interaction via dynamic clustering publication-title: BMC Bioinformatics – volume: 1019 start-page: 149 year: 2013 end-page: 169 article-title: Overview of statistical methods for genome‐wide association studies (GWAS) publication-title: Methods Mol. Biol. – volume: 71 start-page: 252 year: 1984 end-page: 260 article-title: Phenotypic plasticity of annual phlox: tests of some hypotheses publication-title: Am. J. Bot. – volume: 109 start-page: 21534 year: 2012 end-page: 21539 article-title: Rare allele of OsPPKL1 associated with grain length causes extra‐large grain and a significant yield increase in rice publication-title: Proc. Natl. Acad. Sci. USA – volume: 219 start-page: 31 year: 2018 end-page: 36 article-title: Determining the evolutionary forces shaping G x E publication-title: New Phytol. – volume: 13 start-page: 155 year: 2015 end-page: 185 article-title: Mapping complex traits as a dynamic system publication-title: Phys. Life Rev. – volume: 8 start-page: 946 year: 2015b end-page: 957 article-title: Genetic architecture of natural variation in rice chlorophyll content revealed by a genome‐wide association study publication-title: Mol. Plant – volume: 13 start-page: 115 year: 1965 end-page: 155 article-title: Evolutionary significance of phenotypic plasticity in plants publication-title: Adv. Genet. – volume: 39 start-page: 282 year: 2016 end-page: 294 article-title: Environmental and genetic interactions reveal FLOWERING LOCUS C as a modulator of the natural variation for the plasticity of flowering in Arabidopsis publication-title: Plant, Cell Environ. – volume: 4 start-page: 2832 year: 2013 article-title: RNA sequencing reveals the complex regulatory network in the maize kernel publication-title: Nat. Commun. – volume: 49 start-page: 476 year: 2017 end-page: 480 article-title: A study of allelic diversity underlying flowering‐time adaptation in maize landraces publication-title: Nat. Genet. – volume: 164 start-page: 109 year: 2018 end-page: 138 article-title: Genetic mapping populations for conducting high‐resolution trait mapping in plants publication-title: Adv. Biochem. Eng. Biotechnol. – volume: 63 start-page: 289 year: 2018 end-page: 296 article-title: Genotypic variability‐based genome‐wide association study identifies non‐additive loci HLA‐C and IL12B for psoriasis publication-title: J. Hum. Genet. – volume: 8 start-page: e1002600 issue: 7 year: 2012 article-title: Predicting signatures of “synthetic associations” and “natural associations” from empirical patterns of human genetic variation publication-title: PLoS Comput. Biol. – volume: 23 start-page: 883 year: 2018 end-page: 898 article-title: Deep learning for plant stress phenotyping: trends and future perspectives publication-title: Trends Plant Sci. – volume: 160 start-page: 205 year: 2013 end-page: 219 article-title: Genome‐wide association mapping of flowering time in Arabidopsis thaliana in nature: genetics for underlying components and reaction norms across two successive years publication-title: Acta Bot. Gallica – volume: 279 start-page: 3843 year: 2012 end-page: 3852 article-title: Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change publication-title: Proc. Biol. Sci. – volume: 84 start-page: 1651 year: 2006 end-page: 1657 article-title: Bayesian analysis of the linear reaction norm model with unknown covariates publication-title: J. Anim. Sci. – volume: 168 start-page: 575 year: 2015b end-page: 583 article-title: Genome‐wide association of carbon and nitrogen metabolism in the maize nested association mapping population publication-title: Plant Physiol. – volume: 8 start-page: 36 year: 2015 article-title: gammaMAXT: a fast multiple‐testing correction algorithm publication-title: BioData Min. – volume: 18 start-page: 161 year: 2017a article-title: Genome‐wide association studies dissect the genetic networks underlying agronomical traits in soybean publication-title: Genome Biol. – volume: 355 start-page: 391 year: 2017 end-page: 394 article-title: A chemical genetic roadmap to improved tomato flavor publication-title: Science – volume: 50 start-page: 796 year: 2018 end-page: 802 article-title: Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits publication-title: Nat. Genet. – volume: 3 start-page: 715 year: 2017 end-page: 723 article-title: Distinct genetic architectures for phenotype means and plasticities in publication-title: Nat. Plants – volume: 50 start-page: 803 year: 2018b end-page: 813 article-title: Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield publication-title: Nat. Genet. – volume: 6 start-page: 31 year: 1993 end-page: 48 article-title: The genetics of phenotypic plasticity. V. Evolution of reaction norm shape publication-title: J. Evol. Biol. – volume: 14 start-page: 483 year: 2013 end-page: 495 article-title: Pleiotropy in complex traits: challenges and strategies publication-title: Nat. Rev. Genet. – volume: 325 start-page: 714 year: 2009 end-page: 718 article-title: The genetic architecture of maize flowering time publication-title: Science – volume: 16 start-page: 180 year: 2013b end-page: 187 article-title: Plant phenomics and high‐throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies publication-title: Curr. Opin. Plant Biol. – volume: 18 start-page: 18 year: 2017 article-title: A genome‐wide association study of seed composition traits in wild soybean (Glycine soja) publication-title: BMC Genom. – volume: 210 start-page: 1095 year: 2016 end-page: 1106 article-title: Genome‐wide dissection of the maize ear genetic architecture using multiple populations publication-title: New Phytol. – volume: 115 start-page: E334 year: 2018 end-page: E341 article-title: ZmCCT9 enhances maize adaptation to higher latitudes publication-title: Proc. Natl Acad. Sci. – volume: 190 start-page: 1547 year: 2012 end-page: 1562 article-title: Flowering time in maize: linkage and epistasis at a major effect locus publication-title: Genetics – volume: 123 start-page: 1121 year: 2011 end-page: 1131 article-title: Genome‐wide association mapping of agronomic traits in sugar beet publication-title: Theor. Appl. Genet. – volume: 12 start-page: e1004925 year: 2016 article-title: PEPIS: a pipeline for estimating epistatic effects in quantitative trait locus mapping and genome‐wide association studies publication-title: PLoS Comput. Biol. – volume: 169 start-page: 1142 year: 2017 end-page: 1155 e12 article-title: Bypassing negative epistasis on yield in tomato imposed by a domestication gene publication-title: Cell – ident: e_1_2_11_5_1 doi: 10.1016/S0065-2660(08)60048-6 – ident: e_1_2_11_12_1 doi: 10.1105/tpc.18.00109 – ident: e_1_2_11_120_1 doi: 10.1016/j.molp.2016.12.008 – ident: e_1_2_11_91_1 doi: 10.1016/j.tplants.2018.07.004 – ident: e_1_2_11_118_1 doi: 10.1007/s00122-011-1653-1 – ident: e_1_2_11_68_1 doi: 10.3389/fgene.2017.00015 – ident: e_1_2_11_21_1 doi: 10.1007/s00122-006-0218-1 – ident: e_1_2_11_76_1 doi: 10.1534/genetics.117.300546 – ident: e_1_2_11_84_1 doi: 10.4238/2015.December.23.35 – ident: e_1_2_11_67_1 doi: 10.1016/j.molp.2017.06.007 – ident: e_1_2_11_96_1 doi: 10.2527/jas.2005-517 – ident: e_1_2_11_105_1 doi: 10.1186/s12864-015-2217-6 – ident: e_1_2_11_46_1 doi: 10.1038/ng.2612 – ident: e_1_2_11_25_1 doi: 10.1038/hdy.1973.90 – ident: e_1_2_11_81_1 doi: 10.1016/j.tplants.2010.09.008 – ident: e_1_2_11_29_1 doi: 10.1038/nrg3118 – ident: e_1_2_11_77_1 doi: 10.1186/s12864-015-1459-7 – ident: e_1_2_11_89_1 doi: 10.1126/science.1259215 – ident: e_1_2_11_52_1 doi: 10.1186/1746-4811-9-29 – ident: e_1_2_11_34_1 doi: 10.1016/j.ajhg.2017.04.013 – ident: e_1_2_11_104_1 doi: 10.1093/bib/bbs009 – ident: e_1_2_11_107_1 doi: 10.1038/ng.3636 – ident: e_1_2_11_115_1 doi: 10.1104/pp.15.01444 – ident: e_1_2_11_28_1 doi: 10.1046/j.1420-9101.1993.6010031.x – ident: e_1_2_11_15_1 doi: 10.1186/s13059-015-0716-z – ident: e_1_2_11_93_1 doi: 10.1016/j.cell.2017.04.032 – ident: e_1_2_11_2_1 doi: 10.1098/rspb.2012.1051 – ident: e_1_2_11_37_1 doi: 10.1007/s00122-016-2840-x – ident: e_1_2_11_97_1 doi: 10.1016/j.plrev.2015.02.007 – ident: e_1_2_11_33_1 doi: 10.1098/rsob.170125 – ident: e_1_2_11_87_1 doi: 10.1002/j.1537-2197.1984.tb12511.x – ident: e_1_2_11_114_1 doi: 10.1186/1471-2164-15-809 – ident: e_1_2_11_43_1 doi: 10.1073/pnas.1718058115 – ident: e_1_2_11_92_1 doi: 10.1038/nrg3461 – ident: e_1_2_11_3_1 doi: 10.1038/nature08800 – ident: e_1_2_11_136_1 doi: 10.1534/g3.111.000364 – ident: e_1_2_11_138_1 doi: 10.1016/j.cell.2017.12.019 – ident: e_1_2_11_56_1 doi: 10.1016/j.compbiolchem.2014.01.005 – ident: e_1_2_11_11_1 doi: 10.1038/ncomms12767 – ident: e_1_2_11_24_1 doi: 10.1016/j.tvjl.2014.09.013 – ident: e_1_2_11_31_1 doi: 10.1016/j.molp.2018.03.018 – ident: e_1_2_11_64_1 doi: 10.1038/ng.2620 – ident: e_1_2_11_44_1 doi: 10.1073/pnas.1203189109 – ident: e_1_2_11_116_1 doi: 10.1093/bib/bby058 – ident: e_1_2_11_45_1 doi: 10.1186/1471-2164-15-1 – ident: e_1_2_11_135_1 doi: 10.1093/bib/bbt089 – ident: e_1_2_11_19_1 doi: 10.1534/genetics.111.136903 – ident: e_1_2_11_82_1 doi: 10.1371/journal.pone.0105228 – ident: e_1_2_11_75_1 doi: 10.1186/s12864-017-3778-3 – ident: e_1_2_11_99_1 doi: 10.1016/j.cub.2017.05.055 – ident: e_1_2_11_53_1 doi: 10.1126/science.aat1577 – ident: e_1_2_11_51_1 doi: 10.7554/eLife.22502 – ident: e_1_2_11_74_1 doi: 10.1073/pnas.1014419107 – ident: e_1_2_11_61_1 doi: 10.1038/ng.2281 – ident: e_1_2_11_66_1 doi: 10.1371/journal.pone.0034021 – ident: e_1_2_11_26_1 doi: 10.1038/ncomms3832 – ident: e_1_2_11_38_1 doi: 10.1093/bioinformatics/btr172 – ident: e_1_2_11_69_1 doi: 10.3389/fpls.2018.00974 – ident: e_1_2_11_22_1 doi: 10.1186/s13059-017-1289-9 – ident: e_1_2_11_71_1 doi: 10.1038/nrg3627 – ident: e_1_2_11_73_1 doi: 10.1104/pp.108.131888 – ident: e_1_2_11_126_1 doi: 10.1073/pnas.94.17.9226 – ident: e_1_2_11_7_1 doi: 10.1126/science.1174276 – ident: e_1_2_11_39_1 doi: 10.1146/annurev-arplant-050213-035715 – ident: e_1_2_11_132_1 doi: 10.1371/journal.pcbi.1004925 – ident: e_1_2_11_18_1 doi: 10.1038/s41588-018-0116-x – ident: e_1_2_11_83_1 doi: 10.1038/ng.3784 – ident: e_1_2_11_111_1 doi: 10.1038/ncomms9609 – ident: e_1_2_11_133_1 doi: 10.1038/s41467-017-02445-9 – ident: e_1_2_11_108_1 doi: 10.1111/nph.14688 – ident: e_1_2_11_109_1 doi: 10.1038/ng.3807 – ident: e_1_2_11_129_1 doi: 10.1111/tpj.13069 – ident: e_1_2_11_57_1 doi: 10.1093/genetics/158.4.1737 – ident: e_1_2_11_59_1 doi: 10.1016/j.cell.2017.06.008 – ident: e_1_2_11_100_1 doi: 10.1038/90135 – ident: e_1_2_11_130_1 doi: 10.1104/pp.15.00025 – ident: e_1_2_11_134_1 doi: 10.3389/fpls.2017.01611 – ident: e_1_2_11_40_1 doi: 10.1038/ng.695 – ident: e_1_2_11_95_1 doi: 10.1534/genetics.111.126508 – volume: 165 start-page: 353 issue: 1 year: 2003 ident: e_1_2_11_103_1 article-title: Genotype−environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana publication-title: Genetics doi: 10.1093/genetics/165.1.353 – ident: e_1_2_11_20_1 doi: 10.2135/cropsci1966.0011183X000600010011x – ident: e_1_2_11_112_1 doi: 10.1038/s10038-017-0350-6 – ident: e_1_2_11_10_1 doi: 10.1038/ng.3007 – ident: e_1_2_11_16_1 doi: 10.1016/S0169-5347(97)01274-3 – ident: e_1_2_11_36_1 doi: 10.1007/978-1-62703-447-0_6 – ident: e_1_2_11_58_1 doi: 10.1038/ng.2484 – ident: e_1_2_11_137_1 doi: 10.1038/ng.3538 – ident: e_1_2_11_123_1 doi: 10.1073/pnas.1310949110 – ident: e_1_2_11_17_1 doi: 10.1371/journal.pbio.1000294 – ident: e_1_2_11_80_1 doi: 10.1016/j.molp.2017.06.006 – ident: e_1_2_11_94_1 doi: 10.1534/genetics.110.122549 – ident: e_1_2_11_110_1 doi: 10.2307/1936264 – ident: e_1_2_11_9_1 doi: 10.1371/journal.pcbi.1002600 – ident: e_1_2_11_55_1 doi: 10.1186/s12864-016-3397-4 – ident: e_1_2_11_128_1 doi: 10.1073/pnas.1219776110 – ident: e_1_2_11_72_1 doi: 10.1038/s41467-017-02769-6 – ident: e_1_2_11_106_1 doi: 10.1016/j.molp.2015.02.014 – ident: e_1_2_11_86_1 doi: 10.1146/annurev.es.17.110186.003315 – ident: e_1_2_11_122_1 doi: 10.1038/ng.143 – ident: e_1_2_11_50_1 doi: 10.1534/genetics.115.182444 – ident: e_1_2_11_27_1 doi: 10.1534/genetics.107.082867 – ident: e_1_2_11_113_1 doi: 10.1038/ncomms4438 – ident: e_1_2_11_78_1 doi: 10.1534/genetics.107.080564 – ident: e_1_2_11_101_1 doi: 10.1038/ng.746 – ident: e_1_2_11_32_1 doi: 10.1093/bioinformatics/bts304 – ident: e_1_2_11_42_1 doi: 10.1038/ncomms7258 – volume: 164 start-page: 109 year: 2018 ident: e_1_2_11_13_1 article-title: Genetic mapping populations for conducting high‐resolution trait mapping in plants publication-title: Adv. Biochem. Eng. Biotechnol. – ident: e_1_2_11_70_1 doi: 10.1038/s41588-018-0119-7 – ident: e_1_2_11_79_1 doi: 10.1111/pce.12608 – ident: e_1_2_11_30_1 doi: 10.1186/1471-2105-15-102 – ident: e_1_2_11_23_1 doi: 10.1038/ng.3887 – ident: e_1_2_11_8_1 doi: 10.1038/ncomms13246 – ident: e_1_2_11_119_1 doi: 10.1111/nph.13814 – ident: e_1_2_11_131_1 doi: 10.1105/tpc.114.135848 – ident: e_1_2_11_85_1 doi: 10.1146/annurev.es.24.110193.000343 – ident: e_1_2_11_124_1 doi: 10.1016/j.pbi.2013.03.005 – ident: e_1_2_11_41_1 doi: 10.1038/ng.1018 – ident: e_1_2_11_98_1 doi: 10.3724/SP.J.1005.2012.00901 – ident: e_1_2_11_4_1 doi: 10.1080/12538078.2013.807302 – ident: e_1_2_11_35_1 doi: 10.1146/annurev.ecolsys.37.091305.110224 – ident: e_1_2_11_48_1 doi: 10.1111/nph.15103 – ident: e_1_2_11_88_1 doi: 10.1093/jxb/erx214 – ident: e_1_2_11_49_1 doi: 10.1186/s12859-017-1530-2 – ident: e_1_2_11_47_1 doi: 10.1038/ng.3974 – ident: e_1_2_11_117_1 doi: 10.1104/pp.113.231308 – ident: e_1_2_11_127_1 doi: 10.1111/nph.12458 – ident: e_1_2_11_62_1 doi: 10.1038/ng.3117 – ident: e_1_2_11_121_1 doi: 10.1093/jxb/erv182 – ident: e_1_2_11_65_1 doi: 10.1104/pp.17.00708 – ident: e_1_2_11_54_1 doi: 10.1038/s41477-017-0007-7 – ident: e_1_2_11_60_1 doi: 10.1073/pnas.1718326115 – ident: e_1_2_11_125_1 doi: 10.1038/ng.3596 – ident: e_1_2_11_90_1 doi: 10.1016/j.plantsci.2013.10.004 – ident: e_1_2_11_102_1 doi: 10.1126/science.aal1556 – ident: e_1_2_11_63_1 doi: 10.1186/s13040-015-0069-x – ident: e_1_2_11_6_1 doi: 10.1016/j.ajhg.2009.11.004 – ident: e_1_2_11_14_1 doi: 10.1093/nar/gkx505 |
SSID | ssj0017364 |
Score | 2.6183481 |
SecondaryResourceType | review_article |
Snippet | Summary
With the advent of rapid genotyping and next‐generation sequencing technologies, genome‐wide association study (GWAS) has become a routine strategy for... With the advent of rapid genotyping and next‐generation sequencing technologies, genome‐wide association study ( GWAS ) has become a routine strategy for... With the advent of rapid genotyping and next-generation sequencing technologies, genome-wide association study (GWAS) has become a routine strategy for... With the advent of rapid genotyping and next‐generation sequencing technologies, genome‐wide association study (GWAS) has become a routine strategy for... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8 |
SubjectTerms | Associations crops Crops, Agricultural - genetics Decoding Epistasis Epistasis, Genetic Gene Editing Gene sequencing genetic architecture Genetic Association Studies Genetic Pleiotropy Genome editing Genome, Plant - genetics Genome-wide association studies Genome-Wide Association Study Genomes Genomics Genotype Genotypes Genotyping GWAS High-Throughput Nucleotide Sequencing Phenotype Phenotypes Phenotypic plasticity Pleiotropy synthetic association |
Title | Crop genome‐wide association study: a harvest of biological relevance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.14139 https://www.ncbi.nlm.nih.gov/pubmed/30368955 https://www.proquest.com/docview/2166360997 https://www.proquest.com/docview/2126909469 https://www.proquest.com/docview/2220911312 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8UwEB5EPHhxX54bUTx4qbyka_Sk4oKgiCh4EEqmC4r6-ngLoid_gr_RX-JMN3cRb4VO22SWzpdk8gVgNSIvQieQlk_51HIMppaRKrZk6kpEz9VN5L3DR8fewblzeOFeDMBmtRem4IeoJ9w4MvL_NQe4we67IO-1OcwJwND_l2u1GBCd1tRR0rcL6ihC6BZlTVWyCnEVT_3kx1z0BWB-xKt5wtkbhcuqqUWdyc16v4fr0eMnFsd_9mUMRkogKrYKzxmHgaQ1AUPbGYHFh0nY3-lkbcEErnfJy9Pz_XWcCPNmSZGz0m4II65Mh4k6RJaKgs-JjS74JJa8tmAKzvd2z3YOrPLMBSviJVgrthHTpkJpo1SYaKUiRykTkym1Vn5ktO-mvo4xDaTDPKTKdjU5gmzGaeCQ1qdhsJW1klkQQWz79DpHIUEIz2-iExuPEEPCn3BRNmCt0n4YlYTkfC7GbVgNTEgtYa6WBqzUou2CheM7oYXKhGEZiN1QSY8Z0bT2G7Bc36YQ4nUR00qyPssoT9Mw19O_yChFyEraUjVgpnCPuiWMAgLtutSh3Mg_NzE8OznML-b-LjoPwwTSdDHtswCDvU4_WSQg1MOl3ONfAW74Avs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gmugFFR8sojRGEy9DtmueTeKBh7g8Y8yScBu6Z3qiEXY2y24InPgJ_BD-in_CX2LVvOShhgsHbpN0pae6q6rr69fXAO8S8iLjRdIJKZ86njaZoyWmjsx8aUzgq7bhu8Nb20Fnx1vf9XfH4Ly-C1PyQzQLbhwZxXjNAc4L0heifNjnOCcEUx2p3LDHRzRhO_y4tkLWfY-4-qm73HGqNwWchLcYndQ1Jmujka6RaKxCTDxEnZKqSmGYaBX6WahSk0XSY55NdH1FDZXtNIs8GbpU7z24zy-IM1P_yteGrIrKSrIqmhM4lKex4jHic0ONqpez3zVIexkhFylu9TH8rDunPNnyY340NPPJyRXeyLvSe09gosLaYrEMjqcwZnuT8GApJzx8_Aw-Lw_yvmCO2gP76_Ts6Htqhf7jrKIg3l0QWnzTA-YiEXkmSsoq9mvBj80Uxyeew86tNOIFjPfynp0CEaVuSNV5aAglBWHbeKkOCBRZ_oVvZAs-1OaOk4pznZ_-2I_ruReZIS7M0IK3jWi_JBr5m9BM7TNxNdYcxigDJn1TKmzBXFNMowRv_eiezUcsg4GimXyg_iODSOBRuhJb8LL0x0YTBjqR8n1qUOFV_1Yx7n5ZLz6mby46Cw873a3NeHNte-MVPCJMqspVrhkYHw5G9jXhvqF5U4SbgL3b9tDf_QJfLQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhQxEC2FgBAX9mUggEEgcemoXe1ejMQBMgxZIIpQIuXW2G23EgHTo8mMonDiE_gPfoWv4Euo6g3CJi45cGvJJXfZVeV63p4BHhTkRVZlMkgpnwbK2DIwEl0gy1ham8Q6tHx3-NVmsrqj1nfj3QX43N2Fafgh-gU3jox6vOYAn7jyhyCfTTjMCcC0Jyo3_NEhzdcOnqwNybgPEUfPt1dWg_ZJgaDgHcbARdaWIVoZWYnWa8RCIRpHmmqNaWF0GpepdrbMpGKaTYxiTe2UoSszJdOI6j0Fp1USan4nYvi656qisoariqYEAaVpbGmM-NhQr-rx5PcLoj0OkOsMN7oAX7q-aQ62vF2ez-xy8eEn2sj_pPMuwvkWaYunTWhcggU_vgxnnlWEho-uwIuVaTURzFD73n_9-Olw33lhvruqqGl3Hwsj9syUmUhEVYqGsIq9WvBTM_XhiauwcyKNuAaL42rsb4DIXJRSdQotYaQkDa1yJiFI5PkXsZUDeNRZOy9axnV--ONd3s28yAx5bYYB3O9FJw3NyO-EljqXyduR5iBHmTDlm9bpAO71xTRG8MaPGftqzjKYaJrHJ_ovMogEHWUkcQDXG3fsNWGYk-k4pgbVTvVnFfPtrfX64-a_i96Fs1vDUf5ybXPjFpwjQKqbJa4lWJxN5_42gb6ZvVMHm4A3J-2g3wBi2l3c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+genome%E2%80%90wide+association+study%3A+a+harvest+of+biological+relevance&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Hai%E2%80%90Jun+Liu&rft.au=Yan%2C+Jianbing&rft.date=2019-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=97&rft.issue=1&rft.spage=8&rft.epage=18&rft_id=info:doi/10.1111%2Ftpj.14139&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |