Crop genome‐wide association study: a harvest of biological relevance

Summary With the advent of rapid genotyping and next‐generation sequencing technologies, genome‐wide association study (GWAS) has become a routine strategy for decoding genotype–phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotyp...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 97; no. 1; pp. 8 - 18
Main Authors Liu, Hai‐Jun, Yan, Jianbing
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary With the advent of rapid genotyping and next‐generation sequencing technologies, genome‐wide association study (GWAS) has become a routine strategy for decoding genotype–phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotype–phenotype associations in crops and provided unparalleled opportunities to probe functional genomics. Beyond the many ‘hits’ obtained, this review summarizes recent efforts to increase our understanding of the genetic architecture of complex traits by focusing on non‐main effects including epistasis, pleiotropy, and phenotypic plasticity. We also discuss how these achievements and the remaining gaps in our knowledge will guide future studies. Synthetic association is highlighted as leading to false causality, which is prevalent but largely underestimated. Furthermore, validation evidence is appealing for future GWAS, especially in the context of emerging genome‐editing technologies. Significance Statement This review summarizes the latest advances in generating an overall view of the genetic architecture associated with crop complex traits, and discusses how these updated insights will guide future studies. A multiple‐causal‐allele hypothesis was formulated to explain the increasingly common artifact/synthetic associations.
AbstractList With the advent of rapid genotyping and next-generation sequencing technologies, genome-wide association study (GWAS) has become a routine strategy for decoding genotype-phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotype-phenotype associations in crops and provided unparalleled opportunities to probe functional genomics. Beyond the many 'hits' obtained, this review summarizes recent efforts to increase our understanding of the genetic architecture of complex traits by focusing on non-main effects including epistasis, pleiotropy, and phenotypic plasticity. We also discuss how these achievements and the remaining gaps in our knowledge will guide future studies. Synthetic association is highlighted as leading to false causality, which is prevalent but largely underestimated. Furthermore, validation evidence is appealing for future GWAS, especially in the context of emerging genome-editing technologies.
Summary With the advent of rapid genotyping and next‐generation sequencing technologies, genome‐wide association study (GWAS) has become a routine strategy for decoding genotype–phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotype–phenotype associations in crops and provided unparalleled opportunities to probe functional genomics. Beyond the many ‘hits’ obtained, this review summarizes recent efforts to increase our understanding of the genetic architecture of complex traits by focusing on non‐main effects including epistasis, pleiotropy, and phenotypic plasticity. We also discuss how these achievements and the remaining gaps in our knowledge will guide future studies. Synthetic association is highlighted as leading to false causality, which is prevalent but largely underestimated. Furthermore, validation evidence is appealing for future GWAS, especially in the context of emerging genome‐editing technologies. Significance Statement This review summarizes the latest advances in generating an overall view of the genetic architecture associated with crop complex traits, and discusses how these updated insights will guide future studies. A multiple‐causal‐allele hypothesis was formulated to explain the increasingly common artifact/synthetic associations.
With the advent of rapid genotyping and next‐generation sequencing technologies, genome‐wide association study ( GWAS ) has become a routine strategy for decoding genotype–phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotype–phenotype associations in crops and provided unparalleled opportunities to probe functional genomics. Beyond the many ‘hits’ obtained, this review summarizes recent efforts to increase our understanding of the genetic architecture of complex traits by focusing on non‐main effects including epistasis, pleiotropy, and phenotypic plasticity. We also discuss how these achievements and the remaining gaps in our knowledge will guide future studies. Synthetic association is highlighted as leading to false causality, which is prevalent but largely underestimated. Furthermore, validation evidence is appealing for future GWAS , especially in the context of emerging genome‐editing technologies. This review summarizes the latest advances in generating an overall view of the genetic architecture associated with crop complex traits, and discusses how these updated insights will guide future studies. A multiple‐causal‐allele hypothesis was formulated to explain the increasingly common artifact/synthetic associations.
With the advent of rapid genotyping and next-generation sequencing technologies, genome-wide association study (GWAS) has become a routine strategy for decoding genotype-phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotype-phenotype associations in crops and provided unparalleled opportunities to probe functional genomics. Beyond the many 'hits' obtained, this review summarizes recent efforts to increase our understanding of the genetic architecture of complex traits by focusing on non-main effects including epistasis, pleiotropy, and phenotypic plasticity. We also discuss how these achievements and the remaining gaps in our knowledge will guide future studies. Synthetic association is highlighted as leading to false causality, which is prevalent but largely underestimated. Furthermore, validation evidence is appealing for future GWAS, especially in the context of emerging genome-editing technologies.With the advent of rapid genotyping and next-generation sequencing technologies, genome-wide association study (GWAS) has become a routine strategy for decoding genotype-phenotype associations in many species. More than 1000 such studies over the last decade have revealed substantial genotype-phenotype associations in crops and provided unparalleled opportunities to probe functional genomics. Beyond the many 'hits' obtained, this review summarizes recent efforts to increase our understanding of the genetic architecture of complex traits by focusing on non-main effects including epistasis, pleiotropy, and phenotypic plasticity. We also discuss how these achievements and the remaining gaps in our knowledge will guide future studies. Synthetic association is highlighted as leading to false causality, which is prevalent but largely underestimated. Furthermore, validation evidence is appealing for future GWAS, especially in the context of emerging genome-editing technologies.
Author Yan, Jianbing
Liu, Hai‐Jun
Author_xml – sequence: 1
  givenname: Hai‐Jun
  surname: Liu
  fullname: Liu, Hai‐Jun
  email: heroalone@webmail.hzau.edu.cn
  organization: Huazhong Agricultural University
– sequence: 2
  givenname: Jianbing
  surname: Yan
  fullname: Yan, Jianbing
  email: yjianbing@mail.hzau.edu.cn
  organization: Huazhong Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30368955$$D View this record in MEDLINE/PubMed
BookMark eNqF0bFO5DAQBmALgWDhKHgBFIkGioDHdpw1HVodcAiJK0Cii2xnAl5l48VOQNvdI_CMPAmG5a5A4nDj5pvxeP5Nstr5DgnZAXoI6Rz18-khCOBqhYyAyyLnwG9XyYgqSfNSANsgmzFOKYWSS7FONjjlcqyKYkTOJsHPszvs_Axf_jw_uRozHaO3TvfOd1nsh3pxnOnsXodHjH3mm8w43_o7Z3WbBWzxUXcWf5C1RrcRtz_uLXJz-vN6cp5fXp39mpxc5lYUTOU1N6ahzAA3wAwqxqxgTNclK5RipdWqLJpS1aYZgyjFWDBeKDQItG7GIo2_RfaXfefBPwxpoGrmosW21R36IVaMMaoAOLDvKTCpqBJSJbr3iU79ELr0kaSk5JIq9fb27ocazAzrah7cTIdF9XebCRwsgQ0-xoDNPwK0ekuqSklV70kle_TJWte_77wP2rX_q3hyLS6-bl1d_75YVrwCFJWi8A
CitedBy_id crossref_primary_10_1007_s00122_020_03563_7
crossref_primary_10_1105_tpc_19_00934
crossref_primary_10_3389_fpls_2023_1222681
crossref_primary_10_1007_s00344_019_09977_y
crossref_primary_10_1007_s10722_023_01823_1
crossref_primary_10_1016_j_xplc_2021_100270
crossref_primary_10_1016_j_jplph_2020_153352
crossref_primary_10_1139_cjps_2024_0155
crossref_primary_10_1016_j_xplc_2019_100010
crossref_primary_10_1016_j_plantsci_2022_111435
crossref_primary_10_1093_plphys_kiae248
crossref_primary_10_1186_s12870_020_02360_0
crossref_primary_10_1007_s00018_021_03844_4
crossref_primary_10_1007_s00018_021_03868_w
crossref_primary_10_3390_agronomy10030368
crossref_primary_10_1016_j_eng_2024_11_034
crossref_primary_10_1080_17474086_2022_2103534
crossref_primary_10_1111_mec_15989
crossref_primary_10_3389_fpls_2023_1170641
crossref_primary_10_1038_s41598_021_02488_5
crossref_primary_10_1111_nph_18021
crossref_primary_10_1007_s10142_023_01224_8
crossref_primary_10_1038_s41598_020_66604_7
crossref_primary_10_3389_fpls_2019_01759
crossref_primary_10_3390_plants10102220
crossref_primary_10_3390_plants11233342
crossref_primary_10_3390_ijms21238964
crossref_primary_10_3389_fpls_2024_1449579
crossref_primary_10_1038_s41438_021_00657_1
crossref_primary_10_1111_pbr_13010
crossref_primary_10_1093_jxb_eraa029
crossref_primary_10_1111_jipb_13489
crossref_primary_10_3389_fpls_2023_1308830
crossref_primary_10_1093_g3journal_jkae233
crossref_primary_10_1007_s11032_022_01295_8
crossref_primary_10_1007_s00122_021_03856_5
crossref_primary_10_1016_j_xplc_2021_100211
crossref_primary_10_1038_s41598_021_96576_1
crossref_primary_10_1007_s11627_021_10213_0
crossref_primary_10_1093_jxb_erac236
crossref_primary_10_3389_fgene_2021_673069
crossref_primary_10_1016_j_plantsci_2022_111539
crossref_primary_10_3389_fpls_2022_1014282
crossref_primary_10_1111_jipb_13791
crossref_primary_10_1016_j_plantsci_2023_111698
crossref_primary_10_1186_s12284_019_0302_1
crossref_primary_10_1007_s00122_021_04014_7
crossref_primary_10_1016_j_cj_2022_05_004
crossref_primary_10_1093_plcell_koac322
crossref_primary_10_3390_ijms25031918
crossref_primary_10_1093_g3journal_jkac237
crossref_primary_10_1111_nph_15895
crossref_primary_10_3389_fgene_2022_831656
crossref_primary_10_1007_s00122_021_03907_x
crossref_primary_10_1146_annurev_genet_022123_110824
crossref_primary_10_1186_s43141_021_00274_4
crossref_primary_10_3389_fpls_2021_788433
crossref_primary_10_3390_plants13162179
crossref_primary_10_1016_j_scienta_2021_110629
crossref_primary_10_1016_j_tplants_2019_12_011
crossref_primary_10_1111_tpj_14219
crossref_primary_10_1186_s13059_021_02392_1
crossref_primary_10_1111_jipb_13380
crossref_primary_10_1016_j_xplc_2024_101197
crossref_primary_10_1016_j_jia_2023_07_021
crossref_primary_10_1016_j_copbio_2021_05_010
crossref_primary_10_1534_g3_120_401618
crossref_primary_10_1007_s10722_022_01512_5
crossref_primary_10_3835_plantgenome2019_06_0039
crossref_primary_10_1139_cjps_2022_0183
crossref_primary_10_1270_jsbbs_22004
crossref_primary_10_1007_s11032_022_01345_1
crossref_primary_10_1093_molbev_msae028
crossref_primary_10_1111_tpj_17012
crossref_primary_10_3389_fgene_2022_873060
crossref_primary_10_1002_fes3_436
crossref_primary_10_3390_epigenomes5020012
crossref_primary_10_3390_ijms21239280
crossref_primary_10_2174_0115680266289248240322061723
crossref_primary_10_1111_tpj_14429
crossref_primary_10_1093_hr_uhad283
crossref_primary_10_1111_jipb_13172
crossref_primary_10_3390_cells11010064
crossref_primary_10_1007_s00425_021_03814_x
crossref_primary_10_3390_agronomy12050991
crossref_primary_10_1111_tpj_14786
crossref_primary_10_1007_s00122_021_03889_w
crossref_primary_10_1016_j_plantsci_2024_112281
crossref_primary_10_1038_s41467_019_09462_w
crossref_primary_10_1186_s12284_021_00495_8
crossref_primary_10_1093_nar_gkz828
crossref_primary_10_3389_fpls_2021_718081
crossref_primary_10_1093_jxb_erad177
crossref_primary_10_1016_j_csbj_2021_03_008
crossref_primary_10_1016_j_isci_2023_108709
crossref_primary_10_1186_s12864_022_09031_4
crossref_primary_10_3390_jimaging9120258
crossref_primary_10_1007_s00122_019_03492_0
crossref_primary_10_3390_plants9121655
crossref_primary_10_1007_s00122_019_03523_w
crossref_primary_10_3390_cimb44100301
crossref_primary_10_1111_gcbb_12620
crossref_primary_10_3389_fpls_2022_1043784
crossref_primary_10_1186_s13059_021_02370_7
crossref_primary_10_1111_tpj_15173
crossref_primary_10_3390_genes14010123
crossref_primary_10_3389_fpls_2022_1063056
crossref_primary_10_1016_j_compag_2020_105672
crossref_primary_10_3390_plants10081667
crossref_primary_10_1093_plphys_kiab395
crossref_primary_10_3390_agronomy11081670
crossref_primary_10_1093_bib_bbaa263
crossref_primary_10_1093_jxb_erac395
crossref_primary_10_1007_s11295_022_01570_x
crossref_primary_10_3389_fgene_2020_00447
crossref_primary_10_1186_s12864_022_08640_3
crossref_primary_10_1146_annurev_arplant_080720_090632
crossref_primary_10_1038_s42003_024_05769_7
crossref_primary_10_1007_s00122_021_03820_3
crossref_primary_10_1111_pbi_13133
crossref_primary_10_1093_plphys_kiab554
crossref_primary_10_1371_journal_pone_0247607
crossref_primary_10_1038_s41598_023_42182_2
crossref_primary_10_1016_j_ygeno_2021_04_009
crossref_primary_10_1186_s13059_020_1930_x
crossref_primary_10_3389_fpls_2022_826875
crossref_primary_10_1016_j_jare_2025_01_011
crossref_primary_10_1186_s12864_020_07213_6
crossref_primary_10_34133_2022_9787643
crossref_primary_10_3389_fpls_2025_1530585
crossref_primary_10_1016_j_molp_2024_06_005
crossref_primary_10_1093_g3journal_jkad082
crossref_primary_10_1111_pce_14342
crossref_primary_10_1186_s12870_024_04960_6
crossref_primary_10_3390_genes14071315
crossref_primary_10_1038_s41588_021_00866_3
crossref_primary_10_1002_tpg2_20077
crossref_primary_10_1186_s12870_019_1989_2
Cites_doi 10.1016/S0065-2660(08)60048-6
10.1105/tpc.18.00109
10.1016/j.molp.2016.12.008
10.1016/j.tplants.2018.07.004
10.1007/s00122-011-1653-1
10.3389/fgene.2017.00015
10.1007/s00122-006-0218-1
10.1534/genetics.117.300546
10.4238/2015.December.23.35
10.1016/j.molp.2017.06.007
10.2527/jas.2005-517
10.1186/s12864-015-2217-6
10.1038/ng.2612
10.1038/hdy.1973.90
10.1016/j.tplants.2010.09.008
10.1038/nrg3118
10.1186/s12864-015-1459-7
10.1126/science.1259215
10.1186/1746-4811-9-29
10.1016/j.ajhg.2017.04.013
10.1093/bib/bbs009
10.1038/ng.3636
10.1104/pp.15.01444
10.1046/j.1420-9101.1993.6010031.x
10.1186/s13059-015-0716-z
10.1016/j.cell.2017.04.032
10.1098/rspb.2012.1051
10.1007/s00122-016-2840-x
10.1016/j.plrev.2015.02.007
10.1098/rsob.170125
10.1002/j.1537-2197.1984.tb12511.x
10.1186/1471-2164-15-809
10.1073/pnas.1718058115
10.1038/nrg3461
10.1038/nature08800
10.1534/g3.111.000364
10.1016/j.cell.2017.12.019
10.1016/j.compbiolchem.2014.01.005
10.1038/ncomms12767
10.1016/j.tvjl.2014.09.013
10.1016/j.molp.2018.03.018
10.1038/ng.2620
10.1073/pnas.1203189109
10.1093/bib/bby058
10.1186/1471-2164-15-1
10.1093/bib/bbt089
10.1534/genetics.111.136903
10.1371/journal.pone.0105228
10.1186/s12864-017-3778-3
10.1016/j.cub.2017.05.055
10.1126/science.aat1577
10.7554/eLife.22502
10.1073/pnas.1014419107
10.1038/ng.2281
10.1371/journal.pone.0034021
10.1038/ncomms3832
10.1093/bioinformatics/btr172
10.3389/fpls.2018.00974
10.1186/s13059-017-1289-9
10.1038/nrg3627
10.1104/pp.108.131888
10.1073/pnas.94.17.9226
10.1126/science.1174276
10.1146/annurev-arplant-050213-035715
10.1371/journal.pcbi.1004925
10.1038/s41588-018-0116-x
10.1038/ng.3784
10.1038/ncomms9609
10.1038/s41467-017-02445-9
10.1111/nph.14688
10.1038/ng.3807
10.1111/tpj.13069
10.1093/genetics/158.4.1737
10.1016/j.cell.2017.06.008
10.1038/90135
10.1104/pp.15.00025
10.3389/fpls.2017.01611
10.1038/ng.695
10.1534/genetics.111.126508
10.1093/genetics/165.1.353
10.2135/cropsci1966.0011183X000600010011x
10.1038/s10038-017-0350-6
10.1038/ng.3007
10.1016/S0169-5347(97)01274-3
10.1007/978-1-62703-447-0_6
10.1038/ng.2484
10.1038/ng.3538
10.1073/pnas.1310949110
10.1371/journal.pbio.1000294
10.1016/j.molp.2017.06.006
10.1534/genetics.110.122549
10.2307/1936264
10.1371/journal.pcbi.1002600
10.1186/s12864-016-3397-4
10.1073/pnas.1219776110
10.1038/s41467-017-02769-6
10.1016/j.molp.2015.02.014
10.1146/annurev.es.17.110186.003315
10.1038/ng.143
10.1534/genetics.115.182444
10.1534/genetics.107.082867
10.1038/ncomms4438
10.1534/genetics.107.080564
10.1038/ng.746
10.1093/bioinformatics/bts304
10.1038/ncomms7258
10.1038/s41588-018-0119-7
10.1111/pce.12608
10.1186/1471-2105-15-102
10.1038/ng.3887
10.1038/ncomms13246
10.1111/nph.13814
10.1105/tpc.114.135848
10.1146/annurev.es.24.110193.000343
10.1016/j.pbi.2013.03.005
10.1038/ng.1018
10.3724/SP.J.1005.2012.00901
10.1080/12538078.2013.807302
10.1146/annurev.ecolsys.37.091305.110224
10.1111/nph.15103
10.1093/jxb/erx214
10.1186/s12859-017-1530-2
10.1038/ng.3974
10.1104/pp.113.231308
10.1111/nph.12458
10.1038/ng.3117
10.1093/jxb/erv182
10.1104/pp.17.00708
10.1038/s41477-017-0007-7
10.1073/pnas.1718326115
10.1038/ng.3596
10.1016/j.plantsci.2013.10.004
10.1126/science.aal1556
10.1186/s13040-015-0069-x
10.1016/j.ajhg.2009.11.004
10.1093/nar/gkx505
ContentType Journal Article
Copyright 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd
2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Copyright © 2019 John Wiley & Sons Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd
– notice: 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
– notice: Copyright © 2019 John Wiley & Sons Ltd and the Society for Experimental Biology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/tpj.14139
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Genetics Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 18
ExternalDocumentID 30368955
10_1111_tpj_14139
TPJ14139
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Hubei Provincial Natural Science Foundation of China
  funderid: 2015CFA008
– fundername: National Key Research and Development Program of China
  funderid: 2016YFD0100803; 2016YFD0101003
– fundername: Postdoctoral Talent Innovation Program of China
  funderid: BX201700092
– fundername: National Natural Science Foundation of China
  funderid: 31525017
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4529-d3bbf02b13b12be922c422ad7259927ca975f79dbf81474842359ebe10df84173
IEDL.DBID DR2
ISSN 0960-7412
1365-313X
IngestDate Fri Jul 11 18:28:25 EDT 2025
Fri Jul 11 15:32:00 EDT 2025
Fri Jul 25 10:47:15 EDT 2025
Mon Jul 21 06:06:02 EDT 2025
Tue Jul 01 03:57:28 EDT 2025
Thu Apr 24 22:55:10 EDT 2025
Wed Jan 22 16:48:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords genome editing
GWAS
epistasis
synthetic association
genetic architecture
phenotypic plasticity
pleiotropy
Language English
License 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4529-d3bbf02b13b12be922c422ad7259927ca975f79dbf81474842359ebe10df84173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 30368955
PQID 2166360997
PQPubID 31702
PageCount 11
ParticipantIDs proquest_miscellaneous_2220911312
proquest_miscellaneous_2126909469
proquest_journals_2166360997
pubmed_primary_30368955
crossref_primary_10_1111_tpj_14139
crossref_citationtrail_10_1111_tpj_14139
wiley_primary_10_1111_tpj_14139_TPJ14139
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2018; 164
1993; 24
2009; 85
2013; 4
2010; 15
1965; 13
2017a; 215
2010; 107
2015b; 8
2010; 465
2006; 37
2010; 186
2018; 208
2012; 13
2016; 39
2013; 9
2018; 9
2017b; 8
2018; 172
2007; 177
2015c; 27
2014; 15
2013a; 110
2018; 30
2012; 28
2018; 219
2017; 169
2016; 48
2011; 123
2003; 165
2014a; 5
1998; 13
2010; 8
1973; 31
2011; 1
2017; 68
1986; 17
2014; 46
2017; 130
2001; 28
2018; 23
2012; 34
2006; 112
2017a; 18
2012; 109
2016; 12
2016; 5
2016; 7
2010; 42
2012; 190
2018; 115
2015; 66
2016; 210
2018; 11
2016; 170
2008; 40
2012; 44
2001; 158
2013; 1019
2018; 361
2017a; 8
2017; 7
2013b; 16
2017; 8
2014; 215–216
2017; 3
2017b; 49
2018b; 50
2017; 49
2017; 45
2009; 150
2017; 355
2013; 160
2014; 65
1993; 6
2013; 14
1997; 94
2014b; 15
2014; 9
2011; 27
2014; 50
2014; 164
2014; 202
2009; 325
2014; 201
2015; 13
2015; 14
2015; 6
2015; 16
1969; 50
2015a; 84
2013; 45
2015; 201
2017; 27
1966; 6
2017; 170
2018; 63
2017; 175
2015; 8
2008; 180
2015a; 16
1984; 71
2006; 84
2017; 10
2011; 44
2018
2011; 43
2015b; 168
2017; 18
2018; 50
2012; 279
2017; 100
2012; 7
2018a; 9
2014; 346
2011; 188
2012; 8
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_102_1
Cockram J. (e_1_2_11_13_1) 2018; 164
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_117_1
e_1_2_11_136_1
e_1_2_11_59_1
e_1_2_11_113_1
e_1_2_11_132_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_126_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_122_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_110_1
e_1_2_11_39_1
e_1_2_11_133_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_127_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_123_1
Ungerer M.C. (e_1_2_11_103_1) 2003; 165
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_130_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_116_1
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_112_1
e_1_2_11_131_1
References_xml – volume: 45
  start-page: e131
  issue: 14
  year: 2017
  article-title: Prioritizing tests of epistasis through hierarchical representation of genomic redundancies
  publication-title: Nucleic Acids Res.
– volume: 215–216
  start-page: 11
  year: 2014
  end-page: 18
  article-title: Dominance and epistasis are the main contributors to heterosis for plant height in rice
  publication-title: Plant Sci.
– volume: 17
  start-page: 667
  year: 1986
  end-page: 693
  article-title: The evolution of phenotypic plasticity in plants
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 361
  start-page: 181
  year: 2018
  end-page: 186
  article-title: Ethylene‐gibberellin signaling underlies adaptation of rice to periodic flooding
  publication-title: Science
– volume: 6
  start-page: 36
  year: 1966
  end-page: 40
  article-title: Stability parameters for comparing varieties
  publication-title: Crop Sci.
– volume: 46
  start-page: 1220
  year: 2014
  end-page: 1226
  article-title: Genomic analyses provide insights into the history of tomato breeding
  publication-title: Nat. Genet.
– volume: 48
  start-page: 1233
  year: 2016
  end-page: 1241
  article-title: Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings
  publication-title: Nat. Genet.
– volume: 215
  start-page: 1503
  year: 2017a
  end-page: 1515
  article-title: A transposon‐directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize
  publication-title: New Phytol.
– volume: 16
  start-page: 167
  year: 2015
  article-title: Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in
  publication-title: Genome Biol.
– volume: 158
  start-page: 1737
  year: 2001
  end-page: 1753
  article-title: Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield
  publication-title: Genetics
– volume: 13
  start-page: 135
  year: 2012
  end-page: 145
  article-title: Rare and common variants: twenty arguments
  publication-title: Nat. Rev. Genet.
– volume: 5
  start-page: 3438
  year: 2014a
  article-title: Metabolome‐based genome‐wide association study of maize kernel leads to novel biochemical insights
  publication-title: Nat. Commun.
– volume: 27
  start-page: 1462
  year: 2011
  end-page: 1465
  article-title: EpiGPU: exhaustive pairwise epistasis scans parallelized on consumer level graphics cards
  publication-title: Bioinformatics
– volume: 165
  start-page: 353
  issue: 1
  year: 2003
  end-page: 365
  article-title: Genotype−environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana
  publication-title: Genetics
– volume: 14
  start-page: 82
  year: 2013
  end-page: 95
  article-title: A dynamic framework for quantifying the genetic architecture of phenotypic plasticity
  publication-title: Brief. Bioinform.
– volume: 45
  start-page: 707
  year: 2013
  end-page: 711
  article-title: Loss of function of the IAA‐glucose hydrolase gene TGW6 enhances rice grain weight and increases yield
  publication-title: Nat. Genet.
– volume: 43
  start-page: 159
  issue: 2
  year: 2011
  end-page: 162
  article-title: Genome‐wide association study of leaf architecture in the maize nested association mapping population
  publication-title: Nat. Genet.
– year: 2018
  article-title: An efficient multi‐locus mixed model framework for the detection of small and linked QTLs in F2
  publication-title: Brief. Bioinform.
– volume: 208
  start-page: 525
  year: 2018
  end-page: 536
  article-title: Detection of epistasis for flowering time using Bayesian multilocus estimation in a barley MAGIC population
  publication-title: Genetics
– volume: 15
  start-page: 809
  year: 2014b
  article-title: Genome‐wide association mapping of quantitative resistance to sudden death syndrome in soybean
  publication-title: BMC Genom.
– volume: 202
  start-page: 543
  year: 2014
  end-page: 549
  article-title: Risk of false positive genetic associations in complex traits with underlying population structure: a case study
  publication-title: Vet. J.
– volume: 46
  start-page: 714
  year: 2014
  end-page: 721
  article-title: Genome‐wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism
  publication-title: Nat. Genet.
– volume: 37
  start-page: 123
  issue: 1
  year: 2006
  end-page: 157
  article-title: The evolution of genetic architecture
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 7
  start-page: pii: 170125
  year: 2017
  article-title: Statistical methods to detect pleiotropy in human complex traits
  publication-title: Open Biol.
– volume: 94
  start-page: 9226
  year: 1997
  end-page: 9231
  article-title: Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 45
  start-page: 43
  year: 2013
  end-page: 50
  article-title: Genome‐wide association study dissects the genetic architecture of oil biosynthesis in maize kernels
  publication-title: Nat. Genet.
– volume: 24
  start-page: 35
  year: 1993
  end-page: 68
  article-title: Genetics and evolution of phenotypic plasticity
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 85
  start-page: 847
  year: 2009
  end-page: 861
  article-title: Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces false‐positive associations for genome‐wide association studies
  publication-title: Am. J. Hum. Genet.
– volume: 50
  start-page: 19
  year: 2014
  end-page: 28
  article-title: Fast detection of high‐order epistatic interactions in genome‐wide association studies using information theoretic measure
  publication-title: Comput. Biol. Chem.
– volume: 170
  start-page: 114
  year: 2017
  end-page: 126 e15
  article-title: A natural allele of a transcription factor in rice confers broad‐spectrum blast resistance
  publication-title: Cell
– volume: 11
  start-page: 789
  year: 2018
  end-page: 805
  article-title: Genome‐wide association studies of image traits reveal genetic architecture of drought resistance in rice
  publication-title: Mol. Plant
– volume: 150
  start-page: 506
  year: 2009
  end-page: 520
  article-title: Epistatic interactions between Opaque2 transcriptional activator and its target gene CyPPDK1 control kernel trait variation in maize
  publication-title: Plant Physiol.
– volume: 7
  start-page: 12767
  year: 2016
  article-title: Comparative and parallel genome‐wide association studies for metabolic and agronomic traits in cereals
  publication-title: Nat. Commun.
– volume: 100
  start-page: 954
  issue: 6
  year: 2017
  end-page: 959
  article-title: Pleiotropic effects of trait‐associated genetic variation on DNA methylation: utility for refining GWAS loci
  publication-title: Am. J. Hum. Genet.
– volume: 9
  start-page: 974
  year: 2018a
  article-title: Genome‐wide association study of haploid male fertility in maize ( L.)
  publication-title: Front. Plant Sci.
– volume: 31
  start-page: 339
  year: 1973
  end-page: 354
  article-title: Statistical methods for the analysis of genotype−environment interactions
  publication-title: Heredity (Edinb)
– volume: 8
  start-page: 2264
  year: 2017a
  article-title: RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis
  publication-title: Nat. Commun.
– volume: 34
  start-page: 901
  year: 2012
  end-page: 906
  article-title: Ghd7, a pleiotropic gene controlling flag leaf area in rice
  publication-title: Yi Chuan
– volume: 42
  start-page: 961
  year: 2010
  end-page: 967
  article-title: Genome‐wide association studies of 14 agronomic traits in rice landraces
  publication-title: Nat. Genet.
– volume: 5
  start-page: e22502
  year: 2016
  article-title: Multiple alleles at a single locus control seed dormancy in Swedish Arabidopsis
  publication-title: Elife
– volume: 188
  start-page: 673
  issue: 3
  year: 2011
  end-page: 681
  article-title: Do large effect QTL fractionate? A case study at the maize domestication QTL teosinte branched1
  publication-title: Genetics
– volume: 45
  start-page: 470
  year: 2013
  end-page: 471
  article-title: FaST‐LMM‐Select for addressing confounding from spatial structure and rare variants
  publication-title: Nat. Genet.
– volume: 18
  start-page: 110
  year: 2017
  article-title: MARV: a tool for genome‐wide multi‐phenotype analysis of rare variants
  publication-title: BMC Bioinformatics
– volume: 49
  start-page: 1089
  year: 2017b
  end-page: 1098
  article-title: Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits
  publication-title: Nat. Genet.
– volume: 15
  start-page: 684
  year: 2010
  end-page: 692
  article-title: Plant phenotypic plasticity in a changing climate
  publication-title: Trends Plant Sci.
– volume: 107
  start-page: 19579
  year: 2010
  end-page: 19584
  article-title: Linking differential domain functions of the GS3 protein to natural variation of grain size in rice
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 68
  start-page: 4089
  year: 2017
  end-page: 4101
  article-title: The roles of pleiotropy and close linkage as revealed by association mapping of yield and correlated traits of wheat ( L.)
  publication-title: J. Exp. Bot.
– volume: 7
  start-page: 13246
  year: 2016
  article-title: Genome‐wide association study of 12 agronomic traits in peach
  publication-title: Nat. Commun.
– volume: 112
  start-page: 1164
  year: 2006
  end-page: 1171
  article-title: GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein
  publication-title: Theor. Appl. Genet.
– volume: 16
  start-page: 24
  year: 2015
  end-page: 31
  article-title: A QTL model to map the common genetic basis for correlative phenotypic plasticity
  publication-title: Brief. Bioinform.
– volume: 44
  start-page: 32
  year: 2011
  end-page: 39
  article-title: Genome‐wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm
  publication-title: Nat. Genet.
– volume: 1
  start-page: 233
  year: 2011
  end-page: 243
  article-title: Integrating rare‐variant testing, function prediction, and gene network in composite resequencing‐based genome‐wide association studies (CR‐GWAS)
  publication-title: G3 (Bethesda)
– volume: 346
  start-page: 1084
  year: 2014
  end-page: 1088
  article-title: Biosynthesis, regulation, and domestication of bitterness in cucumber
  publication-title: Science
– volume: 170
  start-page: 136
  year: 2016
  end-page: 146
  article-title: Combining quantitative genetics approaches with regulatory network analysis to dissect the complex metabolism of the maize kernel
  publication-title: Plant Physiol.
– volume: 28
  start-page: 1957
  year: 2012
  end-page: 1964
  article-title: High‐throughput analysis of epistasis in genome‐wide association studies with BiForce
  publication-title: Bioinformatics
– volume: 130
  start-page: 635
  year: 2017
  end-page: 647
  article-title: Genome‐wide mapping and prediction suggests presence of local epistasis in a vast elite winter wheat populations adapted to Central Europe
  publication-title: Theor. Appl. Genet.
– volume: 201
  start-page: 865
  year: 2015
  end-page: 870
  article-title: An efficient genome‐wide multilocus epistasis search
  publication-title: Genetics
– volume: 48
  start-page: 927
  year: 2016
  end-page: 934
  article-title: Genome‐wide association study using whole‐genome sequencing rapidly identifies new genes influencing agronomic traits in rice
  publication-title: Nat. Genet.
– volume: 10
  start-page: 1242
  year: 2017
  end-page: 1245
  article-title: Genome‐wide targeted mutagenesis in rice using the CRISPR/Cas9 system
  publication-title: Mol. Plant
– volume: 172
  start-page: 249
  year: 2018
  end-page: 261.e12
  article-title: Rewiring of the fruit metabolome in tomato breeding
  publication-title: Cell
– volume: 13
  start-page: 77
  year: 1998
  end-page: 81
  article-title: Costs and limits of phenotypic plasticity
  publication-title: Trends Ecol. Evol.
– volume: 28
  start-page: 286
  year: 2001
  end-page: 289
  article-title: Dwarf8 polymorphisms associate with variation in flowering time
  publication-title: Nat. Genet.
– volume: 6
  start-page: 8609
  year: 2015
  article-title: Genetic discovery for oil production and quality in sesame
  publication-title: Nat. Commun.
– volume: 180
  start-page: 1707
  issue: 3
  year: 2008
  end-page: 1724
  article-title: Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice
  publication-title: Genetics
– volume: 49
  start-page: 579
  year: 2017b
  end-page: 587
  article-title: Asymmetric subgenome selection and cis‐regulatory divergence during cotton domestication
  publication-title: Nat. Genet.
– volume: 66
  start-page: 3791
  year: 2015
  end-page: 3802
  article-title: A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize
  publication-title: J. Exp. Bot.
– volume: 30
  start-page: 1404
  year: 2018
  end-page: 1423
  article-title: Genome‐wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in maize
  publication-title: Plant Cell
– volume: 10
  start-page: 359
  issue: 3
  year: 2017
  end-page: 374
  article-title: Genome‐wide association studies in maize: praise and stargaze
  publication-title: Mol. Plant
– volume: 8
  start-page: 15
  year: 2017
  article-title: Genomic prediction of genotypic effects with epistasis and environment interactions for yield‐related traits of rapeseed ( L.)
  publication-title: Front. Genet.
– volume: 164
  start-page: 735
  year: 2014
  end-page: 747
  article-title: Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response
  publication-title: Plant Physiol.
– volume: 110
  start-page: 16969
  year: 2013a
  end-page: 16974
  article-title: CACTA‐like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize
  publication-title: Proc. Natl Acad. Sci.
– volume: 27
  start-page: 1595
  year: 2015c
  end-page: 1604
  article-title: Genome‐wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber
  publication-title: Plant Cell
– volume: 186
  start-page: 767
  year: 2010
  end-page: 773
  article-title: One hundred years of pleiotropy: a retrospective
  publication-title: Genetics
– volume: 8
  start-page: 1611
  year: 2017b
  article-title: Genome‐wide association study of major agronomic traits related to domestication in peanut
  publication-title: Front. Plant Sci.
– volume: 175
  start-page: 774
  year: 2017
  end-page: 785
  article-title: The conserved and unique genetic architecture of kernel size and weight in maize and rice
  publication-title: Plant Physiol.
– volume: 15
  start-page: 22
  issue: 1
  year: 2014
  end-page: 33
  article-title: Epistasis and quantitative traits: using model organisms to study gene‐gene interactions
  publication-title: Nat. Rev. Genet.
– volume: 109
  start-page: E1913
  year: 2012
  end-page: E1921
  article-title: ZmCCT and the genetic basis of day‐length adaptation underlying the postdomestication spread of maize
  publication-title: Proc. Natl Acad. Sci.
– volume: 177
  start-page: 1827
  year: 2007
  end-page: 1837
  article-title: Genetic basis of heterosis for growth‐related traits in Arabidopsis investigated by testcross progenies of near‐isogenic lines reveals a significant role of epistasis
  publication-title: Genetics
– volume: 84
  start-page: 1124
  year: 2015a
  end-page: 1136
  article-title: Genome‐wide association and epistasis studies unravel the genetic architecture of sudden death syndrome resistance in soybean
  publication-title: Plant J.
– volume: 14
  start-page: 18471
  year: 2015
  end-page: 18484
  article-title: Genome‐wide prediction of maize single‐cross performance, considering non‐additive genetic effects
  publication-title: Genet. Mol. Res.
– volume: 16
  start-page: 290
  year: 2015
  article-title: Modelling the genetic architecture of flowering time control in barley through nested association mapping
  publication-title: BMC Genom.
– volume: 6
  start-page: 6258
  year: 2015
  article-title: Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis
  publication-title: Nat. Commun.
– volume: 15
  start-page: 1
  year: 2014
  article-title: A genome‐wide association study of seed protein and oil content in soybean
  publication-title: BMC Genom.
– volume: 9
  start-page: 29
  year: 2013
  article-title: The advantages and limitations of trait analysis with GWAS: a review
  publication-title: Plant Methods
– volume: 115
  start-page: 6679
  year: 2018
  end-page: 6684
  article-title: Genomic and environmental determinants and their interplay underlying phenotypic plasticity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 1238
  issue: 9
  year: 2017
  end-page: 1241
  article-title: Construction of a genome‐wide mutant library in rice using CRISPR/Cas9
  publication-title: Mol. Plant
– volume: 9
  start-page: e105228
  year: 2014
  article-title: Genomewide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi‐arid tropics of the world
  publication-title: PLoS One
– volume: 50
  start-page: 710
  year: 1969
  end-page: 713
  article-title: Morphological changes in swine associated with environmental temperature
  publication-title: Ecology
– volume: 44
  start-page: 720
  year: 2012
  end-page: 724
  article-title: Parallel domestication of the Shattering1 genes in cereals
  publication-title: Nat. Genet.
– volume: 16
  start-page: 1011
  year: 2015a
  article-title: A Bayesian model for detection of high‐order interactions among genetic variants in genome‐wide association studies
  publication-title: BMC Genom.
– volume: 201
  start-page: 357
  year: 2014
  end-page: 365
  article-title: A synthetic framework for modeling the genetic basis of phenotypic plasticity and its costs
  publication-title: New Phytol.
– volume: 49
  start-page: 1741
  issue: 12
  year: 2017
  end-page: 1746
  article-title: A quantitative genetic framework highlights the role of epistatic effects for grain‐yield heterosis in bread wheat
  publication-title: Nat. Genet.
– volume: 18
  start-page: 415
  year: 2017
  article-title: Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo‐thermal conditions
  publication-title: BMC Genom.
– volume: 27
  start-page: R770
  year: 2017
  end-page: R783
  article-title: Plant phenomics, from sensors to knowledge
  publication-title: Curr. Biol.
– volume: 48
  start-page: 481
  year: 2016
  end-page: 487
  article-title: Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets
  publication-title: Nat. Genet.
– volume: 9
  start-page: 989
  year: 2018
  article-title: Improving genetic prediction by leveraging genetic correlations among human diseases and traits
  publication-title: Nat. Commun.
– volume: 7
  start-page: e34021
  year: 2012
  article-title: Evolution and association analysis of Ghd7 in rice
  publication-title: PLoS One
– volume: 465
  start-page: 627
  year: 2010
  end-page: 631
  article-title: Genome‐wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines
  publication-title: Nature
– volume: 8
  start-page: e1000294
  issue: 1
  year: 2010
  article-title: Rare variants create synthetic genome‐wide associations
  publication-title: PLoS Biol.
– volume: 65
  start-page: 531
  year: 2014
  end-page: 551
  article-title: Natural variations and genome‐wide association studies in crop plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 40
  start-page: 761
  year: 2008
  end-page: 767
  article-title: Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice
  publication-title: Nat. Genet.
– volume: 15
  start-page: 102
  year: 2014
  article-title: Cloud computing for detecting high‐order genome‐wide epistatic interaction via dynamic clustering
  publication-title: BMC Bioinformatics
– volume: 1019
  start-page: 149
  year: 2013
  end-page: 169
  article-title: Overview of statistical methods for genome‐wide association studies (GWAS)
  publication-title: Methods Mol. Biol.
– volume: 71
  start-page: 252
  year: 1984
  end-page: 260
  article-title: Phenotypic plasticity of annual phlox: tests of some hypotheses
  publication-title: Am. J. Bot.
– volume: 109
  start-page: 21534
  year: 2012
  end-page: 21539
  article-title: Rare allele of OsPPKL1 associated with grain length causes extra‐large grain and a significant yield increase in rice
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 219
  start-page: 31
  year: 2018
  end-page: 36
  article-title: Determining the evolutionary forces shaping G x E
  publication-title: New Phytol.
– volume: 13
  start-page: 155
  year: 2015
  end-page: 185
  article-title: Mapping complex traits as a dynamic system
  publication-title: Phys. Life Rev.
– volume: 8
  start-page: 946
  year: 2015b
  end-page: 957
  article-title: Genetic architecture of natural variation in rice chlorophyll content revealed by a genome‐wide association study
  publication-title: Mol. Plant
– volume: 13
  start-page: 115
  year: 1965
  end-page: 155
  article-title: Evolutionary significance of phenotypic plasticity in plants
  publication-title: Adv. Genet.
– volume: 39
  start-page: 282
  year: 2016
  end-page: 294
  article-title: Environmental and genetic interactions reveal FLOWERING LOCUS C as a modulator of the natural variation for the plasticity of flowering in Arabidopsis
  publication-title: Plant, Cell Environ.
– volume: 4
  start-page: 2832
  year: 2013
  article-title: RNA sequencing reveals the complex regulatory network in the maize kernel
  publication-title: Nat. Commun.
– volume: 49
  start-page: 476
  year: 2017
  end-page: 480
  article-title: A study of allelic diversity underlying flowering‐time adaptation in maize landraces
  publication-title: Nat. Genet.
– volume: 164
  start-page: 109
  year: 2018
  end-page: 138
  article-title: Genetic mapping populations for conducting high‐resolution trait mapping in plants
  publication-title: Adv. Biochem. Eng. Biotechnol.
– volume: 63
  start-page: 289
  year: 2018
  end-page: 296
  article-title: Genotypic variability‐based genome‐wide association study identifies non‐additive loci HLA‐C and IL12B for psoriasis
  publication-title: J. Hum. Genet.
– volume: 8
  start-page: e1002600
  issue: 7
  year: 2012
  article-title: Predicting signatures of “synthetic associations” and “natural associations” from empirical patterns of human genetic variation
  publication-title: PLoS Comput. Biol.
– volume: 23
  start-page: 883
  year: 2018
  end-page: 898
  article-title: Deep learning for plant stress phenotyping: trends and future perspectives
  publication-title: Trends Plant Sci.
– volume: 160
  start-page: 205
  year: 2013
  end-page: 219
  article-title: Genome‐wide association mapping of flowering time in Arabidopsis thaliana in nature: genetics for underlying components and reaction norms across two successive years
  publication-title: Acta Bot. Gallica
– volume: 279
  start-page: 3843
  year: 2012
  end-page: 3852
  article-title: Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change
  publication-title: Proc. Biol. Sci.
– volume: 84
  start-page: 1651
  year: 2006
  end-page: 1657
  article-title: Bayesian analysis of the linear reaction norm model with unknown covariates
  publication-title: J. Anim. Sci.
– volume: 168
  start-page: 575
  year: 2015b
  end-page: 583
  article-title: Genome‐wide association of carbon and nitrogen metabolism in the maize nested association mapping population
  publication-title: Plant Physiol.
– volume: 8
  start-page: 36
  year: 2015
  article-title: gammaMAXT: a fast multiple‐testing correction algorithm
  publication-title: BioData Min.
– volume: 18
  start-page: 161
  year: 2017a
  article-title: Genome‐wide association studies dissect the genetic networks underlying agronomical traits in soybean
  publication-title: Genome Biol.
– volume: 355
  start-page: 391
  year: 2017
  end-page: 394
  article-title: A chemical genetic roadmap to improved tomato flavor
  publication-title: Science
– volume: 50
  start-page: 796
  year: 2018
  end-page: 802
  article-title: Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits
  publication-title: Nat. Genet.
– volume: 3
  start-page: 715
  year: 2017
  end-page: 723
  article-title: Distinct genetic architectures for phenotype means and plasticities in
  publication-title: Nat. Plants
– volume: 50
  start-page: 803
  year: 2018b
  end-page: 813
  article-title: Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield
  publication-title: Nat. Genet.
– volume: 6
  start-page: 31
  year: 1993
  end-page: 48
  article-title: The genetics of phenotypic plasticity. V. Evolution of reaction norm shape
  publication-title: J. Evol. Biol.
– volume: 14
  start-page: 483
  year: 2013
  end-page: 495
  article-title: Pleiotropy in complex traits: challenges and strategies
  publication-title: Nat. Rev. Genet.
– volume: 325
  start-page: 714
  year: 2009
  end-page: 718
  article-title: The genetic architecture of maize flowering time
  publication-title: Science
– volume: 16
  start-page: 180
  year: 2013b
  end-page: 187
  article-title: Plant phenomics and high‐throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies
  publication-title: Curr. Opin. Plant Biol.
– volume: 18
  start-page: 18
  year: 2017
  article-title: A genome‐wide association study of seed composition traits in wild soybean (Glycine soja)
  publication-title: BMC Genom.
– volume: 210
  start-page: 1095
  year: 2016
  end-page: 1106
  article-title: Genome‐wide dissection of the maize ear genetic architecture using multiple populations
  publication-title: New Phytol.
– volume: 115
  start-page: E334
  year: 2018
  end-page: E341
  article-title: ZmCCT9 enhances maize adaptation to higher latitudes
  publication-title: Proc. Natl Acad. Sci.
– volume: 190
  start-page: 1547
  year: 2012
  end-page: 1562
  article-title: Flowering time in maize: linkage and epistasis at a major effect locus
  publication-title: Genetics
– volume: 123
  start-page: 1121
  year: 2011
  end-page: 1131
  article-title: Genome‐wide association mapping of agronomic traits in sugar beet
  publication-title: Theor. Appl. Genet.
– volume: 12
  start-page: e1004925
  year: 2016
  article-title: PEPIS: a pipeline for estimating epistatic effects in quantitative trait locus mapping and genome‐wide association studies
  publication-title: PLoS Comput. Biol.
– volume: 169
  start-page: 1142
  year: 2017
  end-page: 1155 e12
  article-title: Bypassing negative epistasis on yield in tomato imposed by a domestication gene
  publication-title: Cell
– ident: e_1_2_11_5_1
  doi: 10.1016/S0065-2660(08)60048-6
– ident: e_1_2_11_12_1
  doi: 10.1105/tpc.18.00109
– ident: e_1_2_11_120_1
  doi: 10.1016/j.molp.2016.12.008
– ident: e_1_2_11_91_1
  doi: 10.1016/j.tplants.2018.07.004
– ident: e_1_2_11_118_1
  doi: 10.1007/s00122-011-1653-1
– ident: e_1_2_11_68_1
  doi: 10.3389/fgene.2017.00015
– ident: e_1_2_11_21_1
  doi: 10.1007/s00122-006-0218-1
– ident: e_1_2_11_76_1
  doi: 10.1534/genetics.117.300546
– ident: e_1_2_11_84_1
  doi: 10.4238/2015.December.23.35
– ident: e_1_2_11_67_1
  doi: 10.1016/j.molp.2017.06.007
– ident: e_1_2_11_96_1
  doi: 10.2527/jas.2005-517
– ident: e_1_2_11_105_1
  doi: 10.1186/s12864-015-2217-6
– ident: e_1_2_11_46_1
  doi: 10.1038/ng.2612
– ident: e_1_2_11_25_1
  doi: 10.1038/hdy.1973.90
– ident: e_1_2_11_81_1
  doi: 10.1016/j.tplants.2010.09.008
– ident: e_1_2_11_29_1
  doi: 10.1038/nrg3118
– ident: e_1_2_11_77_1
  doi: 10.1186/s12864-015-1459-7
– ident: e_1_2_11_89_1
  doi: 10.1126/science.1259215
– ident: e_1_2_11_52_1
  doi: 10.1186/1746-4811-9-29
– ident: e_1_2_11_34_1
  doi: 10.1016/j.ajhg.2017.04.013
– ident: e_1_2_11_104_1
  doi: 10.1093/bib/bbs009
– ident: e_1_2_11_107_1
  doi: 10.1038/ng.3636
– ident: e_1_2_11_115_1
  doi: 10.1104/pp.15.01444
– ident: e_1_2_11_28_1
  doi: 10.1046/j.1420-9101.1993.6010031.x
– ident: e_1_2_11_15_1
  doi: 10.1186/s13059-015-0716-z
– ident: e_1_2_11_93_1
  doi: 10.1016/j.cell.2017.04.032
– ident: e_1_2_11_2_1
  doi: 10.1098/rspb.2012.1051
– ident: e_1_2_11_37_1
  doi: 10.1007/s00122-016-2840-x
– ident: e_1_2_11_97_1
  doi: 10.1016/j.plrev.2015.02.007
– ident: e_1_2_11_33_1
  doi: 10.1098/rsob.170125
– ident: e_1_2_11_87_1
  doi: 10.1002/j.1537-2197.1984.tb12511.x
– ident: e_1_2_11_114_1
  doi: 10.1186/1471-2164-15-809
– ident: e_1_2_11_43_1
  doi: 10.1073/pnas.1718058115
– ident: e_1_2_11_92_1
  doi: 10.1038/nrg3461
– ident: e_1_2_11_3_1
  doi: 10.1038/nature08800
– ident: e_1_2_11_136_1
  doi: 10.1534/g3.111.000364
– ident: e_1_2_11_138_1
  doi: 10.1016/j.cell.2017.12.019
– ident: e_1_2_11_56_1
  doi: 10.1016/j.compbiolchem.2014.01.005
– ident: e_1_2_11_11_1
  doi: 10.1038/ncomms12767
– ident: e_1_2_11_24_1
  doi: 10.1016/j.tvjl.2014.09.013
– ident: e_1_2_11_31_1
  doi: 10.1016/j.molp.2018.03.018
– ident: e_1_2_11_64_1
  doi: 10.1038/ng.2620
– ident: e_1_2_11_44_1
  doi: 10.1073/pnas.1203189109
– ident: e_1_2_11_116_1
  doi: 10.1093/bib/bby058
– ident: e_1_2_11_45_1
  doi: 10.1186/1471-2164-15-1
– ident: e_1_2_11_135_1
  doi: 10.1093/bib/bbt089
– ident: e_1_2_11_19_1
  doi: 10.1534/genetics.111.136903
– ident: e_1_2_11_82_1
  doi: 10.1371/journal.pone.0105228
– ident: e_1_2_11_75_1
  doi: 10.1186/s12864-017-3778-3
– ident: e_1_2_11_99_1
  doi: 10.1016/j.cub.2017.05.055
– ident: e_1_2_11_53_1
  doi: 10.1126/science.aat1577
– ident: e_1_2_11_51_1
  doi: 10.7554/eLife.22502
– ident: e_1_2_11_74_1
  doi: 10.1073/pnas.1014419107
– ident: e_1_2_11_61_1
  doi: 10.1038/ng.2281
– ident: e_1_2_11_66_1
  doi: 10.1371/journal.pone.0034021
– ident: e_1_2_11_26_1
  doi: 10.1038/ncomms3832
– ident: e_1_2_11_38_1
  doi: 10.1093/bioinformatics/btr172
– ident: e_1_2_11_69_1
  doi: 10.3389/fpls.2018.00974
– ident: e_1_2_11_22_1
  doi: 10.1186/s13059-017-1289-9
– ident: e_1_2_11_71_1
  doi: 10.1038/nrg3627
– ident: e_1_2_11_73_1
  doi: 10.1104/pp.108.131888
– ident: e_1_2_11_126_1
  doi: 10.1073/pnas.94.17.9226
– ident: e_1_2_11_7_1
  doi: 10.1126/science.1174276
– ident: e_1_2_11_39_1
  doi: 10.1146/annurev-arplant-050213-035715
– ident: e_1_2_11_132_1
  doi: 10.1371/journal.pcbi.1004925
– ident: e_1_2_11_18_1
  doi: 10.1038/s41588-018-0116-x
– ident: e_1_2_11_83_1
  doi: 10.1038/ng.3784
– ident: e_1_2_11_111_1
  doi: 10.1038/ncomms9609
– ident: e_1_2_11_133_1
  doi: 10.1038/s41467-017-02445-9
– ident: e_1_2_11_108_1
  doi: 10.1111/nph.14688
– ident: e_1_2_11_109_1
  doi: 10.1038/ng.3807
– ident: e_1_2_11_129_1
  doi: 10.1111/tpj.13069
– ident: e_1_2_11_57_1
  doi: 10.1093/genetics/158.4.1737
– ident: e_1_2_11_59_1
  doi: 10.1016/j.cell.2017.06.008
– ident: e_1_2_11_100_1
  doi: 10.1038/90135
– ident: e_1_2_11_130_1
  doi: 10.1104/pp.15.00025
– ident: e_1_2_11_134_1
  doi: 10.3389/fpls.2017.01611
– ident: e_1_2_11_40_1
  doi: 10.1038/ng.695
– ident: e_1_2_11_95_1
  doi: 10.1534/genetics.111.126508
– volume: 165
  start-page: 353
  issue: 1
  year: 2003
  ident: e_1_2_11_103_1
  article-title: Genotype−environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana
  publication-title: Genetics
  doi: 10.1093/genetics/165.1.353
– ident: e_1_2_11_20_1
  doi: 10.2135/cropsci1966.0011183X000600010011x
– ident: e_1_2_11_112_1
  doi: 10.1038/s10038-017-0350-6
– ident: e_1_2_11_10_1
  doi: 10.1038/ng.3007
– ident: e_1_2_11_16_1
  doi: 10.1016/S0169-5347(97)01274-3
– ident: e_1_2_11_36_1
  doi: 10.1007/978-1-62703-447-0_6
– ident: e_1_2_11_58_1
  doi: 10.1038/ng.2484
– ident: e_1_2_11_137_1
  doi: 10.1038/ng.3538
– ident: e_1_2_11_123_1
  doi: 10.1073/pnas.1310949110
– ident: e_1_2_11_17_1
  doi: 10.1371/journal.pbio.1000294
– ident: e_1_2_11_80_1
  doi: 10.1016/j.molp.2017.06.006
– ident: e_1_2_11_94_1
  doi: 10.1534/genetics.110.122549
– ident: e_1_2_11_110_1
  doi: 10.2307/1936264
– ident: e_1_2_11_9_1
  doi: 10.1371/journal.pcbi.1002600
– ident: e_1_2_11_55_1
  doi: 10.1186/s12864-016-3397-4
– ident: e_1_2_11_128_1
  doi: 10.1073/pnas.1219776110
– ident: e_1_2_11_72_1
  doi: 10.1038/s41467-017-02769-6
– ident: e_1_2_11_106_1
  doi: 10.1016/j.molp.2015.02.014
– ident: e_1_2_11_86_1
  doi: 10.1146/annurev.es.17.110186.003315
– ident: e_1_2_11_122_1
  doi: 10.1038/ng.143
– ident: e_1_2_11_50_1
  doi: 10.1534/genetics.115.182444
– ident: e_1_2_11_27_1
  doi: 10.1534/genetics.107.082867
– ident: e_1_2_11_113_1
  doi: 10.1038/ncomms4438
– ident: e_1_2_11_78_1
  doi: 10.1534/genetics.107.080564
– ident: e_1_2_11_101_1
  doi: 10.1038/ng.746
– ident: e_1_2_11_32_1
  doi: 10.1093/bioinformatics/bts304
– ident: e_1_2_11_42_1
  doi: 10.1038/ncomms7258
– volume: 164
  start-page: 109
  year: 2018
  ident: e_1_2_11_13_1
  article-title: Genetic mapping populations for conducting high‐resolution trait mapping in plants
  publication-title: Adv. Biochem. Eng. Biotechnol.
– ident: e_1_2_11_70_1
  doi: 10.1038/s41588-018-0119-7
– ident: e_1_2_11_79_1
  doi: 10.1111/pce.12608
– ident: e_1_2_11_30_1
  doi: 10.1186/1471-2105-15-102
– ident: e_1_2_11_23_1
  doi: 10.1038/ng.3887
– ident: e_1_2_11_8_1
  doi: 10.1038/ncomms13246
– ident: e_1_2_11_119_1
  doi: 10.1111/nph.13814
– ident: e_1_2_11_131_1
  doi: 10.1105/tpc.114.135848
– ident: e_1_2_11_85_1
  doi: 10.1146/annurev.es.24.110193.000343
– ident: e_1_2_11_124_1
  doi: 10.1016/j.pbi.2013.03.005
– ident: e_1_2_11_41_1
  doi: 10.1038/ng.1018
– ident: e_1_2_11_98_1
  doi: 10.3724/SP.J.1005.2012.00901
– ident: e_1_2_11_4_1
  doi: 10.1080/12538078.2013.807302
– ident: e_1_2_11_35_1
  doi: 10.1146/annurev.ecolsys.37.091305.110224
– ident: e_1_2_11_48_1
  doi: 10.1111/nph.15103
– ident: e_1_2_11_88_1
  doi: 10.1093/jxb/erx214
– ident: e_1_2_11_49_1
  doi: 10.1186/s12859-017-1530-2
– ident: e_1_2_11_47_1
  doi: 10.1038/ng.3974
– ident: e_1_2_11_117_1
  doi: 10.1104/pp.113.231308
– ident: e_1_2_11_127_1
  doi: 10.1111/nph.12458
– ident: e_1_2_11_62_1
  doi: 10.1038/ng.3117
– ident: e_1_2_11_121_1
  doi: 10.1093/jxb/erv182
– ident: e_1_2_11_65_1
  doi: 10.1104/pp.17.00708
– ident: e_1_2_11_54_1
  doi: 10.1038/s41477-017-0007-7
– ident: e_1_2_11_60_1
  doi: 10.1073/pnas.1718326115
– ident: e_1_2_11_125_1
  doi: 10.1038/ng.3596
– ident: e_1_2_11_90_1
  doi: 10.1016/j.plantsci.2013.10.004
– ident: e_1_2_11_102_1
  doi: 10.1126/science.aal1556
– ident: e_1_2_11_63_1
  doi: 10.1186/s13040-015-0069-x
– ident: e_1_2_11_6_1
  doi: 10.1016/j.ajhg.2009.11.004
– ident: e_1_2_11_14_1
  doi: 10.1093/nar/gkx505
SSID ssj0017364
Score 2.6183481
SecondaryResourceType review_article
Snippet Summary With the advent of rapid genotyping and next‐generation sequencing technologies, genome‐wide association study (GWAS) has become a routine strategy for...
With the advent of rapid genotyping and next‐generation sequencing technologies, genome‐wide association study ( GWAS ) has become a routine strategy for...
With the advent of rapid genotyping and next-generation sequencing technologies, genome-wide association study (GWAS) has become a routine strategy for...
With the advent of rapid genotyping and next‐generation sequencing technologies, genome‐wide association study (GWAS) has become a routine strategy for...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8
SubjectTerms Associations
crops
Crops, Agricultural - genetics
Decoding
Epistasis
Epistasis, Genetic
Gene Editing
Gene sequencing
genetic architecture
Genetic Association Studies
Genetic Pleiotropy
Genome editing
Genome, Plant - genetics
Genome-wide association studies
Genome-Wide Association Study
Genomes
Genomics
Genotype
Genotypes
Genotyping
GWAS
High-Throughput Nucleotide Sequencing
Phenotype
Phenotypes
Phenotypic plasticity
Pleiotropy
synthetic association
Title Crop genome‐wide association study: a harvest of biological relevance
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.14139
https://www.ncbi.nlm.nih.gov/pubmed/30368955
https://www.proquest.com/docview/2166360997
https://www.proquest.com/docview/2126909469
https://www.proquest.com/docview/2220911312
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8UwEB5EPHhxX54bUTx4qbyka_Sk4oKgiCh4EEqmC4r6-ngLoid_gr_RX-JMN3cRb4VO22SWzpdk8gVgNSIvQieQlk_51HIMppaRKrZk6kpEz9VN5L3DR8fewblzeOFeDMBmtRem4IeoJ9w4MvL_NQe4we67IO-1OcwJwND_l2u1GBCd1tRR0rcL6ihC6BZlTVWyCnEVT_3kx1z0BWB-xKt5wtkbhcuqqUWdyc16v4fr0eMnFsd_9mUMRkogKrYKzxmHgaQ1AUPbGYHFh0nY3-lkbcEErnfJy9Pz_XWcCPNmSZGz0m4II65Mh4k6RJaKgs-JjS74JJa8tmAKzvd2z3YOrPLMBSviJVgrthHTpkJpo1SYaKUiRykTkym1Vn5ktO-mvo4xDaTDPKTKdjU5gmzGaeCQ1qdhsJW1klkQQWz79DpHIUEIz2-iExuPEEPCn3BRNmCt0n4YlYTkfC7GbVgNTEgtYa6WBqzUou2CheM7oYXKhGEZiN1QSY8Z0bT2G7Bc36YQ4nUR00qyPssoT9Mw19O_yChFyEraUjVgpnCPuiWMAgLtutSh3Mg_NzE8OznML-b-LjoPwwTSdDHtswCDvU4_WSQg1MOl3ONfAW74Avs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gmugFFR8sojRGEy9DtmueTeKBh7g8Y8yScBu6Z3qiEXY2y24InPgJ_BD-in_CX2LVvOShhgsHbpN0pae6q6rr69fXAO8S8iLjRdIJKZ86njaZoyWmjsx8aUzgq7bhu8Nb20Fnx1vf9XfH4Ly-C1PyQzQLbhwZxXjNAc4L0heifNjnOCcEUx2p3LDHRzRhO_y4tkLWfY-4-qm73HGqNwWchLcYndQ1Jmujka6RaKxCTDxEnZKqSmGYaBX6WahSk0XSY55NdH1FDZXtNIs8GbpU7z24zy-IM1P_yteGrIrKSrIqmhM4lKex4jHic0ONqpez3zVIexkhFylu9TH8rDunPNnyY340NPPJyRXeyLvSe09gosLaYrEMjqcwZnuT8GApJzx8_Aw-Lw_yvmCO2gP76_Ts6Htqhf7jrKIg3l0QWnzTA-YiEXkmSsoq9mvBj80Uxyeew86tNOIFjPfynp0CEaVuSNV5aAglBWHbeKkOCBRZ_oVvZAs-1OaOk4pznZ_-2I_ruReZIS7M0IK3jWi_JBr5m9BM7TNxNdYcxigDJn1TKmzBXFNMowRv_eiezUcsg4GimXyg_iODSOBRuhJb8LL0x0YTBjqR8n1qUOFV_1Yx7n5ZLz6mby46Cw873a3NeHNte-MVPCJMqspVrhkYHw5G9jXhvqF5U4SbgL3b9tDf_QJfLQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhQxEC2FgBAX9mUggEEgcemoXe1ejMQBMgxZIIpQIuXW2G23EgHTo8mMonDiE_gPfoWv4Euo6g3CJi45cGvJJXfZVeV63p4BHhTkRVZlMkgpnwbK2DIwEl0gy1ham8Q6tHx3-NVmsrqj1nfj3QX43N2Fafgh-gU3jox6vOYAn7jyhyCfTTjMCcC0Jyo3_NEhzdcOnqwNybgPEUfPt1dWg_ZJgaDgHcbARdaWIVoZWYnWa8RCIRpHmmqNaWF0GpepdrbMpGKaTYxiTe2UoSszJdOI6j0Fp1USan4nYvi656qisoariqYEAaVpbGmM-NhQr-rx5PcLoj0OkOsMN7oAX7q-aQ62vF2ez-xy8eEn2sj_pPMuwvkWaYunTWhcggU_vgxnnlWEho-uwIuVaTURzFD73n_9-Olw33lhvruqqGl3Hwsj9syUmUhEVYqGsIq9WvBTM_XhiauwcyKNuAaL42rsb4DIXJRSdQotYaQkDa1yJiFI5PkXsZUDeNRZOy9axnV--ONd3s28yAx5bYYB3O9FJw3NyO-EljqXyduR5iBHmTDlm9bpAO71xTRG8MaPGftqzjKYaJrHJ_ovMogEHWUkcQDXG3fsNWGYk-k4pgbVTvVnFfPtrfX64-a_i96Fs1vDUf5ybXPjFpwjQKqbJa4lWJxN5_42gb6ZvVMHm4A3J-2g3wBi2l3c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+genome%E2%80%90wide+association+study%3A+a+harvest+of+biological+relevance&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Hai%E2%80%90Jun+Liu&rft.au=Yan%2C+Jianbing&rft.date=2019-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=97&rft.issue=1&rft.spage=8&rft.epage=18&rft_id=info:doi/10.1111%2Ftpj.14139&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon