High thioredoxin‐1 levels in rheumatoid arthritis patients diminish binding and signalling of the monoclonal antibody Tregalizumab

The humanized non‐depleting anti‐CD4 monoclonal antibody Tregalizumab (BT‐061) is able to selectively activate the suppressive function of regulatory T cells and has been investigated up to phase IIb in clinical trials in patients suffering from rheumatoid arthritis (RA). A pharmacokinetic–pharmacod...

Full description

Saved in:
Bibliographic Details
Published inClinical & translational immunology Vol. 5; no. 12; pp. e121 - n/a
Main Authors Heim, Katharina, Dälken, Benjamin, Faust, Stefanie, Rharbaoui, Faiza, Engling, Andre, Wallmeier, Holger, Dingermann, Theodor, Radeke, Heinfried H, Schüttrumpf, Jörg, Gutscher, Marcus
Format Journal Article
LanguageEnglish
Published Australia Nature Publishing Group 01.12.2016
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The humanized non‐depleting anti‐CD4 monoclonal antibody Tregalizumab (BT‐061) is able to selectively activate the suppressive function of regulatory T cells and has been investigated up to phase IIb in clinical trials in patients suffering from rheumatoid arthritis (RA). A pharmacokinetic–pharmacodynamic model based on clinical data from RA and healthy volunteers, which used the cell surface CD4 downmodulation as marker of activity, confirmed a stronger effect in healthy volunteers compared with RA patients. We tried to understand this phenomenon and evaluated the influence of the small oxidoreductase thioredoxin‐1 (Trx1). To counteract oxidative stress that is strongly associated with RA pathophysiology, the organism employs Trx1. Therefore, increased expression and secretion of Trx1 is found in the synovial fluid and plasma of RA patients. Moreover, the binding site of Tregalizumab is in close proximity to a disulphide bond in domain 2 (D2) of CD4, which is a known target for a reduction by oxidoreductase Trx1. With the experiments reported herein, we demonstrated that specific reduction of the D2 disulphide bond by Trx1 led to diminished binding of Tregalizumab to recombinant human soluble CD4 and membrane‐bound CD4 on T cells. Moreover, we showed that this caused changes in the Tregalizumab‐induced CD4 signalling pathway via the lymphocyte‐specific protein tyrosine kinase p56Lck and CD4 downmodulation. In summary, we provide evidence that high Trx1 levels in RA patients compared with healthy subjects are a potential reason for diminished binding of Tregalizumab to CD4‐positive T cells and offer an explanation for the observed decreased CD4 downmodulation in RA patients in comparison to healthy subjects. Rheumatoid arthritis: An inhospitable environment for immunotherapy A once promising rheumatoid arthritis (RA) drug may be thwarted by physiological conditions in the patients it is intended to treat. Tregalizumab was developed to selectively stimulate certain T cells that can keep RA‐associated inflammation in check, but fared poorly in a recent clinical trial. Researchers led by Marcus Gutscher of German biotech company Biotest AG have identified a possible explanation for this failure. Patients with RA experience tissue damage resulting from a chemical process known as oxidative stress, and their bodies produce a protein called thioredoxin‐1 to fight this stress. However, Gutscher's team showed that thioredoxin‐1 also chemically alters the structure of tregalizumab's target, a protein found on immune cells. This change greatly reduces tregalizumab binding and thereby interferes with its biological activity, which could be why RA patients experienced only minimal benefit.
AbstractList The humanized non-depleting anti-CD4 monoclonal antibody Tregalizumab (BT-061) is able to selectively activate the suppressive function of regulatory T cells and has been investigated up to phase IIb in clinical trials in patients suffering from rheumatoid arthritis (RA). A pharmacokinetic-pharmacodynamic model based on clinical data from RA and healthy volunteers, which used the cell surface CD4 downmodulation as marker of activity, confirmed a stronger effect in healthy volunteers compared with RA patients. We tried to understand this phenomenon and evaluated the influence of the small oxidoreductase thioredoxin-1 (Trx1). To counteract oxidative stress that is strongly associated with RA pathophysiology, the organism employs Trx1. Therefore, increased expression and secretion of Trx1 is found in the synovial fluid and plasma of RA patients. Moreover, the binding site of Tregalizumab is in close proximity to a disulphide bond in domain 2 (D2) of CD4, which is a known target for a reduction by oxidoreductase Trx1. With the experiments reported herein, we demonstrated that specific reduction of the D2 disulphide bond by Trx1 led to diminished binding of Tregalizumab to recombinant human soluble CD4 and membrane-bound CD4 on T cells. Moreover, we showed that this caused changes in the Tregalizumab-induced CD4 signalling pathway via the lymphocyte-specific protein tyrosine kinase p56 Lck and CD4 downmodulation. In summary, we provide evidence that high Trx1 levels in RA patients compared with healthy subjects are a potential reason for diminished binding of Tregalizumab to CD4-positive T cells and offer an explanation for the observed decreased CD4 downmodulation in RA patients in comparison to healthy subjects.The humanized non-depleting anti-CD4 monoclonal antibody Tregalizumab (BT-061) is able to selectively activate the suppressive function of regulatory T cells and has been investigated up to phase IIb in clinical trials in patients suffering from rheumatoid arthritis (RA). A pharmacokinetic-pharmacodynamic model based on clinical data from RA and healthy volunteers, which used the cell surface CD4 downmodulation as marker of activity, confirmed a stronger effect in healthy volunteers compared with RA patients. We tried to understand this phenomenon and evaluated the influence of the small oxidoreductase thioredoxin-1 (Trx1). To counteract oxidative stress that is strongly associated with RA pathophysiology, the organism employs Trx1. Therefore, increased expression and secretion of Trx1 is found in the synovial fluid and plasma of RA patients. Moreover, the binding site of Tregalizumab is in close proximity to a disulphide bond in domain 2 (D2) of CD4, which is a known target for a reduction by oxidoreductase Trx1. With the experiments reported herein, we demonstrated that specific reduction of the D2 disulphide bond by Trx1 led to diminished binding of Tregalizumab to recombinant human soluble CD4 and membrane-bound CD4 on T cells. Moreover, we showed that this caused changes in the Tregalizumab-induced CD4 signalling pathway via the lymphocyte-specific protein tyrosine kinase p56 Lck and CD4 downmodulation. In summary, we provide evidence that high Trx1 levels in RA patients compared with healthy subjects are a potential reason for diminished binding of Tregalizumab to CD4-positive T cells and offer an explanation for the observed decreased CD4 downmodulation in RA patients in comparison to healthy subjects.
The humanized non‐depleting anti‐CD4 monoclonal antibody Tregalizumab (BT‐061) is able to selectively activate the suppressive function of regulatory T cells and has been investigated up to phase IIb in clinical trials in patients suffering from rheumatoid arthritis (RA). A pharmacokinetic–pharmacodynamic model based on clinical data from RA and healthy volunteers, which used the cell surface CD4 downmodulation as marker of activity, confirmed a stronger effect in healthy volunteers compared with RA patients. We tried to understand this phenomenon and evaluated the influence of the small oxidoreductase thioredoxin‐1 (Trx1). To counteract oxidative stress that is strongly associated with RA pathophysiology, the organism employs Trx1. Therefore, increased expression and secretion of Trx1 is found in the synovial fluid and plasma of RA patients. Moreover, the binding site of Tregalizumab is in close proximity to a disulphide bond in domain 2 (D2) of CD4, which is a known target for a reduction by oxidoreductase Trx1. With the experiments reported herein, we demonstrated that specific reduction of the D2 disulphide bond by Trx1 led to diminished binding of Tregalizumab to recombinant human soluble CD4 and membrane‐bound CD4 on T cells. Moreover, we showed that this caused changes in the Tregalizumab‐induced CD4 signalling pathway via the lymphocyte‐specific protein tyrosine kinase p56Lck and CD4 downmodulation. In summary, we provide evidence that high Trx1 levels in RA patients compared with healthy subjects are a potential reason for diminished binding of Tregalizumab to CD4‐positive T cells and offer an explanation for the observed decreased CD4 downmodulation in RA patients in comparison to healthy subjects.
The humanized non-depleting anti-CD4 monoclonal antibody Tregalizumab (BT-061) is able to selectively activate the suppressive function of regulatory T cells and has been investigated up to phase IIb in clinical trials in patients suffering from rheumatoid arthritis (RA). A pharmacokinetic-pharmacodynamic model based on clinical data from RA and healthy volunteers, which used the cell surface CD4 downmodulation as marker of activity, confirmed a stronger effect in healthy volunteers compared with RA patients. We tried to understand this phenomenon and evaluated the influence of the small oxidoreductase thioredoxin-1 (Trx1). To counteract oxidative stress that is strongly associated with RA pathophysiology, the organism employs Trx1. Therefore, increased expression and secretion of Trx1 is found in the synovial fluid and plasma of RA patients. Moreover, the binding site of Tregalizumab is in close proximity to a disulphide bond in domain 2 (D2) of CD4, which is a known target for a reduction by oxidoreductase Trx1. With the experiments reported herein, we demonstrated that specific reduction of the D2 disulphide bond by Trx1 led to diminished binding of Tregalizumab to recombinant human soluble CD4 and membrane-bound CD4 on T cells. Moreover, we showed that this caused changes in the Tregalizumab-induced CD4 signalling pathway via the lymphocyte-specific protein tyrosine kinase p56 and CD4 downmodulation. In summary, we provide evidence that high Trx1 levels in RA patients compared with healthy subjects are a potential reason for diminished binding of Tregalizumab to CD4-positive T cells and offer an explanation for the observed decreased CD4 downmodulation in RA patients in comparison to healthy subjects.
The humanized non‐depleting anti‐CD4 monoclonal antibody Tregalizumab (BT‐061) is able to selectively activate the suppressive function of regulatory T cells and has been investigated up to phase IIb in clinical trials in patients suffering from rheumatoid arthritis (RA). A pharmacokinetic–pharmacodynamic model based on clinical data from RA and healthy volunteers, which used the cell surface CD4 downmodulation as marker of activity, confirmed a stronger effect in healthy volunteers compared with RA patients. We tried to understand this phenomenon and evaluated the influence of the small oxidoreductase thioredoxin‐1 (Trx1). To counteract oxidative stress that is strongly associated with RA pathophysiology, the organism employs Trx1. Therefore, increased expression and secretion of Trx1 is found in the synovial fluid and plasma of RA patients. Moreover, the binding site of Tregalizumab is in close proximity to a disulphide bond in domain 2 (D2) of CD4, which is a known target for a reduction by oxidoreductase Trx1. With the experiments reported herein, we demonstrated that specific reduction of the D2 disulphide bond by Trx1 led to diminished binding of Tregalizumab to recombinant human soluble CD4 and membrane‐bound CD4 on T cells. Moreover, we showed that this caused changes in the Tregalizumab‐induced CD4 signalling pathway via the lymphocyte‐specific protein tyrosine kinase p56Lck and CD4 downmodulation. In summary, we provide evidence that high Trx1 levels in RA patients compared with healthy subjects are a potential reason for diminished binding of Tregalizumab to CD4‐positive T cells and offer an explanation for the observed decreased CD4 downmodulation in RA patients in comparison to healthy subjects. Rheumatoid arthritis: An inhospitable environment for immunotherapy A once promising rheumatoid arthritis (RA) drug may be thwarted by physiological conditions in the patients it is intended to treat. Tregalizumab was developed to selectively stimulate certain T cells that can keep RA‐associated inflammation in check, but fared poorly in a recent clinical trial. Researchers led by Marcus Gutscher of German biotech company Biotest AG have identified a possible explanation for this failure. Patients with RA experience tissue damage resulting from a chemical process known as oxidative stress, and their bodies produce a protein called thioredoxin‐1 to fight this stress. However, Gutscher's team showed that thioredoxin‐1 also chemically alters the structure of tregalizumab's target, a protein found on immune cells. This change greatly reduces tregalizumab binding and thereby interferes with its biological activity, which could be why RA patients experienced only minimal benefit.
The humanized non‐depleting anti‐CD4 monoclonal antibody Tregalizumab (BT‐061) is able to selectively activate the suppressive function of regulatory T cells and has been investigated up to phase IIb in clinical trials in patients suffering from rheumatoid arthritis (RA). A pharmacokinetic–pharmacodynamic model based on clinical data from RA and healthy volunteers, which used the cell surface CD4 downmodulation as marker of activity, confirmed a stronger effect in healthy volunteers compared with RA patients. We tried to understand this phenomenon and evaluated the influence of the small oxidoreductase thioredoxin‐1 (Trx1). To counteract oxidative stress that is strongly associated with RA pathophysiology, the organism employs Trx1. Therefore, increased expression and secretion of Trx1 is found in the synovial fluid and plasma of RA patients. Moreover, the binding site of Tregalizumab is in close proximity to a disulphide bond in domain 2 (D2) of CD4, which is a known target for a reduction by oxidoreductase Trx1. With the experiments reported herein, we demonstrated that specific reduction of the D2 disulphide bond by Trx1 led to diminished binding of Tregalizumab to recombinant human soluble CD4 and membrane‐bound CD4 on T cells. Moreover, we showed that this caused changes in the Tregalizumab‐induced CD4 signalling pathway via the lymphocyte‐specific protein tyrosine kinase p56 Lck and CD4 downmodulation. In summary, we provide evidence that high Trx1 levels in RA patients compared with healthy subjects are a potential reason for diminished binding of Tregalizumab to CD4‐positive T cells and offer an explanation for the observed decreased CD4 downmodulation in RA patients in comparison to healthy subjects. A once promising rheumatoid arthritis (RA) drug may be thwarted by physiological conditions in the patients it is intended to treat. Tregalizumab was developed to selectively stimulate certain T cells that can keep RA‐associated inflammation in check, but fared poorly in a recent clinical trial. Researchers led by Marcus Gutscher of German biotech company Biotest AG have identified a possible explanation for this failure. Patients with RA experience tissue damage resulting from a chemical process known as oxidative stress, and their bodies produce a protein called thioredoxin‐1 to fight this stress. However, Gutscher's team showed that thioredoxin‐1 also chemically alters the structure of tregalizumab's target, a protein found on immune cells. This change greatly reduces tregalizumab binding and thereby interferes with its biological activity, which could be why RA patients experienced only minimal benefit.
The humanized non-depleting anti-CD4 monoclonal antibody Tregalizumab (BT-061) is able to selectively activate the suppressive function of regulatory T cells and has been investigated up to phase IIb in clinical trials in patients suffering from rheumatoid arthritis (RA). A pharmacokinetic–pharmacodynamic model based on clinical data from RA and healthy volunteers, which used the cell surface CD4 downmodulation as marker of activity, confirmed a stronger effect in healthy volunteers compared with RA patients. We tried to understand this phenomenon and evaluated the influence of the small oxidoreductase thioredoxin-1 (Trx1). To counteract oxidative stress that is strongly associated with RA pathophysiology, the organism employs Trx1. Therefore, increased expression and secretion of Trx1 is found in the synovial fluid and plasma of RA patients. Moreover, the binding site of Tregalizumab is in close proximity to a disulphide bond in domain 2 (D2) of CD4, which is a known target for a reduction by oxidoreductase Trx1. With the experiments reported herein, we demonstrated that specific reduction of the D2 disulphide bond by Trx1 led to diminished binding of Tregalizumab to recombinant human soluble CD4 and membrane-bound CD4 on T cells. Moreover, we showed that this caused changes in the Tregalizumab-induced CD4 signalling pathway via the lymphocyte-specific protein tyrosine kinase p56 Lck and CD4 downmodulation. In summary, we provide evidence that high Trx1 levels in RA patients compared with healthy subjects are a potential reason for diminished binding of Tregalizumab to CD4-positive T cells and offer an explanation for the observed decreased CD4 downmodulation in RA patients in comparison to healthy subjects.
Author Dingermann, Theodor
Rharbaoui, Faiza
Gutscher, Marcus
Faust, Stefanie
Heim, Katharina
Schüttrumpf, Jörg
Dälken, Benjamin
Radeke, Heinfried H
Engling, Andre
Wallmeier, Holger
Author_xml – sequence: 1
  givenname: Katharina
  surname: Heim
  fullname: Heim, Katharina
  organization: Biotest AG
– sequence: 2
  givenname: Benjamin
  surname: Dälken
  fullname: Dälken, Benjamin
  organization: Biotest AG
– sequence: 3
  givenname: Stefanie
  surname: Faust
  fullname: Faust, Stefanie
  organization: Biotest AG
– sequence: 4
  givenname: Faiza
  surname: Rharbaoui
  fullname: Rharbaoui, Faiza
  organization: Biotest AG
– sequence: 5
  givenname: Andre
  surname: Engling
  fullname: Engling, Andre
  organization: Biotest AG
– sequence: 6
  givenname: Holger
  surname: Wallmeier
  fullname: Wallmeier, Holger
  organization: Condor Scientific Computing and Consulting
– sequence: 7
  givenname: Theodor
  surname: Dingermann
  fullname: Dingermann, Theodor
  organization: Institute of Pharmaceutical Biology, Goethe University Frankfurt
– sequence: 8
  givenname: Heinfried H
  surname: Radeke
  fullname: Radeke, Heinfried H
  organization: Institute of Pharmacology and Toxicology/ZAFES, Clinic of the Goethe University
– sequence: 9
  givenname: Jörg
  surname: Schüttrumpf
  fullname: Schüttrumpf, Jörg
  organization: Biotest AG
– sequence: 10
  givenname: Marcus
  surname: Gutscher
  fullname: Gutscher, Marcus
  email: marcus.gutscher@biotest.com
  organization: Biotest AG
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28090323$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpiTuyxAUJ7eKPxOtckNAKaKVKXJaz5a9NpnLsxU5alhMHfgC_kV-Coy1VqQQnj8fPvJrxvE-roxCDq6rnBC8JZuKNGWFJMeFL3j6qTihu8AJjLo7uxcfVWc5XGGPCatwQ_qQ6pgK3mFF2Uv04h65HYw8xORu_Qvj1_SdB3l07nxEElHo3DWqMYJFKY59ghIx2agQXxowsDBAg90hDsBA6pIJFGbqgvJ-vcVukHRpiiMbHki3ACDraPdok1ykP34q6flY93iqf3dnteVp9_vB-sz5fXH76eLF-d7kwdUPbRaO01ooY3bLWsBaLrWKMUSMaTWq1wlo3TihthNUr44itG6wYsUSYmhHFKTut3h50d5MenDVlhqS83CUYVNrLqED-_RKgl128lg1pKeakCLy6FUjxy-TyKAfIxnmvgotTlkRw0jAiBC7oywfoVZxS-YIsKRUtbylvVoV6cb-ju1b-LKgArw-ASTHn5LZ3CMFydoAsDpCzAyRvC00e0AbGsqw4jwP-HzX0UHMD3u3_Jy_Xm4s5LEW_AXcYx6o
CitedBy_id crossref_primary_10_1371_journal_pone_0262409
crossref_primary_10_1136_annrheumdis_2017_212478
crossref_primary_10_5937_jomb0_44758
crossref_primary_10_1074_jbc_RA119_010637
crossref_primary_10_1007_s10067_017_3832_1
crossref_primary_10_1021_acs_biochem_7b01083
Cites_doi 10.1016/0167-5699(89)90260-0
10.1182/blood-2010-09-307041
10.1038/348411a0
10.2169/internalmedicine.49.4049
10.1016/S0021-9258(18)35742-9
10.4049/jimmunol.176.11.6873
10.1007/s11010-014-2006-6
10.4049/jimmunol.176.9.5438
10.1016/j.freeradbiomed.2013.07.036
10.1186/1742-4690-3-31
10.1074/jbc.M111.257550
10.1038/sj.emboj.7601746
10.1021/bi0603064
10.1056/NEJMra1004965
10.1016/S0161-5890(01)00113-4
10.1038/icb.2014.102
10.1002/1529-0131(199911)42:11<2430::AID-ANR22>3.0.CO;2-6
10.1002/med.10051
10.1016/S0092-8674(00)81109-5
10.1002/eji.200636480
10.1074/jbc.M113.539353
10.1016/j.cca.2005.12.006
10.1016/j.jjcc.2014.02.016
10.1111/j.1365-2249.2005.02754.x
10.1096/fasebj.9.1.7821755
10.1016/S0168-8278(02)00331-8
10.4049/jimmunol.158.3.1458
10.4049/jimmunol.163.1.351
10.1016/j.virol.2006.01.041
10.1038/90935
10.1016/0958-1669(91)90089-N
10.1111/j.1756-185X.2011.01630.x
10.3389/fimmu.2012.00164
10.1038/nrm940
10.1016/S0891-5849(01)00724-9
10.1038/srep18308
10.1097/MOH.0b013e32832a9a01
10.1016/S0092-8674(85)80105-7
10.3389/fimmu.2016.00011
10.1007/s10067-014-2597-z
10.1016/0165-2478(94)90038-8
10.4049/jimmunol.166.5.3008
10.1038/nri1330
10.1093/nar/24.14.2746
10.1016/j.lfs.2016.02.002
10.1111/j.1365-2249.2008.03634.x
ContentType Journal Article
Copyright 2016 The Authors
2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2016 The Author(s) 2016 The Author(s)
Copyright_xml – notice: 2016 The Authors
– notice: 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2016 The Author(s) 2016 The Author(s)
DBID 24P
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/cti.2016.69
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
PubMed

CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Trx1 impacts binding of Tregalizumab to CD4 in RA
EISSN 2050-0068
EndPage n/a
ExternalDocumentID PMC5192061
28090323
10_1038_cti_2016_69
CTI201669
Genre article
Journal Article
GroupedDBID 0R~
1OC
24P
3V.
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAHHS
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACXQS
ADBBV
ADKYN
ADPDF
ADRAZ
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
DIK
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
INH
ITC
KQ8
LK8
M48
M7P
M~E
NAO
O9-
OK1
OVD
OVEED
PIMPY
PQQKQ
PROAC
RNTTT
RPM
TEORI
UKHRP
WIN
AAYXX
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
PQGLB
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c4529-5abbba1cb939c3908fa3332c85b14a70bb5e8abc8db7ce1d450a31d18c431a623
IEDL.DBID 7X7
ISSN 2050-0068
IngestDate Thu Aug 21 14:02:19 EDT 2025
Fri Jul 11 15:35:51 EDT 2025
Wed Aug 13 07:17:08 EDT 2025
Mon Jul 21 06:01:45 EDT 2025
Tue Jul 01 03:50:57 EDT 2025
Thu Apr 24 23:09:32 EDT 2025
Wed Jan 22 16:38:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4529-5abbba1cb939c3908fa3332c85b14a70bb5e8abc8db7ce1d450a31d18c431a623
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2289692657?pq-origsite=%requestingapplication%
PMID 28090323
PQID 2289692657
PQPubID 2041959
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5192061
proquest_miscellaneous_1861531880
proquest_journals_2289692657
pubmed_primary_28090323
crossref_primary_10_1038_cti_2016_69
crossref_citationtrail_10_1038_cti_2016_69
wiley_primary_10_1038_cti_2016_69_CTI201669
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2016
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace Australia
PublicationPlace_xml – name: Australia
– name: Milton, Queensland
PublicationTitle Clinical & translational immunology
PublicationTitleAlternate Clin Transl Immunology
PublicationYear 2016
Publisher Nature Publishing Group
John Wiley & Sons, Inc
Publisher_xml – name: Nature Publishing Group
– name: John Wiley & Sons, Inc
References 2001; 166
2002; 38
1995; 9
1997; 158
1991; 2
1990; 348
2015; 5
2011; 117
2015; 93
2013; 65
1992; 267
2004; 24
2006; 350
2004; 4
2002; 3
2006; 176
2003; 38
1999; 163
1999; 42
2006; 3
1995; 155
2016; 148
2014; 391
2011; 14
1985; 42
2014; 66
2007; 37
2014; 64
1994; 42
2016; 7
2010; 49
2012; 3
2005; 140
1989; 10
2001; 7
2006; 45
1996; 85
2012; 25
1996; 24
2011; 365
2009; 16
2008; 152
2014; 33
2006; 367
2011; 286
2007; 26
2001; 31
2014; 289
e_1_2_6_30_2
e_1_2_6_19_2
Yoshida S (e_1_2_6_28_2) 1999; 163
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
Sakaguchi S (e_1_2_6_5_2) 1995; 155
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
Maurice MM (e_1_2_6_21_2) 1997; 158
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_42_2
e_1_2_6_40_2
Dokoupilova E (e_1_2_6_33_2) 2013; 65
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
Dasgupta A (e_1_2_6_8_2) 2012; 25
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
22004228 - Int J Rheum Dis. 2011 Oct;14(4):325-31
11207250 - J Immunol. 2001 Mar 1;166(5):3008-18
1701030 - Nature. 1990 Nov 29;348(6300):411-8
7636184 - J Immunol. 1995 Aug 1;155(3):1151-64
7821755 - FASEB J. 1995 Jan;9(1):17-25
14595672 - Med Res Rev. 2004 Jan;24(1):40-89
26851532 - Life Sci. 2016 Mar 1;148:183-93
26670584 - Sci Rep. 2015 Dec 16;5:18308
1367682 - Curr Opin Biotechnol. 1991 Aug;2(4):622-33
2990730 - Cell. 1985 Aug;42(1):93-104
11841836 - Mol Immunol. 2002 Feb;38(10):765-72
16622011 - J Immunol. 2006 May 1;176(9):5438-45
11479621 - Nat Med. 2001 Aug;7(8):899-905
12089508 - Nat Immunol. 2002 Aug;3(8):727-32
1332947 - J Biol Chem. 1992 Dec 5;267(34):24161-4
16768438 - Biochemistry. 2006 Jun 20;45(24):7429-33
2679636 - Immunol Today. 1989 Jul;10(7):234-8
17557078 - EMBO J. 2007 Jul 11;26(13):3086-97
24718487 - Clin Rheumatol. 2014 Nov;33(11):1557-64
24550395 - J Biol Chem. 2014 Apr 11;289(15):10455-65
8759006 - Nucleic Acids Res. 1996 Jul 15;24(14):2746-52
10555039 - Arthritis Rheum. 1999 Nov;42(11):2430-9
10384135 - J Immunol. 1999 Jul 1;163(1):351-8
16507315 - Virology. 2006 Jul 5;350(2):406-17
12480557 - J Hepatol. 2003 Jan;38(1):32-8
26834751 - Front Immunol. 2016 Jan 25;7:11
18422737 - Clin Exp Immunol. 2008 Jun;152(3):415-22
24685687 - J Cardiol. 2014 Nov;64(5):353-9
16762062 - Retrovirology. 2006 Jun 08;3:31
8616886 - Cell. 1996 May 3;85(3):307-10
15807863 - Clin Exp Immunol. 2005 May;140(2):360-7
17407195 - Eur J Immunol. 2007 May;37(5):1217-23
21088339 - Intern Med. 2010;49(22):2393-400
16709847 - J Immunol. 2006 Jun 1;176(11):6873-8
21030559 - Blood. 2011 Jan 20;117(3):857-61
16458876 - Clin Chim Acta. 2006 May;367(1-2):156-61
24610042 - Mol Cell Biochem. 2014 Jun;391(1-2):225-32
23998865 - Natl Med J India. 2012 Nov-Dec;25(6):341-51
15057788 - Nat Rev Immunol. 2004 Apr;4(4):301-8
11728801 - Free Radic Biol Med. 2001 Dec 1;31(11):1287-312
23899494 - Free Radic Biol Med. 2014 Jan;66:75-87
9013992 - J Immunol. 1997 Feb 1;158(3):1458-65
7829134 - Immunol Lett. 1994 Sep;42(1-2):75-80
25512343 - Immunol Cell Biol. 2015 Apr;93(4):396-405
19417650 - Curr Opin Hematol. 2009 Jul;16(4):274-9
22719741 - Front Immunol. 2012 Jun 18;3:164
21965667 - J Biol Chem. 2011 Nov 25;286(47):40608-13
22150039 - N Engl J Med. 2011 Dec 8;365(23):2205-19
References_xml – volume: 24
  start-page: 2746
  year: 1996
  end-page: 2752
  article-title: A novel promoter sequence is involved in the oxidative stress‐induced expression of the adult T‐cell leukemia‐derived factor (ADF)/human thioredoxin (Trx) gene
  publication-title: Nucleic Acids Res
– volume: 49
  start-page: 2393
  year: 2010
  end-page: 2400
  article-title: Elevated levels of thioredoxin 1 in the lungs and sera of idiopathic pulmonary fibrosis, non‐specific interstitial pneumonia and cryptogenic organizing pneumonia
  publication-title: Intern Med
– volume: 14
  start-page: 325
  year: 2011
  end-page: 331
  article-title: Oxidative stress in systemic lupus erythematosus and rheumatoid arthritis patients: relationship to disease manifestations and activity
  publication-title: Int J Rheum Dis
– volume: 267
  start-page: 24161
  year: 1992
  end-page: 24164
  article-title: Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway
  publication-title: J Biol Chem
– volume: 66
  start-page: 75
  year: 2014
  end-page: 87
  article-title: The thioredoxin antioxidant system
  publication-title: Free Radic Biol Med
– volume: 176
  start-page: 6873
  year: 2006
  end-page: 6878
  article-title: Evidence for a domain‐swapped CD4 dimer as the coreceptor for binding to class II MHC
  publication-title: J Immunol
– volume: 348
  start-page: 411
  year: 1990
  end-page: 418
  article-title: Atomic structure of a fragment of human CD4 containing two immunoglobulin‐like domains
  publication-title: Nature
– volume: 16
  start-page: 274
  year: 2009
  end-page: 279
  article-title: Regulatory T cells and autoimmunity
  publication-title: Curr Opin Hematol
– volume: 4
  start-page: 301
  year: 2004
  end-page: 308
  article-title: Jurkat T cells and development of the T‐cell receptor signalling paradigm
  publication-title: Nat Rev Immunol
– volume: 42
  start-page: 75
  year: 1994
  end-page: 80
  article-title: Adult T cell leukemia‐derived factor/human thioredoxin protects endothelial F‐2 cell injury caused by activated neutrophils or hydrogen peroxide
  publication-title: Immunol Lett
– volume: 42
  start-page: 2430
  year: 1999
  end-page: 2439
  article-title: Expression of the thioredoxin‐thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis
  publication-title: Arthritis Rheum
– volume: 289
  start-page: 10455
  year: 2014
  end-page: 10465
  article-title: Disulfide reduction in CD4 domain 1 or 2 is essential for interaction with HIV glycoprotein 120 (gp120), which impairs thioredoxin‐driven CD4 dimerization
  publication-title: J Biol Chem
– volume: 37
  start-page: 1217
  year: 2007
  end-page: 1223
  article-title: CD4‐mediated functional activation of human CD4+CD25+ regulatory T cells
  publication-title: Eur J Immunol
– volume: 65
  start-page: S596
  issue: (Suppl 10)
  year: 2013
  article-title: Use of a biologic marker for an integrated pharmacodynamic and clinical analysis to inform further clinical development, including dose selection for the phase 2b trial—treat 2b—of tregalizumab in rheumatoid arthritis
  publication-title: Arthritis Rheum
– volume: 10
  start-page: 234
  year: 1989
  end-page: 238
  article-title: The role of CD4 in T‐cell activation: accessory molecule or co‐receptor?
  publication-title: Immunol Today
– volume: 3
  start-page: 164
  year: 2012
  article-title: Boosting regulatory T cell function by CD4 stimulation enters the clinic
  publication-title: Front Immunol
– volume: 31
  start-page: 1287
  year: 2001
  end-page: 1312
  article-title: Reactive oxygen species, antioxidants, and the mammalian thioredoxin system
  publication-title: Free Radic Biol Med
– volume: 117
  start-page: 857
  year: 2011
  end-page: 861
  article-title: Increased thioredoxin‐1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress
  publication-title: Blood
– volume: 148
  start-page: 183
  year: 2016
  end-page: 193
  article-title: Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies
  publication-title: Life Sci
– volume: 140
  start-page: 360
  year: 2005
  end-page: 367
  article-title: CD4 CD25 T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis
  publication-title: Clin Exp Immunol
– volume: 152
  start-page: 415
  year: 2008
  end-page: 422
  article-title: Redox signalling and the inflammatory response in rheumatoid arthritis
  publication-title: Clin Exp Immunol
– volume: 93
  start-page: 396
  year: 2015
  end-page: 405
  article-title: A specific CD4 epitope bound by tregalizumab mediates activation of regulatory T cells by a unique signaling pathway
  publication-title: Immunol Cell Biol
– volume: 7
  start-page: 11
  year: 2016
  article-title: Tregalizumab—a monoclonal antibody to target regulatory T cells
  publication-title: Front Immunol
– volume: 176
  start-page: 5438
  year: 2006
  end-page: 5445
  article-title: Triggering of T cell activation via CD4 dimers
  publication-title: J Immunol
– volume: 25
  start-page: 341
  year: 2012
  end-page: 351
  article-title: Regulatory T cells: a review
  publication-title: Natl Med J India
– volume: 24
  start-page: 40
  year: 2004
  end-page: 89
  article-title: The thioredoxin system–from science to clinic
  publication-title: Med Res Rev
– volume: 38
  start-page: 32
  year: 2003
  end-page: 38
  article-title: Serum thioredoxin levels as a predictor of steatohepatitis in patients with nonalcoholic fatty liver disease
  publication-title: J Hepatol
– volume: 158
  start-page: 1458
  year: 1997
  end-page: 1465
  article-title: Evidence for the role of an altered redox state in hyporesponsiveness of synovial T cells in rheumatoid arthritis
  publication-title: J Immunol
– volume: 7
  start-page: 899
  year: 2001
  end-page: 905
  article-title: Autoimmune disease: why and where it occurs
  publication-title: Nat Med
– volume: 286
  start-page: 40608
  year: 2011
  end-page: 40613
  article-title: Crystal structure of Fcγ receptor I and its implication in high affinity γ‐immunoglobulin binding
  publication-title: J Biol Chem
– volume: 350
  start-page: 406
  year: 2006
  end-page: 417
  article-title: Role of protein disulfide isomerase and other thiol‐reactive proteins in HIV‐1 envelope protein‐mediated fusion
  publication-title: Virology
– volume: 42
  start-page: 93
  year: 1985
  end-page: 104
  article-title: The isolation and nucleotide sequence of a cDNA encoding the T cell surface protein T4: a new member of the immunoglobulin gene family
  publication-title: Cell
– volume: 365
  start-page: 2205
  year: 2011
  end-page: 2219
  article-title: The pathogenesis of rheumatoid arthritis
  publication-title: N Engl J Med
– volume: 9
  start-page: 17
  year: 1995
  end-page: 25
  article-title: A structural view of CD4 and CD8
  publication-title: FASEB J
– volume: 163
  start-page: 351
  year: 1999
  end-page: 358
  article-title: Involvement of thioredoxin in rheumatoid arthritis: its costimulatory roles in the TNF‐alpha‐induced production of IL‐6 and IL‐8 from cultured synovial fibroblasts
  publication-title: J Immunol
– volume: 166
  start-page: 3008
  year: 2001
  end-page: 3018
  article-title: CD25 CD4 T cells regulate the expansion of peripheral CD4 T cells through the production of IL‐10
  publication-title: J Immunol
– volume: 3
  start-page: 727
  year: 2002
  end-page: 732
  article-title: Disulfide exchange in domain 2 of CD4 is required for entry of HIV‐1
  publication-title: Nat Immunol
– volume: 3
  start-page: 31
  year: 2006
  article-title: Association between disruption of CD4 receptor dimerization and increased human immunodeficiency virus type 1 entry
  publication-title: Retrovirology
– volume: 45
  start-page: 7429
  year: 2006
  end-page: 7433
  article-title: Allosteric disulfide bonds
  publication-title: Biochemistry
– volume: 26
  start-page: 3086
  year: 2007
  end-page: 3097
  article-title: Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin‐1
  publication-title: EMBO J
– volume: 2
  start-page: 622
  year: 1991
  end-page: 633
  article-title: CD4: its structure, role in immune function and AIDS pathogenesis, and potential as a pharmacological target
  publication-title: Curr Opin Biotechnol
– volume: 367
  start-page: 156
  year: 2006
  end-page: 161
  article-title: High redox thioredoxin but low thioredoxin reductase activities in the serum of patients with rheumatoid arthritis
  publication-title: Clin Chim Acta
– volume: 33
  start-page: 1557
  year: 2014
  end-page: 1564
  article-title: Correlation of oxidant status with oxidative tissue damage in patients with rheumatoid arthritis
  publication-title: Clin Rheumatol
– volume: 85
  start-page: 307
  year: 1996
  end-page: 310
  article-title: Rheumatoid arthritis
  publication-title: Cell
– volume: 38
  start-page: 765
  year: 2002
  end-page: 772
  article-title: Thioredoxin as a biomarker for oxidative stress in patients with rheumatoid arthritis
  publication-title: Mol Immunol
– volume: 5
  start-page: 18308
  year: 2015
  article-title: Antibody induced CD4 down‐modulation of T cells is site‐specifically mediated by CD64(+) cells
  publication-title: Sci Rep
– volume: 391
  start-page: 225
  year: 2014
  end-page: 232
  article-title: Oxidative stress in rheumatoid arthritis patients: relationship to diseases activity
  publication-title: Mol Cell Biochem
– volume: 155
  start-page: 1151
  year: 1995
  end-page: 1164
  article-title: Immunologic self‐tolerance maintained by activated T cells expressing IL‐2 receptor alpha‐chains (CD25). Breakdown of a single mechanism of self‐tolerance causes various autoimmune diseases
  publication-title: J Immunol Baltim Md 1950
– volume: 64
  start-page: 353
  year: 2014
  end-page: 359
  article-title: Association of plasma thioredoxin‐1 with renal tubular damage and cardiac prognosis in patients with chronic heart failure
  publication-title: J Cardiol
– ident: e_1_2_6_9_2
  doi: 10.1016/0167-5699(89)90260-0
– ident: e_1_2_6_49_2
  doi: 10.1182/blood-2010-09-307041
– ident: e_1_2_6_13_2
  doi: 10.1038/348411a0
– ident: e_1_2_6_26_2
  doi: 10.2169/internalmedicine.49.4049
– ident: e_1_2_6_16_2
  doi: 10.1016/S0021-9258(18)35742-9
– ident: e_1_2_6_40_2
  doi: 10.4049/jimmunol.176.11.6873
– ident: e_1_2_6_18_2
  doi: 10.1007/s11010-014-2006-6
– volume: 65
  start-page: S596
  issue: 10
  year: 2013
  ident: e_1_2_6_33_2
  article-title: Use of a biologic marker for an integrated pharmacodynamic and clinical analysis to inform further clinical development, including dose selection for the phase 2b trial—treat 2b—of tregalizumab in rheumatoid arthritis
  publication-title: Arthritis Rheum
– ident: e_1_2_6_39_2
  doi: 10.4049/jimmunol.176.9.5438
– ident: e_1_2_6_17_2
  doi: 10.1016/j.freeradbiomed.2013.07.036
– ident: e_1_2_6_42_2
  doi: 10.1186/1742-4690-3-31
– ident: e_1_2_6_43_2
  doi: 10.1074/jbc.M111.257550
– ident: e_1_2_6_44_2
  doi: 10.1038/sj.emboj.7601746
– ident: e_1_2_6_38_2
  doi: 10.1021/bi0603064
– ident: e_1_2_6_3_2
  doi: 10.1056/NEJMra1004965
– ident: e_1_2_6_23_2
  doi: 10.1016/S0161-5890(01)00113-4
– ident: e_1_2_6_31_2
  doi: 10.1038/icb.2014.102
– ident: e_1_2_6_22_2
  doi: 10.1002/1529-0131(199911)42:11<2430::AID-ANR22>3.0.CO;2-6
– ident: e_1_2_6_35_2
  doi: 10.1002/med.10051
– ident: e_1_2_6_2_2
  doi: 10.1016/S0092-8674(00)81109-5
– ident: e_1_2_6_30_2
  doi: 10.1002/eji.200636480
– volume: 155
  start-page: 1151
  year: 1995
  ident: e_1_2_6_5_2
  article-title: Immunologic self‐tolerance maintained by activated T cells expressing IL‐2 receptor alpha‐chains (CD25). Breakdown of a single mechanism of self‐tolerance causes various autoimmune diseases
  publication-title: J Immunol Baltim Md 1950
– ident: e_1_2_6_15_2
  doi: 10.1074/jbc.M113.539353
– ident: e_1_2_6_24_2
  doi: 10.1016/j.cca.2005.12.006
– volume: 25
  start-page: 341
  year: 2012
  ident: e_1_2_6_8_2
  article-title: Regulatory T cells: a review
  publication-title: Natl Med J India
– ident: e_1_2_6_25_2
  doi: 10.1016/j.jjcc.2014.02.016
– ident: e_1_2_6_50_2
  doi: 10.1111/j.1365-2249.2005.02754.x
– ident: e_1_2_6_11_2
  doi: 10.1096/fasebj.9.1.7821755
– ident: e_1_2_6_27_2
  doi: 10.1016/S0168-8278(02)00331-8
– volume: 158
  start-page: 1458
  year: 1997
  ident: e_1_2_6_21_2
  article-title: Evidence for the role of an altered redox state in hyporesponsiveness of synovial T cells in rheumatoid arthritis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.158.3.1458
– volume: 163
  start-page: 351
  year: 1999
  ident: e_1_2_6_28_2
  article-title: Involvement of thioredoxin in rheumatoid arthritis: its costimulatory roles in the TNF‐alpha‐induced production of IL‐6 and IL‐8 from cultured synovial fibroblasts
  publication-title: J Immunol
  doi: 10.4049/jimmunol.163.1.351
– ident: e_1_2_6_41_2
  doi: 10.1016/j.virol.2006.01.041
– ident: e_1_2_6_4_2
  doi: 10.1038/90935
– ident: e_1_2_6_12_2
  doi: 10.1016/0958-1669(91)90089-N
– ident: e_1_2_6_20_2
  doi: 10.1111/j.1756-185X.2011.01630.x
– ident: e_1_2_6_29_2
  doi: 10.3389/fimmu.2012.00164
– ident: e_1_2_6_14_2
  doi: 10.1038/nrm940
– ident: e_1_2_6_46_2
  doi: 10.1016/S0891-5849(01)00724-9
– ident: e_1_2_6_34_2
  doi: 10.1038/srep18308
– ident: e_1_2_6_7_2
  doi: 10.1097/MOH.0b013e32832a9a01
– ident: e_1_2_6_10_2
  doi: 10.1016/S0092-8674(85)80105-7
– ident: e_1_2_6_32_2
  doi: 10.3389/fimmu.2016.00011
– ident: e_1_2_6_36_2
  doi: 10.1007/s10067-014-2597-z
– ident: e_1_2_6_48_2
  doi: 10.1016/0165-2478(94)90038-8
– ident: e_1_2_6_6_2
  doi: 10.4049/jimmunol.166.5.3008
– ident: e_1_2_6_45_2
  doi: 10.1038/nri1330
– ident: e_1_2_6_47_2
  doi: 10.1093/nar/24.14.2746
– ident: e_1_2_6_37_2
  doi: 10.1016/j.lfs.2016.02.002
– ident: e_1_2_6_19_2
  doi: 10.1111/j.1365-2249.2008.03634.x
– reference: 8759006 - Nucleic Acids Res. 1996 Jul 15;24(14):2746-52
– reference: 2679636 - Immunol Today. 1989 Jul;10(7):234-8
– reference: 24550395 - J Biol Chem. 2014 Apr 11;289(15):10455-65
– reference: 15807863 - Clin Exp Immunol. 2005 May;140(2):360-7
– reference: 1701030 - Nature. 1990 Nov 29;348(6300):411-8
– reference: 11207250 - J Immunol. 2001 Mar 1;166(5):3008-18
– reference: 22719741 - Front Immunol. 2012 Jun 18;3:164
– reference: 18422737 - Clin Exp Immunol. 2008 Jun;152(3):415-22
– reference: 26851532 - Life Sci. 2016 Mar 1;148:183-93
– reference: 21088339 - Intern Med. 2010;49(22):2393-400
– reference: 12480557 - J Hepatol. 2003 Jan;38(1):32-8
– reference: 12089508 - Nat Immunol. 2002 Aug;3(8):727-32
– reference: 16762062 - Retrovirology. 2006 Jun 08;3:31
– reference: 11841836 - Mol Immunol. 2002 Feb;38(10):765-72
– reference: 17407195 - Eur J Immunol. 2007 May;37(5):1217-23
– reference: 7821755 - FASEB J. 1995 Jan;9(1):17-25
– reference: 25512343 - Immunol Cell Biol. 2015 Apr;93(4):396-405
– reference: 24718487 - Clin Rheumatol. 2014 Nov;33(11):1557-64
– reference: 16768438 - Biochemistry. 2006 Jun 20;45(24):7429-33
– reference: 21030559 - Blood. 2011 Jan 20;117(3):857-61
– reference: 16622011 - J Immunol. 2006 May 1;176(9):5438-45
– reference: 10555039 - Arthritis Rheum. 1999 Nov;42(11):2430-9
– reference: 11728801 - Free Radic Biol Med. 2001 Dec 1;31(11):1287-312
– reference: 2990730 - Cell. 1985 Aug;42(1):93-104
– reference: 16709847 - J Immunol. 2006 Jun 1;176(11):6873-8
– reference: 9013992 - J Immunol. 1997 Feb 1;158(3):1458-65
– reference: 16507315 - Virology. 2006 Jul 5;350(2):406-17
– reference: 24685687 - J Cardiol. 2014 Nov;64(5):353-9
– reference: 23998865 - Natl Med J India. 2012 Nov-Dec;25(6):341-51
– reference: 26670584 - Sci Rep. 2015 Dec 16;5:18308
– reference: 1367682 - Curr Opin Biotechnol. 1991 Aug;2(4):622-33
– reference: 24610042 - Mol Cell Biochem. 2014 Jun;391(1-2):225-32
– reference: 22150039 - N Engl J Med. 2011 Dec 8;365(23):2205-19
– reference: 23899494 - Free Radic Biol Med. 2014 Jan;66:75-87
– reference: 7636184 - J Immunol. 1995 Aug 1;155(3):1151-64
– reference: 8616886 - Cell. 1996 May 3;85(3):307-10
– reference: 21965667 - J Biol Chem. 2011 Nov 25;286(47):40608-13
– reference: 7829134 - Immunol Lett. 1994 Sep;42(1-2):75-80
– reference: 10384135 - J Immunol. 1999 Jul 1;163(1):351-8
– reference: 15057788 - Nat Rev Immunol. 2004 Apr;4(4):301-8
– reference: 14595672 - Med Res Rev. 2004 Jan;24(1):40-89
– reference: 22004228 - Int J Rheum Dis. 2011 Oct;14(4):325-31
– reference: 26834751 - Front Immunol. 2016 Jan 25;7:11
– reference: 16458876 - Clin Chim Acta. 2006 May;367(1-2):156-61
– reference: 17557078 - EMBO J. 2007 Jul 11;26(13):3086-97
– reference: 1332947 - J Biol Chem. 1992 Dec 5;267(34):24161-4
– reference: 19417650 - Curr Opin Hematol. 2009 Jul;16(4):274-9
– reference: 11479621 - Nat Med. 2001 Aug;7(8):899-905
SSID ssj0001340516
Score 2.0307112
Snippet The humanized non‐depleting anti‐CD4 monoclonal antibody Tregalizumab (BT‐061) is able to selectively activate the suppressive function of regulatory T cells...
The humanized non-depleting anti-CD4 monoclonal antibody Tregalizumab (BT-061) is able to selectively activate the suppressive function of regulatory T cells...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e121
SubjectTerms Antigens
CD4 antigen
Cell surface
Clinical trials
Experiments
Flow cytometry
Glycoproteins
Immunoglobulins
Immunology
Immunoregulation
Lymphocytes
Lymphocytes T
Monoclonal antibodies
Original
Oxidative stress
Oxidoreductase
Pharmacodynamics
Phosphorylation
Protein-tyrosine kinase
Proteins
Rheumatoid arthritis
Signal transduction
Synovial fluid
Thioredoxin
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB6VIiEuiH8CBRmpJ1BKEq8d-4AQqqgKUjntSr1ZtuMokVYJ7I_UcuLAA_CMPAkzTnbF0qq3SJ44iWec-ewZfwNwWBMhCgLRtMoyl064EqkKyqeBa6uEVrR_RdkWX-XpbPLlXJzvwaYY5ziAy2uXdlRParaYH118v_yAE_79cGRcvcMfA-VoySOpb8FtdEklzdCzEefHzRaOuCSX4_m8_-7Z9UhXYObVbMl_UWx0Qyf34d6IH9nHQeEPYC90D-HO2RghfwS_KHGDrZq2JybQi7b78_N3zuaUGrRkbccWTVgjSO3biqHRNJHSiI3kqktWtZFqpGGujaddmO0qRikeNlJ3s77GrgND0-39nDA8Cqxa11eXbLoI6GzaH9i7ewyzk0_T49N0rLSQegq8psI652zunebac52p2nLOC6-Eyye2zJwTQVnnVeVKH_JqIjLL8ypXHvGHRQT1BPa7vgvPgBEFIaKk2mUoRmHEkIVAwVpRBi1DncCbzWgbP9KQUzWMuYnhcK4MqsaQaozUCRxuhb8N7BvXix1s1GY2FmQKXEpKXUhRJvB624yThyIitgv9emlyRXiXKOkSeDpoefucQtEWVsETKHf0vxUgYu7dlq5tIkE3ouICcVICb6Ol3PTq5nj6mS6lfn7zR7yAuyQ3ZNIcwP5qsQ4vEQ-t3Kto638BhJIM9w
  priority: 102
  providerName: Scholars Portal
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9UwFA46QXwRf1u3SYQ9KdW2adLkUcbGFBQf7mBvJUlTGri04_Ze0D3twT_Av9G_ZOekWd1lIvhWyGlaenKSrznf-ULIQYuCKABE0ybLTFoyyVPppE0dU1pyJXH_CtkWX8XJafn5jJ9Fbg7Wwkz6EPOGG0ZGmK8xwLUZY5k4EtdhOkBmlngv1F1yD4trUTq_KL_92WJhgEbC4adFxrF-WshYoQc9fLhx__aadAto3uZL3sSxYSE6fkQeRgRJP04uf0zuuP4Juf8l5sifkp9I3aDrzg-oBfrd978vf-V0ieSgkfqerjq3AZg6-IbCsOmCqBGN8qojbXwQG-mo8aHeheq-oUjy0EG8mw4tdO0oDN7BLhHFg8Ham6H5QRcrB8uNv4DezTNyeny0ODxJ41kLqcXUa8q1MUbn1iimLFOZbDVjrLCSm7zUVWYMd1IbKxtTWZc3Jc80y5tcWkAgGjDUc7LTD717SSiKEAJOak0GZphIdJlzmK7llVPCtQl5e_21axuFyPE8jGUdEuJM1uCaGl1TC5WQg9n4fNLf-LvZ3rXb6hiEY13Az6RQheBVQt7MzRA-mBPRvRs2Y51LRLwoSpeQF5OX5-cUEjexCpaQasv_swFKc2-39L4LEt2AiwtASgl5F0bKv169Plx8wkuhXv2X9S55gBcTtWaP7KxXG7cPAGltXocwuALE6w3h
  priority: 102
  providerName: Wiley-Blackwell
Title High thioredoxin‐1 levels in rheumatoid arthritis patients diminish binding and signalling of the monoclonal antibody Tregalizumab
URI https://onlinelibrary.wiley.com/doi/abs/10.1038%2Fcti.2016.69
https://www.ncbi.nlm.nih.gov/pubmed/28090323
https://www.proquest.com/docview/2289692657
https://www.proquest.com/docview/1861531880
https://pubmed.ncbi.nlm.nih.gov/PMC5192061
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6aBEovJekrbpJFhZxa3NiWH_KptCEhLSSEsoG9GUmWsWCx0_UutD310B_Q39hf0hmtdpOQkosxaJBtjR6fZz59AjhsSBAFgWhYR5EKUy6yUBihQ8NLKbJSUPyK2BYX-dlV-mWSTXzAbfC0ytWc6CbqutcUIz9K8M8gL5M8Kz5cfwvp1CjKrvojNDZgi6TLiNJVTIqbGAtHOBLnfltexMURziFE58rfE8H59kJ0D13eJ0neBq9u9TndhqceNrKPSz_vwCPTPYPH5z4x_hx-E1-DzVvbkwDod9v9_fUnZlNiBA3MdmzWmgVi097WDPtK65SMmNdUHVhtncJIy5R1m1yY7GpGzA7pFLtZ32DVhmET9HpK0B0N5lb19Q82nhlcY-xPrF29gKvTk_HxWegPWAg15VvDTCqlZKxVyUvNy0g0knOeaJGpOJVFpFRmhFRa1KrQJq7TLJI8rmOhEXZIBE4vYbPrO7MLjJQHERw1KkIzyh6ayBjK0WaFKXPTBPB21dqV9urjdAjGtHJZcC4qdE1FrqnyMoDDtfH1UnTj_2b7K7dVfuQN1U0_CeDNuhjHDCVCZGf6xVDFgmAuKdEF8Grp5fVzEkGRq4QHUNzx_9qA9LjvlnS2dbrcCIYThEcBvHM95aFXr47Hn-k2L18__BF78ITslgSafdiczxbmAGHQXI1gI0kvR67Hj2Dr08nF5deRCyng9TwV_wD8Zg8c
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VWwm4IP4JFDBSuYBCkzjJOgeEoLTape0Koa3Um7EdR4m0SspmV1BOHHgAnoSH4kmYyc-2VVFvva2USbLxjO1vPJ8_A2xmJIiCQNRNPU-7IReRK6wwruWJElEiaP2K2BaTeHQYfjyKjtbgT78XhmiV_ZjYDNRpZWiNfCvAzCBOgjgavj3-6tKpUVRd7Y_QaMNiz558w5StfjP-gP59EQS7O9PtkdudKuAaKjK6kdJaK9_ohCcGM36RKc55YESk_VANPa0jK5Q2ItVDY_00jDzF_dQXBudaFZPQAQ756yHHVGYA6-93Jp8-n67qcARAftxtBPS42MJRiwhk8WuiVJ-d-i7g2Yu0zLNwuZnvdm_BzQ6osndtZN2GNVvegWsHXSn-Lvwihghb5EVFkqPfi_Lvz98-mxEHqWZFyea5XSIaroqUYXTmjXYS61Rca5YWjaZJznTRbKthqkwZcUlUoxHOqgwfbRk2emVmlCygwaLQVXrCpnOLs1rxA5-u78HhlTT-fRiUVWkfAiOtQ4RjmfbQjOqV1rOWqsLR0CaxzRx42be2NJ3eOR27MZNN3Z0Lia6R5BoZJw5sroyPW5mP_5tt9G6TXV-v5WlkOvB8dRl7KZVeVGmrZS19QcCatO8ceNB6efWeQNBaWcAdGJ7z_8qAFMDPXymLvFECR_gdICBz4FUTKZf9dbk9HdPPOHl0-Uc8g-uj6cG-3B9P9h7DDbqnpe9swGAxX9onCMIW-mkX-Qy-XHVn-wfW7EmZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VRaq4IP5JW8BI5QIKTeJN4hwQQi2rLoWKw1bam7EdR4m0SspmV6WcOPAAPA-Pw5Mw42S3rYp6622lOMnGM2N_4_n8GWCnIEEUBKJ-HgTaH3AR-8IK41ueKRFngtaviG1xlBwcDz5O4ska_FnuhSFa5XJMdAN13hhaI9-NMDNIsijBBL7oaRFf9ofvTr75dIIUVVqXx2l0LnJoz04xfWvfjvbR1i-jaPhhvHfg9ycM-IYKjn6stNYqNDrjmcHsXxSKcx4ZEetwoNJA69gKpY3IdWpsmA_iQPEwD4XBeVclJHqAw_-tlMchxVg6Sc_XdzhCoTDptwQGXOzi-EVUsuQNkasvToJXkO1VguZF4OxmvuFduNNDVva-87F7sGbr-7DxuS_KP4BfxBVh87JqSHz0e1X__fk7ZFNiI7WsqtmstAvExU2VM_TT0qkosV7PtWV55dRNSqYrt8GGqTpnxCpRTi2cNQU-2jLs8sZMKW3ABvNKN_kZG88szm_VD3y6fgjHN9L1j2C9bmr7BBipHiIwK3SAzahyaQNrqT4cpzZLbOHBq2VvS9Mrn9MBHFPpKvBcSDSNJNPIJPNgZ9X4pBP8-H-z7aXZZB_1rTz3UQ9erC5jvFIRRtW2WbQyFASxSQXPg8edlVfviQStmkXcg_SS_VcNSAv88pW6Kp0mOALxCKGZB6-dp1z31-XeeEQ_k2zz-o94DhsYYvLT6OhwC27TLR2PZxvW57OFfYpobK6fObdn8PWm4-wfRKFMaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+thioredoxin%E2%80%901+levels+in+rheumatoid+arthritis+patients+diminish+binding+and+signalling+of+the+monoclonal+antibody+Tregalizumab&rft.jtitle=Clinical+%26+translational+immunology&rft.au=Heim%2C+Katharina&rft.au=D%C3%A4lken%2C+Benjamin&rft.au=Faust%2C+Stefanie&rft.au=Rharbaoui%2C+Faiza&rft.date=2016-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2050-0068&rft.volume=5&rft.issue=12&rft_id=info:doi/10.1038%2Fcti.2016.69&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0068&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0068&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0068&client=summon