A Stimulus‐Responsive Zinc–Iodine Battery with Smart Overcharge Self‐Protection Function

Zinc–iodine aqueous batteries (ZIABs) are highly attractive for grid‐scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non‐flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overch...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 16; pp. e2000287 - n/a
Main Authors Wang, Faxing, Tseng, Jochi, Liu, Zaichun, Zhang, Panpan, Wang, Gang, Chen, Guangbo, Wu, Weixing, Yu, Minghao, Wu, Yuping, Feng, Xinliang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2020
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202000287

Cover

Loading…
Abstract Zinc–iodine aqueous batteries (ZIABs) are highly attractive for grid‐scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non‐flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overcharge of ZIABs would induce drastic side reactions, serious safety concerns, and battery failure. A novel type of stimulus‐responsive zinc–iodine aqueous battery (SR‐ZIAB) with fast overcharge self‐protection ability is demonstrated by employing a smart pH‐responsive electrolyte. Operando spectroelectrochemical characterizations reveal that the battery failure mechanism of ZIABs during overcharge arises from the increase of electrolyte pH induced by hydrogen evolution as well as the consequent irreversible formation of insulating ZnO at anode and soluble Zn(IO3)2 at cathode. Under overcharge conditions, the designed SR‐ZIABs can be rapidly switched off with capacity degrading to 6% of the initial capacity, thereby avoiding continuous battery damage. Importantly, SR‐ZIABs can be switched on with nearly 100% of capacity recovery by re‐adjusting the electrolyte pH. This work will inspire the development of aqueous Zn batteries with smart self‐protection ability in the overcharge state. Integrating stimulus responses into rechargeable batteries shows potential to revolutionize energy storage for smart devices. A stimulus‐responsive Zn–I2 battery can be rapidly switched off with capacity degrading to 6% of the initial capacity under overcharge conditions, thereby preventing irreversible side reactions (including hydrogen generation and electrode degradation), battery failure, and relevant safety issues.
AbstractList Zinc-iodine aqueous batteries (ZIABs) are highly attractive for grid-scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non-flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overcharge of ZIABs would induce drastic side reactions, serious safety concerns, and battery failure. A novel type of stimulus-responsive zinc-iodine aqueous battery (SR-ZIAB) with fast overcharge self-protection ability is demonstrated by employing a smart pH-responsive electrolyte. Operando spectroelectrochemical characterizations reveal that the battery failure mechanism of ZIABs during overcharge arises from the increase of electrolyte pH induced by hydrogen evolution as well as the consequent irreversible formation of insulating ZnO at anode and soluble Zn(IO ) at cathode. Under overcharge conditions, the designed SR-ZIABs can be rapidly switched off with capacity degrading to 6% of the initial capacity, thereby avoiding continuous battery damage. Importantly, SR-ZIABs can be switched on with nearly 100% of capacity recovery by re-adjusting the electrolyte pH. This work will inspire the development of aqueous Zn batteries with smart self-protection ability in the overcharge state.
Zinc–iodine aqueous batteries (ZIABs) are highly attractive for grid‐scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non‐flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overcharge of ZIABs would induce drastic side reactions, serious safety concerns, and battery failure. A novel type of stimulus‐responsive zinc–iodine aqueous battery (SR‐ZIAB) with fast overcharge self‐protection ability is demonstrated by employing a smart pH‐responsive electrolyte. Operando spectroelectrochemical characterizations reveal that the battery failure mechanism of ZIABs during overcharge arises from the increase of electrolyte pH induced by hydrogen evolution as well as the consequent irreversible formation of insulating ZnO at anode and soluble Zn(IO 3 ) 2 at cathode. Under overcharge conditions, the designed SR‐ZIABs can be rapidly switched off with capacity degrading to 6% of the initial capacity, thereby avoiding continuous battery damage. Importantly, SR‐ZIABs can be switched on with nearly 100% of capacity recovery by re‐adjusting the electrolyte pH. This work will inspire the development of aqueous Zn batteries with smart self‐protection ability in the overcharge state.
Zinc–iodine aqueous batteries (ZIABs) are highly attractive for grid‐scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non‐flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overcharge of ZIABs would induce drastic side reactions, serious safety concerns, and battery failure. A novel type of stimulus‐responsive zinc–iodine aqueous battery (SR‐ZIAB) with fast overcharge self‐protection ability is demonstrated by employing a smart pH‐responsive electrolyte. Operando spectroelectrochemical characterizations reveal that the battery failure mechanism of ZIABs during overcharge arises from the increase of electrolyte pH induced by hydrogen evolution as well as the consequent irreversible formation of insulating ZnO at anode and soluble Zn(IO3)2 at cathode. Under overcharge conditions, the designed SR‐ZIABs can be rapidly switched off with capacity degrading to 6% of the initial capacity, thereby avoiding continuous battery damage. Importantly, SR‐ZIABs can be switched on with nearly 100% of capacity recovery by re‐adjusting the electrolyte pH. This work will inspire the development of aqueous Zn batteries with smart self‐protection ability in the overcharge state.
Zinc–iodine aqueous batteries (ZIABs) are highly attractive for grid‐scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non‐flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overcharge of ZIABs would induce drastic side reactions, serious safety concerns, and battery failure. A novel type of stimulus‐responsive zinc–iodine aqueous battery (SR‐ZIAB) with fast overcharge self‐protection ability is demonstrated by employing a smart pH‐responsive electrolyte. Operando spectroelectrochemical characterizations reveal that the battery failure mechanism of ZIABs during overcharge arises from the increase of electrolyte pH induced by hydrogen evolution as well as the consequent irreversible formation of insulating ZnO at anode and soluble Zn(IO3)2 at cathode. Under overcharge conditions, the designed SR‐ZIABs can be rapidly switched off with capacity degrading to 6% of the initial capacity, thereby avoiding continuous battery damage. Importantly, SR‐ZIABs can be switched on with nearly 100% of capacity recovery by re‐adjusting the electrolyte pH. This work will inspire the development of aqueous Zn batteries with smart self‐protection ability in the overcharge state. Integrating stimulus responses into rechargeable batteries shows potential to revolutionize energy storage for smart devices. A stimulus‐responsive Zn–I2 battery can be rapidly switched off with capacity degrading to 6% of the initial capacity under overcharge conditions, thereby preventing irreversible side reactions (including hydrogen generation and electrode degradation), battery failure, and relevant safety issues.
Zinc-iodine aqueous batteries (ZIABs) are highly attractive for grid-scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non-flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overcharge of ZIABs would induce drastic side reactions, serious safety concerns, and battery failure. A novel type of stimulus-responsive zinc-iodine aqueous battery (SR-ZIAB) with fast overcharge self-protection ability is demonstrated by employing a smart pH-responsive electrolyte. Operando spectroelectrochemical characterizations reveal that the battery failure mechanism of ZIABs during overcharge arises from the increase of electrolyte pH induced by hydrogen evolution as well as the consequent irreversible formation of insulating ZnO at anode and soluble Zn(IO3 )2 at cathode. Under overcharge conditions, the designed SR-ZIABs can be rapidly switched off with capacity degrading to 6% of the initial capacity, thereby avoiding continuous battery damage. Importantly, SR-ZIABs can be switched on with nearly 100% of capacity recovery by re-adjusting the electrolyte pH. This work will inspire the development of aqueous Zn batteries with smart self-protection ability in the overcharge state.Zinc-iodine aqueous batteries (ZIABs) are highly attractive for grid-scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non-flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overcharge of ZIABs would induce drastic side reactions, serious safety concerns, and battery failure. A novel type of stimulus-responsive zinc-iodine aqueous battery (SR-ZIAB) with fast overcharge self-protection ability is demonstrated by employing a smart pH-responsive electrolyte. Operando spectroelectrochemical characterizations reveal that the battery failure mechanism of ZIABs during overcharge arises from the increase of electrolyte pH induced by hydrogen evolution as well as the consequent irreversible formation of insulating ZnO at anode and soluble Zn(IO3 )2 at cathode. Under overcharge conditions, the designed SR-ZIABs can be rapidly switched off with capacity degrading to 6% of the initial capacity, thereby avoiding continuous battery damage. Importantly, SR-ZIABs can be switched on with nearly 100% of capacity recovery by re-adjusting the electrolyte pH. This work will inspire the development of aqueous Zn batteries with smart self-protection ability in the overcharge state.
Author Zhang, Panpan
Liu, Zaichun
Chen, Guangbo
Feng, Xinliang
Wang, Faxing
Yu, Minghao
Tseng, Jochi
Wang, Gang
Wu, Weixing
Wu, Yuping
Author_xml – sequence: 1
  givenname: Faxing
  orcidid: 0000-0002-1134-885X
  surname: Wang
  fullname: Wang, Faxing
  organization: Technische Universität Dresden
– sequence: 2
  givenname: Jochi
  surname: Tseng
  fullname: Tseng, Jochi
  organization: Deutsches Elektronen‐Synchrotron (DESY)
– sequence: 3
  givenname: Zaichun
  surname: Liu
  fullname: Liu, Zaichun
  organization: Nanjing Tech University
– sequence: 4
  givenname: Panpan
  surname: Zhang
  fullname: Zhang, Panpan
  organization: Technische Universität Dresden
– sequence: 5
  givenname: Gang
  surname: Wang
  fullname: Wang, Gang
  organization: Technische Universität Dresden
– sequence: 6
  givenname: Guangbo
  surname: Chen
  fullname: Chen, Guangbo
  organization: Technische Universität Dresden
– sequence: 7
  givenname: Weixing
  surname: Wu
  fullname: Wu, Weixing
  organization: Sun Yat‐sen University
– sequence: 8
  givenname: Minghao
  orcidid: 0000-0002-0211-0778
  surname: Yu
  fullname: Yu, Minghao
  email: minghao.yu@tu-dresden.de
  organization: Technische Universität Dresden
– sequence: 9
  givenname: Yuping
  surname: Wu
  fullname: Wu, Yuping
  organization: Nanjing Tech University
– sequence: 10
  givenname: Xinliang
  orcidid: 0000-0003-3885-2703
  surname: Feng
  fullname: Feng, Xinliang
  email: xinliang.feng@tu-dresden.de
  organization: Technische Universität Dresden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32134521$$D View this record in MEDLINE/PubMed
BookMark eNqFkctO3DAUhq0KVIah2y6rSN2wyeBLnMtySrlJg6gYViyIHOe4GCX21HZAs-MRkHhDngQPA1RCqrqyLX2f_fv822jDWAMIfSV4QjCme6LtxYRiiuOhLD6hEeGUpBmu-AYa4YrxtMqzcgtte38TmSrH-We0xShhWQRH6GqazIPuh27wT_cP5-AX1nh9C8mlNvLp_vHEttpA8kOEAG6Z3Olwncx74UJydgtOXgv3G5I5dCrav5wNIIO2JjkczMtmB20q0Xn48rqO0cXhwcX-cTo7OzrZn85SGWMUaaa4yqSEjGdtyysmaVOUXMmWKWhozAwMq6ppCWGqYa2UOYcSK1YqyUGVbIx219cunP0zgA91r72ErhMG7OBrygpScl4wGtHvH9AbOzgTw0WqoiySPI_Ut1dqaHpo64XT8dPL-m1wEZisAems9w7UO0JwvWqmXjVTvzcTheyDIHUQqxkFJ3T3b61aa3e6g-V_HqmnP0-nf91nhnmmCg
CitedBy_id crossref_primary_10_1002_smll_202008043
crossref_primary_10_1016_j_cej_2020_127038
crossref_primary_10_1021_acsami_0c14611
crossref_primary_10_1016_j_cej_2024_149503
crossref_primary_10_26599_NRE_2022_9120025
crossref_primary_10_1039_D4BM00415A
crossref_primary_10_1002_ange_202112304
crossref_primary_10_1021_acsami_1c03812
crossref_primary_10_1002_smll_202406282
crossref_primary_10_1016_j_matt_2021_07_016
crossref_primary_10_1002_anie_202009871
crossref_primary_10_7209_carbon_010206
crossref_primary_10_1002_smll_202305119
crossref_primary_10_1016_j_cej_2021_131705
crossref_primary_10_1039_D1RA04573C
crossref_primary_10_1007_s40843_022_2195_6
crossref_primary_10_1002_adfm_202211979
crossref_primary_10_1039_D4TA05352D
crossref_primary_10_1021_acsmaterialslett_2c00608
crossref_primary_10_20517_energymater_2024_169
crossref_primary_10_1002_adfm_202304223
crossref_primary_10_1021_acsenergylett_4c00992
crossref_primary_10_1021_acs_nanolett_1c01277
crossref_primary_10_1016_j_est_2023_110086
crossref_primary_10_1021_jacs_4c08145
crossref_primary_10_1039_D4EE02592J
crossref_primary_10_1002_advs_202002173
crossref_primary_10_1002_advs_202305201
crossref_primary_10_1002_ange_202009871
crossref_primary_10_1039_D4EE01759E
crossref_primary_10_1016_j_jpowsour_2020_229329
crossref_primary_10_1038_s41467_020_20331_9
crossref_primary_10_1002_anie_202112304
crossref_primary_10_1038_s41467_023_41071_6
crossref_primary_10_1021_acsami_3c03134
crossref_primary_10_1002_adfm_202100443
crossref_primary_10_1002_adma_202313621
crossref_primary_10_1002_aenm_202403817
crossref_primary_10_1021_acsami_1c21026
crossref_primary_10_1002_anie_202213276
crossref_primary_10_1002_adsu_202000138
crossref_primary_10_1002_adfm_202101024
crossref_primary_10_1002_adfm_202212644
crossref_primary_10_3390_nano14201645
crossref_primary_10_1016_j_jcis_2024_03_149
crossref_primary_10_1002_adma_202109450
crossref_primary_10_1002_gch2_202400105
crossref_primary_10_1021_jacs_0c05130
crossref_primary_10_1016_j_cej_2021_131283
crossref_primary_10_1021_acsenergylett_4c00450
crossref_primary_10_1002_aenm_202103648
crossref_primary_10_1039_D4EE05767H
crossref_primary_10_1007_s40843_022_2033_2
crossref_primary_10_1002_adma_202306531
crossref_primary_10_1016_j_nanoen_2021_106120
crossref_primary_10_1002_adma_202104327
crossref_primary_10_1038_s41427_022_00373_9
crossref_primary_10_1016_j_electacta_2023_142593
crossref_primary_10_1002_advs_202105598
crossref_primary_10_1002_aenm_202001997
crossref_primary_10_1002_smll_202302161
crossref_primary_10_1002_eem2_12300
crossref_primary_10_1021_acsnano_4c16550
crossref_primary_10_1039_D4NR00465E
crossref_primary_10_1002_adma_202205175
crossref_primary_10_1016_j_cej_2022_136230
crossref_primary_10_1039_D0QM01105C
crossref_primary_10_1021_acs_nanolett_2c00460
crossref_primary_10_1002_adma_202305575
crossref_primary_10_1039_D3EE01677C
crossref_primary_10_1002_ange_202308397
crossref_primary_10_1039_D4EE02192D
crossref_primary_10_1002_smll_202310293
crossref_primary_10_1039_D1TA05617D
crossref_primary_10_1039_D2EE00004K
crossref_primary_10_1002_ange_202213276
crossref_primary_10_1021_acsnano_2c06220
crossref_primary_10_1039_D0CC05344A
crossref_primary_10_1002_eem2_12522
crossref_primary_10_1002_advs_202103954
crossref_primary_10_1016_j_materresbull_2021_111347
crossref_primary_10_1002_aenm_202003599
crossref_primary_10_1002_smtd_202300832
crossref_primary_10_1016_j_colsurfa_2023_130960
crossref_primary_10_1016_j_cej_2021_132576
crossref_primary_10_1039_D5TA00919G
crossref_primary_10_1149_1945_7111_acb8de
crossref_primary_10_1002_adma_202108856
crossref_primary_10_1002_aenm_202301049
crossref_primary_10_1002_adma_202401091
crossref_primary_10_1039_D3DT00525A
crossref_primary_10_1016_j_cej_2024_149535
crossref_primary_10_1142_S1793604721300115
crossref_primary_10_1002_advs_202305061
crossref_primary_10_1016_j_jechem_2021_04_016
crossref_primary_10_1021_jacs_0c07992
crossref_primary_10_1002_cssc_202000883
crossref_primary_10_1021_acsnano_2c06362
crossref_primary_10_1039_D0EE03898A
crossref_primary_10_1002_smsc_202100080
crossref_primary_10_1016_j_jcis_2022_09_079
crossref_primary_10_1002_adfm_202312664
crossref_primary_10_1002_adma_202008752
crossref_primary_10_1002_pssr_202300236
crossref_primary_10_1002_smtd_202201440
crossref_primary_10_1002_batt_202300619
crossref_primary_10_1002_smll_202300230
crossref_primary_10_1002_advs_202100309
crossref_primary_10_1002_anie_202308397
crossref_primary_10_1088_2752_5724_ad50f1
crossref_primary_10_1007_s12598_024_02689_7
crossref_primary_10_1016_j_cej_2023_148267
Cites_doi 10.1038/nchem.2730
10.1038/s41467-019-13436-3
10.1002/anie.201607951
10.1149/1.2129408
10.1002/adma.201800028
10.1002/anie.201704373
10.1016/j.joule.2019.02.012
10.1038/ncomms9103
10.1002/anie.201903805
10.1002/anie.201405145
10.1002/aenm.201601920
10.1039/C8EE00378E
10.1039/C2EE23564A
10.1016/j.joule.2018.12.012
10.1039/C8CC02616E
10.1039/C6PY01872F
10.1002/adma.201504723
10.1002/adma.201701627
10.1126/science.aap8787
10.1021/jacs.5b12080
10.1038/ncomms7303
10.1038/nenergy.2015.9
10.1038/ncomms10310
10.1038/s41467-019-12863-6
10.1038/nature16502
10.1039/C6EE02782B
10.1038/nchem.2625
10.1002/anie.201608163
10.1038/nchem.1802
10.1021/acs.nanolett.7b04889
10.1038/s41467-017-00649-7
10.1038/nenergy.2016.39
10.1016/j.progpolymsci.2016.09.010
10.1021/acs.nanolett.9b00450
10.1039/C8EE00686E
10.1038/nature22987
10.1002/anie.201904174
10.1038/ncomms14643
10.1039/C6TA07747A
10.1002/adma.201505370
10.1039/c3cs60094g
10.1021/acs.nanolett.7b05403
10.1038/nmat3776
10.1038/s41563-017-0006-0
10.1002/anie.201713291
10.1021/acsenergylett.7b00851
10.1002/adma.201502484
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202000287
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 32134521
10_1002_adma_202000287
ADMA202000287
Genre article
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: MX‐OSMOPED
– fundername: European Research Council
  funderid: 819698; GrapheneCore2 785219
– fundername: NSFC
  funderid: 51425301; U1601214
– fundername: Deutsche Forschungsgemeinschaft
  grantid: MX-OSMOPED
– fundername: European Research Council
  grantid: 819698
– fundername: NSFC
  grantid: U1601214
– fundername: European Research Council
  grantid: GrapheneCore2 785219
– fundername: NSFC
  grantid: 51425301
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4527-4f5f4cce454dd593c2b785fcd3feb2606e30f9bd113fb3dcc65e80f38fc5ef83
IEDL.DBID 24P
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 03:18:25 EDT 2025
Fri Jul 25 05:17:19 EDT 2025
Wed Feb 19 02:30:07 EST 2025
Tue Jul 01 02:32:45 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Wed Jan 22 16:33:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords stimulus-responsive batteries
Zn anodes
metal-I2 batteries
battery overchange
battery self-protection
Language English
License Attribution-NonCommercial
2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4527-4f5f4cce454dd593c2b785fcd3feb2606e30f9bd113fb3dcc65e80f38fc5ef83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0211-0778
0000-0003-3885-2703
0000-0002-1134-885X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000287
PMID 32134521
PQID 2392337156
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2371855732
proquest_journals_2392337156
pubmed_primary_32134521
crossref_primary_10_1002_adma_202000287
crossref_citationtrail_10_1002_adma_202000287
wiley_primary_10_1002_adma_202000287_ADMA202000287
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 64
2017; 8
2015; 6
2019; 3
2017; 2
2019; 10
2013; 42
2019; 58
2016; 529
2019; 19
2017; 29
2013; 5
2013; 6
2017; 9
2016; 55
2016; 4
1980; 127
2018; 18
2018; 17
2016; 1
2015; 27
2018; 359
2000
2013; 12
2017; 10
2017; 56
2018; 30
2016; 138
2016; 28
2018; 11
2018; 54
2017; 546
2014; 53
2018; 57
e_1_2_4_40_1
e_1_2_4_41_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – volume: 8
  start-page: 144
  year: 2017
  publication-title: Polym. Chem.
– volume: 6
  year: 2015
  publication-title: Nat. Commun.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 8103
  year: 2015
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1289
  year: 2019
  publication-title: Joule
– volume: 8
  start-page: 527
  year: 2017
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1042
  year: 2013
  publication-title: Nat. Chem.
– year: 2000
– volume: 9
  start-page: 817
  year: 2017
  publication-title: Nat. Chem.
– volume: 6
  start-page: 618
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 53
  start-page: 9526
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 4904
  year: 2016
  publication-title: Adv. Mater.
– volume: 27
  start-page: 5593
  year: 2015
  publication-title: Adv. Mater.
– volume: 17
  start-page: 261
  year: 2018
  publication-title: Nat. Mater.
– volume: 6
  start-page: 6303
  year: 2015
  publication-title: Nat. Commun.
– volume: 2
  start-page: 2674
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 127
  start-page: 2335
  year: 1980
  publication-title: J. Electrochem. Soc.
– volume: 11
  start-page: 2010
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 64
  start-page: 52
  year: 2017
  publication-title: Prog. Polym. Sci.
– volume: 56
  start-page: 7871
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 2455
  year: 2016
  publication-title: Adv. Mater.
– volume: 18
  start-page: 1758
  year: 2018
  publication-title: Nano Lett.
– volume: 10
  start-page: 5374
  year: 2019
  publication-title: Nat. Commun.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 58
  start-page: 7823
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 991
  year: 2013
  publication-title: Nat. Mater.
– volume: 546
  start-page: 632
  year: 2017
  publication-title: Nature
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 42
  start-page: 7421
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 54
  start-page: 6792
  year: 2018
  publication-title: Chem. Commun.
– volume: 10
  start-page: 4946
  year: 2019
  publication-title: Nat. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 114
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 359
  start-page: 1513
  year: 2018
  publication-title: Science
– volume: 11
  start-page: 881
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 19
  start-page: 3066
  year: 2019
  publication-title: Nano Lett.
– volume: 529
  start-page: 515
  year: 2016
  publication-title: Nature
– volume: 3
  start-page: 338
  year: 2019
  publication-title: Joule
– volume: 57
  start-page: 3943
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 58
  start-page: 9248
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 138
  start-page: 2225
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 2402
  year: 2018
  publication-title: Nano Lett.
– volume: 9
  start-page: 145
  year: 2017
  publication-title: Nat. Chem.
– ident: e_1_2_4_1_1
  doi: 10.1038/nchem.2730
– ident: e_1_2_4_35_1
  doi: 10.1038/s41467-019-13436-3
– ident: e_1_2_4_19_1
  doi: 10.1002/anie.201607951
– ident: e_1_2_4_37_1
  doi: 10.1149/1.2129408
– ident: e_1_2_4_9_1
  doi: 10.1002/adma.201800028
– ident: e_1_2_4_20_1
  doi: 10.1002/anie.201704373
– ident: e_1_2_4_26_1
  doi: 10.1016/j.joule.2019.02.012
– ident: e_1_2_4_18_1
  doi: 10.1038/ncomms9103
– ident: e_1_2_4_10_1
  doi: 10.1002/anie.201903805
– ident: e_1_2_4_22_1
  doi: 10.1002/anie.201405145
– ident: e_1_2_4_30_1
  doi: 10.1002/aenm.201601920
– ident: e_1_2_4_43_1
  doi: 10.1039/C8EE00378E
– ident: e_1_2_4_44_1
  doi: 10.1039/C2EE23564A
– ident: e_1_2_4_24_1
  doi: 10.1016/j.joule.2018.12.012
– ident: e_1_2_4_40_1
  doi: 10.1039/C8CC02616E
– ident: e_1_2_4_47_1
  doi: 10.1039/C6PY01872F
– ident: e_1_2_4_15_1
  doi: 10.1002/adma.201504723
– ident: e_1_2_4_6_1
  doi: 10.1002/adma.201701627
– ident: e_1_2_4_8_1
  doi: 10.1126/science.aap8787
– ident: e_1_2_4_41_1
  doi: 10.1021/jacs.5b12080
– ident: e_1_2_4_25_1
  doi: 10.1038/ncomms7303
– ident: e_1_2_4_14_1
  doi: 10.1038/nenergy.2015.9
– ident: e_1_2_4_21_1
  doi: 10.1038/ncomms10310
– ident: e_1_2_4_7_1
  doi: 10.1038/s41467-019-12863-6
– ident: e_1_2_4_11_1
  doi: 10.1038/nature16502
– ident: e_1_2_4_38_1
  doi: 10.1039/C6EE02782B
– ident: e_1_2_4_39_1
– ident: e_1_2_4_5_1
  doi: 10.1038/nchem.2625
– ident: e_1_2_4_12_1
  doi: 10.1002/anie.201608163
– ident: e_1_2_4_13_1
  doi: 10.1038/nchem.1802
– ident: e_1_2_4_32_1
  doi: 10.1021/acs.nanolett.7b04889
– ident: e_1_2_4_31_1
  doi: 10.1038/s41467-017-00649-7
– ident: e_1_2_4_29_1
  doi: 10.1038/nenergy.2016.39
– ident: e_1_2_4_46_1
  doi: 10.1016/j.progpolymsci.2016.09.010
– ident: e_1_2_4_16_1
  doi: 10.1021/acs.nanolett.9b00450
– ident: e_1_2_4_28_1
  doi: 10.1039/C8EE00686E
– ident: e_1_2_4_4_1
  doi: 10.1038/nature22987
– ident: e_1_2_4_34_1
  doi: 10.1002/anie.201904174
– ident: e_1_2_4_17_1
  doi: 10.1038/ncomms14643
– ident: e_1_2_4_36_1
  doi: 10.1039/C6TA07747A
– ident: e_1_2_4_45_1
  doi: 10.1002/adma.201505370
– ident: e_1_2_4_48_1
  doi: 10.1039/c3cs60094g
– ident: e_1_2_4_42_1
  doi: 10.1021/acs.nanolett.7b05403
– ident: e_1_2_4_2_1
  doi: 10.1038/nmat3776
– ident: e_1_2_4_3_1
  doi: 10.1038/s41563-017-0006-0
– ident: e_1_2_4_33_1
  doi: 10.1002/anie.201713291
– ident: e_1_2_4_27_1
  doi: 10.1021/acsenergylett.7b00851
– ident: e_1_2_4_23_1
  doi: 10.1002/adma.201502484
SSID ssj0009606
Score 2.6304178
Snippet Zinc–iodine aqueous batteries (ZIABs) are highly attractive for grid‐scale energy storage due to their high theoretical capacities, environmental friendliness,...
Zinc-iodine aqueous batteries (ZIABs) are highly attractive for grid-scale energy storage due to their high theoretical capacities, environmental friendliness,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2000287
SubjectTerms battery overchange
battery self‐protection
Electrolytes
Energy storage
Failure mechanisms
Flammability
Hydrogen evolution
Iodine
metal‐I2 batteries
Product safety
stimulus‐responsive batteries
Storage batteries
Zinc oxide
Zn anodes
Title A Stimulus‐Responsive Zinc–Iodine Battery with Smart Overcharge Self‐Protection Function
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000287
https://www.ncbi.nlm.nih.gov/pubmed/32134521
https://www.proquest.com/docview/2392337156
https://www.proquest.com/docview/2371855732
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD5YfWkfRO3FqJUpFPoUTOaSy-OiXVTQimtB-tAwmZwBYc2Kuyv45k8Q_If-Es9MstGlFMGXMCFnSDiXnG9u3wH47jAxptyGSicqlAqzUBuKqzjTysTIK-V3Ex4dJ_u_5eG5On9xir_hh-gm3Fxk-P-1C3BdjneeSUN15XmDuJ8gSt_Bkjtf6zydy5Nn2t3EV9d0q31hnshsRtsY8Z35_vNp6R-sOQ9dfe7pr8ByCxpZr7HyKixgvQYfXlAJfoS_PTaYXFxOh9Px4939abvz9QbZn4vaPN49HIwoSSFr6DRvmZt-ZYNL8hv2i5zZ8yUhG-DQUu-ThruBLMb6lPZc4xOc9X-e7e6Hbe2E0EjF01BaZaUxKJWsKpULw8s0U9ZUwtJYmrSCIrJ5WcWxsKWojEnITJEVmTUKbSY-w2I9qnEdWKytpHGhlmWcy1InOilNXmGqY9RRHmEA4UxzhWl5xV15i2HRMCLzwmm66DQdwI9O_qph1Piv5NbMEEUbWeOCE6ATIqVhZwDfuscUE26hQ9c4mjoZyrhKpYIH8KUxYPcq4SjsCLMEwL1FX_mGord31OvuNt7SaRPeu3az3WcLFifXU_xKSGZSbntnpeveKX8CF6_uEg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9q-6A-iLVWY6tuoeBTaLIf-Xg81ONae7X0rlB8aNhsZqFwzYm9E3zrnyD0P-xf4uwml3qUIviWj10SZnYyv5md_AZg12FiTLkNlU5UKBVmoTZkV3GmlYmRV8pXEw6PksGpPDhTi2pC9y9Mww_RJdycZfjvtTNwl5Deu2MN1ZUnDuI-Q5Q-gjWZ8NR1b-Dy-I53N_HtNd12X5gnMlvwNkZ8b3n-sl-6BzaXsat3Pv3n8KxFjazXqHkdVrB-AU__4hLcgPMeG80uLueT-dXt9e-TtvT1J7JvF7W5vb7Zn5KXQtbwaf5iLv_KRpe0cNhXWs2eMAnZCCeWZh835A2kMtYnv-cOXsK4_3n8cRC2zRNCIxVPQ2mVlcagVLKqVC4ML9NMWVMJS8E0SQVFZPOyimNhS1EZk5CeIisyaxTaTGzCaj2t8TWwWFtJgaGWZZzLUic6KU1eYapj1FEeYQDhQnKFaYnFXX-LSdFQIvPCSbroJB3Ah27894ZS48GR2wtFFK1pXRWcEJ0QKcWdAex0t8ko3E6HrnE6d2PI5SqVCh7Aq0aB3aOE47Aj0BIA9xr9xzsUvU_DXnf25n8mvYfHg_HwsDjcP_qyBU_c9ab2ZxtWZz_m-JZgzax85xfuH1j88JU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD5oBbEP4rWNrTqFgk-hyVxyeVysS6u2XboVig-GycwZKGyzxe4KvvUnCP2H_SWemWTTLiKCb7nMIeFccr45M_kOwLbHxJhzFyudqVgqLGJtKK7SQiuTIrcq7CY8OMz2vsiPp-r0zl_8LT9EX3DzkRG-1z7AL6zbuSUN1TbwBvFQIMrvwwO_4ud9nMvRLe1uFrpr-tW-uMxksaBtTPjOsvxyWvoDay5D15B7hk_gcQca2aC18lO4h80zWL1DJfgcvg3YeHZ2Pp_ML2-ufh13O19_IPt61pibq-v9KSUpZC2d5k_my69sfE5-w47ImQNfErIxThxJj1ruBrIYG1La8wcv4GT44eT9Xtz1ToiNVDyPpVNOGoNSSWtVKQyv80I5Y4WjuTRpBUXiytqmqXC1sMZkZKbEicIZha4QL2GlmTa4DizVTtK8UMs6LWWtM53VprSY6xR1UiYYQbzQXGU6XnHf3mJStYzIvPKarnpNR_CuH3_RMmr8deTmwhBVF1mXFSdAJ0RO084ItvrbFBN-oUM3OJ37MZRxlcoFj2CtNWD_KOEp7AizRMCDRf_xDtVg92DQn736H6G38HC0O6w-7x9-2oBH_nK782cTVmbf5_iaQM2sfhP89jf-ZO_H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Stimulus%E2%80%90Responsive+Zinc%E2%80%93Iodine+Battery+with+Smart+Overcharge+Self%E2%80%90Protection+Function&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Faxing&rft.au=Tseng%2C+Jochi&rft.au=Liu%2C+Zaichun&rft.au=Zhang%2C+Panpan&rft.date=2020-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202000287&rft.externalDBID=10.1002%252Fadma.202000287&rft.externalDocID=ADMA202000287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon