A Stimulus‐Responsive Zinc–Iodine Battery with Smart Overcharge Self‐Protection Function
Zinc–iodine aqueous batteries (ZIABs) are highly attractive for grid‐scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non‐flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overch...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 16; pp. e2000287 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202000287 |
Cover
Loading…
Abstract | Zinc–iodine aqueous batteries (ZIABs) are highly attractive for grid‐scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non‐flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overcharge of ZIABs would induce drastic side reactions, serious safety concerns, and battery failure. A novel type of stimulus‐responsive zinc–iodine aqueous battery (SR‐ZIAB) with fast overcharge self‐protection ability is demonstrated by employing a smart pH‐responsive electrolyte. Operando spectroelectrochemical characterizations reveal that the battery failure mechanism of ZIABs during overcharge arises from the increase of electrolyte pH induced by hydrogen evolution as well as the consequent irreversible formation of insulating ZnO at anode and soluble Zn(IO3)2 at cathode. Under overcharge conditions, the designed SR‐ZIABs can be rapidly switched off with capacity degrading to 6% of the initial capacity, thereby avoiding continuous battery damage. Importantly, SR‐ZIABs can be switched on with nearly 100% of capacity recovery by re‐adjusting the electrolyte pH. This work will inspire the development of aqueous Zn batteries with smart self‐protection ability in the overcharge state.
Integrating stimulus responses into rechargeable batteries shows potential to revolutionize energy storage for smart devices. A stimulus‐responsive Zn–I2 battery can be rapidly switched off with capacity degrading to 6% of the initial capacity under overcharge conditions, thereby preventing irreversible side reactions (including hydrogen generation and electrode degradation), battery failure, and relevant safety issues. |
---|---|
AbstractList | Zinc-iodine aqueous batteries (ZIABs) are highly attractive for grid-scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non-flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overcharge of ZIABs would induce drastic side reactions, serious safety concerns, and battery failure. A novel type of stimulus-responsive zinc-iodine aqueous battery (SR-ZIAB) with fast overcharge self-protection ability is demonstrated by employing a smart pH-responsive electrolyte. Operando spectroelectrochemical characterizations reveal that the battery failure mechanism of ZIABs during overcharge arises from the increase of electrolyte pH induced by hydrogen evolution as well as the consequent irreversible formation of insulating ZnO at anode and soluble Zn(IO
)
at cathode. Under overcharge conditions, the designed SR-ZIABs can be rapidly switched off with capacity degrading to 6% of the initial capacity, thereby avoiding continuous battery damage. Importantly, SR-ZIABs can be switched on with nearly 100% of capacity recovery by re-adjusting the electrolyte pH. This work will inspire the development of aqueous Zn batteries with smart self-protection ability in the overcharge state. Zinc–iodine aqueous batteries (ZIABs) are highly attractive for grid‐scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non‐flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overcharge of ZIABs would induce drastic side reactions, serious safety concerns, and battery failure. A novel type of stimulus‐responsive zinc–iodine aqueous battery (SR‐ZIAB) with fast overcharge self‐protection ability is demonstrated by employing a smart pH‐responsive electrolyte. Operando spectroelectrochemical characterizations reveal that the battery failure mechanism of ZIABs during overcharge arises from the increase of electrolyte pH induced by hydrogen evolution as well as the consequent irreversible formation of insulating ZnO at anode and soluble Zn(IO 3 ) 2 at cathode. Under overcharge conditions, the designed SR‐ZIABs can be rapidly switched off with capacity degrading to 6% of the initial capacity, thereby avoiding continuous battery damage. Importantly, SR‐ZIABs can be switched on with nearly 100% of capacity recovery by re‐adjusting the electrolyte pH. This work will inspire the development of aqueous Zn batteries with smart self‐protection ability in the overcharge state. Zinc–iodine aqueous batteries (ZIABs) are highly attractive for grid‐scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non‐flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overcharge of ZIABs would induce drastic side reactions, serious safety concerns, and battery failure. A novel type of stimulus‐responsive zinc–iodine aqueous battery (SR‐ZIAB) with fast overcharge self‐protection ability is demonstrated by employing a smart pH‐responsive electrolyte. Operando spectroelectrochemical characterizations reveal that the battery failure mechanism of ZIABs during overcharge arises from the increase of electrolyte pH induced by hydrogen evolution as well as the consequent irreversible formation of insulating ZnO at anode and soluble Zn(IO3)2 at cathode. Under overcharge conditions, the designed SR‐ZIABs can be rapidly switched off with capacity degrading to 6% of the initial capacity, thereby avoiding continuous battery damage. Importantly, SR‐ZIABs can be switched on with nearly 100% of capacity recovery by re‐adjusting the electrolyte pH. This work will inspire the development of aqueous Zn batteries with smart self‐protection ability in the overcharge state. Zinc–iodine aqueous batteries (ZIABs) are highly attractive for grid‐scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non‐flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overcharge of ZIABs would induce drastic side reactions, serious safety concerns, and battery failure. A novel type of stimulus‐responsive zinc–iodine aqueous battery (SR‐ZIAB) with fast overcharge self‐protection ability is demonstrated by employing a smart pH‐responsive electrolyte. Operando spectroelectrochemical characterizations reveal that the battery failure mechanism of ZIABs during overcharge arises from the increase of electrolyte pH induced by hydrogen evolution as well as the consequent irreversible formation of insulating ZnO at anode and soluble Zn(IO3)2 at cathode. Under overcharge conditions, the designed SR‐ZIABs can be rapidly switched off with capacity degrading to 6% of the initial capacity, thereby avoiding continuous battery damage. Importantly, SR‐ZIABs can be switched on with nearly 100% of capacity recovery by re‐adjusting the electrolyte pH. This work will inspire the development of aqueous Zn batteries with smart self‐protection ability in the overcharge state. Integrating stimulus responses into rechargeable batteries shows potential to revolutionize energy storage for smart devices. A stimulus‐responsive Zn–I2 battery can be rapidly switched off with capacity degrading to 6% of the initial capacity under overcharge conditions, thereby preventing irreversible side reactions (including hydrogen generation and electrode degradation), battery failure, and relevant safety issues. Zinc-iodine aqueous batteries (ZIABs) are highly attractive for grid-scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non-flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overcharge of ZIABs would induce drastic side reactions, serious safety concerns, and battery failure. A novel type of stimulus-responsive zinc-iodine aqueous battery (SR-ZIAB) with fast overcharge self-protection ability is demonstrated by employing a smart pH-responsive electrolyte. Operando spectroelectrochemical characterizations reveal that the battery failure mechanism of ZIABs during overcharge arises from the increase of electrolyte pH induced by hydrogen evolution as well as the consequent irreversible formation of insulating ZnO at anode and soluble Zn(IO3 )2 at cathode. Under overcharge conditions, the designed SR-ZIABs can be rapidly switched off with capacity degrading to 6% of the initial capacity, thereby avoiding continuous battery damage. Importantly, SR-ZIABs can be switched on with nearly 100% of capacity recovery by re-adjusting the electrolyte pH. This work will inspire the development of aqueous Zn batteries with smart self-protection ability in the overcharge state.Zinc-iodine aqueous batteries (ZIABs) are highly attractive for grid-scale energy storage due to their high theoretical capacities, environmental friendliness, and intrinsic non-flammability. However, because of the close redox potential of Zn stripping/platting and hydrogen evolution, slight overcharge of ZIABs would induce drastic side reactions, serious safety concerns, and battery failure. A novel type of stimulus-responsive zinc-iodine aqueous battery (SR-ZIAB) with fast overcharge self-protection ability is demonstrated by employing a smart pH-responsive electrolyte. Operando spectroelectrochemical characterizations reveal that the battery failure mechanism of ZIABs during overcharge arises from the increase of electrolyte pH induced by hydrogen evolution as well as the consequent irreversible formation of insulating ZnO at anode and soluble Zn(IO3 )2 at cathode. Under overcharge conditions, the designed SR-ZIABs can be rapidly switched off with capacity degrading to 6% of the initial capacity, thereby avoiding continuous battery damage. Importantly, SR-ZIABs can be switched on with nearly 100% of capacity recovery by re-adjusting the electrolyte pH. This work will inspire the development of aqueous Zn batteries with smart self-protection ability in the overcharge state. |
Author | Zhang, Panpan Liu, Zaichun Chen, Guangbo Feng, Xinliang Wang, Faxing Yu, Minghao Tseng, Jochi Wang, Gang Wu, Weixing Wu, Yuping |
Author_xml | – sequence: 1 givenname: Faxing orcidid: 0000-0002-1134-885X surname: Wang fullname: Wang, Faxing organization: Technische Universität Dresden – sequence: 2 givenname: Jochi surname: Tseng fullname: Tseng, Jochi organization: Deutsches Elektronen‐Synchrotron (DESY) – sequence: 3 givenname: Zaichun surname: Liu fullname: Liu, Zaichun organization: Nanjing Tech University – sequence: 4 givenname: Panpan surname: Zhang fullname: Zhang, Panpan organization: Technische Universität Dresden – sequence: 5 givenname: Gang surname: Wang fullname: Wang, Gang organization: Technische Universität Dresden – sequence: 6 givenname: Guangbo surname: Chen fullname: Chen, Guangbo organization: Technische Universität Dresden – sequence: 7 givenname: Weixing surname: Wu fullname: Wu, Weixing organization: Sun Yat‐sen University – sequence: 8 givenname: Minghao orcidid: 0000-0002-0211-0778 surname: Yu fullname: Yu, Minghao email: minghao.yu@tu-dresden.de organization: Technische Universität Dresden – sequence: 9 givenname: Yuping surname: Wu fullname: Wu, Yuping organization: Nanjing Tech University – sequence: 10 givenname: Xinliang orcidid: 0000-0003-3885-2703 surname: Feng fullname: Feng, Xinliang email: xinliang.feng@tu-dresden.de organization: Technische Universität Dresden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32134521$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctO3DAUhq0KVIah2y6rSN2wyeBLnMtySrlJg6gYViyIHOe4GCX21HZAs-MRkHhDngQPA1RCqrqyLX2f_fv822jDWAMIfSV4QjCme6LtxYRiiuOhLD6hEeGUpBmu-AYa4YrxtMqzcgtte38TmSrH-We0xShhWQRH6GqazIPuh27wT_cP5-AX1nh9C8mlNvLp_vHEttpA8kOEAG6Z3Olwncx74UJydgtOXgv3G5I5dCrav5wNIIO2JjkczMtmB20q0Xn48rqO0cXhwcX-cTo7OzrZn85SGWMUaaa4yqSEjGdtyysmaVOUXMmWKWhozAwMq6ppCWGqYa2UOYcSK1YqyUGVbIx219cunP0zgA91r72ErhMG7OBrygpScl4wGtHvH9AbOzgTw0WqoiySPI_Ut1dqaHpo64XT8dPL-m1wEZisAems9w7UO0JwvWqmXjVTvzcTheyDIHUQqxkFJ3T3b61aa3e6g-V_HqmnP0-nf91nhnmmCg |
CitedBy_id | crossref_primary_10_1002_smll_202008043 crossref_primary_10_1016_j_cej_2020_127038 crossref_primary_10_1021_acsami_0c14611 crossref_primary_10_1016_j_cej_2024_149503 crossref_primary_10_26599_NRE_2022_9120025 crossref_primary_10_1039_D4BM00415A crossref_primary_10_1002_ange_202112304 crossref_primary_10_1021_acsami_1c03812 crossref_primary_10_1002_smll_202406282 crossref_primary_10_1016_j_matt_2021_07_016 crossref_primary_10_1002_anie_202009871 crossref_primary_10_7209_carbon_010206 crossref_primary_10_1002_smll_202305119 crossref_primary_10_1016_j_cej_2021_131705 crossref_primary_10_1039_D1RA04573C crossref_primary_10_1007_s40843_022_2195_6 crossref_primary_10_1002_adfm_202211979 crossref_primary_10_1039_D4TA05352D crossref_primary_10_1021_acsmaterialslett_2c00608 crossref_primary_10_20517_energymater_2024_169 crossref_primary_10_1002_adfm_202304223 crossref_primary_10_1021_acsenergylett_4c00992 crossref_primary_10_1021_acs_nanolett_1c01277 crossref_primary_10_1016_j_est_2023_110086 crossref_primary_10_1021_jacs_4c08145 crossref_primary_10_1039_D4EE02592J crossref_primary_10_1002_advs_202002173 crossref_primary_10_1002_advs_202305201 crossref_primary_10_1002_ange_202009871 crossref_primary_10_1039_D4EE01759E crossref_primary_10_1016_j_jpowsour_2020_229329 crossref_primary_10_1038_s41467_020_20331_9 crossref_primary_10_1002_anie_202112304 crossref_primary_10_1038_s41467_023_41071_6 crossref_primary_10_1021_acsami_3c03134 crossref_primary_10_1002_adfm_202100443 crossref_primary_10_1002_adma_202313621 crossref_primary_10_1002_aenm_202403817 crossref_primary_10_1021_acsami_1c21026 crossref_primary_10_1002_anie_202213276 crossref_primary_10_1002_adsu_202000138 crossref_primary_10_1002_adfm_202101024 crossref_primary_10_1002_adfm_202212644 crossref_primary_10_3390_nano14201645 crossref_primary_10_1016_j_jcis_2024_03_149 crossref_primary_10_1002_adma_202109450 crossref_primary_10_1002_gch2_202400105 crossref_primary_10_1021_jacs_0c05130 crossref_primary_10_1016_j_cej_2021_131283 crossref_primary_10_1021_acsenergylett_4c00450 crossref_primary_10_1002_aenm_202103648 crossref_primary_10_1039_D4EE05767H crossref_primary_10_1007_s40843_022_2033_2 crossref_primary_10_1002_adma_202306531 crossref_primary_10_1016_j_nanoen_2021_106120 crossref_primary_10_1002_adma_202104327 crossref_primary_10_1038_s41427_022_00373_9 crossref_primary_10_1016_j_electacta_2023_142593 crossref_primary_10_1002_advs_202105598 crossref_primary_10_1002_aenm_202001997 crossref_primary_10_1002_smll_202302161 crossref_primary_10_1002_eem2_12300 crossref_primary_10_1021_acsnano_4c16550 crossref_primary_10_1039_D4NR00465E crossref_primary_10_1002_adma_202205175 crossref_primary_10_1016_j_cej_2022_136230 crossref_primary_10_1039_D0QM01105C crossref_primary_10_1021_acs_nanolett_2c00460 crossref_primary_10_1002_adma_202305575 crossref_primary_10_1039_D3EE01677C crossref_primary_10_1002_ange_202308397 crossref_primary_10_1039_D4EE02192D crossref_primary_10_1002_smll_202310293 crossref_primary_10_1039_D1TA05617D crossref_primary_10_1039_D2EE00004K crossref_primary_10_1002_ange_202213276 crossref_primary_10_1021_acsnano_2c06220 crossref_primary_10_1039_D0CC05344A crossref_primary_10_1002_eem2_12522 crossref_primary_10_1002_advs_202103954 crossref_primary_10_1016_j_materresbull_2021_111347 crossref_primary_10_1002_aenm_202003599 crossref_primary_10_1002_smtd_202300832 crossref_primary_10_1016_j_colsurfa_2023_130960 crossref_primary_10_1016_j_cej_2021_132576 crossref_primary_10_1039_D5TA00919G crossref_primary_10_1149_1945_7111_acb8de crossref_primary_10_1002_adma_202108856 crossref_primary_10_1002_aenm_202301049 crossref_primary_10_1002_adma_202401091 crossref_primary_10_1039_D3DT00525A crossref_primary_10_1016_j_cej_2024_149535 crossref_primary_10_1142_S1793604721300115 crossref_primary_10_1002_advs_202305061 crossref_primary_10_1016_j_jechem_2021_04_016 crossref_primary_10_1021_jacs_0c07992 crossref_primary_10_1002_cssc_202000883 crossref_primary_10_1021_acsnano_2c06362 crossref_primary_10_1039_D0EE03898A crossref_primary_10_1002_smsc_202100080 crossref_primary_10_1016_j_jcis_2022_09_079 crossref_primary_10_1002_adfm_202312664 crossref_primary_10_1002_adma_202008752 crossref_primary_10_1002_pssr_202300236 crossref_primary_10_1002_smtd_202201440 crossref_primary_10_1002_batt_202300619 crossref_primary_10_1002_smll_202300230 crossref_primary_10_1002_advs_202100309 crossref_primary_10_1002_anie_202308397 crossref_primary_10_1088_2752_5724_ad50f1 crossref_primary_10_1007_s12598_024_02689_7 crossref_primary_10_1016_j_cej_2023_148267 |
Cites_doi | 10.1038/nchem.2730 10.1038/s41467-019-13436-3 10.1002/anie.201607951 10.1149/1.2129408 10.1002/adma.201800028 10.1002/anie.201704373 10.1016/j.joule.2019.02.012 10.1038/ncomms9103 10.1002/anie.201903805 10.1002/anie.201405145 10.1002/aenm.201601920 10.1039/C8EE00378E 10.1039/C2EE23564A 10.1016/j.joule.2018.12.012 10.1039/C8CC02616E 10.1039/C6PY01872F 10.1002/adma.201504723 10.1002/adma.201701627 10.1126/science.aap8787 10.1021/jacs.5b12080 10.1038/ncomms7303 10.1038/nenergy.2015.9 10.1038/ncomms10310 10.1038/s41467-019-12863-6 10.1038/nature16502 10.1039/C6EE02782B 10.1038/nchem.2625 10.1002/anie.201608163 10.1038/nchem.1802 10.1021/acs.nanolett.7b04889 10.1038/s41467-017-00649-7 10.1038/nenergy.2016.39 10.1016/j.progpolymsci.2016.09.010 10.1021/acs.nanolett.9b00450 10.1039/C8EE00686E 10.1038/nature22987 10.1002/anie.201904174 10.1038/ncomms14643 10.1039/C6TA07747A 10.1002/adma.201505370 10.1039/c3cs60094g 10.1021/acs.nanolett.7b05403 10.1038/nmat3776 10.1038/s41563-017-0006-0 10.1002/anie.201713291 10.1021/acsenergylett.7b00851 10.1002/adma.201502484 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202000287 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 32134521 10_1002_adma_202000287 ADMA202000287 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: MX‐OSMOPED – fundername: European Research Council funderid: 819698; GrapheneCore2 785219 – fundername: NSFC funderid: 51425301; U1601214 – fundername: Deutsche Forschungsgemeinschaft grantid: MX-OSMOPED – fundername: European Research Council grantid: 819698 – fundername: NSFC grantid: U1601214 – fundername: European Research Council grantid: GrapheneCore2 785219 – fundername: NSFC grantid: 51425301 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4527-4f5f4cce454dd593c2b785fcd3feb2606e30f9bd113fb3dcc65e80f38fc5ef83 |
IEDL.DBID | 24P |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 03:18:25 EDT 2025 Fri Jul 25 05:17:19 EDT 2025 Wed Feb 19 02:30:07 EST 2025 Tue Jul 01 02:32:45 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Wed Jan 22 16:33:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | stimulus-responsive batteries Zn anodes metal-I2 batteries battery overchange battery self-protection |
Language | English |
License | Attribution-NonCommercial 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4527-4f5f4cce454dd593c2b785fcd3feb2606e30f9bd113fb3dcc65e80f38fc5ef83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0211-0778 0000-0003-3885-2703 0000-0002-1134-885X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000287 |
PMID | 32134521 |
PQID | 2392337156 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2371855732 proquest_journals_2392337156 pubmed_primary_32134521 crossref_primary_10_1002_adma_202000287 crossref_citationtrail_10_1002_adma_202000287 wiley_primary_10_1002_adma_202000287_ADMA202000287 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2017; 64 2017; 8 2015; 6 2019; 3 2017; 2 2019; 10 2013; 42 2019; 58 2016; 529 2019; 19 2017; 29 2013; 5 2013; 6 2017; 9 2016; 55 2016; 4 1980; 127 2018; 18 2018; 17 2016; 1 2015; 27 2018; 359 2000 2013; 12 2017; 10 2017; 56 2018; 30 2016; 138 2016; 28 2018; 11 2018; 54 2017; 546 2014; 53 2018; 57 e_1_2_4_40_1 e_1_2_4_41_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 e_1_2_4_19_1 |
References_xml | – volume: 8 start-page: 144 year: 2017 publication-title: Polym. Chem. – volume: 6 year: 2015 publication-title: Nat. Commun. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 8103 year: 2015 publication-title: Nat. Commun. – volume: 3 start-page: 1289 year: 2019 publication-title: Joule – volume: 8 start-page: 527 year: 2017 publication-title: Nat. Commun. – volume: 5 start-page: 1042 year: 2013 publication-title: Nat. Chem. – year: 2000 – volume: 9 start-page: 817 year: 2017 publication-title: Nat. Chem. – volume: 6 start-page: 618 year: 2013 publication-title: Energy Environ. Sci. – volume: 53 start-page: 9526 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 4904 year: 2016 publication-title: Adv. Mater. – volume: 27 start-page: 5593 year: 2015 publication-title: Adv. Mater. – volume: 17 start-page: 261 year: 2018 publication-title: Nat. Mater. – volume: 6 start-page: 6303 year: 2015 publication-title: Nat. Commun. – volume: 2 start-page: 2674 year: 2017 publication-title: ACS Energy Lett. – volume: 127 start-page: 2335 year: 1980 publication-title: J. Electrochem. Soc. – volume: 11 start-page: 2010 year: 2018 publication-title: Energy Environ. Sci. – volume: 64 start-page: 52 year: 2017 publication-title: Prog. Polym. Sci. – volume: 56 start-page: 7871 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 2455 year: 2016 publication-title: Adv. Mater. – volume: 18 start-page: 1758 year: 2018 publication-title: Nano Lett. – volume: 10 start-page: 5374 year: 2019 publication-title: Nat. Commun. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 58 start-page: 7823 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 991 year: 2013 publication-title: Nat. Mater. – volume: 546 start-page: 632 year: 2017 publication-title: Nature – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 42 start-page: 7421 year: 2013 publication-title: Chem. Soc. Rev. – volume: 54 start-page: 6792 year: 2018 publication-title: Chem. Commun. – volume: 10 start-page: 4946 year: 2019 publication-title: Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 10 start-page: 114 year: 2017 publication-title: Energy Environ. Sci. – volume: 359 start-page: 1513 year: 2018 publication-title: Science – volume: 11 start-page: 881 year: 2018 publication-title: Energy Environ. Sci. – volume: 19 start-page: 3066 year: 2019 publication-title: Nano Lett. – volume: 529 start-page: 515 year: 2016 publication-title: Nature – volume: 3 start-page: 338 year: 2019 publication-title: Joule – volume: 57 start-page: 3943 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 58 start-page: 9248 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 138 start-page: 2225 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 2402 year: 2018 publication-title: Nano Lett. – volume: 9 start-page: 145 year: 2017 publication-title: Nat. Chem. – ident: e_1_2_4_1_1 doi: 10.1038/nchem.2730 – ident: e_1_2_4_35_1 doi: 10.1038/s41467-019-13436-3 – ident: e_1_2_4_19_1 doi: 10.1002/anie.201607951 – ident: e_1_2_4_37_1 doi: 10.1149/1.2129408 – ident: e_1_2_4_9_1 doi: 10.1002/adma.201800028 – ident: e_1_2_4_20_1 doi: 10.1002/anie.201704373 – ident: e_1_2_4_26_1 doi: 10.1016/j.joule.2019.02.012 – ident: e_1_2_4_18_1 doi: 10.1038/ncomms9103 – ident: e_1_2_4_10_1 doi: 10.1002/anie.201903805 – ident: e_1_2_4_22_1 doi: 10.1002/anie.201405145 – ident: e_1_2_4_30_1 doi: 10.1002/aenm.201601920 – ident: e_1_2_4_43_1 doi: 10.1039/C8EE00378E – ident: e_1_2_4_44_1 doi: 10.1039/C2EE23564A – ident: e_1_2_4_24_1 doi: 10.1016/j.joule.2018.12.012 – ident: e_1_2_4_40_1 doi: 10.1039/C8CC02616E – ident: e_1_2_4_47_1 doi: 10.1039/C6PY01872F – ident: e_1_2_4_15_1 doi: 10.1002/adma.201504723 – ident: e_1_2_4_6_1 doi: 10.1002/adma.201701627 – ident: e_1_2_4_8_1 doi: 10.1126/science.aap8787 – ident: e_1_2_4_41_1 doi: 10.1021/jacs.5b12080 – ident: e_1_2_4_25_1 doi: 10.1038/ncomms7303 – ident: e_1_2_4_14_1 doi: 10.1038/nenergy.2015.9 – ident: e_1_2_4_21_1 doi: 10.1038/ncomms10310 – ident: e_1_2_4_7_1 doi: 10.1038/s41467-019-12863-6 – ident: e_1_2_4_11_1 doi: 10.1038/nature16502 – ident: e_1_2_4_38_1 doi: 10.1039/C6EE02782B – ident: e_1_2_4_39_1 – ident: e_1_2_4_5_1 doi: 10.1038/nchem.2625 – ident: e_1_2_4_12_1 doi: 10.1002/anie.201608163 – ident: e_1_2_4_13_1 doi: 10.1038/nchem.1802 – ident: e_1_2_4_32_1 doi: 10.1021/acs.nanolett.7b04889 – ident: e_1_2_4_31_1 doi: 10.1038/s41467-017-00649-7 – ident: e_1_2_4_29_1 doi: 10.1038/nenergy.2016.39 – ident: e_1_2_4_46_1 doi: 10.1016/j.progpolymsci.2016.09.010 – ident: e_1_2_4_16_1 doi: 10.1021/acs.nanolett.9b00450 – ident: e_1_2_4_28_1 doi: 10.1039/C8EE00686E – ident: e_1_2_4_4_1 doi: 10.1038/nature22987 – ident: e_1_2_4_34_1 doi: 10.1002/anie.201904174 – ident: e_1_2_4_17_1 doi: 10.1038/ncomms14643 – ident: e_1_2_4_36_1 doi: 10.1039/C6TA07747A – ident: e_1_2_4_45_1 doi: 10.1002/adma.201505370 – ident: e_1_2_4_48_1 doi: 10.1039/c3cs60094g – ident: e_1_2_4_42_1 doi: 10.1021/acs.nanolett.7b05403 – ident: e_1_2_4_2_1 doi: 10.1038/nmat3776 – ident: e_1_2_4_3_1 doi: 10.1038/s41563-017-0006-0 – ident: e_1_2_4_33_1 doi: 10.1002/anie.201713291 – ident: e_1_2_4_27_1 doi: 10.1021/acsenergylett.7b00851 – ident: e_1_2_4_23_1 doi: 10.1002/adma.201502484 |
SSID | ssj0009606 |
Score | 2.6304178 |
Snippet | Zinc–iodine aqueous batteries (ZIABs) are highly attractive for grid‐scale energy storage due to their high theoretical capacities, environmental friendliness,... Zinc-iodine aqueous batteries (ZIABs) are highly attractive for grid-scale energy storage due to their high theoretical capacities, environmental friendliness,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2000287 |
SubjectTerms | battery overchange battery self‐protection Electrolytes Energy storage Failure mechanisms Flammability Hydrogen evolution Iodine metal‐I2 batteries Product safety stimulus‐responsive batteries Storage batteries Zinc oxide Zn anodes |
Title | A Stimulus‐Responsive Zinc–Iodine Battery with Smart Overcharge Self‐Protection Function |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000287 https://www.ncbi.nlm.nih.gov/pubmed/32134521 https://www.proquest.com/docview/2392337156 https://www.proquest.com/docview/2371855732 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD5YfWkfRO3FqJUpFPoUTOaSy-OiXVTQimtB-tAwmZwBYc2Kuyv45k8Q_If-Es9MstGlFMGXMCFnSDiXnG9u3wH47jAxptyGSicqlAqzUBuKqzjTysTIK-V3Ex4dJ_u_5eG5On9xir_hh-gm3Fxk-P-1C3BdjneeSUN15XmDuJ8gSt_Bkjtf6zydy5Nn2t3EV9d0q31hnshsRtsY8Z35_vNp6R-sOQ9dfe7pr8ByCxpZr7HyKixgvQYfXlAJfoS_PTaYXFxOh9Px4939abvz9QbZn4vaPN49HIwoSSFr6DRvmZt-ZYNL8hv2i5zZ8yUhG-DQUu-ThruBLMb6lPZc4xOc9X-e7e6Hbe2E0EjF01BaZaUxKJWsKpULw8s0U9ZUwtJYmrSCIrJ5WcWxsKWojEnITJEVmTUKbSY-w2I9qnEdWKytpHGhlmWcy1InOilNXmGqY9RRHmEA4UxzhWl5xV15i2HRMCLzwmm66DQdwI9O_qph1Piv5NbMEEUbWeOCE6ATIqVhZwDfuscUE26hQ9c4mjoZyrhKpYIH8KUxYPcq4SjsCLMEwL1FX_mGord31OvuNt7SaRPeu3az3WcLFifXU_xKSGZSbntnpeveKX8CF6_uEg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9q-6A-iLVWY6tuoeBTaLIf-Xg81ONae7X0rlB8aNhsZqFwzYm9E3zrnyD0P-xf4uwml3qUIviWj10SZnYyv5md_AZg12FiTLkNlU5UKBVmoTZkV3GmlYmRV8pXEw6PksGpPDhTi2pC9y9Mww_RJdycZfjvtTNwl5Deu2MN1ZUnDuI-Q5Q-gjWZ8NR1b-Dy-I53N_HtNd12X5gnMlvwNkZ8b3n-sl-6BzaXsat3Pv3n8KxFjazXqHkdVrB-AU__4hLcgPMeG80uLueT-dXt9e-TtvT1J7JvF7W5vb7Zn5KXQtbwaf5iLv_KRpe0cNhXWs2eMAnZCCeWZh835A2kMtYnv-cOXsK4_3n8cRC2zRNCIxVPQ2mVlcagVLKqVC4ML9NMWVMJS8E0SQVFZPOyimNhS1EZk5CeIisyaxTaTGzCaj2t8TWwWFtJgaGWZZzLUic6KU1eYapj1FEeYQDhQnKFaYnFXX-LSdFQIvPCSbroJB3Ah27894ZS48GR2wtFFK1pXRWcEJ0QKcWdAex0t8ko3E6HrnE6d2PI5SqVCh7Aq0aB3aOE47Aj0BIA9xr9xzsUvU_DXnf25n8mvYfHg_HwsDjcP_qyBU_c9ab2ZxtWZz_m-JZgzax85xfuH1j88JU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD5oBbEP4rWNrTqFgk-hyVxyeVysS6u2XboVig-GycwZKGyzxe4KvvUnCP2H_SWemWTTLiKCb7nMIeFccr45M_kOwLbHxJhzFyudqVgqLGJtKK7SQiuTIrcq7CY8OMz2vsiPp-r0zl_8LT9EX3DzkRG-1z7AL6zbuSUN1TbwBvFQIMrvwwO_4ud9nMvRLe1uFrpr-tW-uMxksaBtTPjOsvxyWvoDay5D15B7hk_gcQca2aC18lO4h80zWL1DJfgcvg3YeHZ2Pp_ML2-ufh13O19_IPt61pibq-v9KSUpZC2d5k_my69sfE5-w47ImQNfErIxThxJj1ruBrIYG1La8wcv4GT44eT9Xtz1ToiNVDyPpVNOGoNSSWtVKQyv80I5Y4WjuTRpBUXiytqmqXC1sMZkZKbEicIZha4QL2GlmTa4DizVTtK8UMs6LWWtM53VprSY6xR1UiYYQbzQXGU6XnHf3mJStYzIvPKarnpNR_CuH3_RMmr8deTmwhBVF1mXFSdAJ0RO084ItvrbFBN-oUM3OJ37MZRxlcoFj2CtNWD_KOEp7AizRMCDRf_xDtVg92DQn736H6G38HC0O6w-7x9-2oBH_nK782cTVmbf5_iaQM2sfhP89jf-ZO_H |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Stimulus%E2%80%90Responsive+Zinc%E2%80%93Iodine+Battery+with+Smart+Overcharge+Self%E2%80%90Protection+Function&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Faxing&rft.au=Tseng%2C+Jochi&rft.au=Liu%2C+Zaichun&rft.au=Zhang%2C+Panpan&rft.date=2020-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202000287&rft.externalDBID=10.1002%252Fadma.202000287&rft.externalDocID=ADMA202000287 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |