Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments
Heterogeneous and ever‐changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolution...
Saved in:
Published in | Molecular ecology Vol. 27; no. 3; pp. 659 - 674 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heterogeneous and ever‐changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations (Oncorhynchus mykiss gairdneri) in cardiorespiratory function, cellular response and genomic variation. In a common garden environment, fish from an extreme desert climate had significantly higher critical thermal maximum (p < .05) and broader optimum thermal window for aerobic scope (>3°C) than fish from cooler montane climate. In addition, the desert population had the highest maximum heart rate during warming (20% greater than montane populations), indicating improved capacity to deliver oxygen to internal tissues. In response to acute heat stress, distinct sets of cardiac genes were induced among ecotypes, which helps to explain the differences in cardiorespiratory function. Candidate genomic markers and genes underlying these physiological adaptations were also pinpointed, such as genes involved in stress response and metabolic activity (hsp40, ldh‐b and camkk2). These markers were developed into a multivariate model that not only accurately predicted critical thermal maxima, but also evolutionary limit of thermal adaptation in these specific redband trout populations relative to the expected limit for the species. This study demonstrates mechanisms and limitations of an aquatic species to evolve under changing environments that can be incorporated into advanced models to predict ecological consequences of climate change for natural organisms. |
---|---|
AbstractList | Heterogeneous and ever‐changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations (Oncorhynchus mykiss gairdneri) in cardiorespiratory function, cellular response and genomic variation. In a common garden environment, fish from an extreme desert climate had significantly higher critical thermal maximum (p < .05) and broader optimum thermal window for aerobic scope (>3°C) than fish from cooler montane climate. In addition, the desert population had the highest maximum heart rate during warming (20% greater than montane populations), indicating improved capacity to deliver oxygen to internal tissues. In response to acute heat stress, distinct sets of cardiac genes were induced among ecotypes, which helps to explain the differences in cardiorespiratory function. Candidate genomic markers and genes underlying these physiological adaptations were also pinpointed, such as genes involved in stress response and metabolic activity (hsp40, ldh‐b and camkk2). These markers were developed into a multivariate model that not only accurately predicted critical thermal maxima, but also evolutionary limit of thermal adaptation in these specific redband trout populations relative to the expected limit for the species. This study demonstrates mechanisms and limitations of an aquatic species to evolve under changing environments that can be incorporated into advanced models to predict ecological consequences of climate change for natural organisms. Heterogeneous and ever‐changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations (Oncorhynchus mykiss gairdneri) in cardiorespiratory function, cellular response and genomic variation. In a common garden environment, fish from an extreme desert climate had significantly higher critical thermal maximum (p < .05) and broader optimum thermal window for aerobic scope (>3°C) than fish from cooler montane climate. In addition, the desert population had the highest maximum heart rate during warming (20% greater than montane populations), indicating improved capacity to deliver oxygen to internal tissues. In response to acute heat stress, distinct sets of cardiac genes were induced among ecotypes, which helps to explain the differences in cardiorespiratory function. Candidate genomic markers and genes underlying these physiological adaptations were also pinpointed, such as genes involved in stress response and metabolic activity (hsp40, ldh‐b and camkk2). These markers were developed into a multivariate model that not only accurately predicted critical thermal maxima, but also evolutionary limit of thermal adaptation in these specific redband trout populations relative to the expected limit for the species. This study demonstrates mechanisms and limitations of an aquatic species to evolve under changing environments that can be incorporated into advanced models to predict ecological consequences of climate change for natural organisms. Heterogeneous and ever‐changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations ( Oncorhynchus mykiss gairdneri ) in cardiorespiratory function, cellular response and genomic variation. In a common garden environment, fish from an extreme desert climate had significantly higher critical thermal maximum ( p < .05) and broader optimum thermal window for aerobic scope (>3°C) than fish from cooler montane climate. In addition, the desert population had the highest maximum heart rate during warming (20% greater than montane populations), indicating improved capacity to deliver oxygen to internal tissues. In response to acute heat stress, distinct sets of cardiac genes were induced among ecotypes, which helps to explain the differences in cardiorespiratory function. Candidate genomic markers and genes underlying these physiological adaptations were also pinpointed, such as genes involved in stress response and metabolic activity ( hsp40 , ldh‐b and camkk2 ). These markers were developed into a multivariate model that not only accurately predicted critical thermal maxima, but also evolutionary limit of thermal adaptation in these specific redband trout populations relative to the expected limit for the species. This study demonstrates mechanisms and limitations of an aquatic species to evolve under changing environments that can be incorporated into advanced models to predict ecological consequences of climate change for natural organisms. Heterogeneous and ever-changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations (Oncorhynchus mykiss gairdneri) in cardiorespiratory function, cellular response and genomic variation. In a common garden environment, fish from an extreme desert climate had significantly higher critical thermal maximum (p < .05) and broader optimum thermal window for aerobic scope (>3°C) than fish from cooler montane climate. In addition, the desert population had the highest maximum heart rate during warming (20% greater than montane populations), indicating improved capacity to deliver oxygen to internal tissues. In response to acute heat stress, distinct sets of cardiac genes were induced among ecotypes, which helps to explain the differences in cardiorespiratory function. Candidate genomic markers and genes underlying these physiological adaptations were also pinpointed, such as genes involved in stress response and metabolic activity (hsp40, ldh-b and camkk2). These markers were developed into a multivariate model that not only accurately predicted critical thermal maxima, but also evolutionary limit of thermal adaptation in these specific redband trout populations relative to the expected limit for the species. This study demonstrates mechanisms and limitations of an aquatic species to evolve under changing environments that can be incorporated into advanced models to predict ecological consequences of climate change for natural organisms.Heterogeneous and ever-changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations (Oncorhynchus mykiss gairdneri) in cardiorespiratory function, cellular response and genomic variation. In a common garden environment, fish from an extreme desert climate had significantly higher critical thermal maximum (p < .05) and broader optimum thermal window for aerobic scope (>3°C) than fish from cooler montane climate. In addition, the desert population had the highest maximum heart rate during warming (20% greater than montane populations), indicating improved capacity to deliver oxygen to internal tissues. In response to acute heat stress, distinct sets of cardiac genes were induced among ecotypes, which helps to explain the differences in cardiorespiratory function. Candidate genomic markers and genes underlying these physiological adaptations were also pinpointed, such as genes involved in stress response and metabolic activity (hsp40, ldh-b and camkk2). These markers were developed into a multivariate model that not only accurately predicted critical thermal maxima, but also evolutionary limit of thermal adaptation in these specific redband trout populations relative to the expected limit for the species. This study demonstrates mechanisms and limitations of an aquatic species to evolve under changing environments that can be incorporated into advanced models to predict ecological consequences of climate change for natural organisms. |
Author | Chen, Zhongqi Farrell, Anthony P. Narum, Shawn R. Matala, Amanda |
Author_xml | – sequence: 1 givenname: Zhongqi orcidid: 0000-0003-0575-7013 surname: Chen fullname: Chen, Zhongqi organization: The University of British Columbia – sequence: 2 givenname: Anthony P. surname: Farrell fullname: Farrell, Anthony P. organization: The University of British Columbia – sequence: 3 givenname: Amanda surname: Matala fullname: Matala, Amanda organization: Columbia River Inter‐Tribal Fish Commission – sequence: 4 givenname: Shawn R. surname: Narum fullname: Narum, Shawn R. email: nars@critfc.org organization: Columbia River Inter‐Tribal Fish Commission |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29290103$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLJDEUhcOgjG3PLOYPDAE3umjNsx5LaXyB4kZhdiF967ZGqpKapErx35uy2404TBa5hHznkJyzT3Z88EjIL86OeV4nHcIxV6rU38iMy0IvRK3-7JAZqwux4KySe2Q_pSfGuBRafyd7ohY140zOSLhBeLTepS7RsKbDI8bOttQ2th_s4IKn1jcUn0M7TicbX2kfBvSDy1QWQPCpR3BrB_miH9t3UaJDoJPvg_MPFP2zi8F3WZV-kN21bRP-3M45uT8_u1teLq5vL66Wp9cLUFrovK9sgTUAqhXoSgmpVQmiVKwSFbOCg2xEUwDjxYrppgJeaskk1o2EqmKlnJPDjW8fw98R02A6lwDb1noMYzKCaZlBVej_oryuptjqPObk4BP6FMbo80eyoRCszE-dqN9balx12Jg-ui4HZz5Sz8DJBoAYUoq4NuA2aQ_RutZwZqZeTe7VvPeaFUefFB-mX7Fb9xfX4uu_QXNzttwo3gC1V7Gu |
CitedBy_id | crossref_primary_10_1016_j_aquaculture_2018_09_017 crossref_primary_10_1016_j_fsi_2019_03_014 crossref_primary_10_1038_s41598_021_00695_8 crossref_primary_10_1007_s11160_020_09632_w crossref_primary_10_1111_faf_12808 crossref_primary_10_1111_mec_15717 crossref_primary_10_1002_fsh_10726 crossref_primary_10_1007_s10750_022_04862_4 crossref_primary_10_1111_jfb_16015 crossref_primary_10_1139_cjfas_2020_0377 crossref_primary_10_1111_jfb_14159 crossref_primary_10_3390_ijms22126295 crossref_primary_10_1016_j_aqrep_2023_101733 crossref_primary_10_3390_biology8020046 crossref_primary_10_1111_eva_13663 crossref_primary_10_3389_fphys_2018_01895 crossref_primary_10_1111_jfd_14046 crossref_primary_10_3390_cli13030044 crossref_primary_10_1002_ece3_9053 crossref_primary_10_1002_lol2_10274 crossref_primary_10_1007_s10750_021_04648_0 crossref_primary_10_1242_jeb_178590 crossref_primary_10_1038_s41598_023_41173_7 crossref_primary_10_1093_conphys_coz098 crossref_primary_10_1016_j_tree_2019_02_013 crossref_primary_10_1111_jfb_14620 crossref_primary_10_1242_jeb_247928 crossref_primary_10_1093_conphys_coae086 crossref_primary_10_3389_fmars_2023_1175176 crossref_primary_10_1016_j_jtherbio_2023_103695 crossref_primary_10_1242_jeb_186189 crossref_primary_10_1111_eva_13655 crossref_primary_10_1111_eva_13335 crossref_primary_10_1152_physiol_00040_2018 crossref_primary_10_1038_s41598_022_25419_4 crossref_primary_10_1016_j_jtherbio_2020_102691 crossref_primary_10_1093_conphys_coz063 crossref_primary_10_1111_fwb_13371 crossref_primary_10_1186_s12864_021_07954_y crossref_primary_10_1016_j_aqrep_2024_102249 crossref_primary_10_1016_j_aquatox_2022_106145 crossref_primary_10_1002_tafs_10059 crossref_primary_10_1093_conphys_coab101 crossref_primary_10_1111_gcb_14386 crossref_primary_10_1016_j_jtherbio_2024_103863 crossref_primary_10_1111_eva_12877 crossref_primary_10_1242_jeb_244305 crossref_primary_10_1111_eva_12672 crossref_primary_10_1002_ece3_9994 crossref_primary_10_1038_s41598_023_44574_w crossref_primary_10_1093_jhered_esz045 crossref_primary_10_1016_j_gca_2024_09_016 crossref_primary_10_3389_fgene_2020_564515 crossref_primary_10_1073_pnas_1921124117 crossref_primary_10_1016_j_jtherbio_2020_102559 crossref_primary_10_1242_jeb_249450 crossref_primary_10_1111_eva_13680 crossref_primary_10_1111_mec_16810 crossref_primary_10_1111_gcb_70100 crossref_primary_10_1242_jeb_238840 crossref_primary_10_1111_evo_14399 crossref_primary_10_1093_icb_icac073 crossref_primary_10_1016_j_jtherbio_2024_103970 crossref_primary_10_1002_eco_2241 crossref_primary_10_1111_mec_14709 crossref_primary_10_1128_msystems_00228_21 |
Cites_doi | 10.1023/A:1010933404324 10.1242/jeb.134585 10.1111/jfb.13145 10.1093/conphys/cot008 10.1093/gbe/evv078 10.1038/nmeth.1923 10.1128/MCB.24.4.1758-1768.2004 10.1017/S0029665110003915 10.1186/1471-2105-9-323 10.1086/316740 10.1086/682949 10.1093/oxfordjournals.jhered.a110060 10.1126/science.1261824 10.1111/eva.12137 10.1371/journal.pone.0003376 10.1186/s12864-015-1246-5 10.1152/physiolgenomics.00008.2011 10.5962/bhl.title.110986 10.1093/bioinformatics/bti610 10.1086/physzool.62.4.30157935 10.1186/1471-2105-8-328 10.1111/jfb.12796 10.1016/j.molcel.2010.01.001 10.1016/j.tree.2007.09.008 10.1093/bioinformatics/btn129 10.1098/rspb.2014.1082 10.1002/joc.1276 10.1016/j.tree.2010.09.002 10.1242/jeb.037473 10.1126/science.1199158 10.1093/oso/9780195117028.001.0001 10.1038/ncomms4657 10.1111/j.0022-1112.2004.00292.x 10.1111/j.1095-8649.1997.tb02001.x 10.1111/j.1095-8649.2011.03182.x 10.1016/j.tree.2016.12.007 10.1111/mec.12822 10.1534/genetics.108.092221 10.1093/molbev/msv334 10.1111/j.1365-294X.2011.05305.x 10.1038/nprot.2013.099 10.1111/mec.12240 10.1152/ajpregu.00254.2013 10.1242/jeb.128439 10.1016/j.aquaculture.2005.04.042 10.1111/mec.12354 10.1093/bioinformatics/btp616 10.1111/mec.12350 10.1111/mec.13513 10.1098/rspb.1996.0237 10.1126/science.1163156 10.1111/j.2517-6161.1995.tb02031.x 10.1529/biophysj.107.127787 10.1152/ajpregu.00157.2005 10.1242/jeb.065102 10.1111/ele.12696 10.1242/jeb.023671 10.1084/jem.20080897 10.1016/j.gene.2015.10.028 10.1126/science.aad8466 10.1111/j.1365-294X.2010.04839.x 10.1111/j.1365-294X.2004.02125.x 10.1126/science.1251336 10.1126/science.1137359 10.1534/g3.113.009316 10.1093/oxfordjournals.jhered.a111573 10.1038/247315a0 10.1111/j.1558-5646.1984.tb05657.x 10.1534/g3.112.003137 10.1111/gcb.13419 10.1152/ajpregu.2000.279.6.R2344 |
ContentType | Journal Article |
Copyright | 2017 John Wiley & Sons Ltd 2017 John Wiley & Sons Ltd. Copyright © 2018 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2017 John Wiley & Sons Ltd – notice: 2017 John Wiley & Sons Ltd. – notice: Copyright © 2018 John Wiley & Sons Ltd |
DBID | AAYXX CITATION NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/mec.14475 |
DatabaseName | CrossRef PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts CrossRef MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-294X |
EndPage | 674 |
ExternalDocumentID | 29290103 10_1111_mec_14475 MEC14475 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4525-c4ba6e9cce4bc58423547c27408280a21c3d2d6c016b05d8c175303e9d3c88073 |
IEDL.DBID | DR2 |
ISSN | 0962-1083 1365-294X |
IngestDate | Fri Jul 11 18:39:59 EDT 2025 Thu Jul 10 22:15:30 EDT 2025 Wed Aug 13 03:29:34 EDT 2025 Mon Jul 21 05:58:27 EDT 2025 Tue Jul 01 03:22:01 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Wed Jan 22 16:20:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | RNA-seq redband trout maximum heart rate RAD-seq critical thermal maximum metabolic rate oxygen- and capacity-limited thermal tolerance aerobic scope climate change |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4525-c4ba6e9cce4bc58423547c27408280a21c3d2d6c016b05d8c175303e9d3c88073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0575-7013 |
PMID | 29290103 |
PQID | 2022075848 |
PQPubID | 31465 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2053880465 proquest_miscellaneous_1983255998 proquest_journals_2022075848 pubmed_primary_29290103 crossref_citationtrail_10_1111_mec_14475 crossref_primary_10_1111_mec_14475 wiley_primary_10_1111_mec_14475_MEC14475 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2018 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Molecular ecology |
PublicationTitleAlternate | Mol Ecol |
PublicationYear | 2018 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2004; 64 2005; 250 2013; 1 2013; 22 2015; 347 2010; 19 2015; 186 2004; 24 2008; 9 2005; 21 2008; 3 1996; 263 2013; 8 2001; 45 2014; 23 1979 2016; 33 2005; 25 2014; 5 1997; 51 2014; 4 2010; 26 2010; 25 2011; 70 2017; 32 2007; 8 2008; 23 2016; 353 2008; 24 1983 2014; 281 2012; 215 2014; 7 2012; 21 2016; 89 2016; 88 1989; 62 2012; 80 2010; 37 2015; 16 2016; 19 2000; 279 1995; 57 2013; 305 2017; 23 2000; 73 2009; 212 2008; 205 1974; 247 2002 2008; 322 2008; 95 2015; 7 2011; 332 1995; 86 2008; 180 2012; 2 2007; 315 2016; 219 1984; 38 1947; 55 2005; 289 2010; 213 2004; 13 2017 2011; 43 2016 2017; 220 2016; 576 1985; 76 2016; 25 2012; 9 2014; 344 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Hochachka P. W. (e_1_2_10_34_1) 2002 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 Isaak D. J. (e_1_2_10_35_1) 2016 e_1_2_10_73_1 Fry F. E. J. (e_1_2_10_26_1) 1947; 55 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Grinberg N. F. (e_1_2_10_28_1) 2017 e_1_2_10_60_1 e_1_2_10_62_1 Sonski A. J. (e_1_2_10_64_1) 1983 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 7 start-page: 1 issue: 1 year: 2014 end-page: 14 article-title: Climate change, adaptation, and phenotypic plasticity: The problem and the evidence publication-title: Evolutionary Applications – volume: 62 start-page: 888 issue: 4 year: 1989 end-page: 907 article-title: Physiological regulation and conformation: A BASIC program for the determination of critical points publication-title: Physiological Zoology – volume: 70 start-page: 92 issue: 1 year: 2011 end-page: 99 article-title: Energy sensing by the AMP‐activated protein kinase and its effects on muscle metabolism publication-title: Proceedings of the Nutrition Society – volume: 576 start-page: 637 issue: 2 Pt 1 year: 2016 end-page: 643 article-title: Different gene expression profiles between normal and thermally selected strains of rainbow trout, , as revealed by comprehensive transcriptome analysis publication-title: Gene – volume: 23 start-page: 307 issue: 1 year: 2017 end-page: 317 article-title: Potential for adaptation to climate change in a coral reef fish publication-title: Global Change Biology – volume: 8 start-page: 1765 issue: 9 year: 2013 end-page: 1786 article-title: Count‐based differential expression analysis of RNA sequencing data using R and Bioconductor publication-title: Nature Protocols – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 220 start-page: 2685 issue: 15 year: 2017 end-page: 2696 article-title: Oxygen‐ and capacity‐limited thermal tolerance: Bridging ecology and physiology publication-title: Journal of Experimental Biology – volume: 43 start-page: 685 issue: 11 year: 2011 end-page: 696 article-title: Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress publication-title: Physiological Genomics – volume: 26 start-page: 139 issue: 1 year: 2010 end-page: 140 article-title: edgeR: A Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – year: 1979 – volume: 22 start-page: 2841 issue: 11 year: 2013 end-page: 2847 article-title: Genotyping‐by‐sequencing in ecological and conservation genomics publication-title: Molecular Ecology – volume: 344 start-page: 895 issue: 6186 year: 2014 end-page: 898 article-title: Mechanisms of reef coral resistance to future climate change publication-title: Science – volume: 263 start-page: 1619 issue: 1377 year: 1996 end-page: 1626 article-title: Evaluating loci for use in the genetic analysis of population structure publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 21 start-page: 237 issue: 2 year: 2012 end-page: 249 article-title: A conserved haplotype controls parallel adaptation in geographically distant salmonid populations publication-title: Molecular Ecology – volume: 37 start-page: 355 issue: 3 year: 2010 end-page: 369 article-title: A DNAJB chaperone subfamily with HDAC‐dependent activities suppresses toxic protein aggregation publication-title: Molecular Cell – volume: 247 start-page: 315 issue: 5439 year: 1974 article-title: pH, salinity and temperature tolerance of Lake Magadi Tilapia publication-title: Nature – volume: 213 start-page: 912 issue: 6 year: 2010 end-page: 920 article-title: The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine “winners” and “losers” publication-title: Journal of Experimental Biology – volume: 4 start-page: 447 issue: 3 year: 2014 end-page: 460 article-title: A dense linkage map for Chinook salmon ( ) reveals variable chromosomal divergence after an ancestral whole genome duplication event publication-title: G3 (Bethesda, Md.) – volume: 2 start-page: 1113 issue: 9 year: 2012 end-page: 1127 article-title: Genetic architecture of migration‐related traits in rainbow and steelhead trout, publication-title: G3 (Bethesda, Md.) – volume: 86 start-page: 248 issue: 3 year: 1995 end-page: 249 article-title: GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism publication-title: Journal of Heredity – year: 2016 article-title: NorWeST modeled summer stream temperature scenarios for the western U.S publication-title: CO: Forest Service Research Data Archive – volume: 32 start-page: 167 issue: 3 year: 2017 end-page: 173 article-title: Who should pick the winners of climate change? publication-title: Trends in Ecology & Evolution – volume: 25 start-page: 1965 issue: 15 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 1 start-page: 1 issue: 1 year: 2013 end-page: 19 article-title: Cardiorespiratory collapse at high temperature in swimming adult sockeye salmon publication-title: Conservation Physiology – volume: 212 start-page: 3771 year: 2009 end-page: 3780 article-title: Environment, antecedents and climate change: Lessons from the study of temperature physiology and river migration of salmonids publication-title: Journal of Experimental Biology – volume: 205 start-page: 2369 issue: 10 year: 2008 end-page: 2379 article-title: The tight junction protein CAR regulates cardiac conduction and cell–cell communication publication-title: The Journal of Experimental Medicine – volume: 315 start-page: 49 issue: 5808 year: 2007 end-page: 50 article-title: The heartbreak of adapting to global warming publication-title: Science – volume: 7 start-page: 1404 issue: 6 year: 2015 end-page: 1414 article-title: Differential expression of genes that control respiration contribute to thermal adaptation in redband trout ( ) publication-title: Genome Biology and Evolution – volume: 89 start-page: 2519 issue: 6 year: 2016 end-page: 2556 article-title: On the maintenance of genetic variation and adaptation to environmental change: Considerations from population genomics in fishes publication-title: Journal of Fish Biology – volume: 25 start-page: 705 issue: 12 year: 2010 end-page: 712 article-title: Adaptation genomics: The next generation publication-title: Trends in Ecology & Evolution – volume: 289 start-page: R1177 issue: 4 year: 2005 end-page: R1184 article-title: Steady‐state effects of temperature acclimation on the transcriptome of the rainbow trout heart publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology – volume: 73 start-page: 249 issue: 2 year: 2000 end-page: 256 article-title: Time course and magnitude of synthesis of heat‐shock proteins in congeneric marine snails (Genus ) from different tidal heights publication-title: Physiological and Biochemical Zoology – volume: 219 start-page: 1941 issue: 13 year: 2016 end-page: 1952 article-title: The temperature dependence of electrical excitability in fish hearts publication-title: Journal of Experimental Biology – volume: 305 start-page: R1010 issue: 9 year: 2013 end-page: R1020 article-title: Effects of temperature acclimation on Pacific bluefin tuna ( ) cardiac transcriptome publication-title: American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology – volume: 281 start-page: 20141082 issue: 1789 year: 2014 article-title: Indirect genetic effects underlie oxygen‐limited thermal tolerance within a coastal population of chinook salmon publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 33 start-page: 1082 issue: 4 year: 2016 end-page: 1093 article-title: Detecting genomic signatures of natural selection with principal component analysis: Application to the 1000 genomes data publication-title: Molecular Biology and Evolution – year: 1983 – volume: 38 start-page: 1358 issue: 6 year: 1984 end-page: 1370 article-title: Estimating F‐statistics for the analysis of population structure publication-title: Evolution – volume: 186 start-page: S24 issue: S1 year: 2015 end-page: S36 article-title: Reliable detection of loci responsible for local adaptation: Inference of a null model through trimming the distribution of publication-title: The American Naturalist – volume: 55 start-page: 1 year: 1947 end-page: 62 article-title: Effects of the environment on animal activity publication-title: Publications of the Ontario Fisheries Research Laboratory – volume: 3 start-page: e3376 issue: 10 year: 2008 article-title: Rapid SNP discovery and genetic mapping using sequenced RAD markers publication-title: PLoS One – volume: 13 start-page: 969 issue: 4 year: 2004 end-page: 980 article-title: Identifying adaptive genetic divergence among populations from genome scans publication-title: Molecular Ecology – volume: 8 start-page: 1 issue: 1 year: 2007 end-page: 7 article-title: GeneSrF and varSelRF: A web‐based tool and R package for gene selection and classification using random forest publication-title: BMC Bioinformatics – volume: 21 start-page: 3674 issue: 18 year: 2005 end-page: 3676 article-title: Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research publication-title: Bioinformatics – volume: 180 start-page: 977 issue: 2 year: 2008 end-page: 993 article-title: A genome‐scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective publication-title: Genetics – volume: 64 start-page: 310 year: 2004 end-page: 335 article-title: Thermal tolerance and metabolic physiology among redband trout populations in south ‐ eastern Oregon publication-title: Journal of Fish Biology – volume: 23 start-page: 38 issue: 1 year: 2008 end-page: 44 article-title: Adaptation from standing genetic variation publication-title: Trends in Ecology & Evolution – year: 2016 – volume: 215 start-page: 1162 issue: Pt 7 year: 2012 end-page: 1169 article-title: Expression of SERCA and phospholamban in rainbow trout ( ) heart: Comparison of atrial and ventricular tissue and effects of thermal acclimation publication-title: Journal of Experimental Biology – volume: 23 start-page: 3469 issue: 14 year: 2014 end-page: 3482 article-title: Stress response or beneficial temperature acclimation: Transcriptomic signatures in Antarctic fish ( ) publication-title: Molecular Ecology – volume: 332 start-page: 109 issue: 6025 year: 2011 end-page: 112 article-title: Differences in thermal tolerance among sockeye salmon populations publication-title: Science – volume: 279 start-page: R2344 issue: 6 year: 2000 end-page: R2348 article-title: Intraspecific variation in aerobic metabolism and glycolytic enzyme expression in heart ventricles publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology – volume: 5 start-page: 3657 year: 2014 article-title: The rainbow trout genome provides novel insights into evolution after whole‐genome duplication in vertebrates publication-title: Nature Communications – volume: 16 start-page: 103 issue: 1 year: 2015 article-title: Transcriptomic response to heat stress among ecologically divergent populations of redband trout publication-title: BMC Genomics – volume: 19 start-page: 4622 issue: 21 year: 2010 end-page: 4637 article-title: Adaptation of redband trout in desert and montane environments publication-title: Molecular Ecology – volume: 9 start-page: 1 issue: 1 year: 2008 end-page: 5 article-title: LOSITAN: A workbench to detect molecular adaptation based on a Fst ‐outlier method publication-title: BMC Bioinformatics – volume: 22 start-page: 3090 issue: 11 year: 2013 end-page: 3097 article-title: Thermal adaptation and acclimation of ectotherms from differing aquatic climates publication-title: Molecular Ecology – volume: 24 start-page: 1758 issue: 4 year: 2004 end-page: 1768 article-title: TRAM2 protein interacts with endoplasmic reticulum Ca pump Serca2b and is necessary for collagen type I synthesis publication-title: Molecular and Cellular Biology – volume: 9 start-page: 357 issue: 4 year: 2012 end-page: 359 article-title: Fast gapped‐read alignment with Bowtie 2 publication-title: Nature Methods – volume: 25 start-page: 454 issue: 2 year: 2016 end-page: 469 article-title: Controlling false discoveries in genome scans for selection publication-title: Molecular Ecology – start-page: 1 year: 2017 end-page: 26 article-title: An evaluation of machine‐learning for predicting phenotype: Studies in yeast and wheat publication-title: bioRxiv – volume: 353 start-page: 8466 issue: 6304 year: 2016 article-title: Improving the forecast for biodiversity under climate change publication-title: Science – volume: 88 start-page: 122 issue: 1 year: 2016 end-page: 151 article-title: Measurement and relevance of maximum metabolic rate in fishes publication-title: Journal of Fish Biology – volume: 250 start-page: 120 issue: 1–2 year: 2005 end-page: 128 article-title: Genetic parameters for upper thermal tolerance and growth‐related traits in rainbow trout ( ) publication-title: Aquaculture – volume: 76 start-page: 177 issue: 3 year: 1985 end-page: 181 article-title: Production of androgenetic diploid rainbow trout publication-title: Journal of Heredity – volume: 80 start-page: 358 issue: 2 year: 2012 end-page: 377 article-title: Using maximum heart rate as a rapid screening tool to determine optimum temperature for aerobic scope in Pacific salmon spp publication-title: Journal of Fish Biology – volume: 95 start-page: 720 issue: 2 year: 2008 end-page: 728 article-title: Cardiac myosin‐binding protein c modulates the tuning of the molecular motor in the heart publication-title: Biophysical Journal – year: 2002 – volume: 57 start-page: 289 issue: 1 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society. Series B Statistical Methodology – volume: 24 start-page: 1403 issue: 11 year: 2008 end-page: 1405 article-title: adegenet: A R package for the multivariate analysis of genetic markers publication-title: Bioinformatics – volume: 322 start-page: 690 issue: 5902 year: 2008 end-page: 692 article-title: ECOLOGY: Physiology and climate change publication-title: Science – volume: 51 start-page: 807 year: 1997 end-page: 823 article-title: Field metabolic rates of rainbow trout estimated using electromyogram telemetry publication-title: Journal of Fish Biology – volume: 347 start-page: 953 issue: 6225 year: 2015 end-page: 954 article-title: Prediction, precaution, and policy under global change publication-title: Science – volume: 19 start-page: 1468 issue: 12 year: 2016 end-page: 1478 article-title: Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change publication-title: Ecology Letters – volume: 22 start-page: 3124 issue: 11 year: 2013 end-page: 3140 article-title: Stacks: An analysis tool set for population genomics publication-title: Molecular Ecology – ident: e_1_2_10_12_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_10_55_1 doi: 10.1242/jeb.134585 – year: 2016 ident: e_1_2_10_35_1 article-title: NorWeST modeled summer stream temperature scenarios for the western U.S publication-title: CO: Forest Service Research Data Archive – ident: e_1_2_10_10_1 doi: 10.1111/jfb.13145 – ident: e_1_2_10_22_1 doi: 10.1093/conphys/cot008 – ident: e_1_2_10_27_1 doi: 10.1093/gbe/evv078 – ident: e_1_2_10_39_1 doi: 10.1038/nmeth.1923 – ident: e_1_2_10_66_1 doi: 10.1128/MCB.24.4.1758-1768.2004 – ident: e_1_2_10_30_1 doi: 10.1017/S0029665110003915 – ident: e_1_2_10_3_1 doi: 10.1186/1471-2105-9-323 – ident: e_1_2_10_69_1 doi: 10.1086/316740 – ident: e_1_2_10_76_1 doi: 10.1086/682949 – ident: e_1_2_10_52_1 doi: 10.1093/oxfordjournals.jhered.a110060 – ident: e_1_2_10_62_1 doi: 10.1126/science.1261824 – ident: e_1_2_10_42_1 doi: 10.1111/eva.12137 – ident: e_1_2_10_4_1 doi: 10.1371/journal.pone.0003376 – ident: e_1_2_10_47_1 doi: 10.1186/s12864-015-1246-5 – ident: e_1_2_10_57_1 doi: 10.1152/physiolgenomics.00008.2011 – ident: e_1_2_10_8_1 doi: 10.5962/bhl.title.110986 – ident: e_1_2_10_18_1 doi: 10.1093/bioinformatics/bti610 – ident: e_1_2_10_78_1 doi: 10.1086/physzool.62.4.30157935 – ident: e_1_2_10_19_1 doi: 10.1186/1471-2105-8-328 – ident: e_1_2_10_50_1 doi: 10.1111/jfb.12796 – ident: e_1_2_10_29_1 doi: 10.1016/j.molcel.2010.01.001 – ident: e_1_2_10_5_1 doi: 10.1016/j.tree.2007.09.008 – volume: 55 start-page: 1 year: 1947 ident: e_1_2_10_26_1 article-title: Effects of the environment on animal activity publication-title: Publications of the Ontario Fisheries Research Laboratory – ident: e_1_2_10_37_1 doi: 10.1093/bioinformatics/btn129 – volume-title: Comparison of heat tolerances of redband trout, firehole river rainbow trout and Wytheville rainbow trout year: 1983 ident: e_1_2_10_64_1 – ident: e_1_2_10_45_1 doi: 10.1098/rspb.2014.1082 – ident: e_1_2_10_33_1 doi: 10.1002/joc.1276 – ident: e_1_2_10_65_1 doi: 10.1016/j.tree.2010.09.002 – ident: e_1_2_10_63_1 doi: 10.1242/jeb.037473 – ident: e_1_2_10_21_1 doi: 10.1126/science.1199158 – volume-title: Biochemical adaptation: Mechanism and process in physiological evolution year: 2002 ident: e_1_2_10_34_1 doi: 10.1093/oso/9780195117028.001.0001 – ident: e_1_2_10_11_1 doi: 10.1038/ncomms4657 – ident: e_1_2_10_61_1 doi: 10.1111/j.0022-1112.2004.00292.x – start-page: 1 year: 2017 ident: e_1_2_10_28_1 article-title: An evaluation of machine‐learning for predicting phenotype: Studies in yeast and wheat publication-title: bioRxiv – ident: e_1_2_10_14_1 doi: 10.1111/j.1095-8649.1997.tb02001.x – ident: e_1_2_10_16_1 doi: 10.1111/j.1095-8649.2011.03182.x – ident: e_1_2_10_74_1 doi: 10.1016/j.tree.2016.12.007 – ident: e_1_2_10_77_1 doi: 10.1111/mec.12822 – ident: e_1_2_10_24_1 doi: 10.1534/genetics.108.092221 – ident: e_1_2_10_20_1 doi: 10.1093/molbev/msv334 – ident: e_1_2_10_43_1 doi: 10.1111/j.1365-294X.2011.05305.x – ident: e_1_2_10_2_1 doi: 10.1038/nprot.2013.099 – ident: e_1_2_10_49_1 doi: 10.1111/mec.12240 – ident: e_1_2_10_36_1 doi: 10.1152/ajpregu.00254.2013 – ident: e_1_2_10_71_1 doi: 10.1242/jeb.128439 – ident: e_1_2_10_53_1 doi: 10.1016/j.aquaculture.2005.04.042 – ident: e_1_2_10_17_1 doi: 10.1111/mec.12354 – ident: e_1_2_10_32_1 – ident: e_1_2_10_60_1 doi: 10.1093/bioinformatics/btp616 – ident: e_1_2_10_46_1 doi: 10.1111/mec.12350 – ident: e_1_2_10_25_1 doi: 10.1111/mec.13513 – ident: e_1_2_10_7_1 doi: 10.1098/rspb.1996.0237 – ident: e_1_2_10_56_1 doi: 10.1126/science.1163156 – ident: e_1_2_10_9_1 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_10_40_1 doi: 10.1529/biophysj.107.127787 – ident: e_1_2_10_72_1 doi: 10.1152/ajpregu.00157.2005 – ident: e_1_2_10_38_1 doi: 10.1242/jeb.065102 – ident: e_1_2_10_15_1 doi: 10.1111/ele.12696 – ident: e_1_2_10_23_1 doi: 10.1242/jeb.023671 – ident: e_1_2_10_41_1 doi: 10.1084/jem.20080897 – ident: e_1_2_10_67_1 doi: 10.1016/j.gene.2015.10.028 – ident: e_1_2_10_68_1 – ident: e_1_2_10_70_1 doi: 10.1126/science.aad8466 – ident: e_1_2_10_48_1 doi: 10.1111/j.1365-294X.2010.04839.x – ident: e_1_2_10_6_1 doi: 10.1111/j.1365-294X.2004.02125.x – ident: e_1_2_10_51_1 doi: 10.1126/science.1251336 – ident: e_1_2_10_73_1 doi: 10.1126/science.1137359 – ident: e_1_2_10_13_1 doi: 10.1534/g3.113.009316 – ident: e_1_2_10_58_1 doi: 10.1093/oxfordjournals.jhered.a111573 – ident: e_1_2_10_59_1 doi: 10.1038/247315a0 – ident: e_1_2_10_75_1 doi: 10.1111/j.1558-5646.1984.tb05657.x – ident: e_1_2_10_31_1 doi: 10.1534/g3.112.003137 – ident: e_1_2_10_44_1 doi: 10.1111/gcb.13419 – ident: e_1_2_10_54_1 doi: 10.1152/ajpregu.2000.279.6.R2344 |
SSID | ssj0013255 |
Score | 2.5039675 |
Snippet | Heterogeneous and ever‐changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection... Heterogeneous and ever-changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 659 |
SubjectTerms | Adaptation aerobic scope Arid climates biochemical pathways Biodiversity Biological evolution cardiorespiratory fitness Changing environments climate Climate change Climate models critical thermal maximum Desert environments Deserts Divergence Ecological effects Ecotypes Environmental changes environmental impact Evolution Fish Fish populations Fitness Genes genetic markers genetic variation Heart diseases Heart rate Heat stress Heat tolerance Hsp40 protein Markers Maxima maximum heart rate metabolic rate multivariate analysis Oncorhynchus mykiss Oncorhynchus mykiss gairdnerii oxygen oxygen‐ and capacity‐limited thermal tolerance Populations RAD‐seq redband trout Reproductive fitness RNA‐seq Salmon selection pressure Species stress response Thermal environments tissues Trout |
Title | Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.14475 https://www.ncbi.nlm.nih.gov/pubmed/29290103 https://www.proquest.com/docview/2022075848 https://www.proquest.com/docview/1983255998 https://www.proquest.com/docview/2053880465 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA6LIPjifawXUXzwpdJN0gufZFkRYX0QBR-EkmtBdNvFdgX99c6kB-uJ-FIKndCkzSTfZGa-IeTI-FqbIEo8xYMIDBTBPBVL3zMjg04-ESh3oD-8Ci9uxeVdcNchp00uTMUP0R64oWa49RoVXKpiRsnHVqNnMsIEc4zVQkB0zWY8CK7iKSB0BktNzGtWIYziaVt-3Iu-AMyPeNVtOOdL5L7pahVn8ngyLdWJfvvE4vjPsSyTxRqI0rNq5qyQjs1WyXxVmvIV7gaOzvp1jeRDi9nBD8W4oPmIImAcQ0Np5KRy41OZGWpf6jkMnaCTvMQgJJCCBmBwYzonhiTBg6ZcWEHLnLqsY9g76Wy63Tq5PR_c9C-8ukyDp9EpClclQ5tobYXSgGcYD0SkwdpFdjxfsp7mhplQA7hUfmBijeSgPreJ4RpWj4hvkLksz-wWoZKHSozAhBJSiCQ2CgCE7SGbKOyhOrRdctz8sFTXHOZYSuMpbWwZ-JKp-5JdctiKTiriju-Edpu_nta6W6QMk4_BjBJxlxy0j0Hr0JUiM5tPi7SXxNyRtf0iw2B9g_GJEF6zWc2oticsQf-1z2FAbl783MV0OOi7m-2_i-6QBcB1cRVcvkvmyuep3QPsVKp9pyTvsO8UGg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9RADLZKEYIL78LSAgMCiUuq7MzkdeCA2q22tNsDaqXewrxWQrDJimRBy2_qX-l_qj15aMtLXHrgEkWKE81kbI89tj8DvLKhMTZKskCLKEEHRfJApyoM7NRSkE9G2h_oT47i8Yl8fxqdrsFZVwvT4EP0B24kGV5fk4DTgfSKlM-codBk0qVUHrjld3TYqrf7u7i6rznfGx3vjIO2p0BgKIKHV61ilxnjpDa4-XIRycSga0ZQbqHiQyMst7FBS0iHkU0NIVmGwmVWGGT1ROB3r8F16iBOSP27H_hKzML3WEWfgKNyS0WLY0R5Q_1QL-9-v5i0ly1kv8Xt3YHz7uc0mS2ftxe13jY_fsKN_F_-3l243dra7F0jHPdgzRX34UbTfXOJdyOP2L18AOXEUQH0p2pWsXLKyCae4YvKqnmTqcBUYZn71oopzprNy5ryrJAKXzAounPnsxvxQdcRrWJ1yXxhNZoHbLWi8CGcXMm8N2C9KAv3GJgSsZZT9BKlkjJLrUYbyQ0JMBXNBBO7AbzpOCQ3LUw7dQv5knfuGq5c7lduAC970nmDTfI7oq2OzfJWPVU5p_pq9BRlOoAX_WNULBQtUoUrF1U-zFLh8ej-QsNRheP8UBoG8Khh4X4kPKMQfShwQp4R_zzEfDLa8TdP_p30OdwcH08O88P9o4NNuIVmbNrk0m_Bev114Z6iqVjrZ15CGXy8aqa-ADk-b3o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9RADLZKEYgL78dCgQGBxCVVdmbyOnBA3V21lK0QolJvYV4rIdgkIlnQ8pf4K_wo7MlDW17i0gOXKFKcZCZje-zY_gzwxIbG2CjJAi2iBB0UyQOdqjCwC0tBPhlp_0N_fhTvH8uXJ9HJFnzra2FafIjhhxtJhtfXJOCVXWwI-dIZikwmfUbloVt_QX-tfn4wwcV9yvls-nZvP-haCgSGAnh41Cp2mTFOaoN7LxeRTAx6ZoTkFio-NsJyGxs0hHQY2dQQkGUoXGaFQU5PBD73HJyXcZhRn4jJG74RsvAtVtEl4KjbUtHBGFHa0DDU05vfLxbtaQPZ73CzK_C9_zZtYsuH3VWjd83Xn2Aj_5OPdxUud5Y2e9GKxjXYcsV1uND23lzj2dTjda9vQDl3VP78vl7WrFwwsoiXeKOyqmrzFJgqLHOfOyHFSbOqbCjLCqnwBoOCWzmf24gX-n5oNWtK5suq0Thgm_WEN-H4TOZ9C7aLsnB3gCkRa7lAH1EqKbPUarSQ3JjgUtFIMLEbwbOeQXLTgbRTr5CPee-s4crlfuVG8HggrVpkkt8R7fRclnfKqc45VVejnyjTETwaLqNaoViRKly5qvNxlgqPRvcXGo4KHOcnY3zN7ZaDh5HwjAL0ocAJeT788xDz-XTPn9z9d9KHcPH1ZJa_Ojg6vAeX0IZN20T6HdhuPq3cfbQTG_3AyyeDd2fN0z8AXmRuKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+thermal+adaptation+and+evolutionary+potential+of+conspecific+populations+to+changing+environments&rft.jtitle=Molecular+ecology&rft.au=Chen%2C+Zhongqi&rft.au=Farrell%2C+Anthony+P&rft.au=Matala%2C+Amanda&rft.au=Narum%2C+Shawn+R&rft.date=2018-02-01&rft.issn=1365-294X&rft.eissn=1365-294X&rft.volume=27&rft.issue=3&rft.spage=659&rft_id=info:doi/10.1111%2Fmec.14475&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |