Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments

Heterogeneous and ever‐changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolution...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 27; no. 3; pp. 659 - 674
Main Authors Chen, Zhongqi, Farrell, Anthony P., Matala, Amanda, Narum, Shawn R.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heterogeneous and ever‐changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations (Oncorhynchus mykiss gairdneri) in cardiorespiratory function, cellular response and genomic variation. In a common garden environment, fish from an extreme desert climate had significantly higher critical thermal maximum (p < .05) and broader optimum thermal window for aerobic scope (>3°C) than fish from cooler montane climate. In addition, the desert population had the highest maximum heart rate during warming (20% greater than montane populations), indicating improved capacity to deliver oxygen to internal tissues. In response to acute heat stress, distinct sets of cardiac genes were induced among ecotypes, which helps to explain the differences in cardiorespiratory function. Candidate genomic markers and genes underlying these physiological adaptations were also pinpointed, such as genes involved in stress response and metabolic activity (hsp40, ldh‐b and camkk2). These markers were developed into a multivariate model that not only accurately predicted critical thermal maxima, but also evolutionary limit of thermal adaptation in these specific redband trout populations relative to the expected limit for the species. This study demonstrates mechanisms and limitations of an aquatic species to evolve under changing environments that can be incorporated into advanced models to predict ecological consequences of climate change for natural organisms.
AbstractList Heterogeneous and ever‐changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations (Oncorhynchus mykiss gairdneri) in cardiorespiratory function, cellular response and genomic variation. In a common garden environment, fish from an extreme desert climate had significantly higher critical thermal maximum (p < .05) and broader optimum thermal window for aerobic scope (>3°C) than fish from cooler montane climate. In addition, the desert population had the highest maximum heart rate during warming (20% greater than montane populations), indicating improved capacity to deliver oxygen to internal tissues. In response to acute heat stress, distinct sets of cardiac genes were induced among ecotypes, which helps to explain the differences in cardiorespiratory function. Candidate genomic markers and genes underlying these physiological adaptations were also pinpointed, such as genes involved in stress response and metabolic activity (hsp40, ldh‐b and camkk2). These markers were developed into a multivariate model that not only accurately predicted critical thermal maxima, but also evolutionary limit of thermal adaptation in these specific redband trout populations relative to the expected limit for the species. This study demonstrates mechanisms and limitations of an aquatic species to evolve under changing environments that can be incorporated into advanced models to predict ecological consequences of climate change for natural organisms.
Heterogeneous and ever‐changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations (Oncorhynchus mykiss gairdneri) in cardiorespiratory function, cellular response and genomic variation. In a common garden environment, fish from an extreme desert climate had significantly higher critical thermal maximum (p < .05) and broader optimum thermal window for aerobic scope (>3°C) than fish from cooler montane climate. In addition, the desert population had the highest maximum heart rate during warming (20% greater than montane populations), indicating improved capacity to deliver oxygen to internal tissues. In response to acute heat stress, distinct sets of cardiac genes were induced among ecotypes, which helps to explain the differences in cardiorespiratory function. Candidate genomic markers and genes underlying these physiological adaptations were also pinpointed, such as genes involved in stress response and metabolic activity (hsp40, ldh‐b and camkk2). These markers were developed into a multivariate model that not only accurately predicted critical thermal maxima, but also evolutionary limit of thermal adaptation in these specific redband trout populations relative to the expected limit for the species. This study demonstrates mechanisms and limitations of an aquatic species to evolve under changing environments that can be incorporated into advanced models to predict ecological consequences of climate change for natural organisms.
Heterogeneous and ever‐changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations ( Oncorhynchus mykiss gairdneri ) in cardiorespiratory function, cellular response and genomic variation. In a common garden environment, fish from an extreme desert climate had significantly higher critical thermal maximum ( p  <   .05) and broader optimum thermal window for aerobic scope (>3°C) than fish from cooler montane climate. In addition, the desert population had the highest maximum heart rate during warming (20% greater than montane populations), indicating improved capacity to deliver oxygen to internal tissues. In response to acute heat stress, distinct sets of cardiac genes were induced among ecotypes, which helps to explain the differences in cardiorespiratory function. Candidate genomic markers and genes underlying these physiological adaptations were also pinpointed, such as genes involved in stress response and metabolic activity ( hsp40 , ldh‐b and camkk2 ). These markers were developed into a multivariate model that not only accurately predicted critical thermal maxima, but also evolutionary limit of thermal adaptation in these specific redband trout populations relative to the expected limit for the species. This study demonstrates mechanisms and limitations of an aquatic species to evolve under changing environments that can be incorporated into advanced models to predict ecological consequences of climate change for natural organisms.
Heterogeneous and ever-changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations (Oncorhynchus mykiss gairdneri) in cardiorespiratory function, cellular response and genomic variation. In a common garden environment, fish from an extreme desert climate had significantly higher critical thermal maximum (p < .05) and broader optimum thermal window for aerobic scope (>3°C) than fish from cooler montane climate. In addition, the desert population had the highest maximum heart rate during warming (20% greater than montane populations), indicating improved capacity to deliver oxygen to internal tissues. In response to acute heat stress, distinct sets of cardiac genes were induced among ecotypes, which helps to explain the differences in cardiorespiratory function. Candidate genomic markers and genes underlying these physiological adaptations were also pinpointed, such as genes involved in stress response and metabolic activity (hsp40, ldh-b and camkk2). These markers were developed into a multivariate model that not only accurately predicted critical thermal maxima, but also evolutionary limit of thermal adaptation in these specific redband trout populations relative to the expected limit for the species. This study demonstrates mechanisms and limitations of an aquatic species to evolve under changing environments that can be incorporated into advanced models to predict ecological consequences of climate change for natural organisms.Heterogeneous and ever-changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations (Oncorhynchus mykiss gairdneri) in cardiorespiratory function, cellular response and genomic variation. In a common garden environment, fish from an extreme desert climate had significantly higher critical thermal maximum (p < .05) and broader optimum thermal window for aerobic scope (>3°C) than fish from cooler montane climate. In addition, the desert population had the highest maximum heart rate during warming (20% greater than montane populations), indicating improved capacity to deliver oxygen to internal tissues. In response to acute heat stress, distinct sets of cardiac genes were induced among ecotypes, which helps to explain the differences in cardiorespiratory function. Candidate genomic markers and genes underlying these physiological adaptations were also pinpointed, such as genes involved in stress response and metabolic activity (hsp40, ldh-b and camkk2). These markers were developed into a multivariate model that not only accurately predicted critical thermal maxima, but also evolutionary limit of thermal adaptation in these specific redband trout populations relative to the expected limit for the species. This study demonstrates mechanisms and limitations of an aquatic species to evolve under changing environments that can be incorporated into advanced models to predict ecological consequences of climate change for natural organisms.
Author Chen, Zhongqi
Farrell, Anthony P.
Narum, Shawn R.
Matala, Amanda
Author_xml – sequence: 1
  givenname: Zhongqi
  orcidid: 0000-0003-0575-7013
  surname: Chen
  fullname: Chen, Zhongqi
  organization: The University of British Columbia
– sequence: 2
  givenname: Anthony P.
  surname: Farrell
  fullname: Farrell, Anthony P.
  organization: The University of British Columbia
– sequence: 3
  givenname: Amanda
  surname: Matala
  fullname: Matala, Amanda
  organization: Columbia River Inter‐Tribal Fish Commission
– sequence: 4
  givenname: Shawn R.
  surname: Narum
  fullname: Narum, Shawn R.
  email: nars@critfc.org
  organization: Columbia River Inter‐Tribal Fish Commission
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29290103$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLJDEUhcOgjG3PLOYPDAE3umjNsx5LaXyB4kZhdiF967ZGqpKapErx35uy2404TBa5hHznkJyzT3Z88EjIL86OeV4nHcIxV6rU38iMy0IvRK3-7JAZqwux4KySe2Q_pSfGuBRafyd7ohY140zOSLhBeLTepS7RsKbDI8bOttQ2th_s4IKn1jcUn0M7TicbX2kfBvSDy1QWQPCpR3BrB_miH9t3UaJDoJPvg_MPFP2zi8F3WZV-kN21bRP-3M45uT8_u1teLq5vL66Wp9cLUFrovK9sgTUAqhXoSgmpVQmiVKwSFbOCg2xEUwDjxYrppgJeaskk1o2EqmKlnJPDjW8fw98R02A6lwDb1noMYzKCaZlBVej_oryuptjqPObk4BP6FMbo80eyoRCszE-dqN9balx12Jg-ui4HZz5Sz8DJBoAYUoq4NuA2aQ_RutZwZqZeTe7VvPeaFUefFB-mX7Fb9xfX4uu_QXNzttwo3gC1V7Gu
CitedBy_id crossref_primary_10_1016_j_aquaculture_2018_09_017
crossref_primary_10_1016_j_fsi_2019_03_014
crossref_primary_10_1038_s41598_021_00695_8
crossref_primary_10_1007_s11160_020_09632_w
crossref_primary_10_1111_faf_12808
crossref_primary_10_1111_mec_15717
crossref_primary_10_1002_fsh_10726
crossref_primary_10_1007_s10750_022_04862_4
crossref_primary_10_1111_jfb_16015
crossref_primary_10_1139_cjfas_2020_0377
crossref_primary_10_1111_jfb_14159
crossref_primary_10_3390_ijms22126295
crossref_primary_10_1016_j_aqrep_2023_101733
crossref_primary_10_3390_biology8020046
crossref_primary_10_1111_eva_13663
crossref_primary_10_3389_fphys_2018_01895
crossref_primary_10_1111_jfd_14046
crossref_primary_10_3390_cli13030044
crossref_primary_10_1002_ece3_9053
crossref_primary_10_1002_lol2_10274
crossref_primary_10_1007_s10750_021_04648_0
crossref_primary_10_1242_jeb_178590
crossref_primary_10_1038_s41598_023_41173_7
crossref_primary_10_1093_conphys_coz098
crossref_primary_10_1016_j_tree_2019_02_013
crossref_primary_10_1111_jfb_14620
crossref_primary_10_1242_jeb_247928
crossref_primary_10_1093_conphys_coae086
crossref_primary_10_3389_fmars_2023_1175176
crossref_primary_10_1016_j_jtherbio_2023_103695
crossref_primary_10_1242_jeb_186189
crossref_primary_10_1111_eva_13655
crossref_primary_10_1111_eva_13335
crossref_primary_10_1152_physiol_00040_2018
crossref_primary_10_1038_s41598_022_25419_4
crossref_primary_10_1016_j_jtherbio_2020_102691
crossref_primary_10_1093_conphys_coz063
crossref_primary_10_1111_fwb_13371
crossref_primary_10_1186_s12864_021_07954_y
crossref_primary_10_1016_j_aqrep_2024_102249
crossref_primary_10_1016_j_aquatox_2022_106145
crossref_primary_10_1002_tafs_10059
crossref_primary_10_1093_conphys_coab101
crossref_primary_10_1111_gcb_14386
crossref_primary_10_1016_j_jtherbio_2024_103863
crossref_primary_10_1111_eva_12877
crossref_primary_10_1242_jeb_244305
crossref_primary_10_1111_eva_12672
crossref_primary_10_1002_ece3_9994
crossref_primary_10_1038_s41598_023_44574_w
crossref_primary_10_1093_jhered_esz045
crossref_primary_10_1016_j_gca_2024_09_016
crossref_primary_10_3389_fgene_2020_564515
crossref_primary_10_1073_pnas_1921124117
crossref_primary_10_1016_j_jtherbio_2020_102559
crossref_primary_10_1242_jeb_249450
crossref_primary_10_1111_eva_13680
crossref_primary_10_1111_mec_16810
crossref_primary_10_1111_gcb_70100
crossref_primary_10_1242_jeb_238840
crossref_primary_10_1111_evo_14399
crossref_primary_10_1093_icb_icac073
crossref_primary_10_1016_j_jtherbio_2024_103970
crossref_primary_10_1002_eco_2241
crossref_primary_10_1111_mec_14709
crossref_primary_10_1128_msystems_00228_21
Cites_doi 10.1023/A:1010933404324
10.1242/jeb.134585
10.1111/jfb.13145
10.1093/conphys/cot008
10.1093/gbe/evv078
10.1038/nmeth.1923
10.1128/MCB.24.4.1758-1768.2004
10.1017/S0029665110003915
10.1186/1471-2105-9-323
10.1086/316740
10.1086/682949
10.1093/oxfordjournals.jhered.a110060
10.1126/science.1261824
10.1111/eva.12137
10.1371/journal.pone.0003376
10.1186/s12864-015-1246-5
10.1152/physiolgenomics.00008.2011
10.5962/bhl.title.110986
10.1093/bioinformatics/bti610
10.1086/physzool.62.4.30157935
10.1186/1471-2105-8-328
10.1111/jfb.12796
10.1016/j.molcel.2010.01.001
10.1016/j.tree.2007.09.008
10.1093/bioinformatics/btn129
10.1098/rspb.2014.1082
10.1002/joc.1276
10.1016/j.tree.2010.09.002
10.1242/jeb.037473
10.1126/science.1199158
10.1093/oso/9780195117028.001.0001
10.1038/ncomms4657
10.1111/j.0022-1112.2004.00292.x
10.1111/j.1095-8649.1997.tb02001.x
10.1111/j.1095-8649.2011.03182.x
10.1016/j.tree.2016.12.007
10.1111/mec.12822
10.1534/genetics.108.092221
10.1093/molbev/msv334
10.1111/j.1365-294X.2011.05305.x
10.1038/nprot.2013.099
10.1111/mec.12240
10.1152/ajpregu.00254.2013
10.1242/jeb.128439
10.1016/j.aquaculture.2005.04.042
10.1111/mec.12354
10.1093/bioinformatics/btp616
10.1111/mec.12350
10.1111/mec.13513
10.1098/rspb.1996.0237
10.1126/science.1163156
10.1111/j.2517-6161.1995.tb02031.x
10.1529/biophysj.107.127787
10.1152/ajpregu.00157.2005
10.1242/jeb.065102
10.1111/ele.12696
10.1242/jeb.023671
10.1084/jem.20080897
10.1016/j.gene.2015.10.028
10.1126/science.aad8466
10.1111/j.1365-294X.2010.04839.x
10.1111/j.1365-294X.2004.02125.x
10.1126/science.1251336
10.1126/science.1137359
10.1534/g3.113.009316
10.1093/oxfordjournals.jhered.a111573
10.1038/247315a0
10.1111/j.1558-5646.1984.tb05657.x
10.1534/g3.112.003137
10.1111/gcb.13419
10.1152/ajpregu.2000.279.6.R2344
ContentType Journal Article
Copyright 2017 John Wiley & Sons Ltd
2017 John Wiley & Sons Ltd.
Copyright © 2018 John Wiley & Sons Ltd
Copyright_xml – notice: 2017 John Wiley & Sons Ltd
– notice: 2017 John Wiley & Sons Ltd.
– notice: Copyright © 2018 John Wiley & Sons Ltd
DBID AAYXX
CITATION
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/mec.14475
DatabaseName CrossRef
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Entomology Abstracts
CrossRef
MEDLINE - Academic
AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 674
ExternalDocumentID 29290103
10_1111_mec_14475
MEC14475
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4525-c4ba6e9cce4bc58423547c27408280a21c3d2d6c016b05d8c175303e9d3c88073
IEDL.DBID DR2
ISSN 0962-1083
1365-294X
IngestDate Fri Jul 11 18:39:59 EDT 2025
Thu Jul 10 22:15:30 EDT 2025
Wed Aug 13 03:29:34 EDT 2025
Mon Jul 21 05:58:27 EDT 2025
Tue Jul 01 03:22:01 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Wed Jan 22 16:20:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords RNA-seq
redband trout
maximum heart rate
RAD-seq
critical thermal maximum
metabolic rate
oxygen- and capacity-limited thermal tolerance
aerobic scope
climate change
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4525-c4ba6e9cce4bc58423547c27408280a21c3d2d6c016b05d8c175303e9d3c88073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0575-7013
PMID 29290103
PQID 2022075848
PQPubID 31465
PageCount 16
ParticipantIDs proquest_miscellaneous_2053880465
proquest_miscellaneous_1983255998
proquest_journals_2022075848
pubmed_primary_29290103
crossref_citationtrail_10_1111_mec_14475
crossref_primary_10_1111_mec_14475
wiley_primary_10_1111_mec_14475_MEC14475
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2018
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2004; 64
2005; 250
2013; 1
2013; 22
2015; 347
2010; 19
2015; 186
2004; 24
2008; 9
2005; 21
2008; 3
1996; 263
2013; 8
2001; 45
2014; 23
1979
2016; 33
2005; 25
2014; 5
1997; 51
2014; 4
2010; 26
2010; 25
2011; 70
2017; 32
2007; 8
2008; 23
2016; 353
2008; 24
1983
2014; 281
2012; 215
2014; 7
2012; 21
2016; 89
2016; 88
1989; 62
2012; 80
2010; 37
2015; 16
2016; 19
2000; 279
1995; 57
2013; 305
2017; 23
2000; 73
2009; 212
2008; 205
1974; 247
2002
2008; 322
2008; 95
2015; 7
2011; 332
1995; 86
2008; 180
2012; 2
2007; 315
2016; 219
1984; 38
1947; 55
2005; 289
2010; 213
2004; 13
2017
2011; 43
2016
2017; 220
2016; 576
1985; 76
2016; 25
2012; 9
2014; 344
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Hochachka P. W. (e_1_2_10_34_1) 2002
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
Isaak D. J. (e_1_2_10_35_1) 2016
e_1_2_10_73_1
Fry F. E. J. (e_1_2_10_26_1) 1947; 55
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Grinberg N. F. (e_1_2_10_28_1) 2017
e_1_2_10_60_1
e_1_2_10_62_1
Sonski A. J. (e_1_2_10_64_1) 1983
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 7
  start-page: 1
  issue: 1
  year: 2014
  end-page: 14
  article-title: Climate change, adaptation, and phenotypic plasticity: The problem and the evidence
  publication-title: Evolutionary Applications
– volume: 62
  start-page: 888
  issue: 4
  year: 1989
  end-page: 907
  article-title: Physiological regulation and conformation: A BASIC program for the determination of critical points
  publication-title: Physiological Zoology
– volume: 70
  start-page: 92
  issue: 1
  year: 2011
  end-page: 99
  article-title: Energy sensing by the AMP‐activated protein kinase and its effects on muscle metabolism
  publication-title: Proceedings of the Nutrition Society
– volume: 576
  start-page: 637
  issue: 2 Pt 1
  year: 2016
  end-page: 643
  article-title: Different gene expression profiles between normal and thermally selected strains of rainbow trout, , as revealed by comprehensive transcriptome analysis
  publication-title: Gene
– volume: 23
  start-page: 307
  issue: 1
  year: 2017
  end-page: 317
  article-title: Potential for adaptation to climate change in a coral reef fish
  publication-title: Global Change Biology
– volume: 8
  start-page: 1765
  issue: 9
  year: 2013
  end-page: 1786
  article-title: Count‐based differential expression analysis of RNA sequencing data using R and Bioconductor
  publication-title: Nature Protocols
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 220
  start-page: 2685
  issue: 15
  year: 2017
  end-page: 2696
  article-title: Oxygen‐ and capacity‐limited thermal tolerance: Bridging ecology and physiology
  publication-title: Journal of Experimental Biology
– volume: 43
  start-page: 685
  issue: 11
  year: 2011
  end-page: 696
  article-title: Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress
  publication-title: Physiological Genomics
– volume: 26
  start-page: 139
  issue: 1
  year: 2010
  end-page: 140
  article-title: edgeR: A Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– year: 1979
– volume: 22
  start-page: 2841
  issue: 11
  year: 2013
  end-page: 2847
  article-title: Genotyping‐by‐sequencing in ecological and conservation genomics
  publication-title: Molecular Ecology
– volume: 344
  start-page: 895
  issue: 6186
  year: 2014
  end-page: 898
  article-title: Mechanisms of reef coral resistance to future climate change
  publication-title: Science
– volume: 263
  start-page: 1619
  issue: 1377
  year: 1996
  end-page: 1626
  article-title: Evaluating loci for use in the genetic analysis of population structure
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 21
  start-page: 237
  issue: 2
  year: 2012
  end-page: 249
  article-title: A conserved haplotype controls parallel adaptation in geographically distant salmonid populations
  publication-title: Molecular Ecology
– volume: 37
  start-page: 355
  issue: 3
  year: 2010
  end-page: 369
  article-title: A DNAJB chaperone subfamily with HDAC‐dependent activities suppresses toxic protein aggregation
  publication-title: Molecular Cell
– volume: 247
  start-page: 315
  issue: 5439
  year: 1974
  article-title: pH, salinity and temperature tolerance of Lake Magadi Tilapia
  publication-title: Nature
– volume: 213
  start-page: 912
  issue: 6
  year: 2010
  end-page: 920
  article-title: The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine “winners” and “losers”
  publication-title: Journal of Experimental Biology
– volume: 4
  start-page: 447
  issue: 3
  year: 2014
  end-page: 460
  article-title: A dense linkage map for Chinook salmon ( ) reveals variable chromosomal divergence after an ancestral whole genome duplication event
  publication-title: G3 (Bethesda, Md.)
– volume: 2
  start-page: 1113
  issue: 9
  year: 2012
  end-page: 1127
  article-title: Genetic architecture of migration‐related traits in rainbow and steelhead trout,
  publication-title: G3 (Bethesda, Md.)
– volume: 86
  start-page: 248
  issue: 3
  year: 1995
  end-page: 249
  article-title: GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism
  publication-title: Journal of Heredity
– year: 2016
  article-title: NorWeST modeled summer stream temperature scenarios for the western U.S
  publication-title: CO: Forest Service Research Data Archive
– volume: 32
  start-page: 167
  issue: 3
  year: 2017
  end-page: 173
  article-title: Who should pick the winners of climate change?
  publication-title: Trends in Ecology & Evolution
– volume: 25
  start-page: 1965
  issue: 15
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 1
  start-page: 1
  issue: 1
  year: 2013
  end-page: 19
  article-title: Cardiorespiratory collapse at high temperature in swimming adult sockeye salmon
  publication-title: Conservation Physiology
– volume: 212
  start-page: 3771
  year: 2009
  end-page: 3780
  article-title: Environment, antecedents and climate change: Lessons from the study of temperature physiology and river migration of salmonids
  publication-title: Journal of Experimental Biology
– volume: 205
  start-page: 2369
  issue: 10
  year: 2008
  end-page: 2379
  article-title: The tight junction protein CAR regulates cardiac conduction and cell–cell communication
  publication-title: The Journal of Experimental Medicine
– volume: 315
  start-page: 49
  issue: 5808
  year: 2007
  end-page: 50
  article-title: The heartbreak of adapting to global warming
  publication-title: Science
– volume: 7
  start-page: 1404
  issue: 6
  year: 2015
  end-page: 1414
  article-title: Differential expression of genes that control respiration contribute to thermal adaptation in redband trout ( )
  publication-title: Genome Biology and Evolution
– volume: 89
  start-page: 2519
  issue: 6
  year: 2016
  end-page: 2556
  article-title: On the maintenance of genetic variation and adaptation to environmental change: Considerations from population genomics in fishes
  publication-title: Journal of Fish Biology
– volume: 25
  start-page: 705
  issue: 12
  year: 2010
  end-page: 712
  article-title: Adaptation genomics: The next generation
  publication-title: Trends in Ecology & Evolution
– volume: 289
  start-page: R1177
  issue: 4
  year: 2005
  end-page: R1184
  article-title: Steady‐state effects of temperature acclimation on the transcriptome of the rainbow trout heart
  publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
– volume: 73
  start-page: 249
  issue: 2
  year: 2000
  end-page: 256
  article-title: Time course and magnitude of synthesis of heat‐shock proteins in congeneric marine snails (Genus ) from different tidal heights
  publication-title: Physiological and Biochemical Zoology
– volume: 219
  start-page: 1941
  issue: 13
  year: 2016
  end-page: 1952
  article-title: The temperature dependence of electrical excitability in fish hearts
  publication-title: Journal of Experimental Biology
– volume: 305
  start-page: R1010
  issue: 9
  year: 2013
  end-page: R1020
  article-title: Effects of temperature acclimation on Pacific bluefin tuna ( ) cardiac transcriptome
  publication-title: American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology
– volume: 281
  start-page: 20141082
  issue: 1789
  year: 2014
  article-title: Indirect genetic effects underlie oxygen‐limited thermal tolerance within a coastal population of chinook salmon
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 33
  start-page: 1082
  issue: 4
  year: 2016
  end-page: 1093
  article-title: Detecting genomic signatures of natural selection with principal component analysis: Application to the 1000 genomes data
  publication-title: Molecular Biology and Evolution
– year: 1983
– volume: 38
  start-page: 1358
  issue: 6
  year: 1984
  end-page: 1370
  article-title: Estimating F‐statistics for the analysis of population structure
  publication-title: Evolution
– volume: 186
  start-page: S24
  issue: S1
  year: 2015
  end-page: S36
  article-title: Reliable detection of loci responsible for local adaptation: Inference of a null model through trimming the distribution of
  publication-title: The American Naturalist
– volume: 55
  start-page: 1
  year: 1947
  end-page: 62
  article-title: Effects of the environment on animal activity
  publication-title: Publications of the Ontario Fisheries Research Laboratory
– volume: 3
  start-page: e3376
  issue: 10
  year: 2008
  article-title: Rapid SNP discovery and genetic mapping using sequenced RAD markers
  publication-title: PLoS One
– volume: 13
  start-page: 969
  issue: 4
  year: 2004
  end-page: 980
  article-title: Identifying adaptive genetic divergence among populations from genome scans
  publication-title: Molecular Ecology
– volume: 8
  start-page: 1
  issue: 1
  year: 2007
  end-page: 7
  article-title: GeneSrF and varSelRF: A web‐based tool and R package for gene selection and classification using random forest
  publication-title: BMC Bioinformatics
– volume: 21
  start-page: 3674
  issue: 18
  year: 2005
  end-page: 3676
  article-title: Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research
  publication-title: Bioinformatics
– volume: 180
  start-page: 977
  issue: 2
  year: 2008
  end-page: 993
  article-title: A genome‐scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective
  publication-title: Genetics
– volume: 64
  start-page: 310
  year: 2004
  end-page: 335
  article-title: Thermal tolerance and metabolic physiology among redband trout populations in south ‐ eastern Oregon
  publication-title: Journal of Fish Biology
– volume: 23
  start-page: 38
  issue: 1
  year: 2008
  end-page: 44
  article-title: Adaptation from standing genetic variation
  publication-title: Trends in Ecology & Evolution
– year: 2016
– volume: 215
  start-page: 1162
  issue: Pt 7
  year: 2012
  end-page: 1169
  article-title: Expression of SERCA and phospholamban in rainbow trout ( ) heart: Comparison of atrial and ventricular tissue and effects of thermal acclimation
  publication-title: Journal of Experimental Biology
– volume: 23
  start-page: 3469
  issue: 14
  year: 2014
  end-page: 3482
  article-title: Stress response or beneficial temperature acclimation: Transcriptomic signatures in Antarctic fish ( )
  publication-title: Molecular Ecology
– volume: 332
  start-page: 109
  issue: 6025
  year: 2011
  end-page: 112
  article-title: Differences in thermal tolerance among sockeye salmon populations
  publication-title: Science
– volume: 279
  start-page: R2344
  issue: 6
  year: 2000
  end-page: R2348
  article-title: Intraspecific variation in aerobic metabolism and glycolytic enzyme expression in heart ventricles
  publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
– volume: 5
  start-page: 3657
  year: 2014
  article-title: The rainbow trout genome provides novel insights into evolution after whole‐genome duplication in vertebrates
  publication-title: Nature Communications
– volume: 16
  start-page: 103
  issue: 1
  year: 2015
  article-title: Transcriptomic response to heat stress among ecologically divergent populations of redband trout
  publication-title: BMC Genomics
– volume: 19
  start-page: 4622
  issue: 21
  year: 2010
  end-page: 4637
  article-title: Adaptation of redband trout in desert and montane environments
  publication-title: Molecular Ecology
– volume: 9
  start-page: 1
  issue: 1
  year: 2008
  end-page: 5
  article-title: LOSITAN: A workbench to detect molecular adaptation based on a Fst ‐outlier method
  publication-title: BMC Bioinformatics
– volume: 22
  start-page: 3090
  issue: 11
  year: 2013
  end-page: 3097
  article-title: Thermal adaptation and acclimation of ectotherms from differing aquatic climates
  publication-title: Molecular Ecology
– volume: 24
  start-page: 1758
  issue: 4
  year: 2004
  end-page: 1768
  article-title: TRAM2 protein interacts with endoplasmic reticulum Ca pump Serca2b and is necessary for collagen type I synthesis
  publication-title: Molecular and Cellular Biology
– volume: 9
  start-page: 357
  issue: 4
  year: 2012
  end-page: 359
  article-title: Fast gapped‐read alignment with Bowtie 2
  publication-title: Nature Methods
– volume: 25
  start-page: 454
  issue: 2
  year: 2016
  end-page: 469
  article-title: Controlling false discoveries in genome scans for selection
  publication-title: Molecular Ecology
– start-page: 1
  year: 2017
  end-page: 26
  article-title: An evaluation of machine‐learning for predicting phenotype: Studies in yeast and wheat
  publication-title: bioRxiv
– volume: 353
  start-page: 8466
  issue: 6304
  year: 2016
  article-title: Improving the forecast for biodiversity under climate change
  publication-title: Science
– volume: 88
  start-page: 122
  issue: 1
  year: 2016
  end-page: 151
  article-title: Measurement and relevance of maximum metabolic rate in fishes
  publication-title: Journal of Fish Biology
– volume: 250
  start-page: 120
  issue: 1–2
  year: 2005
  end-page: 128
  article-title: Genetic parameters for upper thermal tolerance and growth‐related traits in rainbow trout ( )
  publication-title: Aquaculture
– volume: 76
  start-page: 177
  issue: 3
  year: 1985
  end-page: 181
  article-title: Production of androgenetic diploid rainbow trout
  publication-title: Journal of Heredity
– volume: 80
  start-page: 358
  issue: 2
  year: 2012
  end-page: 377
  article-title: Using maximum heart rate as a rapid screening tool to determine optimum temperature for aerobic scope in Pacific salmon spp
  publication-title: Journal of Fish Biology
– volume: 95
  start-page: 720
  issue: 2
  year: 2008
  end-page: 728
  article-title: Cardiac myosin‐binding protein c modulates the tuning of the molecular motor in the heart
  publication-title: Biophysical Journal
– year: 2002
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society. Series B Statistical Methodology
– volume: 24
  start-page: 1403
  issue: 11
  year: 2008
  end-page: 1405
  article-title: adegenet: A R package for the multivariate analysis of genetic markers
  publication-title: Bioinformatics
– volume: 322
  start-page: 690
  issue: 5902
  year: 2008
  end-page: 692
  article-title: ECOLOGY: Physiology and climate change
  publication-title: Science
– volume: 51
  start-page: 807
  year: 1997
  end-page: 823
  article-title: Field metabolic rates of rainbow trout estimated using electromyogram telemetry
  publication-title: Journal of Fish Biology
– volume: 347
  start-page: 953
  issue: 6225
  year: 2015
  end-page: 954
  article-title: Prediction, precaution, and policy under global change
  publication-title: Science
– volume: 19
  start-page: 1468
  issue: 12
  year: 2016
  end-page: 1478
  article-title: Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change
  publication-title: Ecology Letters
– volume: 22
  start-page: 3124
  issue: 11
  year: 2013
  end-page: 3140
  article-title: Stacks: An analysis tool set for population genomics
  publication-title: Molecular Ecology
– ident: e_1_2_10_12_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_10_55_1
  doi: 10.1242/jeb.134585
– year: 2016
  ident: e_1_2_10_35_1
  article-title: NorWeST modeled summer stream temperature scenarios for the western U.S
  publication-title: CO: Forest Service Research Data Archive
– ident: e_1_2_10_10_1
  doi: 10.1111/jfb.13145
– ident: e_1_2_10_22_1
  doi: 10.1093/conphys/cot008
– ident: e_1_2_10_27_1
  doi: 10.1093/gbe/evv078
– ident: e_1_2_10_39_1
  doi: 10.1038/nmeth.1923
– ident: e_1_2_10_66_1
  doi: 10.1128/MCB.24.4.1758-1768.2004
– ident: e_1_2_10_30_1
  doi: 10.1017/S0029665110003915
– ident: e_1_2_10_3_1
  doi: 10.1186/1471-2105-9-323
– ident: e_1_2_10_69_1
  doi: 10.1086/316740
– ident: e_1_2_10_76_1
  doi: 10.1086/682949
– ident: e_1_2_10_52_1
  doi: 10.1093/oxfordjournals.jhered.a110060
– ident: e_1_2_10_62_1
  doi: 10.1126/science.1261824
– ident: e_1_2_10_42_1
  doi: 10.1111/eva.12137
– ident: e_1_2_10_4_1
  doi: 10.1371/journal.pone.0003376
– ident: e_1_2_10_47_1
  doi: 10.1186/s12864-015-1246-5
– ident: e_1_2_10_57_1
  doi: 10.1152/physiolgenomics.00008.2011
– ident: e_1_2_10_8_1
  doi: 10.5962/bhl.title.110986
– ident: e_1_2_10_18_1
  doi: 10.1093/bioinformatics/bti610
– ident: e_1_2_10_78_1
  doi: 10.1086/physzool.62.4.30157935
– ident: e_1_2_10_19_1
  doi: 10.1186/1471-2105-8-328
– ident: e_1_2_10_50_1
  doi: 10.1111/jfb.12796
– ident: e_1_2_10_29_1
  doi: 10.1016/j.molcel.2010.01.001
– ident: e_1_2_10_5_1
  doi: 10.1016/j.tree.2007.09.008
– volume: 55
  start-page: 1
  year: 1947
  ident: e_1_2_10_26_1
  article-title: Effects of the environment on animal activity
  publication-title: Publications of the Ontario Fisheries Research Laboratory
– ident: e_1_2_10_37_1
  doi: 10.1093/bioinformatics/btn129
– volume-title: Comparison of heat tolerances of redband trout, firehole river rainbow trout and Wytheville rainbow trout
  year: 1983
  ident: e_1_2_10_64_1
– ident: e_1_2_10_45_1
  doi: 10.1098/rspb.2014.1082
– ident: e_1_2_10_33_1
  doi: 10.1002/joc.1276
– ident: e_1_2_10_65_1
  doi: 10.1016/j.tree.2010.09.002
– ident: e_1_2_10_63_1
  doi: 10.1242/jeb.037473
– ident: e_1_2_10_21_1
  doi: 10.1126/science.1199158
– volume-title: Biochemical adaptation: Mechanism and process in physiological evolution
  year: 2002
  ident: e_1_2_10_34_1
  doi: 10.1093/oso/9780195117028.001.0001
– ident: e_1_2_10_11_1
  doi: 10.1038/ncomms4657
– ident: e_1_2_10_61_1
  doi: 10.1111/j.0022-1112.2004.00292.x
– start-page: 1
  year: 2017
  ident: e_1_2_10_28_1
  article-title: An evaluation of machine‐learning for predicting phenotype: Studies in yeast and wheat
  publication-title: bioRxiv
– ident: e_1_2_10_14_1
  doi: 10.1111/j.1095-8649.1997.tb02001.x
– ident: e_1_2_10_16_1
  doi: 10.1111/j.1095-8649.2011.03182.x
– ident: e_1_2_10_74_1
  doi: 10.1016/j.tree.2016.12.007
– ident: e_1_2_10_77_1
  doi: 10.1111/mec.12822
– ident: e_1_2_10_24_1
  doi: 10.1534/genetics.108.092221
– ident: e_1_2_10_20_1
  doi: 10.1093/molbev/msv334
– ident: e_1_2_10_43_1
  doi: 10.1111/j.1365-294X.2011.05305.x
– ident: e_1_2_10_2_1
  doi: 10.1038/nprot.2013.099
– ident: e_1_2_10_49_1
  doi: 10.1111/mec.12240
– ident: e_1_2_10_36_1
  doi: 10.1152/ajpregu.00254.2013
– ident: e_1_2_10_71_1
  doi: 10.1242/jeb.128439
– ident: e_1_2_10_53_1
  doi: 10.1016/j.aquaculture.2005.04.042
– ident: e_1_2_10_17_1
  doi: 10.1111/mec.12354
– ident: e_1_2_10_32_1
– ident: e_1_2_10_60_1
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_2_10_46_1
  doi: 10.1111/mec.12350
– ident: e_1_2_10_25_1
  doi: 10.1111/mec.13513
– ident: e_1_2_10_7_1
  doi: 10.1098/rspb.1996.0237
– ident: e_1_2_10_56_1
  doi: 10.1126/science.1163156
– ident: e_1_2_10_9_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_10_40_1
  doi: 10.1529/biophysj.107.127787
– ident: e_1_2_10_72_1
  doi: 10.1152/ajpregu.00157.2005
– ident: e_1_2_10_38_1
  doi: 10.1242/jeb.065102
– ident: e_1_2_10_15_1
  doi: 10.1111/ele.12696
– ident: e_1_2_10_23_1
  doi: 10.1242/jeb.023671
– ident: e_1_2_10_41_1
  doi: 10.1084/jem.20080897
– ident: e_1_2_10_67_1
  doi: 10.1016/j.gene.2015.10.028
– ident: e_1_2_10_68_1
– ident: e_1_2_10_70_1
  doi: 10.1126/science.aad8466
– ident: e_1_2_10_48_1
  doi: 10.1111/j.1365-294X.2010.04839.x
– ident: e_1_2_10_6_1
  doi: 10.1111/j.1365-294X.2004.02125.x
– ident: e_1_2_10_51_1
  doi: 10.1126/science.1251336
– ident: e_1_2_10_73_1
  doi: 10.1126/science.1137359
– ident: e_1_2_10_13_1
  doi: 10.1534/g3.113.009316
– ident: e_1_2_10_58_1
  doi: 10.1093/oxfordjournals.jhered.a111573
– ident: e_1_2_10_59_1
  doi: 10.1038/247315a0
– ident: e_1_2_10_75_1
  doi: 10.1111/j.1558-5646.1984.tb05657.x
– ident: e_1_2_10_31_1
  doi: 10.1534/g3.112.003137
– ident: e_1_2_10_44_1
  doi: 10.1111/gcb.13419
– ident: e_1_2_10_54_1
  doi: 10.1152/ajpregu.2000.279.6.R2344
SSID ssj0013255
Score 2.5039675
Snippet Heterogeneous and ever‐changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection...
Heterogeneous and ever-changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 659
SubjectTerms Adaptation
aerobic scope
Arid climates
biochemical pathways
Biodiversity
Biological evolution
cardiorespiratory fitness
Changing environments
climate
Climate change
Climate models
critical thermal maximum
Desert environments
Deserts
Divergence
Ecological effects
Ecotypes
Environmental changes
environmental impact
Evolution
Fish
Fish populations
Fitness
Genes
genetic markers
genetic variation
Heart diseases
Heart rate
Heat stress
Heat tolerance
Hsp40 protein
Markers
Maxima
maximum heart rate
metabolic rate
multivariate analysis
Oncorhynchus mykiss
Oncorhynchus mykiss gairdnerii
oxygen
oxygen‐ and capacity‐limited thermal tolerance
Populations
RAD‐seq
redband trout
Reproductive fitness
RNA‐seq
Salmon
selection pressure
Species
stress response
Thermal environments
tissues
Trout
Title Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.14475
https://www.ncbi.nlm.nih.gov/pubmed/29290103
https://www.proquest.com/docview/2022075848
https://www.proquest.com/docview/1983255998
https://www.proquest.com/docview/2053880465
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA6LIPjifawXUXzwpdJN0gufZFkRYX0QBR-EkmtBdNvFdgX99c6kB-uJ-FIKndCkzSTfZGa-IeTI-FqbIEo8xYMIDBTBPBVL3zMjg04-ESh3oD-8Ci9uxeVdcNchp00uTMUP0R64oWa49RoVXKpiRsnHVqNnMsIEc4zVQkB0zWY8CK7iKSB0BktNzGtWIYziaVt-3Iu-AMyPeNVtOOdL5L7pahVn8ngyLdWJfvvE4vjPsSyTxRqI0rNq5qyQjs1WyXxVmvIV7gaOzvp1jeRDi9nBD8W4oPmIImAcQ0Np5KRy41OZGWpf6jkMnaCTvMQgJJCCBmBwYzonhiTBg6ZcWEHLnLqsY9g76Wy63Tq5PR_c9C-8ukyDp9EpClclQ5tobYXSgGcYD0SkwdpFdjxfsp7mhplQA7hUfmBijeSgPreJ4RpWj4hvkLksz-wWoZKHSozAhBJSiCQ2CgCE7SGbKOyhOrRdctz8sFTXHOZYSuMpbWwZ-JKp-5JdctiKTiriju-Edpu_nta6W6QMk4_BjBJxlxy0j0Hr0JUiM5tPi7SXxNyRtf0iw2B9g_GJEF6zWc2oticsQf-1z2FAbl783MV0OOi7m-2_i-6QBcB1cRVcvkvmyuep3QPsVKp9pyTvsO8UGg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9RADLZKEYIL78LSAgMCiUuq7MzkdeCA2q22tNsDaqXewrxWQrDJimRBy2_qX-l_qj15aMtLXHrgEkWKE81kbI89tj8DvLKhMTZKskCLKEEHRfJApyoM7NRSkE9G2h_oT47i8Yl8fxqdrsFZVwvT4EP0B24kGV5fk4DTgfSKlM-codBk0qVUHrjld3TYqrf7u7i6rznfGx3vjIO2p0BgKIKHV61ilxnjpDa4-XIRycSga0ZQbqHiQyMst7FBS0iHkU0NIVmGwmVWGGT1ROB3r8F16iBOSP27H_hKzML3WEWfgKNyS0WLY0R5Q_1QL-9-v5i0ly1kv8Xt3YHz7uc0mS2ftxe13jY_fsKN_F_-3l243dra7F0jHPdgzRX34UbTfXOJdyOP2L18AOXEUQH0p2pWsXLKyCae4YvKqnmTqcBUYZn71oopzprNy5ryrJAKXzAounPnsxvxQdcRrWJ1yXxhNZoHbLWi8CGcXMm8N2C9KAv3GJgSsZZT9BKlkjJLrUYbyQ0JMBXNBBO7AbzpOCQ3LUw7dQv5knfuGq5c7lduAC970nmDTfI7oq2OzfJWPVU5p_pq9BRlOoAX_WNULBQtUoUrF1U-zFLh8ej-QsNRheP8UBoG8Khh4X4kPKMQfShwQp4R_zzEfDLa8TdP_p30OdwcH08O88P9o4NNuIVmbNrk0m_Bev114Z6iqVjrZ15CGXy8aqa-ADk-b3o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9RADLZKEYgL78dCgQGBxCVVdmbyOnBA3V21lK0QolJvYV4rIdgkIlnQ8pf4K_wo7MlDW17i0gOXKFKcZCZje-zY_gzwxIbG2CjJAi2iBB0UyQOdqjCwC0tBPhlp_0N_fhTvH8uXJ9HJFnzra2FafIjhhxtJhtfXJOCVXWwI-dIZikwmfUbloVt_QX-tfn4wwcV9yvls-nZvP-haCgSGAnh41Cp2mTFOaoN7LxeRTAx6ZoTkFio-NsJyGxs0hHQY2dQQkGUoXGaFQU5PBD73HJyXcZhRn4jJG74RsvAtVtEl4KjbUtHBGFHa0DDU05vfLxbtaQPZ73CzK_C9_zZtYsuH3VWjd83Xn2Aj_5OPdxUud5Y2e9GKxjXYcsV1uND23lzj2dTjda9vQDl3VP78vl7WrFwwsoiXeKOyqmrzFJgqLHOfOyHFSbOqbCjLCqnwBoOCWzmf24gX-n5oNWtK5suq0Thgm_WEN-H4TOZ9C7aLsnB3gCkRa7lAH1EqKbPUarSQ3JjgUtFIMLEbwbOeQXLTgbRTr5CPee-s4crlfuVG8HggrVpkkt8R7fRclnfKqc45VVejnyjTETwaLqNaoViRKly5qvNxlgqPRvcXGo4KHOcnY3zN7ZaDh5HwjAL0ocAJeT788xDz-XTPn9z9d9KHcPH1ZJa_Ojg6vAeX0IZN20T6HdhuPq3cfbQTG_3AyyeDd2fN0z8AXmRuKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+thermal+adaptation+and+evolutionary+potential+of+conspecific+populations+to+changing+environments&rft.jtitle=Molecular+ecology&rft.au=Chen%2C+Zhongqi&rft.au=Farrell%2C+Anthony+P&rft.au=Matala%2C+Amanda&rft.au=Narum%2C+Shawn+R&rft.date=2018-02-01&rft.issn=1365-294X&rft.eissn=1365-294X&rft.volume=27&rft.issue=3&rft.spage=659&rft_id=info:doi/10.1111%2Fmec.14475&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon