Survey of Real-time Processing Technologies of IoT Data Streams

Recently, Internet of Things (IoT) has been attracting attention due to its economical impact and high expectations for drastically changing our modern societies. Worldwide by 2022, over 50 billion IoT devices including sensors and actuators are predicted to be installed in machines, humans, vehicle...

Full description

Saved in:
Bibliographic Details
Published inJournal of Information Processing Vol. 24; no. 2; pp. 195 - 202
Main Authors Yasumoto, Keiichi, Yamaguchi, Hirozumi, Shigeno, Hiroshi
Format Journal Article
LanguageEnglish
Published Information Processing Society of Japan 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, Internet of Things (IoT) has been attracting attention due to its economical impact and high expectations for drastically changing our modern societies. Worldwide by 2022, over 50 billion IoT devices including sensors and actuators are predicted to be installed in machines, humans, vehicles, buildings, and environments. Demand is also huge for the real-time utilization of IoT data streams instead of the current off-line analysis/utilization of stored big data. The real-time utilization of massive IoT data streams suggests a paradigm shift to new horizontal and distributed architecture because existing cloud-based centralized architecture will cause large delays for providing service and waste many resources on the cloud and on networks. Content curation, which is the intelligent compilation of valuable content from IoT data streams, is another key to fully utilize and penetrate IoT technologies. In this paper, we survey the emerging technologies toward the real-time utilization of IoT data streams in terms of networking, processing, and content curation and clarify the open issues. Then we propose a new framework for IoT data streams called the Information Flow of Things (IFoT) that processes, analyzes, and curates massive IoT streams in real-time based on distributed processing among IoT devices.
AbstractList Recently, Internet of Things (IoT) has been attracting attention due to its economical impact and high expectations for drastically changing our modern societies. Worldwide by 2022, over 50 billion IoT devices including sensors and actuators are predicted to be installed in machines, humans, vehicles, buildings, and environments. Demand is also huge for the real-time utilization of IoT data streams instead of the current off-line analysis/utilization of stored big data. The real-time utilization of massive IoT data streams suggests a paradigm shift to new horizontal and distributed architecture because existing cloud-based centralized architecture will cause large delays for providing service and waste many resources on the cloud and on networks. Content curation, which is the intelligent compilation of valuable content from IoT data streams, is another key to fully utilize and penetrate IoT technologies. In this paper, we survey the emerging technologies toward the real-time utilization of IoT data streams in terms of networking, processing, and content curation and clarify the open issues. Then we propose a new framework for IoT data streams called the Information Flow of Things (IFoT) that processes, analyzes, and curates massive IoT streams in real-time based on distributed processing among IoT devices.
Author Yamaguchi, Hirozumi
Yasumoto, Keiichi
Shigeno, Hiroshi
Author_xml – sequence: 1
  fullname: Yasumoto, Keiichi
  organization: Nara Institute of Science and Technology
– sequence: 2
  fullname: Yamaguchi, Hirozumi
  organization: Osaka University
– sequence: 3
  fullname: Shigeno, Hiroshi
  organization: Keio University
BookMark eNp1kDtrwzAUhUVpoUnatbPHLnYl2fJjKiF9BQItTTqLa-U6kbGtVFIK-fd1SAih0OkeON93hzMkl53pkJA7RiPOiuxBb1xd603Ek4gV4oIMWJ7zME0FvzzL12ToXE1pWlBBB-RxvrU_uAtMFXwiNKHXLQYf1ih0TnerYIFq3ZnGrDS6PTQ1i-AJPARzbxFad0OuKmgc3h7viHy9PC8mb-Hs_XU6Gc9ClQguwoynQpWKljxOsqpYJhlUvFS54stYsZJTAFUVvEzTNO7rMokRMhA8XzKRFijiEbk__N1Y871F52WrncKmgQ7N1kmW05yxRMR5jyYHVFnjnMVKKu3Ba9N5C7qRjMr9XvK4l-SJ7PfqteiPtrG6Bbv7XxgfhNp5WOEJB-u1avAc50fn1Kk1WIld_As6eomH
CitedBy_id crossref_primary_10_1002_nem_1978
crossref_primary_10_1109_ACCESS_2021_3100707
crossref_primary_10_1109_TCYB_2020_3013416
crossref_primary_10_1145_3427912
crossref_primary_10_1007_s40860_020_00112_3
crossref_primary_10_1016_j_ijinfomgt_2018_08_006
crossref_primary_10_1007_s11390_022_1027_y
crossref_primary_10_1109_ACCESS_2024_3429389
crossref_primary_10_1007_s11036_024_02297_w
crossref_primary_10_36548_jismac_2020_1_003
crossref_primary_10_1108_LHT_11_2017_0249
crossref_primary_10_1145_3303849
crossref_primary_10_1177_26339137231170825
crossref_primary_10_7717_peerj_cs_1712
crossref_primary_10_1016_j_compeleceng_2021_107110
crossref_primary_10_1016_j_eswa_2023_120520
crossref_primary_10_1007_s11277_021_08857_7
crossref_primary_10_1109_MDAT_2019_2957352
crossref_primary_10_1002_sam_11590
crossref_primary_10_3103_S8756699023010156
Cites_doi 10.1007/s00778-011-0261-7
10.1002/spe.1139
10.4236/ait.2012.21001
10.2197/ipsjjip.24.31
10.1109/ISM.2015.17
10.1016/j.comnet.2008.04.002
10.1007/s00778-004-0147-z
ContentType Journal Article
Copyright 2016 by the Information Processing Society of Japan
Copyright_xml – notice: 2016 by the Information Processing Society of Japan
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.2197/ipsjjip.24.195
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Economics
EISSN 1882-6652
EndPage 202
ExternalDocumentID 10_2197_ipsjjip_24_195
article_ipsjjip_24_2_24_195_article_char_en
GroupedDBID 2WC
ALMA_UNASSIGNED_HOLDINGS
CS3
JSF
JSH
KQ8
RJT
RZJ
TKC
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4525-7265cbc0b2347f9d47af2bc8c2d3c1b20aacf92b6663f9db43ea7a528d1569e53
ISSN 1882-6652
IngestDate Fri Jul 11 12:42:36 EDT 2025
Tue Jul 01 01:44:54 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
Wed Apr 05 05:02:35 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4525-7265cbc0b2347f9d47af2bc8c2d3c1b20aacf92b6663f9db43ea7a528d1569e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/ipsjjip/24/2/24_195/_article/-char/en
PQID 1808114538
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1808114538
crossref_citationtrail_10_2197_ipsjjip_24_195
crossref_primary_10_2197_ipsjjip_24_195
jstage_primary_article_ipsjjip_24_2_24_195_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 20160101
  day: 01
PublicationDecade 2010
PublicationTitle Journal of Information Processing
PublicationTitleAlternate Journal of Information Processing
PublicationYear 2016
Publisher Information Processing Society of Japan
Publisher_xml – name: Information Processing Society of Japan
References [29] Morishita, S., Maenaka, S., Nagata, D., Tamai, M., Yasumoto, K., Fukukura, T. and Sato, K.: SakuraSensor: Quasi-Realtime Cherry-Lined Roads Detection through Participatory Video Sensing by Cars, Proc. 2015 ACM Intl. Joint Conf. on Pervasive and Ubiquitous Computing (UbiComp 2015), pp.695-705 (2015).
[42] Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I., Srivastava, U., Thomas, D., Varma, R. and Widom, J.: STREAM: The stanford stream data manager, IEEE Data Eng. Bull., Vol.26, No.1, p.665 (2003).
[15] Xively, available from <http://xively.com>
[62] FESTIVAL: FEderated interoperable SmarT ICT services deVelopment And testing pLatforms, available from <http://www.festival-project.eu/en/> (accessed 2015-11-13).
[49] Microsoft: Azure Machine Learning, available from <https://azure.microsoft.com/en-us/services/machine-learning/> (accessed 2015-11-13).
[16] Meerkat, https://meerkatapp.co/ (Accessed 2015-11-11).
[59] oneM2M, available from <http://www.onem2m.org/> (accessed 2015-11-13).
[54] Blackstock, M. and Lea, R.: Toward a Distributed Data Flow Platform for the Web of Things (Distributed Node-RED), Proc. 5th Intl. Workshop on Web of Things, pp.34-39 (2014).
[35] Davis, A., Parikh, J. and Weihl, W.E.: Edgecomputing: Extending enterprise applications to the edge of the internet, Proc. 13th International World Wide Web Conference on Alternate Track Papers and Posters, pp.180-187 (2004).
[44] StreamBase Systems, available from <http://www.streambase.com> (2012).
[2] IDC Market in a Minute: Internet of Things, available from <http://www.idc.com/downloads/idc_market_in_a_minute_iot_infographic.pdf> (accessed 2015-11-08).
[31] OASIS Standard, MQTT version 3.1.1, available from <http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.doc> (2014).
[46] Apache Spark-Lighting-fast cluster computing, available from <http://spark.apache.org/>
[34] Shelby, Z. and Borman, C.: 6LoWPAN: The Wireless Embedded Internet, John Wiley & Sons (2011).
[12] ThingSquare, available from <http://www.thingsquare.com/>
[38] Qin, Z., Denker, G., Giannelli, C., Bellavista, P. and Venkatasubramanian, N.: A Software Defined Networking Architecture for the Internet-of-Things, Proc. IEEE Network Operations and Management Symposium (NOMS), pp.1-9 (2014).
[57] IoTivity, available from <https://www.iotivity.org/> (accessed 2015-11-13).
[63] Vital, The future of Smart Cities, available from <http://vital-iot.eu/>.
[24] GOji, available from <http://gojiaccess.com/> (accessed 2015-11-09).
[22] Smart Tennis Sensor for Tennis Rackets, available from <http://www.sony.com/electronics/smart-devices/sse-tn1w> (accessed 2015-11-09).
[51] Guinard, D., Trifa, V. and Wilde, E.: A resource oriented architecture for the web of things, Proc. Internet of Things (IOT), pp.1-8 (2010).
[10] Arkessa, available from <http://www.arkessa.com/>
[5] IoT-A, Internet of Things - Architecture, available from <http://www.iot-a.eu/public> (accessed 2015-11-08).
[23] 94FiFty, available from <http://www.94fifty.com/> (accessed 2015-11-09).
[20] Yick, J., Mukherjee, B. and Ghosal, D.: Wireless sensor network survey, Computer Networks, Vol.52, pp.2292-2330 (2008).
[47] Tran, T.T.L., Peng, L., Diao, Y., McGregor, A. and Liu, A.: CLARO: Modeling and processing uncertain data streams, The VLDB Journal, Vol.21, pp.651-676 (2012).
[53] IBM: Node-RED, available from <http://nodered.org/> (accessed 2015-11-10).
[14] Blackstock, M. and Lea, R.: IoT mashups with the WoTKit, Proc. IEEE Internet of Things (IOT), pp.159-166 (2012).
[6] Cloud of Things for empowering the citizen clout in smart cities, available from <http://clout-project.eu/> (accessed 2015-11-08).
[64] Ning, H. and Liu, H.: Cyber-physical-social based security architecture for future internet of things, Advances in Internet of Things, Vol.2, No.1, p.1 (2012).
[21] Intel shows off a light-up smart mug, because why not?, available from <http://www.engadget.com/2014/01/07/intel-smart-mug-concept/> (accessed 2015-11-09).
[39] Hirzel, M., Soulé, R., Schneider, S., Gedik, B. and Grimm, R.: A catalog of stream processing optimizations, ACM Comput. Surv., Vol.46, No.4, Article 46, pp.1-34 (2014).
[33] WebSocket, available from <https://www.websocket.org/>
[50] Jubatus: Distributed Online Machine Learning Framework, available from <http://jubat.us/en/> (accessed 2015-11-15).
[41] Arasu, A., Babu, S. and Widom, J.: The CQL continuous query language: Semantic foundations and query execution, The VLDB Journal, Vol.15, No.2, pp.121-142 (2006).
[28] Ganti, R.K., Pham, N., Ahmadi, H., Nangia, S. and Abdelzaher, T.F.: GreenGPS: A participatory sensing fuel-efficient maps application, Proc. 8th Intl. Conf. on Mobile Systems, Applications, and Services (MobiSys 2010), pp.151-164 (2010).
[13] Thingworx, available from <http://www.thingworx.com/>
[3] Gartner's 2014 Hype Cycle for Emerging Technologies Maps the Journey to Digital Business, available from <http://www.gartner.com/newsroom/id/2819918> (accessed 2015-11-08).
[40] Cugola, G. and Margara, A.: Processing flows of information: From data stream to complex event processing, ACM Comput. Surv., Vol.44, No.3, Article 15, pp.1-62 (2012).
[32] Shelby, Z., Hartke, K. and Bormann, C.: Request for Comment 7252, The Constrained Application Protocol (CoAP), available from <http://tools.ietf.org/rfc/rfc7252.txt> (2014).
[61] IPSO Alliance, available from <http://www.ipso-alliance.org/> (accessed 2015-11-13).
[43] Gedik, B. and Andrade, H.: A model-based framework for building extensible, high performance stream processing middleware and programming language for IBM InfoSphere streams, Softw. Pract. Exp., Vol.42, No.11, pp.1363-1391 (2012).
[1] Bradley, J., Barbier, J. and Handler, D.: Embracing the Internet of Everything To Capture Your Share of $14.4 Trillion (White Paper), available from <http://www.cisco.com/web/about/ac79/docs/innov/IoE_Economy.pdf> (accessed 2015-11-08).
[19] Ueda, K., Suwa, H., Arakawa, Y. and Yasumoto, K.: Exploring Accuracy-Cost Tradeoff in In-Home Living Activity Recognition based on Power Consumptions and User Positions, Proc. 14th IEEE Int'l. Conf. on Ubiquitous Computing and Communications (IUCC 2015), pp.1131-1137 (2015).
[56] Fujisawa, K., Hirabe, Y., Suwa, H., Arakawa, Y. and Yasumoto, K.: Automatic Content Curation System for Multiple Live Sport Video Streams, The 11th IEEE Int'l. Workshop on Multimedia Information Processing and Retrieval (MIPR 2015) (2015).
[18] Cabinet Office: Annual Report on the Aging Society: 2014 (Summary), available from <http://www8.cao.go.jp/kourei/english/annualreport/2014/2014pdf_e.html> (accessed 2015-11-30).
[52] Blackstock, M. and Lea, R.: IoT mashups with the WoTKit, Proc. Internet of Things (IOT), pp.159-166 (2012).
[45] Storm project, available from <http://storm-project.net/> (2012). Retrieved May 2012.
[30] Arakawa, Y. and Matsuda, Y.: [Invited Paper] Gamification mechanism for enhancing a participatory urban sensing: survey and practical results, Journal of Information Processing, Vol.24, No.1, pp.31-38 (2016).
[4] Ministry of Education, Trade and Industry: Changes in response to the arrival of a data-driven society using CPS, available from <http://www.meti.go.jp/committee/sankoushin/shojo/johokeizai/pdf/report01_04_00.pdf>
[26] Higuchi, T., Yamaguchi, H. and Higashino, T.: [Invited Paper] Mobile Devices as an Infrastructure: A Survey of Opportunistic Sensing Technology, Journal of Information Processing, Vol.23, No.2, pp.94-104 (2014).
[11] Axeda, available from <http://www.axeda.com/>
[27] Rana, R.K., Chou, C.T., Kanhere, S.S., Bulusu, N. and Hu, W.: Ear-phone: An end-to-end participatory urban noise mapping system, Proc. 9th ACM/IEEE Intl. Conf. on Information Processing in Sensor Networks (IPSN 2010), pp.105-116 (2010).
[7] iCore Project: available from <http://www.iot-icore.eu/> (accessed 2015-11-10).
[55] Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B. and Koldehofe, B.: Mobile fog: A programming model for large-scale applications on the internet of things, Proc. 2nd ACM SIGCOMM Workshop on Mobile Cloud Computing, pp.15-20 (2013).
[60] Industrial Internet Consortium, available from <http://www.iiconsortium.org/> (accessed 2015-11-13).
[8] Researching IPV6 potential for the Internet of Things, available from <http://iot6.eu/> (accessed 2015-11-08).
[9] IERC, European Research Cluster on the Internet of Things, available from <http://www.internet-of-things-research.eu/> (accessed 2015-11-08).
[17] Periscope, available from <https://www.periscope.tv/> (accessed 2015-11-11).
[37] Lopez, P.G., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A., Barcellos, M., Felber, P. and Riviere, E.: Edge-centric Computing: Vision and Challenges, ACM SIGCOMM Computer Communication Review, Vol.45, No.5, pp.37-42 (2015).
[48] Amazon: Amazon Machine Learning, available from <https://aws.amazon.com/machine-learning/> (accessed 2015-11-13).
[36] Bonomi, F., Milito, R., Zhu, J. and Addepalli, S.: Fog Computing and Its Role in the Internet of Things, Proc. 1st Edition of the MCC Workshop on Mobile Cloud Computing (MCC'12), pp.13-16 (2012).
[25] Deeper, Smart Fishfinder, available from <https://buydeeper.com> (accessed 2015-11-09).
[58] AllJoyn Framework, available from <https://allseenalliance.org/framework> (accessed 2015-11-13).
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: [30] Arakawa, Y. and Matsuda, Y.: [Invited Paper] Gamification mechanism for enhancing a participatory urban sensing: survey and practical results, Journal of Information Processing, Vol.24, No.1, pp.31-38 (2016).
– reference: [26] Higuchi, T., Yamaguchi, H. and Higashino, T.: [Invited Paper] Mobile Devices as an Infrastructure: A Survey of Opportunistic Sensing Technology, Journal of Information Processing, Vol.23, No.2, pp.94-104 (2014).
– reference: [20] Yick, J., Mukherjee, B. and Ghosal, D.: Wireless sensor network survey, Computer Networks, Vol.52, pp.2292-2330 (2008).
– reference: [36] Bonomi, F., Milito, R., Zhu, J. and Addepalli, S.: Fog Computing and Its Role in the Internet of Things, Proc. 1st Edition of the MCC Workshop on Mobile Cloud Computing (MCC'12), pp.13-16 (2012).
– reference: [18] Cabinet Office: Annual Report on the Aging Society: 2014 (Summary), available from <http://www8.cao.go.jp/kourei/english/annualreport/2014/2014pdf_e.html> (accessed 2015-11-30).
– reference: [37] Lopez, P.G., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A., Barcellos, M., Felber, P. and Riviere, E.: Edge-centric Computing: Vision and Challenges, ACM SIGCOMM Computer Communication Review, Vol.45, No.5, pp.37-42 (2015).
– reference: [16] Meerkat, https://meerkatapp.co/ (Accessed 2015-11-11).
– reference: [62] FESTIVAL: FEderated interoperable SmarT ICT services deVelopment And testing pLatforms, available from <http://www.festival-project.eu/en/> (accessed 2015-11-13).
– reference: [41] Arasu, A., Babu, S. and Widom, J.: The CQL continuous query language: Semantic foundations and query execution, The VLDB Journal, Vol.15, No.2, pp.121-142 (2006).
– reference: [1] Bradley, J., Barbier, J. and Handler, D.: Embracing the Internet of Everything To Capture Your Share of $14.4 Trillion (White Paper), available from <http://www.cisco.com/web/about/ac79/docs/innov/IoE_Economy.pdf> (accessed 2015-11-08).
– reference: [11] Axeda, available from <http://www.axeda.com/>
– reference: [44] StreamBase Systems, available from <http://www.streambase.com> (2012).
– reference: [27] Rana, R.K., Chou, C.T., Kanhere, S.S., Bulusu, N. and Hu, W.: Ear-phone: An end-to-end participatory urban noise mapping system, Proc. 9th ACM/IEEE Intl. Conf. on Information Processing in Sensor Networks (IPSN 2010), pp.105-116 (2010).
– reference: [50] Jubatus: Distributed Online Machine Learning Framework, available from <http://jubat.us/en/> (accessed 2015-11-15).
– reference: [35] Davis, A., Parikh, J. and Weihl, W.E.: Edgecomputing: Extending enterprise applications to the edge of the internet, Proc. 13th International World Wide Web Conference on Alternate Track Papers and Posters, pp.180-187 (2004).
– reference: [54] Blackstock, M. and Lea, R.: Toward a Distributed Data Flow Platform for the Web of Things (Distributed Node-RED), Proc. 5th Intl. Workshop on Web of Things, pp.34-39 (2014).
– reference: [32] Shelby, Z., Hartke, K. and Bormann, C.: Request for Comment 7252, The Constrained Application Protocol (CoAP), available from <http://tools.ietf.org/rfc/rfc7252.txt> (2014).
– reference: [53] IBM: Node-RED, available from <http://nodered.org/> (accessed 2015-11-10).
– reference: [49] Microsoft: Azure Machine Learning, available from <https://azure.microsoft.com/en-us/services/machine-learning/> (accessed 2015-11-13).
– reference: [22] Smart Tennis Sensor for Tennis Rackets, available from <http://www.sony.com/electronics/smart-devices/sse-tn1w> (accessed 2015-11-09).
– reference: [52] Blackstock, M. and Lea, R.: IoT mashups with the WoTKit, Proc. Internet of Things (IOT), pp.159-166 (2012).
– reference: [5] IoT-A, Internet of Things - Architecture, available from <http://www.iot-a.eu/public> (accessed 2015-11-08).
– reference: [12] ThingSquare, available from <http://www.thingsquare.com/>
– reference: [23] 94FiFty, available from <http://www.94fifty.com/> (accessed 2015-11-09).
– reference: [58] AllJoyn Framework, available from <https://allseenalliance.org/framework> (accessed 2015-11-13).
– reference: [3] Gartner's 2014 Hype Cycle for Emerging Technologies Maps the Journey to Digital Business, available from <http://www.gartner.com/newsroom/id/2819918> (accessed 2015-11-08).
– reference: [59] oneM2M, available from <http://www.onem2m.org/> (accessed 2015-11-13).
– reference: [47] Tran, T.T.L., Peng, L., Diao, Y., McGregor, A. and Liu, A.: CLARO: Modeling and processing uncertain data streams, The VLDB Journal, Vol.21, pp.651-676 (2012).
– reference: [63] Vital, The future of Smart Cities, available from <http://vital-iot.eu/>.
– reference: [57] IoTivity, available from <https://www.iotivity.org/> (accessed 2015-11-13).
– reference: [15] Xively, available from <http://xively.com>
– reference: [48] Amazon: Amazon Machine Learning, available from <https://aws.amazon.com/machine-learning/> (accessed 2015-11-13).
– reference: [21] Intel shows off a light-up smart mug, because why not?, available from <http://www.engadget.com/2014/01/07/intel-smart-mug-concept/> (accessed 2015-11-09).
– reference: [33] WebSocket, available from <https://www.websocket.org/>
– reference: [34] Shelby, Z. and Borman, C.: 6LoWPAN: The Wireless Embedded Internet, John Wiley & Sons (2011).
– reference: [38] Qin, Z., Denker, G., Giannelli, C., Bellavista, P. and Venkatasubramanian, N.: A Software Defined Networking Architecture for the Internet-of-Things, Proc. IEEE Network Operations and Management Symposium (NOMS), pp.1-9 (2014).
– reference: [60] Industrial Internet Consortium, available from <http://www.iiconsortium.org/> (accessed 2015-11-13).
– reference: [46] Apache Spark-Lighting-fast cluster computing, available from <http://spark.apache.org/>
– reference: [31] OASIS Standard, MQTT version 3.1.1, available from <http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.doc> (2014).
– reference: [19] Ueda, K., Suwa, H., Arakawa, Y. and Yasumoto, K.: Exploring Accuracy-Cost Tradeoff in In-Home Living Activity Recognition based on Power Consumptions and User Positions, Proc. 14th IEEE Int'l. Conf. on Ubiquitous Computing and Communications (IUCC 2015), pp.1131-1137 (2015).
– reference: [45] Storm project, available from <http://storm-project.net/> (2012). Retrieved May 2012.
– reference: [25] Deeper, Smart Fishfinder, available from <https://buydeeper.com> (accessed 2015-11-09).
– reference: [2] IDC Market in a Minute: Internet of Things, available from <http://www.idc.com/downloads/idc_market_in_a_minute_iot_infographic.pdf> (accessed 2015-11-08).
– reference: [10] Arkessa, available from <http://www.arkessa.com/>
– reference: [6] Cloud of Things for empowering the citizen clout in smart cities, available from <http://clout-project.eu/> (accessed 2015-11-08).
– reference: [29] Morishita, S., Maenaka, S., Nagata, D., Tamai, M., Yasumoto, K., Fukukura, T. and Sato, K.: SakuraSensor: Quasi-Realtime Cherry-Lined Roads Detection through Participatory Video Sensing by Cars, Proc. 2015 ACM Intl. Joint Conf. on Pervasive and Ubiquitous Computing (UbiComp 2015), pp.695-705 (2015).
– reference: [17] Periscope, available from <https://www.periscope.tv/> (accessed 2015-11-11).
– reference: [42] Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I., Srivastava, U., Thomas, D., Varma, R. and Widom, J.: STREAM: The stanford stream data manager, IEEE Data Eng. Bull., Vol.26, No.1, p.665 (2003).
– reference: [55] Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B. and Koldehofe, B.: Mobile fog: A programming model for large-scale applications on the internet of things, Proc. 2nd ACM SIGCOMM Workshop on Mobile Cloud Computing, pp.15-20 (2013).
– reference: [7] iCore Project: available from <http://www.iot-icore.eu/> (accessed 2015-11-10).
– reference: [14] Blackstock, M. and Lea, R.: IoT mashups with the WoTKit, Proc. IEEE Internet of Things (IOT), pp.159-166 (2012).
– reference: [64] Ning, H. and Liu, H.: Cyber-physical-social based security architecture for future internet of things, Advances in Internet of Things, Vol.2, No.1, p.1 (2012).
– reference: [56] Fujisawa, K., Hirabe, Y., Suwa, H., Arakawa, Y. and Yasumoto, K.: Automatic Content Curation System for Multiple Live Sport Video Streams, The 11th IEEE Int'l. Workshop on Multimedia Information Processing and Retrieval (MIPR 2015) (2015).
– reference: [13] Thingworx, available from <http://www.thingworx.com/>
– reference: [4] Ministry of Education, Trade and Industry: Changes in response to the arrival of a data-driven society using CPS, available from <http://www.meti.go.jp/committee/sankoushin/shojo/johokeizai/pdf/report01_04_00.pdf>
– reference: [9] IERC, European Research Cluster on the Internet of Things, available from <http://www.internet-of-things-research.eu/> (accessed 2015-11-08).
– reference: [51] Guinard, D., Trifa, V. and Wilde, E.: A resource oriented architecture for the web of things, Proc. Internet of Things (IOT), pp.1-8 (2010).
– reference: [61] IPSO Alliance, available from <http://www.ipso-alliance.org/> (accessed 2015-11-13).
– reference: [39] Hirzel, M., Soulé, R., Schneider, S., Gedik, B. and Grimm, R.: A catalog of stream processing optimizations, ACM Comput. Surv., Vol.46, No.4, Article 46, pp.1-34 (2014).
– reference: [24] GOji, available from <http://gojiaccess.com/> (accessed 2015-11-09).
– reference: [28] Ganti, R.K., Pham, N., Ahmadi, H., Nangia, S. and Abdelzaher, T.F.: GreenGPS: A participatory sensing fuel-efficient maps application, Proc. 8th Intl. Conf. on Mobile Systems, Applications, and Services (MobiSys 2010), pp.151-164 (2010).
– reference: [43] Gedik, B. and Andrade, H.: A model-based framework for building extensible, high performance stream processing middleware and programming language for IBM InfoSphere streams, Softw. Pract. Exp., Vol.42, No.11, pp.1363-1391 (2012).
– reference: [8] Researching IPV6 potential for the Internet of Things, available from <http://iot6.eu/> (accessed 2015-11-08).
– reference: [40] Cugola, G. and Margara, A.: Processing flows of information: From data stream to complex event processing, ACM Comput. Surv., Vol.44, No.3, Article 15, pp.1-62 (2012).
– ident: 2
– ident: 39
– ident: 12
– ident: 35
– ident: 47
  doi: 10.1007/s00778-011-0261-7
– ident: 43
  doi: 10.1002/spe.1139
– ident: 51
– ident: 16
– ident: 31
– ident: 55
– ident: 60
– ident: 9
– ident: 49
– ident: 45
– ident: 26
– ident: 22
– ident: 17
– ident: 5
– ident: 1
– ident: 59
– ident: 38
– ident: 34
– ident: 13
– ident: 50
– ident: 54
– ident: 58
– ident: 48
– ident: 61
– ident: 8
– ident: 27
– ident: 44
– ident: 23
– ident: 40
– ident: 18
– ident: 4
– ident: 37
– ident: 33
– ident: 10
– ident: 14
– ident: 28
– ident: 53
– ident: 57
– ident: 24
– ident: 62
– ident: 7
– ident: 64
  doi: 10.4236/ait.2012.21001
– ident: 42
– ident: 3
– ident: 36
– ident: 11
– ident: 30
  doi: 10.2197/ipsjjip.24.31
– ident: 19
– ident: 52
– ident: 56
  doi: 10.1109/ISM.2015.17
– ident: 15
– ident: 32
– ident: 29
– ident: 20
  doi: 10.1016/j.comnet.2008.04.002
– ident: 6
– ident: 46
– ident: 63
– ident: 21
– ident: 25
– ident: 41
  doi: 10.1007/s00778-004-0147-z
SSID ssj0069050
Score 1.9889387
Snippet Recently, Internet of Things (IoT) has been attracting attention due to its economical impact and high expectations for drastically changing our modern...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 195
SubjectTerms Architecture (computers)
content curation
data stream
Data transmission
Devices
Distributed processing
Economics
Internet
IoT
on-line learning
Real time
real-time processing
Utilization
Title Survey of Real-time Processing Technologies of IoT Data Streams
URI https://www.jstage.jst.go.jp/article/ipsjjip/24/2/24_195/_article/-char/en
https://www.proquest.com/docview/1808114538
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Information Processing, 2016, Vol.24(2), pp.195-202
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfK4IEXvtHKl4yExANySRznizeEQGMTSGidtLfIdpwt1dZUbTNpe-Qv585x3JYOicGLVcWXOPHveh-2746QNwZ0vM5SwYJIaSaMVCwzgWAmzJXSVSyUwkDhb9-TvSOxfxwfDwY_104ttUs10lfXxpX8C6pwDXDFKNkbIOsfChfgN-ALLSAM7V9hfNjOL8xll09EnjGsE9-f_McVAL9sXneZZb82Y0B5Ke1WtHRpyrcNUxehZBlj9TQvHiR8YWOLL707MHWtT-tV17k8weIqVp_V8-aqPfedh6c2H2zftXC3uQWH8PcFh-tfwh8yhdfcBzXvsoZ3QhWt-CSJN6RuFzntuIuvidCwK7rptDG38dhbgh7kLG4117PFZFLPRlyM_G0bybMdNIUjLLgoODZAXfR9GN4G3HSL3ObgamAVjIMfficqyYM46JJ94pjvN0fcMGbuTMCeP9lW6tZSGT8g9xyS9GM38EMyMNNH5H5fvoM6af4Y_DTLPrSpqGcfupprus4-SATsQ5F9qGOfJ-Toy-fxpz3m6mkwjbvXLOVJrJUOFI9EWuWlSGXFlc40LyMdKh5IqaucK_BoI-hWIjIylTHPSnDycxNHT8nOtJmaXUJVwpXM09JEVSlCobMoDaUB515I8GdFOSSsn5hCu2TzWPPkrACnEydyHRGYyCF56-lnXZqVP1J-6ObZ090A4yF53WNTgBjFvTE5NU27KEKsQBMKUP_P_meA5-Tu6i_zguws5615CVbrUr2ybPULQ4eoJA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+of+Real-time+Processing+Technologies+of+IoT+Data+Streams&rft.jtitle=Journal+of+Information+Processing&rft.au=Yasumoto%2C+Keiichi&rft.au=Yamaguchi%2C+Hirozumi&rft.au=Shigeno%2C+Hiroshi&rft.date=2016-01-01&rft.pub=Information+Processing+Society+of+Japan&rft.eissn=1882-6652&rft.volume=24&rft.issue=2&rft.spage=195&rft.epage=202&rft_id=info:doi/10.2197%2Fipsjjip.24.195&rft.externalDocID=article_ipsjjip_24_2_24_195_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-6652&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-6652&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-6652&client=summon