Functional redundancy and specific taxa modulate the contribution of prokaryotic diversity and composition to multifunctionality
Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and function...
Saved in:
Published in | Molecular ecology Vol. 30; no. 12; pp. 2915 - 2930 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and functions evaluated. Here we conducted diversity manipulation experiments in two independent soils with distinct prokaryotic communities, and investigated how the initial community traits (e.g., distinct functional redundancy and taxonomic composition) modulate the contribution of prokaryotic diversity loss and composition shift to eight ecosystem functions related to soil nutrient cycling. We found that diversity loss impaired three functions (potential nitrification rate, N2‐fixation activity and phosphatase) and multifunctionality only in the communities with low functional redundancy, but all examined functions were unaffected in the communities with high functional redundancy. All significantly affected functions belonged to specialized functions, while the broad function (soil basal respiration) was unaffected. Moreover, prokaryotic composition explained more functional variation than diversity, which was ascribed to the crucial role of specific taxa that influence particular functions. Taken together, this study provides empirical evidence for identifying the mechanism underlying the ecosystem response to changes in microbial community, with implications for improving the prediction of ecosystem process models and managing microbial communities to promote ecosystem services. |
---|---|
AbstractList | Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and functions evaluated. Here we conducted diversity manipulation experiments in two independent soils with distinct prokaryotic communities, and investigated how the initial community traits (e.g., distinct functional redundancy and taxonomic composition) modulate the contribution of prokaryotic diversity loss and composition shift to eight ecosystem functions related to soil nutrient cycling. We found that diversity loss impaired three functions (potential nitrification rate, N2 -fixation activity and phosphatase) and multifunctionality only in the communities with low functional redundancy, but all examined functions were unaffected in the communities with high functional redundancy. All significantly affected functions belonged to specialized functions, while the broad function (soil basal respiration) was unaffected. Moreover, prokaryotic composition explained more functional variation than diversity, which was ascribed to the crucial role of specific taxa that influence particular functions. Taken together, this study provides empirical evidence for identifying the mechanism underlying the ecosystem response to changes in microbial community, with implications for improving the prediction of ecosystem process models and managing microbial communities to promote ecosystem services.Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and functions evaluated. Here we conducted diversity manipulation experiments in two independent soils with distinct prokaryotic communities, and investigated how the initial community traits (e.g., distinct functional redundancy and taxonomic composition) modulate the contribution of prokaryotic diversity loss and composition shift to eight ecosystem functions related to soil nutrient cycling. We found that diversity loss impaired three functions (potential nitrification rate, N2 -fixation activity and phosphatase) and multifunctionality only in the communities with low functional redundancy, but all examined functions were unaffected in the communities with high functional redundancy. All significantly affected functions belonged to specialized functions, while the broad function (soil basal respiration) was unaffected. Moreover, prokaryotic composition explained more functional variation than diversity, which was ascribed to the crucial role of specific taxa that influence particular functions. Taken together, this study provides empirical evidence for identifying the mechanism underlying the ecosystem response to changes in microbial community, with implications for improving the prediction of ecosystem process models and managing microbial communities to promote ecosystem services. Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and functions evaluated. Here we conducted diversity manipulation experiments in two independent soils with distinct prokaryotic communities, and investigated how the initial community traits (e.g., distinct functional redundancy and taxonomic composition) modulate the contribution of prokaryotic diversity loss and composition shift to eight ecosystem functions related to soil nutrient cycling. We found that diversity loss impaired three functions (potential nitrification rate, N₂‐fixation activity and phosphatase) and multifunctionality only in the communities with low functional redundancy, but all examined functions were unaffected in the communities with high functional redundancy. All significantly affected functions belonged to specialized functions, while the broad function (soil basal respiration) was unaffected. Moreover, prokaryotic composition explained more functional variation than diversity, which was ascribed to the crucial role of specific taxa that influence particular functions. Taken together, this study provides empirical evidence for identifying the mechanism underlying the ecosystem response to changes in microbial community, with implications for improving the prediction of ecosystem process models and managing microbial communities to promote ecosystem services. Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and functions evaluated. Here we conducted diversity manipulation experiments in two independent soils with distinct prokaryotic communities, and investigated how the initial community traits (e.g., distinct functional redundancy and taxonomic composition) modulate the contribution of prokaryotic diversity loss and composition shift to eight ecosystem functions related to soil nutrient cycling. We found that diversity loss impaired three functions (potential nitrification rate, N2‐fixation activity and phosphatase) and multifunctionality only in the communities with low functional redundancy, but all examined functions were unaffected in the communities with high functional redundancy. All significantly affected functions belonged to specialized functions, while the broad function (soil basal respiration) was unaffected. Moreover, prokaryotic composition explained more functional variation than diversity, which was ascribed to the crucial role of specific taxa that influence particular functions. Taken together, this study provides empirical evidence for identifying the mechanism underlying the ecosystem response to changes in microbial community, with implications for improving the prediction of ecosystem process models and managing microbial communities to promote ecosystem services. Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and functions evaluated. Here we conducted diversity manipulation experiments in two independent soils with distinct prokaryotic communities, and investigated how the initial community traits (e.g., distinct functional redundancy and taxonomic composition) modulate the contribution of prokaryotic diversity loss and composition shift to eight ecosystem functions related to soil nutrient cycling. We found that diversity loss impaired three functions (potential nitrification rate, N 2 ‐fixation activity and phosphatase) and multifunctionality only in the communities with low functional redundancy, but all examined functions were unaffected in the communities with high functional redundancy. All significantly affected functions belonged to specialized functions, while the broad function (soil basal respiration) was unaffected. Moreover, prokaryotic composition explained more functional variation than diversity, which was ascribed to the crucial role of specific taxa that influence particular functions. Taken together, this study provides empirical evidence for identifying the mechanism underlying the ecosystem response to changes in microbial community, with implications for improving the prediction of ecosystem process models and managing microbial communities to promote ecosystem services. Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and functions evaluated. Here we conducted diversity manipulation experiments in two independent soils with distinct prokaryotic communities, and investigated how the initial community traits (e.g., distinct functional redundancy and taxonomic composition) modulate the contribution of prokaryotic diversity loss and composition shift to eight ecosystem functions related to soil nutrient cycling. We found that diversity loss impaired three functions (potential nitrification rate, N -fixation activity and phosphatase) and multifunctionality only in the communities with low functional redundancy, but all examined functions were unaffected in the communities with high functional redundancy. All significantly affected functions belonged to specialized functions, while the broad function (soil basal respiration) was unaffected. Moreover, prokaryotic composition explained more functional variation than diversity, which was ascribed to the crucial role of specific taxa that influence particular functions. Taken together, this study provides empirical evidence for identifying the mechanism underlying the ecosystem response to changes in microbial community, with implications for improving the prediction of ecosystem process models and managing microbial communities to promote ecosystem services. |
Author | Ge, Yuan Wang, Jianlei Liu, Yong‐Jun Shen, Congcong Wang, Jichen Li, Yan |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0002-5526-7066 surname: Li fullname: Li, Yan organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Yuan orcidid: 0000-0003-0234-5638 surname: Ge fullname: Ge, Yuan email: yuange@rcees.ac.cn organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Jichen surname: Wang fullname: Wang, Jichen organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Congcong surname: Shen fullname: Shen, Congcong organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Jianlei surname: Wang fullname: Wang, Jianlei organization: Chinese Academy of Sciences – sequence: 6 givenname: Yong‐Jun surname: Liu fullname: Liu, Yong‐Jun organization: Chinese Academy of Agricultural Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33905157$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtvFDEUhS0URDYJRf5AZCkNFJPY47FnXKJVAkhBNCCls_wa4WTG3vgBbMdPx8NuKCJQbmNd6Tvn-t5zBA588BaAU4wucK3L2eoLTDmhL8AKE0ablne3B2CFOGsbjAZyCI5SukMIk5bSV-CQEI4opv0K_LouXmcXvJxgtKZ4I73eQukNTBur3eg0zPKnhHMwZZLZwvzNQh18jk6VRQjDCDcx3Mu4DbnSxn23Mbm8M9Fh3oTaLWAOcC5TduPfkZU6AS9HOSX7ev8eg6_XV1_WH5qbz-8_rt_dNLqjLW0YHyQaKZbcjlhJrTgmHdWK9WxoB2yUJppjJDtCjFLI9Iy2WOFe6rHuKi05Bm92vvWvD8WmLGaXtJ0m6W0oSbR8oB3DPWufRykeeI84YRU9f4LehRLrZgtVB6OOkaFSZ3uqqNkasYlurucSjzFU4HIH6BhSinYU2mW53ChH6SaBkViCFjVo8Sfoqnj7RPFo-i927_7DTXb7f1B8ulrvFL8B1XO5iw |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2023_118766 crossref_primary_10_3390_d16040242 crossref_primary_10_1016_j_biortech_2023_128889 crossref_primary_10_1016_j_gecco_2025_e03473 crossref_primary_10_1038_s41467_022_31936_7 crossref_primary_10_1111_1365_2745_13900 crossref_primary_10_1002_ece3_10409 crossref_primary_10_1016_j_jclepro_2023_139888 crossref_primary_10_1016_j_catena_2023_107698 crossref_primary_10_1111_1462_2920_16545 crossref_primary_10_1016_j_agee_2025_109568 crossref_primary_10_1016_j_jia_2023_11_050 crossref_primary_10_1016_j_scitotenv_2024_172862 crossref_primary_10_1016_j_still_2024_106174 crossref_primary_10_1007_s11368_022_03336_3 crossref_primary_10_1016_j_apsoil_2022_104566 crossref_primary_10_1016_j_apsoil_2024_105536 crossref_primary_10_1002_ldr_4937 crossref_primary_10_1016_j_indcrop_2024_120311 crossref_primary_10_1016_j_gecco_2024_e03313 crossref_primary_10_1038_s43705_023_00305_w crossref_primary_10_1007_s00253_023_12576_3 crossref_primary_10_1111_1365_2435_14220 crossref_primary_10_3389_fmicb_2023_1153199 crossref_primary_10_1007_s11368_023_03597_6 crossref_primary_10_1016_j_jclepro_2024_143536 crossref_primary_10_1016_j_scitotenv_2024_177564 crossref_primary_10_1016_j_apsoil_2023_105226 crossref_primary_10_1016_j_scitotenv_2024_174572 crossref_primary_10_3390_d15020289 crossref_primary_10_3389_fmicb_2024_1341251 crossref_primary_10_1007_s11104_022_05853_z crossref_primary_10_1016_j_scitotenv_2022_160255 crossref_primary_10_1016_j_catena_2023_107675 crossref_primary_10_1016_j_envint_2024_108467 crossref_primary_10_1111_gcb_16913 crossref_primary_10_1016_j_envint_2022_107133 crossref_primary_10_1111_gcb_17601 crossref_primary_10_1038_s42003_022_03471_0 crossref_primary_10_1016_j_agee_2022_108238 crossref_primary_10_1016_j_geoderma_2022_115851 crossref_primary_10_1186_s13059_024_03373_w crossref_primary_10_3389_fmicb_2024_1337435 crossref_primary_10_1007_s11104_023_06445_1 crossref_primary_10_1016_j_micres_2021_126897 crossref_primary_10_1016_j_scitotenv_2022_158620 crossref_primary_10_1016_j_hal_2022_102350 crossref_primary_10_3390_foods14020216 crossref_primary_10_7554_eLife_76846 crossref_primary_10_1016_j_agee_2023_108647 crossref_primary_10_3389_fmicb_2022_918134 crossref_primary_10_1371_journal_pone_0311364 |
Cites_doi | 10.1038/nature03891 10.1038/s41586-018-0386-6 10.1021/acs.est.5b05620 10.1111/mec.13783 10.1021/es0323493 10.1128/AEM.02738-17 10.1016/j.envint.2019.105330 10.1111/nph.12187 10.3389/fmicb.2014.00424 10.1126/science.aay2832 10.1007/s11104-008-9833-8 10.1371/journal.pone.0051962 10.1038/ismej.2014.46 10.1038/nature10282 10.1038/ncomms10541 10.1038/ismej.2010.119 10.1016/j.femsle.2005.06.057 10.1038/ismej.2016.86 10.1128/AEM.03091-14 10.1111/j.1462-2920.2006.01098.x 10.1038/s41396-018-0158-1 10.1128/AEM.00941-12 10.1016/j.soilbio.2019.107526 10.1099/ijs.0.043828-0 10.1126/sciadv.aau4578 10.1126/science.aaf4507 10.3389/fmicb.2013.00112 10.1111/j.1462-2920.2006.00992.x 10.1038/nmeth.2604 10.1038/s41579-019-0178-5 10.1073/pnas.1402584111 10.1038/ncomms12083 10.1073/pnas.1811269115 10.1038/s41396-019-0567-9 10.1111/1365-2435.12924 10.1038/s41467-019-13164-8 10.1111/j.0030-1299.2004.12685.x 10.1111/mec.15160 10.1111/j.1462-2920.2007.01335.x 10.1186/s40168-019-0756-9 10.1186/s40168-019-0778-3 10.3389/fmicb.2012.00338 10.1007/s11368-009-0120-y 10.1016/j.soilbio.2009.02.029 10.1126/science.aav0550 10.1038/nature13855 10.1111/gcb.14777 10.1038/s41396-020-0614-6 10.1038/s41396-019-0487-8 10.1002/ecy.1518 10.1126/science.1071698 10.1073/pnas.0801925105 10.1038/nmeth.f.303 10.1038/s41564-018-0201-z 10.1038/nature11148 10.1126/science.aap9516 10.1093/molbev/msp077 10.1111/j.2517-6161.1995.tb02031.x 10.1073/pnas.1320054111 10.1016/j.soilbio.2019.107686 10.1126/science.277.5330.1300 10.1093/bioinformatics/btp636 10.1038/s41559-019-1084-y 10.1038/s41564-018-0180-0 10.1111/1365-2745.12585 10.1016/j.soilbio.2021.108143 10.1007/0-387-29298-5 10.1038/ismej.2013.34 10.1111/1462-2920.14457 10.1073/pnas.1505587112 10.1038/nrmicro.2017.87 10.1126/science.aat6405 10.1186/s40168-020-00873-2 10.1073/pnas.1413707111 10.1038/s41467-019-12798-y 10.1890/03-3050 10.1111/gcb.15086 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd 2021 John Wiley & Sons Ltd. Copyright © 2021 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd – notice: 2021 John Wiley & Sons Ltd. – notice: Copyright © 2021 John Wiley & Sons Ltd |
DBID | AAYXX CITATION NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/mec.15935 |
DatabaseName | CrossRef PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA CrossRef PubMed Entomology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-294X |
EndPage | 2930 |
ExternalDocumentID | 33905157 10_1111_mec_15935 MEC15935 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Second Tibetan Plateau Scientific Expedition and Research Program funderid: 2019QZKK0306; 2019QZKK0308 – fundername: National Natural Science Foundation of China funderid: 31772683; 41671254 – fundername: State Key Laboratory of Urban and Regional Ecology funderid: SKLURE2017‐1‐7 – fundername: National Natural Science Foundation of China grantid: 41671254 – fundername: Second Tibetan Plateau Scientific Expedition and Research Program grantid: 2019QZKK0306 – fundername: National Natural Science Foundation of China grantid: 31772683 – fundername: Second Tibetan Plateau Scientific Expedition and Research Program grantid: 2019QZKK0308 – fundername: State Key Laboratory of Urban and Regional Ecology grantid: SKLURE2017-1-7 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4525-698a0f51a9ef1bacb91345cb6768281dbc3c910a433dbb0d76521b17acf390ae3 |
IEDL.DBID | DR2 |
ISSN | 0962-1083 1365-294X |
IngestDate | Fri Jul 11 18:30:19 EDT 2025 Fri Jul 11 07:07:37 EDT 2025 Wed Aug 13 09:42:33 EDT 2025 Wed Feb 19 02:28:51 EST 2025 Tue Jul 01 03:22:10 EDT 2025 Thu Apr 24 23:01:02 EDT 2025 Wed Jan 22 16:30:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | specific taxa functional redundancy composition shift diversity-function relationship ecosystem multifunctionality microbial diversity loss |
Language | English |
License | 2021 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4525-698a0f51a9ef1bacb91345cb6768281dbc3c910a433dbb0d76521b17acf390ae3 |
Notes | Yan Li and Yuan Ge contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0234-5638 0000-0002-5526-7066 |
PMID | 33905157 |
PQID | 2539004638 |
PQPubID | 31465 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2985461762 proquest_miscellaneous_2518970936 proquest_journals_2539004638 pubmed_primary_33905157 crossref_citationtrail_10_1111_mec_15935 crossref_primary_10_1111_mec_15935 wiley_primary_10_1111_mec_15935_MEC15935 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Molecular ecology |
PublicationTitleAlternate | Mol Ecol |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2018; 560 2018; 362 2011; 477 2009; 41 2013; 4 2005; 250 2012; 486 2019; 10 2019; 13 2013; 63 1997; 277 2019; 17 2019; 366 2020; 14 2008; 105 2018; 84 2016; 104 2013; 7 2019; 365 2020; 8 2017; 31 2020; 4 2018; 3 2014; 5 2010; 26 2018; 4 2001 2015; 81 2013; 10 2019; 21 2019; 28 2007; 9 2016; 353 2020; 134 2013; 198 2021; 154 2014; 8 2010; 7 2014; 515 2019; 7 2004; 85 2004; 104 2002; 296 2020; 141 1995; 57 2005; 436 2006; 8 2016; 97 2003; 37 2005 2016; 50 2008; 321 2014; 111 2012; 78 2011; 5 2009; 26 2016; 7 2012; 3 2018; 359 2017; 15 2017; 11 2015; 112 2018; 115 2009; 9 2020; 26 2018 2019; 136 2018; 12 2012; 7 2016; 25 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 Singh A. (e_1_2_8_67_1) 2018 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 Brenner D. J. (e_1_2_8_10_1) 2005 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 Boone D. R. (e_1_2_8_8_1) 2001 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 21 start-page: 299 issue: 1 year: 2019 end-page: 313 article-title: Ectomycorrhizal fungi inoculation alleviates simulated acid rain effects on soil ammonia oxidizers and denitrifiers in Masson pine forest publication-title: Environmental Microbiology – volume: 111 start-page: 5266 issue: 14 year: 2014 end-page: 5270 article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 7 issue: 12 year: 2012 article-title: Soil functional operating range linked to microbial biodiversity and community composition using denitrifiers as model guild publication-title: PLoS One – volume: 105 start-page: 11512 issue: Suppl 1 year: 2008 end-page: 11519 article-title: Resistance, resilience, and redundancy in microbial communities publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 15 start-page: 579 issue: 10 year: 2017 end-page: 590 article-title: Embracing the unknown: Disentangling the complexities of the soil microbiome publication-title: Nature Reviews Microbiology – year: 2018 article-title: DIABLO: From multi‐omics assays to biomarker discovery, an integrative approach publication-title: bioRxiv – volume: 8 start-page: 2162 issue: 12 year: 2006 end-page: 2169 article-title: Maintenance of soil functioning following erosion of microbial diversity publication-title: Environmental Microbiology – volume: 85 start-page: 1534 issue: 6 year: 2004 end-page: 1540 article-title: Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment publication-title: Ecology – year: 2005 – volume: 321 start-page: 35 issue: 1–2 year: 2008 end-page: 59 article-title: Nitrogen‐fixing bacteria associated with leguminous and non‐leguminous plants publication-title: Plant and Soil – volume: 7 start-page: 335 issue: 5 year: 2010 end-page: 336 article-title: QIIME allows analysis of high‐throughput community sequencing data publication-title: Nature Methods – volume: 8 start-page: 2045 issue: 10 year: 2014 end-page: 2055 article-title: Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping publication-title: The ISME Journal – volume: 366 start-page: 886 issue: 6467 year: 2019 end-page: 890 article-title: The role of multiple global change factors in driving soil functions and microbial biodiversity publication-title: Science – year: 2001 – volume: 4 start-page: 210 issue: 2 year: 2020 end-page: 220 article-title: Multiple elements of soil biodiversity drive ecosystem functions across biomes publication-title: Nature Ecology & Evolution – volume: 436 start-page: 1157 issue: 7054 year: 2005 end-page: 1160 article-title: The contribution of species richness and composition to bacterial services publication-title: Nature – volume: 5 start-page: 351 issue: 2 year: 2011 end-page: 361 article-title: Function‐specific response to depletion of microbial diversity publication-title: The ISME Journal – volume: 13 start-page: 2969 issue: 12 year: 2019 end-page: 2983 article-title: Microdiversity ensures the maintenance of functional microbial communities under changing environmental conditions publication-title: The ISME Journal – volume: 84 issue: 9 year: 2018 article-title: High microbial diversity promotes soil ecosystem functioning publication-title: Applied and Environment Microbiology – volume: 10 start-page: 5142 issue: 1 year: 2019 article-title: A meta‐analysis of global fungal distribution reveals climate‐driven patterns publication-title: Nature Communications – volume: 250 start-page: 33 issue: 1 year: 2005 end-page: 38 article-title: Activity, diversity and population size of ammonia‐oxidising bacteria in oil‐contaminated landfarming soil publication-title: FEMS Microbiology Letters – volume: 8 start-page: 92 issue: 1 year: 2020 article-title: Climate mediates continental scale patterns of stream microbial functional diversity publication-title: Microbiome – volume: 26 start-page: 3175 issue: 6 year: 2020 end-page: 3177 article-title: Changes in the environmental microbiome in the Anthropocene publication-title: Global Change Biology – volume: 7 start-page: 146 issue: 1 year: 2019 article-title: Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling publication-title: Microbiome – volume: 26 start-page: 1641 issue: 7 year: 2009 end-page: 1650 article-title: FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix publication-title: Molecular Biology and Evolution – volume: 7 year: 2016 article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems publication-title: Nature Communications – volume: 4 issue: 11 year: 2018 article-title: Fungal diversity regulates plant‐soil feedbacks in temperate grassland publication-title: Science Advances – volume: 14 start-page: 1396 issue: 6 year: 2020 end-page: 1409 article-title: Plant communities mediate the interactive effects of invasion and drought on soil microbial communities publication-title: The ISME Journal – volume: 104 start-page: 936 issue: 4 year: 2016 end-page: 946 article-title: Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning publication-title: Journal of Ecology – volume: 359 start-page: 320 issue: 6373 year: 2018 end-page: 325 article-title: A global atlas of the dominant bacteria found in soil publication-title: Science – volume: 112 start-page: 14888 issue: 48 year: 2015 end-page: 14893 article-title: The extent of functional redundancy changes as species' roles shift in different environments publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 25 start-page: 4660 issue: 18 year: 2016 end-page: 4673 article-title: The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi‐arid soils publication-title: Molecular Ecology – volume: 8 start-page: 1005 issue: 6 year: 2006 end-page: 1016 article-title: Effects of management regime and plant species on the enzyme activity and genetic structure of N‐fixing, denitrifying and nitrifying bacterial communities in grassland soils publication-title: Environmental Microbiology – volume: 365 issue: 6455 year: 2019 article-title: The global soil community and its influence on biogeochemistry publication-title: Science – volume: 4 start-page: 112 year: 2013 article-title: Links between metabolic plasticity and functional redundancy in freshwater bacterioplankton communities publication-title: Frontiers in Microbiology – volume: 560 start-page: 233 issue: 7717 year: 2018 end-page: 237 article-title: Structure and function of the global topsoil microbiome publication-title: Nature – volume: 41 start-page: 1180 issue: 6 year: 2009 end-page: 1186 article-title: The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB‐linked substrates and l‐DOPA publication-title: Soil Biology and Biochemistry – volume: 136 year: 2019 article-title: Fungal richness contributes to multifunctionality in boreal forest soil publication-title: Soil Biology and Biochemistry – volume: 154 year: 2021 article-title: Soil aggregate size‐dependent relationships between microbial functional diversity and multifunctionality publication-title: Soil Biology and Biochemistry – volume: 477 start-page: 199 issue: 7363 year: 2011 end-page: 202 article-title: High plant diversity is needed to maintain ecosystem services publication-title: Nature – volume: 8 start-page: 3 issue: 1 year: 2020 article-title: Warming‐induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community publication-title: Microbiome – volume: 10 start-page: 4841 issue: 1 year: 2019 article-title: Fungal‐bacterial diversity and microbiome complexity predict ecosystem functioning publication-title: Nature Communications – volume: 7 year: 2016 article-title: Temperature mediates continental‐scale diversity of microbes in forest soils publication-title: Nature Communications – volume: 14 start-page: 757 issue: 3 year: 2020 end-page: 770 article-title: Long‐term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems publication-title: The ISME Journal – volume: 28 start-page: 3445 issue: 14 year: 2019 end-page: 3458 article-title: Impacts of long‐term elevated atmospheric CO concentrations on communities of arbuscular mycorrhizal fungi publication-title: Molecular Ecology – volume: 486 start-page: 59 issue: 7401 year: 2012 end-page: 67 article-title: Biodiversity loss and its impact on humanity publication-title: Nature – volume: 81 start-page: 2163 issue: 6 year: 2015 end-page: 2172 article-title: Xylan utilization regulon in pv. citri Strain 306: Gene expression and utilization of oligoxylosides publication-title: Applied and Environment Microbiology – volume: 26 start-page: 669 issue: 2 year: 2020 end-page: 681 article-title: Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity publication-title: Global Change Biology – volume: 277 start-page: 1300 issue: 5330 year: 1997 end-page: 1302 article-title: The influence of functional diversity and composition on ecosystem processes publication-title: Science – volume: 9 start-page: 547 issue: 6 year: 2009 end-page: 554 article-title: Linking soil bacterial diversity to ecosystem multifunctionality using backward‐elimination boosted trees analysis publication-title: Journal of Soils and Sediments – volume: 11 start-page: 272 issue: 1 year: 2017 end-page: 283 article-title: Effectiveness of ecological rescue for altered soil microbial communities and functions publication-title: The ISME Journal – volume: 31 start-page: 2330 issue: 12 year: 2017 end-page: 2343 article-title: Microbial richness and composition independently drive soil multifunctionality publication-title: Functional Ecology – volume: 3 start-page: 338 year: 2012 article-title: Cooperation, competition, and coalitions in enzyme‐producing microbes: Social evolution and nutrient depolymerization rates publication-title: Frontiers in Microbiology – volume: 7 start-page: 1609 issue: 8 year: 2013 end-page: 1619 article-title: Loss in microbial diversity affects nitrogen cycling in soil publication-title: The ISME Journal – volume: 12 start-page: 2470 year: 2018 end-page: 2478 article-title: A strong link between marine microbial community composition and function challenges the idea of functional redundancy publication-title: The ISME Journal – volume: 50 start-page: 3965 issue: 7 year: 2016 end-page: 3974 article-title: Long‐term effects of multiwalled carbon nanotubes and graphene on microbial communities in dry soil publication-title: Environmental Science and Technology – volume: 3 start-page: 977 issue: 9 year: 2018 end-page: 982 article-title: Understanding how microbiomes influence the systems they inhabit publication-title: Nature Microbiology – volume: 63 start-page: 1267 issue: Pt 4 year: 2013 end-page: 1272 article-title: sp. nov., with xylan‐degrading activity publication-title: International Journal of Systematic and Evolutionary Microbiology – volume: 353 start-page: 1272 issue: 6305 year: 2016 end-page: 1277 article-title: Decoupling function and taxonomy in the global ocean microbiome publication-title: Science – volume: 111 start-page: 6341 issue: 17 year: 2014 end-page: 6346 article-title: Endemism and functional convergence across the North American soil mycobiome publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 26 start-page: 266 issue: 2 year: 2010 end-page: 267 article-title: PyNAST: A flexible tool for aligning sequences to a template alignment publication-title: Bioinformatics – volume: 37 start-page: 64A issue: 3 year: 2003 end-page: 70A article-title: Theoretical ecology for engineering biology publication-title: Environmental Science and Technology – volume: 515 start-page: 505 issue: 7528 year: 2014 end-page: 511 article-title: Belowground biodiversity and ecosystem functioning publication-title: Nature – volume: 296 start-page: 1064 issue: 5570 year: 2002 end-page: 1066 article-title: Prokaryotic diversity–magnitude, dynamics, and controlling factors publication-title: Science – volume: 115 start-page: 11994 issue: 47 year: 2018 end-page: 11999 article-title: Decomposition responses to climate depend on microbial community composition publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 362 start-page: 80 issue: 6410 year: 2018 end-page: 83 article-title: Impacts of species richness on productivity in a large‐scale subtropical forest experiment publication-title: Science – volume: 198 start-page: 899 issue: 3 year: 2013 end-page: 915 article-title: The xylan utilization system of the plant pathogen pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts publication-title: New Phytologist – volume: 10 start-page: 996 issue: 10 year: 2013 end-page: 998 article-title: UPARSE: Highly accurate OTU sequences from microbial amplicon reads publication-title: Nature Methods – volume: 5 start-page: 424 year: 2014 article-title: Changes in community assembly may shift the relationship between biodiversity and ecosystem function publication-title: Frontiers in Microbiology – volume: 17 start-page: 391 issue: 6 year: 2019 end-page: 396 article-title: Climate change microbiology‐problems and perspectives publication-title: Nature Reviews Microbiology – volume: 141 year: 2020 article-title: Rare microbial taxa as the major drivers of ecosystem multifunctionality in long‐term fertilized soils publication-title: Soil Biology and Biochemistry – volume: 9 start-page: 2211 issue: 9 year: 2007 end-page: 2219 article-title: Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance publication-title: Environmental Microbiology – volume: 111 start-page: 14478 issue: 40 year: 2014 end-page: 14483 article-title: Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 3 start-page: 767 issue: 7 year: 2018 end-page: 772 article-title: Abundance determines the functional role of bacterial phylotypes in complex communities publication-title: Nature Microbiology – volume: 104 start-page: 606 issue: 3 year: 2004 end-page: 611 article-title: Does functional redundancy exist? publication-title: Oikos – volume: 97 start-page: 2716 issue: 10 year: 2016 end-page: 2728 article-title: Effects of multiple dimensions of bacterial diversity on functioning, stability and multifunctionality publication-title: Ecology – volume: 134 year: 2020 article-title: Decreasing diversity of rare bacterial subcommunities relates to dissolved organic matter along permafrost thawing gradients publication-title: Environment International – volume: 78 start-page: 6749 issue: 18 year: 2012 end-page: 6758 article-title: Identification of soil bacteria susceptible to TiO and ZnO nanoparticles publication-title: Applied and Environment Microbiology – volume: 57 start-page: 289 issue: 1 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society Series B‐Statistical Methodology – ident: e_1_2_8_6_1 doi: 10.1038/nature03891 – ident: e_1_2_8_3_1 doi: 10.1038/s41586-018-0386-6 – ident: e_1_2_8_37_1 doi: 10.1021/acs.est.5b05620 – ident: e_1_2_8_5_1 doi: 10.1111/mec.13783 – ident: e_1_2_8_19_1 doi: 10.1021/es0323493 – ident: e_1_2_8_55_1 doi: 10.1128/AEM.02738-17 – ident: e_1_2_8_79_1 doi: 10.1016/j.envint.2019.105330 – ident: e_1_2_8_22_1 doi: 10.1111/nph.12187 – ident: e_1_2_8_48_1 doi: 10.3389/fmicb.2014.00424 – ident: e_1_2_8_62_1 doi: 10.1126/science.aay2832 – ident: e_1_2_8_34_1 doi: 10.1007/s11104-008-9833-8 – ident: e_1_2_8_41_1 doi: 10.1371/journal.pone.0051962 – ident: e_1_2_8_77_1 doi: 10.1038/ismej.2014.46 – ident: e_1_2_8_46_1 doi: 10.1038/nature10282 – ident: e_1_2_8_24_1 doi: 10.1038/ncomms10541 – ident: e_1_2_8_57_1 doi: 10.1038/ismej.2010.119 – ident: e_1_2_8_49_1 doi: 10.1016/j.femsle.2005.06.057 – ident: e_1_2_8_11_1 doi: 10.1038/ismej.2016.86 – ident: e_1_2_8_16_1 doi: 10.1128/AEM.03091-14 – ident: e_1_2_8_74_1 doi: 10.1111/j.1462-2920.2006.01098.x – ident: e_1_2_8_35_1 doi: 10.1038/s41396-018-0158-1 – ident: e_1_2_8_38_1 doi: 10.1128/AEM.00941-12 – ident: e_1_2_8_50_1 doi: 10.1016/j.soilbio.2019.107526 – ident: e_1_2_8_47_1 doi: 10.1099/ijs.0.043828-0 – ident: e_1_2_8_66_1 doi: 10.1126/sciadv.aau4578 – ident: e_1_2_8_53_1 doi: 10.1126/science.aaf4507 – ident: e_1_2_8_17_1 doi: 10.3389/fmicb.2013.00112 – ident: e_1_2_8_56_1 doi: 10.1111/j.1462-2920.2006.00992.x – ident: e_1_2_8_28_1 doi: 10.1038/nmeth.2604 – ident: e_1_2_8_45_1 doi: 10.1038/s41579-019-0178-5 – ident: e_1_2_8_68_1 doi: 10.1073/pnas.1402584111 – ident: e_1_2_8_78_1 doi: 10.1038/ncomms12083 – ident: e_1_2_8_39_1 doi: 10.1073/pnas.1811269115 – ident: e_1_2_8_20_1 doi: 10.1038/s41396-019-0567-9 – ident: e_1_2_8_27_1 doi: 10.1111/1365-2435.12924 – ident: e_1_2_8_71_1 doi: 10.1038/s41467-019-13164-8 – ident: e_1_2_8_52_1 doi: 10.1111/j.0030-1299.2004.12685.x – ident: e_1_2_8_54_1 doi: 10.1111/mec.15160 – ident: e_1_2_8_75_1 doi: 10.1111/j.1462-2920.2007.01335.x – ident: e_1_2_8_65_1 doi: 10.1186/s40168-019-0756-9 – ident: e_1_2_8_30_1 doi: 10.1186/s40168-019-0778-3 – ident: e_1_2_8_33_1 doi: 10.3389/fmicb.2012.00338 – ident: e_1_2_8_43_1 doi: 10.1007/s11368-009-0120-y – ident: e_1_2_8_21_1 doi: 10.1016/j.soilbio.2009.02.029 – ident: e_1_2_8_18_1 doi: 10.1126/science.aav0550 – ident: e_1_2_8_4_1 doi: 10.1038/nature13855 – ident: e_1_2_8_61_1 doi: 10.1111/gcb.14777 – ident: e_1_2_8_29_1 doi: 10.1038/s41396-020-0614-6 – ident: e_1_2_8_36_1 doi: 10.1038/s41396-019-0487-8 – volume-title: Bergey's manual of systematic bacteriology: Volume one: The archaea and the deeply branching and phototrophic bacteria year: 2001 ident: e_1_2_8_8_1 – ident: e_1_2_8_64_1 doi: 10.1002/ecy.1518 – ident: e_1_2_8_70_1 doi: 10.1126/science.1071698 – year: 2018 ident: e_1_2_8_67_1 article-title: DIABLO: From multi‐omics assays to biomarker discovery, an integrative approach publication-title: bioRxiv – ident: e_1_2_8_2_1 doi: 10.1073/pnas.0801925105 – ident: e_1_2_8_13_1 doi: 10.1038/nmeth.f.303 – ident: e_1_2_8_40_1 doi: 10.1038/s41564-018-0201-z – ident: e_1_2_8_14_1 doi: 10.1038/nature11148 – ident: e_1_2_8_25_1 doi: 10.1126/science.aap9516 – ident: e_1_2_8_60_1 doi: 10.1093/molbev/msp077 – ident: e_1_2_8_7_1 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_8_72_1 doi: 10.1073/pnas.1320054111 – ident: e_1_2_8_15_1 doi: 10.1016/j.soilbio.2019.107686 – ident: e_1_2_8_69_1 doi: 10.1126/science.277.5330.1300 – ident: e_1_2_8_12_1 doi: 10.1093/bioinformatics/btp636 – ident: e_1_2_8_26_1 doi: 10.1038/s41559-019-1084-y – ident: e_1_2_8_63_1 doi: 10.1038/s41564-018-0180-0 – ident: e_1_2_8_23_1 doi: 10.1111/1365-2745.12585 – ident: e_1_2_8_42_1 doi: 10.1016/j.soilbio.2021.108143 – volume-title: Bergey's manual of systematic bacteriology: Volume two: The proteobacteria, part A introductory essays year: 2005 ident: e_1_2_8_10_1 doi: 10.1007/0-387-29298-5 – ident: e_1_2_8_58_1 doi: 10.1038/ismej.2013.34 – ident: e_1_2_8_51_1 doi: 10.1111/1462-2920.14457 – ident: e_1_2_8_31_1 doi: 10.1073/pnas.1505587112 – ident: e_1_2_8_32_1 doi: 10.1038/nrmicro.2017.87 – ident: e_1_2_8_44_1 doi: 10.1126/science.aat6405 – ident: e_1_2_8_59_1 doi: 10.1186/s40168-020-00873-2 – ident: e_1_2_8_9_1 doi: 10.1073/pnas.1413707111 – ident: e_1_2_8_73_1 doi: 10.1038/s41467-019-12798-y – ident: e_1_2_8_76_1 doi: 10.1890/03-3050 – ident: e_1_2_8_80_1 doi: 10.1111/gcb.15086 |
SSID | ssj0013255 |
Score | 2.5540729 |
Snippet | Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2915 |
SubjectTerms | Composition composition shift diversity–function relationship Ecological function Ecosystem management ecosystem multifunctionality Ecosystem services Ecosystems Environment models functional redundancy Functionals Microbial activity microbial communities microbial diversity loss Microorganisms Nitrification Nutrient cycles Nutrient loss prediction Redundancy Soil investigations Soil nutrients soil respiration Soils specific taxa Taxa taxonomy |
Title | Functional redundancy and specific taxa modulate the contribution of prokaryotic diversity and composition to multifunctionality |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.15935 https://www.ncbi.nlm.nih.gov/pubmed/33905157 https://www.proquest.com/docview/2539004638 https://www.proquest.com/docview/2518970936 https://www.proquest.com/docview/2985461762 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CoNBLm743j6KUHnrxIkt-SPRUwi6hkBxCAjkEjF6-pLFL4oUmp_z0zMgPkiYtpTeDZ-2RVyN9kr75BuAzggCd-tIkInhcoAShE5uZMtG1sDI3JlMxXezgsNg_yb6f5qdr8HXMhen1IaYNN4qMOF5TgBt7dS_IL4Kb41wsKcGcuFoEiI7EvROEWPEUEbrAoUbJQVWIWDzTLx_ORY8A5kO8Giec5Us4G13teSbn81Vn5-7mNxXH_2zLBrwYgCj71vecV7AWmtfwrC9NeY1Xiyhnff0Gbpc49fU7huwyUNIZDcjMNJ5RmiZRjVhnfhl20XqqBRYYYkoWKfBDLS3W1gybcY7-tfg25kcuSHwIkdoH5hjrWhYZjvX0SrR6CyfLxfHefjLUbUgcnZImhVaG13lqdKhTa5yl0_3c2QKXNgLxsXXSIUoxmZTeWu7LAjGETUvjaqm5CfIdrDdtEz4AUySPJmrOvQqZlc5yp2vEnFxqz5UPM_gy_oOVG0TNqbbGj2pc3OCnreKnncGnyfRnr-TxlNH22A2qIZivKpGjW6SspmawO93GMKSzFdOEdkU2qdIl17L4i41WeYaIsRAzeN93sckTKUkoLS-xQbGj_NnF6mCxFy82_910C54L4uLE3aNtWO8uV2EHwVRnP8aouQOdghxW |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQX3o-FAgZx4JKVY-dhS1xQ2dUC3R5QK_WCIr9yKU1QyUqUEz-dGeehlpcQt0iZJGPHY3-2P38D8AJBgE59aRIRPE5QgtCJzUyZ6FpYmRuTqXhcbL1frA6zd0f50Ra8Gs_C9PoQ04IbRUbsrynAaUH6XJSfBDfHwVjml-AyZfQm5fw3H8S5PYSY8xQxusDORslBV4h4PNOjF0ejXyDmRcQah5zlDfg4OtszTY7nm87O3befdBz_tzQ34fqARdnrvvHcgq3Q3IYrfXbKM7xaREXrszvwfYmjX79oyE4DnTujPpmZxjM6qUlsI9aZr4adtJ7SgQWGsJJFFvyQTou1NcNyHKODLX6N-ZEOEl9CvPaBPMa6lkWSYz19Eq3uwuFycbC7SobUDYmjjdKk0MrwOk-NDnVqjbO0wZ87W-DsRiBEtk46BComk9Jby31ZIIywaWlcLTU3Qd6D7aZtwgNgihTSRM25VyGz0lnudI2wk0vtufJhBi_HX1i5Qdec0mt8qsb5DVZtFat2Bs8n08-9mMfvjHbGdlAN8fylEjm6ReJqagbPptsYibS9YprQbsgmVbrkWhZ_sdEqzxA0FmIG9_s2NnkiJWml5SUWKLaUP7tYrRe78eLhv5s-haurg_Vetfd2__0juCaImhMXk3ZguzvdhMeIrTr7JIbQD0e-IHI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwEB6VIlAv7KUPChjEgUueHDubxQm176ksrRCiUg9IkddLaVKVPIly4qcz4yxq2YS4RcokGTse-7P9-RuA5wgCVOpKnQjvcILihUpMpstEBWFkrnVWxeNi-wfF3mH25ig_WoOX41mYXh9iWnCjyIj9NQX4qQsXgvzE2zmOxTK_AlezgivK27D7QVzYQogpTxGiC-xrKjnIChGNZ3r08mD0C8K8DFjjiLO8CZ9GX3uiyfF81Zm5_faTjON_FuYW3BiQKHvVN53bsOabO3Ctz015jleLqGd9fhe-L3Hs65cM2ZmnU2fUIzPdOEbnNIlrxDr9VbOT1lEyMM8QVLLIgR-SabE2MCzGMfrX4teYG8kg8SXEah-oY6xrWaQ4humTaHUPDpeLjzt7yZC4IbG0TZoUqtI85KlWPqRGW0Pb-7k1Bc5tBAJkY6VFmKIzKZ0x3JUFggiTltoGqbj2chPWm7bxW8Aq0kcTgXNX-cxIa7hVAUEnl8rxyvkZvBj_YG0HVXNKrvG5Hmc3WLV1rNoZPJtMT3spj98ZbY_NoB6i-UstcnSLpNWqGTydbmMc0uaKbny7Ipu0UiVXsviLjaryDCFjIWZwv29ikydSklJaXmKBYkP5s4v1_mInXjz4d9MncP397rJ-9_rg7UPYEMTLiStJ27Dena38IwRWnXkcA-gH1aUfIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+redundancy+and+specific+taxa+modulate+the+contribution+of+prokaryotic+diversity+and+composition+to+multifunctionality&rft.jtitle=Molecular+ecology&rft.au=Li%2C+Yan&rft.au=Ge%2C+Yuan&rft.au=Wang%2C+Jichen&rft.au=Shen%2C+Congcong&rft.date=2021-06-01&rft.eissn=1365-294X&rft_id=info:doi/10.1111%2Fmec.15935&rft_id=info%3Apmid%2F33905157&rft.externalDocID=33905157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |