Functional redundancy and specific taxa modulate the contribution of prokaryotic diversity and composition to multifunctionality

Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and function...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 30; no. 12; pp. 2915 - 2930
Main Authors Li, Yan, Ge, Yuan, Wang, Jichen, Shen, Congcong, Wang, Jianlei, Liu, Yong‐Jun
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and functions evaluated. Here we conducted diversity manipulation experiments in two independent soils with distinct prokaryotic communities, and investigated how the initial community traits (e.g., distinct functional redundancy and taxonomic composition) modulate the contribution of prokaryotic diversity loss and composition shift to eight ecosystem functions related to soil nutrient cycling. We found that diversity loss impaired three functions (potential nitrification rate, N2‐fixation activity and phosphatase) and multifunctionality only in the communities with low functional redundancy, but all examined functions were unaffected in the communities with high functional redundancy. All significantly affected functions belonged to specialized functions, while the broad function (soil basal respiration) was unaffected. Moreover, prokaryotic composition explained more functional variation than diversity, which was ascribed to the crucial role of specific taxa that influence particular functions. Taken together, this study provides empirical evidence for identifying the mechanism underlying the ecosystem response to changes in microbial community, with implications for improving the prediction of ecosystem process models and managing microbial communities to promote ecosystem services.
AbstractList Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and functions evaluated. Here we conducted diversity manipulation experiments in two independent soils with distinct prokaryotic communities, and investigated how the initial community traits (e.g., distinct functional redundancy and taxonomic composition) modulate the contribution of prokaryotic diversity loss and composition shift to eight ecosystem functions related to soil nutrient cycling. We found that diversity loss impaired three functions (potential nitrification rate, N2 -fixation activity and phosphatase) and multifunctionality only in the communities with low functional redundancy, but all examined functions were unaffected in the communities with high functional redundancy. All significantly affected functions belonged to specialized functions, while the broad function (soil basal respiration) was unaffected. Moreover, prokaryotic composition explained more functional variation than diversity, which was ascribed to the crucial role of specific taxa that influence particular functions. Taken together, this study provides empirical evidence for identifying the mechanism underlying the ecosystem response to changes in microbial community, with implications for improving the prediction of ecosystem process models and managing microbial communities to promote ecosystem services.Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and functions evaluated. Here we conducted diversity manipulation experiments in two independent soils with distinct prokaryotic communities, and investigated how the initial community traits (e.g., distinct functional redundancy and taxonomic composition) modulate the contribution of prokaryotic diversity loss and composition shift to eight ecosystem functions related to soil nutrient cycling. We found that diversity loss impaired three functions (potential nitrification rate, N2 -fixation activity and phosphatase) and multifunctionality only in the communities with low functional redundancy, but all examined functions were unaffected in the communities with high functional redundancy. All significantly affected functions belonged to specialized functions, while the broad function (soil basal respiration) was unaffected. Moreover, prokaryotic composition explained more functional variation than diversity, which was ascribed to the crucial role of specific taxa that influence particular functions. Taken together, this study provides empirical evidence for identifying the mechanism underlying the ecosystem response to changes in microbial community, with implications for improving the prediction of ecosystem process models and managing microbial communities to promote ecosystem services.
Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and functions evaluated. Here we conducted diversity manipulation experiments in two independent soils with distinct prokaryotic communities, and investigated how the initial community traits (e.g., distinct functional redundancy and taxonomic composition) modulate the contribution of prokaryotic diversity loss and composition shift to eight ecosystem functions related to soil nutrient cycling. We found that diversity loss impaired three functions (potential nitrification rate, N₂‐fixation activity and phosphatase) and multifunctionality only in the communities with low functional redundancy, but all examined functions were unaffected in the communities with high functional redundancy. All significantly affected functions belonged to specialized functions, while the broad function (soil basal respiration) was unaffected. Moreover, prokaryotic composition explained more functional variation than diversity, which was ascribed to the crucial role of specific taxa that influence particular functions. Taken together, this study provides empirical evidence for identifying the mechanism underlying the ecosystem response to changes in microbial community, with implications for improving the prediction of ecosystem process models and managing microbial communities to promote ecosystem services.
Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and functions evaluated. Here we conducted diversity manipulation experiments in two independent soils with distinct prokaryotic communities, and investigated how the initial community traits (e.g., distinct functional redundancy and taxonomic composition) modulate the contribution of prokaryotic diversity loss and composition shift to eight ecosystem functions related to soil nutrient cycling. We found that diversity loss impaired three functions (potential nitrification rate, N2‐fixation activity and phosphatase) and multifunctionality only in the communities with low functional redundancy, but all examined functions were unaffected in the communities with high functional redundancy. All significantly affected functions belonged to specialized functions, while the broad function (soil basal respiration) was unaffected. Moreover, prokaryotic composition explained more functional variation than diversity, which was ascribed to the crucial role of specific taxa that influence particular functions. Taken together, this study provides empirical evidence for identifying the mechanism underlying the ecosystem response to changes in microbial community, with implications for improving the prediction of ecosystem process models and managing microbial communities to promote ecosystem services.
Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and functions evaluated. Here we conducted diversity manipulation experiments in two independent soils with distinct prokaryotic communities, and investigated how the initial community traits (e.g., distinct functional redundancy and taxonomic composition) modulate the contribution of prokaryotic diversity loss and composition shift to eight ecosystem functions related to soil nutrient cycling. We found that diversity loss impaired three functions (potential nitrification rate, N 2 ‐fixation activity and phosphatase) and multifunctionality only in the communities with low functional redundancy, but all examined functions were unaffected in the communities with high functional redundancy. All significantly affected functions belonged to specialized functions, while the broad function (soil basal respiration) was unaffected. Moreover, prokaryotic composition explained more functional variation than diversity, which was ascribed to the crucial role of specific taxa that influence particular functions. Taken together, this study provides empirical evidence for identifying the mechanism underlying the ecosystem response to changes in microbial community, with implications for improving the prediction of ecosystem process models and managing microbial communities to promote ecosystem services.
Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on ecosystem functions are not consistent across studies, which are probably tempered by microbial functional redundancy, specific taxa and functions evaluated. Here we conducted diversity manipulation experiments in two independent soils with distinct prokaryotic communities, and investigated how the initial community traits (e.g., distinct functional redundancy and taxonomic composition) modulate the contribution of prokaryotic diversity loss and composition shift to eight ecosystem functions related to soil nutrient cycling. We found that diversity loss impaired three functions (potential nitrification rate, N -fixation activity and phosphatase) and multifunctionality only in the communities with low functional redundancy, but all examined functions were unaffected in the communities with high functional redundancy. All significantly affected functions belonged to specialized functions, while the broad function (soil basal respiration) was unaffected. Moreover, prokaryotic composition explained more functional variation than diversity, which was ascribed to the crucial role of specific taxa that influence particular functions. Taken together, this study provides empirical evidence for identifying the mechanism underlying the ecosystem response to changes in microbial community, with implications for improving the prediction of ecosystem process models and managing microbial communities to promote ecosystem services.
Author Ge, Yuan
Wang, Jianlei
Liu, Yong‐Jun
Shen, Congcong
Wang, Jichen
Li, Yan
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0002-5526-7066
  surname: Li
  fullname: Li, Yan
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Yuan
  orcidid: 0000-0003-0234-5638
  surname: Ge
  fullname: Ge, Yuan
  email: yuange@rcees.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Jichen
  surname: Wang
  fullname: Wang, Jichen
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Congcong
  surname: Shen
  fullname: Shen, Congcong
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Jianlei
  surname: Wang
  fullname: Wang, Jianlei
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Yong‐Jun
  surname: Liu
  fullname: Liu, Yong‐Jun
  organization: Chinese Academy of Agricultural Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33905157$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtvFDEUhS0URDYJRf5AZCkNFJPY47FnXKJVAkhBNCCls_wa4WTG3vgBbMdPx8NuKCJQbmNd6Tvn-t5zBA588BaAU4wucK3L2eoLTDmhL8AKE0ablne3B2CFOGsbjAZyCI5SukMIk5bSV-CQEI4opv0K_LouXmcXvJxgtKZ4I73eQukNTBur3eg0zPKnhHMwZZLZwvzNQh18jk6VRQjDCDcx3Mu4DbnSxn23Mbm8M9Fh3oTaLWAOcC5TduPfkZU6AS9HOSX7ev8eg6_XV1_WH5qbz-8_rt_dNLqjLW0YHyQaKZbcjlhJrTgmHdWK9WxoB2yUJppjJDtCjFLI9Iy2WOFe6rHuKi05Bm92vvWvD8WmLGaXtJ0m6W0oSbR8oB3DPWufRykeeI84YRU9f4LehRLrZgtVB6OOkaFSZ3uqqNkasYlurucSjzFU4HIH6BhSinYU2mW53ChH6SaBkViCFjVo8Sfoqnj7RPFo-i927_7DTXb7f1B8ulrvFL8B1XO5iw
CitedBy_id crossref_primary_10_1016_j_jenvman_2023_118766
crossref_primary_10_3390_d16040242
crossref_primary_10_1016_j_biortech_2023_128889
crossref_primary_10_1016_j_gecco_2025_e03473
crossref_primary_10_1038_s41467_022_31936_7
crossref_primary_10_1111_1365_2745_13900
crossref_primary_10_1002_ece3_10409
crossref_primary_10_1016_j_jclepro_2023_139888
crossref_primary_10_1016_j_catena_2023_107698
crossref_primary_10_1111_1462_2920_16545
crossref_primary_10_1016_j_agee_2025_109568
crossref_primary_10_1016_j_jia_2023_11_050
crossref_primary_10_1016_j_scitotenv_2024_172862
crossref_primary_10_1016_j_still_2024_106174
crossref_primary_10_1007_s11368_022_03336_3
crossref_primary_10_1016_j_apsoil_2022_104566
crossref_primary_10_1016_j_apsoil_2024_105536
crossref_primary_10_1002_ldr_4937
crossref_primary_10_1016_j_indcrop_2024_120311
crossref_primary_10_1016_j_gecco_2024_e03313
crossref_primary_10_1038_s43705_023_00305_w
crossref_primary_10_1007_s00253_023_12576_3
crossref_primary_10_1111_1365_2435_14220
crossref_primary_10_3389_fmicb_2023_1153199
crossref_primary_10_1007_s11368_023_03597_6
crossref_primary_10_1016_j_jclepro_2024_143536
crossref_primary_10_1016_j_scitotenv_2024_177564
crossref_primary_10_1016_j_apsoil_2023_105226
crossref_primary_10_1016_j_scitotenv_2024_174572
crossref_primary_10_3390_d15020289
crossref_primary_10_3389_fmicb_2024_1341251
crossref_primary_10_1007_s11104_022_05853_z
crossref_primary_10_1016_j_scitotenv_2022_160255
crossref_primary_10_1016_j_catena_2023_107675
crossref_primary_10_1016_j_envint_2024_108467
crossref_primary_10_1111_gcb_16913
crossref_primary_10_1016_j_envint_2022_107133
crossref_primary_10_1111_gcb_17601
crossref_primary_10_1038_s42003_022_03471_0
crossref_primary_10_1016_j_agee_2022_108238
crossref_primary_10_1016_j_geoderma_2022_115851
crossref_primary_10_1186_s13059_024_03373_w
crossref_primary_10_3389_fmicb_2024_1337435
crossref_primary_10_1007_s11104_023_06445_1
crossref_primary_10_1016_j_micres_2021_126897
crossref_primary_10_1016_j_scitotenv_2022_158620
crossref_primary_10_1016_j_hal_2022_102350
crossref_primary_10_3390_foods14020216
crossref_primary_10_7554_eLife_76846
crossref_primary_10_1016_j_agee_2023_108647
crossref_primary_10_3389_fmicb_2022_918134
crossref_primary_10_1371_journal_pone_0311364
Cites_doi 10.1038/nature03891
10.1038/s41586-018-0386-6
10.1021/acs.est.5b05620
10.1111/mec.13783
10.1021/es0323493
10.1128/AEM.02738-17
10.1016/j.envint.2019.105330
10.1111/nph.12187
10.3389/fmicb.2014.00424
10.1126/science.aay2832
10.1007/s11104-008-9833-8
10.1371/journal.pone.0051962
10.1038/ismej.2014.46
10.1038/nature10282
10.1038/ncomms10541
10.1038/ismej.2010.119
10.1016/j.femsle.2005.06.057
10.1038/ismej.2016.86
10.1128/AEM.03091-14
10.1111/j.1462-2920.2006.01098.x
10.1038/s41396-018-0158-1
10.1128/AEM.00941-12
10.1016/j.soilbio.2019.107526
10.1099/ijs.0.043828-0
10.1126/sciadv.aau4578
10.1126/science.aaf4507
10.3389/fmicb.2013.00112
10.1111/j.1462-2920.2006.00992.x
10.1038/nmeth.2604
10.1038/s41579-019-0178-5
10.1073/pnas.1402584111
10.1038/ncomms12083
10.1073/pnas.1811269115
10.1038/s41396-019-0567-9
10.1111/1365-2435.12924
10.1038/s41467-019-13164-8
10.1111/j.0030-1299.2004.12685.x
10.1111/mec.15160
10.1111/j.1462-2920.2007.01335.x
10.1186/s40168-019-0756-9
10.1186/s40168-019-0778-3
10.3389/fmicb.2012.00338
10.1007/s11368-009-0120-y
10.1016/j.soilbio.2009.02.029
10.1126/science.aav0550
10.1038/nature13855
10.1111/gcb.14777
10.1038/s41396-020-0614-6
10.1038/s41396-019-0487-8
10.1002/ecy.1518
10.1126/science.1071698
10.1073/pnas.0801925105
10.1038/nmeth.f.303
10.1038/s41564-018-0201-z
10.1038/nature11148
10.1126/science.aap9516
10.1093/molbev/msp077
10.1111/j.2517-6161.1995.tb02031.x
10.1073/pnas.1320054111
10.1016/j.soilbio.2019.107686
10.1126/science.277.5330.1300
10.1093/bioinformatics/btp636
10.1038/s41559-019-1084-y
10.1038/s41564-018-0180-0
10.1111/1365-2745.12585
10.1016/j.soilbio.2021.108143
10.1007/0-387-29298-5
10.1038/ismej.2013.34
10.1111/1462-2920.14457
10.1073/pnas.1505587112
10.1038/nrmicro.2017.87
10.1126/science.aat6405
10.1186/s40168-020-00873-2
10.1073/pnas.1413707111
10.1038/s41467-019-12798-y
10.1890/03-3050
10.1111/gcb.15086
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd
2021 John Wiley & Sons Ltd.
Copyright © 2021 John Wiley & Sons Ltd
Copyright_xml – notice: 2021 John Wiley & Sons Ltd
– notice: 2021 John Wiley & Sons Ltd.
– notice: Copyright © 2021 John Wiley & Sons Ltd
DBID AAYXX
CITATION
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/mec.15935
DatabaseName CrossRef
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

CrossRef
PubMed
Entomology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 2930
ExternalDocumentID 33905157
10_1111_mec_15935
MEC15935
Genre article
Journal Article
GrantInformation_xml – fundername: Second Tibetan Plateau Scientific Expedition and Research Program
  funderid: 2019QZKK0306; 2019QZKK0308
– fundername: National Natural Science Foundation of China
  funderid: 31772683; 41671254
– fundername: State Key Laboratory of Urban and Regional Ecology
  funderid: SKLURE2017‐1‐7
– fundername: National Natural Science Foundation of China
  grantid: 41671254
– fundername: Second Tibetan Plateau Scientific Expedition and Research Program
  grantid: 2019QZKK0306
– fundername: National Natural Science Foundation of China
  grantid: 31772683
– fundername: Second Tibetan Plateau Scientific Expedition and Research Program
  grantid: 2019QZKK0308
– fundername: State Key Laboratory of Urban and Regional Ecology
  grantid: SKLURE2017-1-7
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4525-698a0f51a9ef1bacb91345cb6768281dbc3c910a433dbb0d76521b17acf390ae3
IEDL.DBID DR2
ISSN 0962-1083
1365-294X
IngestDate Fri Jul 11 18:30:19 EDT 2025
Fri Jul 11 07:07:37 EDT 2025
Wed Aug 13 09:42:33 EDT 2025
Wed Feb 19 02:28:51 EST 2025
Tue Jul 01 03:22:10 EDT 2025
Thu Apr 24 23:01:02 EDT 2025
Wed Jan 22 16:30:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords specific taxa
functional redundancy
composition shift
diversity-function relationship
ecosystem multifunctionality
microbial diversity loss
Language English
License 2021 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4525-698a0f51a9ef1bacb91345cb6768281dbc3c910a433dbb0d76521b17acf390ae3
Notes Yan Li and Yuan Ge contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0234-5638
0000-0002-5526-7066
PMID 33905157
PQID 2539004638
PQPubID 31465
PageCount 16
ParticipantIDs proquest_miscellaneous_2985461762
proquest_miscellaneous_2518970936
proquest_journals_2539004638
pubmed_primary_33905157
crossref_citationtrail_10_1111_mec_15935
crossref_primary_10_1111_mec_15935
wiley_primary_10_1111_mec_15935_MEC15935
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2018; 560
2018; 362
2011; 477
2009; 41
2013; 4
2005; 250
2012; 486
2019; 10
2019; 13
2013; 63
1997; 277
2019; 17
2019; 366
2020; 14
2008; 105
2018; 84
2016; 104
2013; 7
2019; 365
2020; 8
2017; 31
2020; 4
2018; 3
2014; 5
2010; 26
2018; 4
2001
2015; 81
2013; 10
2019; 21
2019; 28
2007; 9
2016; 353
2020; 134
2013; 198
2021; 154
2014; 8
2010; 7
2014; 515
2019; 7
2004; 85
2004; 104
2002; 296
2020; 141
1995; 57
2005; 436
2006; 8
2016; 97
2003; 37
2005
2016; 50
2008; 321
2014; 111
2012; 78
2011; 5
2009; 26
2016; 7
2012; 3
2018; 359
2017; 15
2017; 11
2015; 112
2018; 115
2009; 9
2020; 26
2018
2019; 136
2018; 12
2012; 7
2016; 25
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
Singh A. (e_1_2_8_67_1) 2018
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
Brenner D. J. (e_1_2_8_10_1) 2005
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
Boone D. R. (e_1_2_8_8_1) 2001
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 21
  start-page: 299
  issue: 1
  year: 2019
  end-page: 313
  article-title: Ectomycorrhizal fungi inoculation alleviates simulated acid rain effects on soil ammonia oxidizers and denitrifiers in Masson pine forest
  publication-title: Environmental Microbiology
– volume: 111
  start-page: 5266
  issue: 14
  year: 2014
  end-page: 5270
  article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 7
  issue: 12
  year: 2012
  article-title: Soil functional operating range linked to microbial biodiversity and community composition using denitrifiers as model guild
  publication-title: PLoS One
– volume: 105
  start-page: 11512
  issue: Suppl 1
  year: 2008
  end-page: 11519
  article-title: Resistance, resilience, and redundancy in microbial communities
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 15
  start-page: 579
  issue: 10
  year: 2017
  end-page: 590
  article-title: Embracing the unknown: Disentangling the complexities of the soil microbiome
  publication-title: Nature Reviews Microbiology
– year: 2018
  article-title: DIABLO: From multi‐omics assays to biomarker discovery, an integrative approach
  publication-title: bioRxiv
– volume: 8
  start-page: 2162
  issue: 12
  year: 2006
  end-page: 2169
  article-title: Maintenance of soil functioning following erosion of microbial diversity
  publication-title: Environmental Microbiology
– volume: 85
  start-page: 1534
  issue: 6
  year: 2004
  end-page: 1540
  article-title: Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment
  publication-title: Ecology
– year: 2005
– volume: 321
  start-page: 35
  issue: 1–2
  year: 2008
  end-page: 59
  article-title: Nitrogen‐fixing bacteria associated with leguminous and non‐leguminous plants
  publication-title: Plant and Soil
– volume: 7
  start-page: 335
  issue: 5
  year: 2010
  end-page: 336
  article-title: QIIME allows analysis of high‐throughput community sequencing data
  publication-title: Nature Methods
– volume: 8
  start-page: 2045
  issue: 10
  year: 2014
  end-page: 2055
  article-title: Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping
  publication-title: The ISME Journal
– volume: 366
  start-page: 886
  issue: 6467
  year: 2019
  end-page: 890
  article-title: The role of multiple global change factors in driving soil functions and microbial biodiversity
  publication-title: Science
– year: 2001
– volume: 4
  start-page: 210
  issue: 2
  year: 2020
  end-page: 220
  article-title: Multiple elements of soil biodiversity drive ecosystem functions across biomes
  publication-title: Nature Ecology & Evolution
– volume: 436
  start-page: 1157
  issue: 7054
  year: 2005
  end-page: 1160
  article-title: The contribution of species richness and composition to bacterial services
  publication-title: Nature
– volume: 5
  start-page: 351
  issue: 2
  year: 2011
  end-page: 361
  article-title: Function‐specific response to depletion of microbial diversity
  publication-title: The ISME Journal
– volume: 13
  start-page: 2969
  issue: 12
  year: 2019
  end-page: 2983
  article-title: Microdiversity ensures the maintenance of functional microbial communities under changing environmental conditions
  publication-title: The ISME Journal
– volume: 84
  issue: 9
  year: 2018
  article-title: High microbial diversity promotes soil ecosystem functioning
  publication-title: Applied and Environment Microbiology
– volume: 10
  start-page: 5142
  issue: 1
  year: 2019
  article-title: A meta‐analysis of global fungal distribution reveals climate‐driven patterns
  publication-title: Nature Communications
– volume: 250
  start-page: 33
  issue: 1
  year: 2005
  end-page: 38
  article-title: Activity, diversity and population size of ammonia‐oxidising bacteria in oil‐contaminated landfarming soil
  publication-title: FEMS Microbiology Letters
– volume: 8
  start-page: 92
  issue: 1
  year: 2020
  article-title: Climate mediates continental scale patterns of stream microbial functional diversity
  publication-title: Microbiome
– volume: 26
  start-page: 3175
  issue: 6
  year: 2020
  end-page: 3177
  article-title: Changes in the environmental microbiome in the Anthropocene
  publication-title: Global Change Biology
– volume: 7
  start-page: 146
  issue: 1
  year: 2019
  article-title: Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling
  publication-title: Microbiome
– volume: 26
  start-page: 1641
  issue: 7
  year: 2009
  end-page: 1650
  article-title: FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix
  publication-title: Molecular Biology and Evolution
– volume: 7
  year: 2016
  article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems
  publication-title: Nature Communications
– volume: 4
  issue: 11
  year: 2018
  article-title: Fungal diversity regulates plant‐soil feedbacks in temperate grassland
  publication-title: Science Advances
– volume: 14
  start-page: 1396
  issue: 6
  year: 2020
  end-page: 1409
  article-title: Plant communities mediate the interactive effects of invasion and drought on soil microbial communities
  publication-title: The ISME Journal
– volume: 104
  start-page: 936
  issue: 4
  year: 2016
  end-page: 946
  article-title: Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning
  publication-title: Journal of Ecology
– volume: 359
  start-page: 320
  issue: 6373
  year: 2018
  end-page: 325
  article-title: A global atlas of the dominant bacteria found in soil
  publication-title: Science
– volume: 112
  start-page: 14888
  issue: 48
  year: 2015
  end-page: 14893
  article-title: The extent of functional redundancy changes as species' roles shift in different environments
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 25
  start-page: 4660
  issue: 18
  year: 2016
  end-page: 4673
  article-title: The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi‐arid soils
  publication-title: Molecular Ecology
– volume: 8
  start-page: 1005
  issue: 6
  year: 2006
  end-page: 1016
  article-title: Effects of management regime and plant species on the enzyme activity and genetic structure of N‐fixing, denitrifying and nitrifying bacterial communities in grassland soils
  publication-title: Environmental Microbiology
– volume: 365
  issue: 6455
  year: 2019
  article-title: The global soil community and its influence on biogeochemistry
  publication-title: Science
– volume: 4
  start-page: 112
  year: 2013
  article-title: Links between metabolic plasticity and functional redundancy in freshwater bacterioplankton communities
  publication-title: Frontiers in Microbiology
– volume: 560
  start-page: 233
  issue: 7717
  year: 2018
  end-page: 237
  article-title: Structure and function of the global topsoil microbiome
  publication-title: Nature
– volume: 41
  start-page: 1180
  issue: 6
  year: 2009
  end-page: 1186
  article-title: The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB‐linked substrates and l‐DOPA
  publication-title: Soil Biology and Biochemistry
– volume: 136
  year: 2019
  article-title: Fungal richness contributes to multifunctionality in boreal forest soil
  publication-title: Soil Biology and Biochemistry
– volume: 154
  year: 2021
  article-title: Soil aggregate size‐dependent relationships between microbial functional diversity and multifunctionality
  publication-title: Soil Biology and Biochemistry
– volume: 477
  start-page: 199
  issue: 7363
  year: 2011
  end-page: 202
  article-title: High plant diversity is needed to maintain ecosystem services
  publication-title: Nature
– volume: 8
  start-page: 3
  issue: 1
  year: 2020
  article-title: Warming‐induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community
  publication-title: Microbiome
– volume: 10
  start-page: 4841
  issue: 1
  year: 2019
  article-title: Fungal‐bacterial diversity and microbiome complexity predict ecosystem functioning
  publication-title: Nature Communications
– volume: 7
  year: 2016
  article-title: Temperature mediates continental‐scale diversity of microbes in forest soils
  publication-title: Nature Communications
– volume: 14
  start-page: 757
  issue: 3
  year: 2020
  end-page: 770
  article-title: Long‐term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems
  publication-title: The ISME Journal
– volume: 28
  start-page: 3445
  issue: 14
  year: 2019
  end-page: 3458
  article-title: Impacts of long‐term elevated atmospheric CO concentrations on communities of arbuscular mycorrhizal fungi
  publication-title: Molecular Ecology
– volume: 486
  start-page: 59
  issue: 7401
  year: 2012
  end-page: 67
  article-title: Biodiversity loss and its impact on humanity
  publication-title: Nature
– volume: 81
  start-page: 2163
  issue: 6
  year: 2015
  end-page: 2172
  article-title: Xylan utilization regulon in pv. citri Strain 306: Gene expression and utilization of oligoxylosides
  publication-title: Applied and Environment Microbiology
– volume: 26
  start-page: 669
  issue: 2
  year: 2020
  end-page: 681
  article-title: Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity
  publication-title: Global Change Biology
– volume: 277
  start-page: 1300
  issue: 5330
  year: 1997
  end-page: 1302
  article-title: The influence of functional diversity and composition on ecosystem processes
  publication-title: Science
– volume: 9
  start-page: 547
  issue: 6
  year: 2009
  end-page: 554
  article-title: Linking soil bacterial diversity to ecosystem multifunctionality using backward‐elimination boosted trees analysis
  publication-title: Journal of Soils and Sediments
– volume: 11
  start-page: 272
  issue: 1
  year: 2017
  end-page: 283
  article-title: Effectiveness of ecological rescue for altered soil microbial communities and functions
  publication-title: The ISME Journal
– volume: 31
  start-page: 2330
  issue: 12
  year: 2017
  end-page: 2343
  article-title: Microbial richness and composition independently drive soil multifunctionality
  publication-title: Functional Ecology
– volume: 3
  start-page: 338
  year: 2012
  article-title: Cooperation, competition, and coalitions in enzyme‐producing microbes: Social evolution and nutrient depolymerization rates
  publication-title: Frontiers in Microbiology
– volume: 7
  start-page: 1609
  issue: 8
  year: 2013
  end-page: 1619
  article-title: Loss in microbial diversity affects nitrogen cycling in soil
  publication-title: The ISME Journal
– volume: 12
  start-page: 2470
  year: 2018
  end-page: 2478
  article-title: A strong link between marine microbial community composition and function challenges the idea of functional redundancy
  publication-title: The ISME Journal
– volume: 50
  start-page: 3965
  issue: 7
  year: 2016
  end-page: 3974
  article-title: Long‐term effects of multiwalled carbon nanotubes and graphene on microbial communities in dry soil
  publication-title: Environmental Science and Technology
– volume: 3
  start-page: 977
  issue: 9
  year: 2018
  end-page: 982
  article-title: Understanding how microbiomes influence the systems they inhabit
  publication-title: Nature Microbiology
– volume: 63
  start-page: 1267
  issue: Pt 4
  year: 2013
  end-page: 1272
  article-title: sp. nov., with xylan‐degrading activity
  publication-title: International Journal of Systematic and Evolutionary Microbiology
– volume: 353
  start-page: 1272
  issue: 6305
  year: 2016
  end-page: 1277
  article-title: Decoupling function and taxonomy in the global ocean microbiome
  publication-title: Science
– volume: 111
  start-page: 6341
  issue: 17
  year: 2014
  end-page: 6346
  article-title: Endemism and functional convergence across the North American soil mycobiome
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 26
  start-page: 266
  issue: 2
  year: 2010
  end-page: 267
  article-title: PyNAST: A flexible tool for aligning sequences to a template alignment
  publication-title: Bioinformatics
– volume: 37
  start-page: 64A
  issue: 3
  year: 2003
  end-page: 70A
  article-title: Theoretical ecology for engineering biology
  publication-title: Environmental Science and Technology
– volume: 515
  start-page: 505
  issue: 7528
  year: 2014
  end-page: 511
  article-title: Belowground biodiversity and ecosystem functioning
  publication-title: Nature
– volume: 296
  start-page: 1064
  issue: 5570
  year: 2002
  end-page: 1066
  article-title: Prokaryotic diversity–magnitude, dynamics, and controlling factors
  publication-title: Science
– volume: 115
  start-page: 11994
  issue: 47
  year: 2018
  end-page: 11999
  article-title: Decomposition responses to climate depend on microbial community composition
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 362
  start-page: 80
  issue: 6410
  year: 2018
  end-page: 83
  article-title: Impacts of species richness on productivity in a large‐scale subtropical forest experiment
  publication-title: Science
– volume: 198
  start-page: 899
  issue: 3
  year: 2013
  end-page: 915
  article-title: The xylan utilization system of the plant pathogen pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts
  publication-title: New Phytologist
– volume: 10
  start-page: 996
  issue: 10
  year: 2013
  end-page: 998
  article-title: UPARSE: Highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nature Methods
– volume: 5
  start-page: 424
  year: 2014
  article-title: Changes in community assembly may shift the relationship between biodiversity and ecosystem function
  publication-title: Frontiers in Microbiology
– volume: 17
  start-page: 391
  issue: 6
  year: 2019
  end-page: 396
  article-title: Climate change microbiology‐problems and perspectives
  publication-title: Nature Reviews Microbiology
– volume: 141
  year: 2020
  article-title: Rare microbial taxa as the major drivers of ecosystem multifunctionality in long‐term fertilized soils
  publication-title: Soil Biology and Biochemistry
– volume: 9
  start-page: 2211
  issue: 9
  year: 2007
  end-page: 2219
  article-title: Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance
  publication-title: Environmental Microbiology
– volume: 111
  start-page: 14478
  issue: 40
  year: 2014
  end-page: 14483
  article-title: Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 3
  start-page: 767
  issue: 7
  year: 2018
  end-page: 772
  article-title: Abundance determines the functional role of bacterial phylotypes in complex communities
  publication-title: Nature Microbiology
– volume: 104
  start-page: 606
  issue: 3
  year: 2004
  end-page: 611
  article-title: Does functional redundancy exist?
  publication-title: Oikos
– volume: 97
  start-page: 2716
  issue: 10
  year: 2016
  end-page: 2728
  article-title: Effects of multiple dimensions of bacterial diversity on functioning, stability and multifunctionality
  publication-title: Ecology
– volume: 134
  year: 2020
  article-title: Decreasing diversity of rare bacterial subcommunities relates to dissolved organic matter along permafrost thawing gradients
  publication-title: Environment International
– volume: 78
  start-page: 6749
  issue: 18
  year: 2012
  end-page: 6758
  article-title: Identification of soil bacteria susceptible to TiO and ZnO nanoparticles
  publication-title: Applied and Environment Microbiology
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society Series B‐Statistical Methodology
– ident: e_1_2_8_6_1
  doi: 10.1038/nature03891
– ident: e_1_2_8_3_1
  doi: 10.1038/s41586-018-0386-6
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.est.5b05620
– ident: e_1_2_8_5_1
  doi: 10.1111/mec.13783
– ident: e_1_2_8_19_1
  doi: 10.1021/es0323493
– ident: e_1_2_8_55_1
  doi: 10.1128/AEM.02738-17
– ident: e_1_2_8_79_1
  doi: 10.1016/j.envint.2019.105330
– ident: e_1_2_8_22_1
  doi: 10.1111/nph.12187
– ident: e_1_2_8_48_1
  doi: 10.3389/fmicb.2014.00424
– ident: e_1_2_8_62_1
  doi: 10.1126/science.aay2832
– ident: e_1_2_8_34_1
  doi: 10.1007/s11104-008-9833-8
– ident: e_1_2_8_41_1
  doi: 10.1371/journal.pone.0051962
– ident: e_1_2_8_77_1
  doi: 10.1038/ismej.2014.46
– ident: e_1_2_8_46_1
  doi: 10.1038/nature10282
– ident: e_1_2_8_24_1
  doi: 10.1038/ncomms10541
– ident: e_1_2_8_57_1
  doi: 10.1038/ismej.2010.119
– ident: e_1_2_8_49_1
  doi: 10.1016/j.femsle.2005.06.057
– ident: e_1_2_8_11_1
  doi: 10.1038/ismej.2016.86
– ident: e_1_2_8_16_1
  doi: 10.1128/AEM.03091-14
– ident: e_1_2_8_74_1
  doi: 10.1111/j.1462-2920.2006.01098.x
– ident: e_1_2_8_35_1
  doi: 10.1038/s41396-018-0158-1
– ident: e_1_2_8_38_1
  doi: 10.1128/AEM.00941-12
– ident: e_1_2_8_50_1
  doi: 10.1016/j.soilbio.2019.107526
– ident: e_1_2_8_47_1
  doi: 10.1099/ijs.0.043828-0
– ident: e_1_2_8_66_1
  doi: 10.1126/sciadv.aau4578
– ident: e_1_2_8_53_1
  doi: 10.1126/science.aaf4507
– ident: e_1_2_8_17_1
  doi: 10.3389/fmicb.2013.00112
– ident: e_1_2_8_56_1
  doi: 10.1111/j.1462-2920.2006.00992.x
– ident: e_1_2_8_28_1
  doi: 10.1038/nmeth.2604
– ident: e_1_2_8_45_1
  doi: 10.1038/s41579-019-0178-5
– ident: e_1_2_8_68_1
  doi: 10.1073/pnas.1402584111
– ident: e_1_2_8_78_1
  doi: 10.1038/ncomms12083
– ident: e_1_2_8_39_1
  doi: 10.1073/pnas.1811269115
– ident: e_1_2_8_20_1
  doi: 10.1038/s41396-019-0567-9
– ident: e_1_2_8_27_1
  doi: 10.1111/1365-2435.12924
– ident: e_1_2_8_71_1
  doi: 10.1038/s41467-019-13164-8
– ident: e_1_2_8_52_1
  doi: 10.1111/j.0030-1299.2004.12685.x
– ident: e_1_2_8_54_1
  doi: 10.1111/mec.15160
– ident: e_1_2_8_75_1
  doi: 10.1111/j.1462-2920.2007.01335.x
– ident: e_1_2_8_65_1
  doi: 10.1186/s40168-019-0756-9
– ident: e_1_2_8_30_1
  doi: 10.1186/s40168-019-0778-3
– ident: e_1_2_8_33_1
  doi: 10.3389/fmicb.2012.00338
– ident: e_1_2_8_43_1
  doi: 10.1007/s11368-009-0120-y
– ident: e_1_2_8_21_1
  doi: 10.1016/j.soilbio.2009.02.029
– ident: e_1_2_8_18_1
  doi: 10.1126/science.aav0550
– ident: e_1_2_8_4_1
  doi: 10.1038/nature13855
– ident: e_1_2_8_61_1
  doi: 10.1111/gcb.14777
– ident: e_1_2_8_29_1
  doi: 10.1038/s41396-020-0614-6
– ident: e_1_2_8_36_1
  doi: 10.1038/s41396-019-0487-8
– volume-title: Bergey's manual of systematic bacteriology: Volume one: The archaea and the deeply branching and phototrophic bacteria
  year: 2001
  ident: e_1_2_8_8_1
– ident: e_1_2_8_64_1
  doi: 10.1002/ecy.1518
– ident: e_1_2_8_70_1
  doi: 10.1126/science.1071698
– year: 2018
  ident: e_1_2_8_67_1
  article-title: DIABLO: From multi‐omics assays to biomarker discovery, an integrative approach
  publication-title: bioRxiv
– ident: e_1_2_8_2_1
  doi: 10.1073/pnas.0801925105
– ident: e_1_2_8_13_1
  doi: 10.1038/nmeth.f.303
– ident: e_1_2_8_40_1
  doi: 10.1038/s41564-018-0201-z
– ident: e_1_2_8_14_1
  doi: 10.1038/nature11148
– ident: e_1_2_8_25_1
  doi: 10.1126/science.aap9516
– ident: e_1_2_8_60_1
  doi: 10.1093/molbev/msp077
– ident: e_1_2_8_7_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_8_72_1
  doi: 10.1073/pnas.1320054111
– ident: e_1_2_8_15_1
  doi: 10.1016/j.soilbio.2019.107686
– ident: e_1_2_8_69_1
  doi: 10.1126/science.277.5330.1300
– ident: e_1_2_8_12_1
  doi: 10.1093/bioinformatics/btp636
– ident: e_1_2_8_26_1
  doi: 10.1038/s41559-019-1084-y
– ident: e_1_2_8_63_1
  doi: 10.1038/s41564-018-0180-0
– ident: e_1_2_8_23_1
  doi: 10.1111/1365-2745.12585
– ident: e_1_2_8_42_1
  doi: 10.1016/j.soilbio.2021.108143
– volume-title: Bergey's manual of systematic bacteriology: Volume two: The proteobacteria, part A introductory essays
  year: 2005
  ident: e_1_2_8_10_1
  doi: 10.1007/0-387-29298-5
– ident: e_1_2_8_58_1
  doi: 10.1038/ismej.2013.34
– ident: e_1_2_8_51_1
  doi: 10.1111/1462-2920.14457
– ident: e_1_2_8_31_1
  doi: 10.1073/pnas.1505587112
– ident: e_1_2_8_32_1
  doi: 10.1038/nrmicro.2017.87
– ident: e_1_2_8_44_1
  doi: 10.1126/science.aat6405
– ident: e_1_2_8_59_1
  doi: 10.1186/s40168-020-00873-2
– ident: e_1_2_8_9_1
  doi: 10.1073/pnas.1413707111
– ident: e_1_2_8_73_1
  doi: 10.1038/s41467-019-12798-y
– ident: e_1_2_8_76_1
  doi: 10.1890/03-3050
– ident: e_1_2_8_80_1
  doi: 10.1111/gcb.15086
SSID ssj0013255
Score 2.5540729
Snippet Observational and experimental evidence has revealed the functional importance of microbial diversity. However, the effects of microbial diversity loss on...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2915
SubjectTerms Composition
composition shift
diversity–function relationship
Ecological function
Ecosystem management
ecosystem multifunctionality
Ecosystem services
Ecosystems
Environment models
functional redundancy
Functionals
Microbial activity
microbial communities
microbial diversity loss
Microorganisms
Nitrification
Nutrient cycles
Nutrient loss
prediction
Redundancy
Soil investigations
Soil nutrients
soil respiration
Soils
specific taxa
Taxa
taxonomy
Title Functional redundancy and specific taxa modulate the contribution of prokaryotic diversity and composition to multifunctionality
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.15935
https://www.ncbi.nlm.nih.gov/pubmed/33905157
https://www.proquest.com/docview/2539004638
https://www.proquest.com/docview/2518970936
https://www.proquest.com/docview/2985461762
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CoNBLm743j6KUHnrxIkt-SPRUwi6hkBxCAjkEjF6-pLFL4oUmp_z0zMgPkiYtpTeDZ-2RVyN9kr75BuAzggCd-tIkInhcoAShE5uZMtG1sDI3JlMxXezgsNg_yb6f5qdr8HXMhen1IaYNN4qMOF5TgBt7dS_IL4Kb41wsKcGcuFoEiI7EvROEWPEUEbrAoUbJQVWIWDzTLx_ORY8A5kO8Giec5Us4G13teSbn81Vn5-7mNxXH_2zLBrwYgCj71vecV7AWmtfwrC9NeY1Xiyhnff0Gbpc49fU7huwyUNIZDcjMNJ5RmiZRjVhnfhl20XqqBRYYYkoWKfBDLS3W1gybcY7-tfg25kcuSHwIkdoH5hjrWhYZjvX0SrR6CyfLxfHefjLUbUgcnZImhVaG13lqdKhTa5yl0_3c2QKXNgLxsXXSIUoxmZTeWu7LAjGETUvjaqm5CfIdrDdtEz4AUySPJmrOvQqZlc5yp2vEnFxqz5UPM_gy_oOVG0TNqbbGj2pc3OCnreKnncGnyfRnr-TxlNH22A2qIZivKpGjW6SspmawO93GMKSzFdOEdkU2qdIl17L4i41WeYaIsRAzeN93sckTKUkoLS-xQbGj_NnF6mCxFy82_910C54L4uLE3aNtWO8uV2EHwVRnP8aouQOdghxW
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQX3o-FAgZx4JKVY-dhS1xQ2dUC3R5QK_WCIr9yKU1QyUqUEz-dGeehlpcQt0iZJGPHY3-2P38D8AJBgE59aRIRPE5QgtCJzUyZ6FpYmRuTqXhcbL1frA6zd0f50Ra8Gs_C9PoQ04IbRUbsrynAaUH6XJSfBDfHwVjml-AyZfQm5fw3H8S5PYSY8xQxusDORslBV4h4PNOjF0ejXyDmRcQah5zlDfg4OtszTY7nm87O3befdBz_tzQ34fqARdnrvvHcgq3Q3IYrfXbKM7xaREXrszvwfYmjX79oyE4DnTujPpmZxjM6qUlsI9aZr4adtJ7SgQWGsJJFFvyQTou1NcNyHKODLX6N-ZEOEl9CvPaBPMa6lkWSYz19Eq3uwuFycbC7SobUDYmjjdKk0MrwOk-NDnVqjbO0wZ87W-DsRiBEtk46BComk9Jby31ZIIywaWlcLTU3Qd6D7aZtwgNgihTSRM25VyGz0lnudI2wk0vtufJhBi_HX1i5Qdec0mt8qsb5DVZtFat2Bs8n08-9mMfvjHbGdlAN8fylEjm6ReJqagbPptsYibS9YprQbsgmVbrkWhZ_sdEqzxA0FmIG9_s2NnkiJWml5SUWKLaUP7tYrRe78eLhv5s-haurg_Vetfd2__0juCaImhMXk3ZguzvdhMeIrTr7JIbQD0e-IHI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwEB6VIlAv7KUPChjEgUueHDubxQm176ksrRCiUg9IkddLaVKVPIly4qcz4yxq2YS4RcokGTse-7P9-RuA5wgCVOpKnQjvcILihUpMpstEBWFkrnVWxeNi-wfF3mH25ig_WoOX41mYXh9iWnCjyIj9NQX4qQsXgvzE2zmOxTK_AlezgivK27D7QVzYQogpTxGiC-xrKjnIChGNZ3r08mD0C8K8DFjjiLO8CZ9GX3uiyfF81Zm5_faTjON_FuYW3BiQKHvVN53bsOabO3Ctz015jleLqGd9fhe-L3Hs65cM2ZmnU2fUIzPdOEbnNIlrxDr9VbOT1lEyMM8QVLLIgR-SabE2MCzGMfrX4teYG8kg8SXEah-oY6xrWaQ4humTaHUPDpeLjzt7yZC4IbG0TZoUqtI85KlWPqRGW0Pb-7k1Bc5tBAJkY6VFmKIzKZ0x3JUFggiTltoGqbj2chPWm7bxW8Aq0kcTgXNX-cxIa7hVAUEnl8rxyvkZvBj_YG0HVXNKrvG5Hmc3WLV1rNoZPJtMT3spj98ZbY_NoB6i-UstcnSLpNWqGTydbmMc0uaKbny7Ipu0UiVXsviLjaryDCFjIWZwv29ikydSklJaXmKBYkP5s4v1_mInXjz4d9MncP397rJ-9_rg7UPYEMTLiStJ27Dena38IwRWnXkcA-gH1aUfIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+redundancy+and+specific+taxa+modulate+the+contribution+of+prokaryotic+diversity+and+composition+to+multifunctionality&rft.jtitle=Molecular+ecology&rft.au=Li%2C+Yan&rft.au=Ge%2C+Yuan&rft.au=Wang%2C+Jichen&rft.au=Shen%2C+Congcong&rft.date=2021-06-01&rft.eissn=1365-294X&rft_id=info:doi/10.1111%2Fmec.15935&rft_id=info%3Apmid%2F33905157&rft.externalDocID=33905157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon