Altered activities of extracellular soil enzymes by the interacting global environmental changes
Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually a...
Saved in:
Published in | Global change biology Vol. 29; no. 8; pp. 2067 - 2091 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta‐analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state‐of‐the‐art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO2, while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of “in situ” analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation.
Soil enzymes are crucial for the functioning of terrestrial ecosystems. Their sensitivity to drivers of global change tightly connects their mechanisms of response to the ones of terrestrial ecosystems themselves. This review aims at providing exhaustive, state‐of‐the‐art information regarding the direct, indirect and combined effects of the main drivers of global change on the production and activity of soil extracellular enzymes. Information is also given regarding analytical methods, gaps in knowledge, future challenges and biomanipulation techniques for the improvement of ecosystem services. |
---|---|
AbstractList | Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta‐analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state‐of‐the‐art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO2, while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of “in situ” analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation.
Soil enzymes are crucial for the functioning of terrestrial ecosystems. Their sensitivity to drivers of global change tightly connects their mechanisms of response to the ones of terrestrial ecosystems themselves. This review aims at providing exhaustive, state‐of‐the‐art information regarding the direct, indirect and combined effects of the main drivers of global change on the production and activity of soil extracellular enzymes. Information is also given regarding analytical methods, gaps in knowledge, future challenges and biomanipulation techniques for the improvement of ecosystem services. Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta-analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state-of-the-art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO2 , while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of "in situ" analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation.Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta-analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state-of-the-art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO2 , while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of "in situ" analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation. Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta‐analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state‐of‐the‐art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO 2 , while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of “in situ” analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation. Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta‐analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state‐of‐the‐art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO₂, while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of “in situ” analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation. Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta‐analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state‐of‐the‐art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO2, while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of “in situ” analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation. Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta-analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state-of-the-art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO , while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of "in situ" analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation. |
Author | Peñuelas, Josep Zuccarini, Paolo Asensio, Loles Sardans, Jordi |
Author_xml | – sequence: 1 givenname: Paolo orcidid: 0000-0001-6717-9568 surname: Zuccarini fullname: Zuccarini, Paolo email: p.zuccarini@creaf.uab.cat organization: CREAF‐CSIC – sequence: 2 givenname: Jordi orcidid: 0000-0003-2478-0219 surname: Sardans fullname: Sardans, Jordi organization: CREAF‐CSIC – sequence: 3 givenname: Loles surname: Asensio fullname: Asensio, Loles organization: CREAF‐CSIC – sequence: 4 givenname: Josep orcidid: 0000-0002-7215-0150 surname: Peñuelas fullname: Peñuelas, Josep organization: CREAF‐CSIC |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36655298$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1PHSEUhomxqR_twj_QTOKmXVzlY2CYpb1R28Skm3ZNgXvmimHAAmN7_fUyvdeNaSMbIDzvezjnPUL7IQZA6ITgM1LX-dqaMyIEbvfQIWGCL2grxf585u2CYMIO0FHOdxhjRrF4iw6YEJzTXh6inxe-QIJVo21xD644yE0cGvhTkrbg_eR1anJ0voHwuBnrq9k05RYaF6puFoV1s_bR6Jl4cCmGEUKpN3urwxryO_Rm0D7D-91-jH5cXX5fflncfLv-ury4WdiW0_pL0kkjsSAW6NALg6XsMdasE4asTNtRumJcM8tkJzpsuo5JYwQjrOeDxJyzY_Rx63uf4q8JclGjy3MHOkCcsqKSkL6nrSCvo7UE6Sghs-vpC_QuTinURiolBeYtlbhSH3bUZEZYqfvkRp026nnMFTjfAjbFnBMMyrqii4uhjtl5RbCag1Q1SPU3yKr49ELxbPovduf-23nY_B9U18vPW8UTEuqqQg |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2024_122428 crossref_primary_10_1002_saj2_20743 crossref_primary_10_1016_j_jenvman_2024_120641 crossref_primary_10_1007_s11356_024_35041_8 crossref_primary_10_1093_nsr_nwae371 crossref_primary_10_1016_j_apsoil_2024_105727 crossref_primary_10_1002_ldr_5239 crossref_primary_10_1002_ldr_5437 crossref_primary_10_3390_f14091846 crossref_primary_10_1016_j_catena_2025_108904 crossref_primary_10_1002_ldr_5032 crossref_primary_10_1016_j_apsoil_2025_105873 crossref_primary_10_3390_f15091651 crossref_primary_10_1016_j_apsoil_2025_105874 crossref_primary_10_59717_j_xinn_geo_2024_100117 crossref_primary_10_1016_j_agee_2023_108630 crossref_primary_10_1016_j_scitotenv_2024_174448 crossref_primary_10_1016_j_agee_2024_109306 crossref_primary_10_1002_saj2_20750 crossref_primary_10_1016_j_apsoil_2024_105774 crossref_primary_10_1016_j_jenvman_2024_122213 crossref_primary_10_1016_j_eja_2024_127135 crossref_primary_10_1016_j_jhazmat_2024_136430 crossref_primary_10_1016_j_stress_2024_100683 crossref_primary_10_1016_j_jhazmat_2024_134052 crossref_primary_10_1007_s00468_025_02615_z crossref_primary_10_1016_j_ecoenv_2023_115807 crossref_primary_10_1016_j_scitotenv_2023_163896 crossref_primary_10_1007_s11104_024_06838_w crossref_primary_10_3390_agronomy14020233 crossref_primary_10_3389_fmicb_2024_1523084 crossref_primary_10_1007_s42773_024_00411_5 crossref_primary_10_1111_gcb_17101 crossref_primary_10_1016_j_geoderma_2024_117024 crossref_primary_10_1016_j_jenvman_2025_124709 crossref_primary_10_1021_acs_est_4c06081 crossref_primary_10_3390_microorganisms11122941 crossref_primary_10_3390_su16135368 crossref_primary_10_3389_fmicb_2025_1506558 crossref_primary_10_1016_j_apsoil_2025_105987 crossref_primary_10_3390_f15030568 crossref_primary_10_31857_S0032180X24060066 crossref_primary_10_3390_f16010172 crossref_primary_10_1016_j_catena_2025_108767 crossref_primary_10_3389_fmicb_2024_1372866 crossref_primary_10_1134_S1064229324600076 crossref_primary_10_3390_plants13243481 crossref_primary_10_1111_1365_2664_14780 crossref_primary_10_1016_j_soilbio_2024_109321 crossref_primary_10_3390_agriculture14020288 crossref_primary_10_1016_j_soilbio_2024_109400 crossref_primary_10_3390_agronomy14122814 crossref_primary_10_1016_j_catena_2023_107754 crossref_primary_10_1016_j_envres_2024_119707 crossref_primary_10_3389_fmicb_2024_1290849 crossref_primary_10_3390_f16030418 crossref_primary_10_1016_j_soilbio_2023_109281 crossref_primary_10_1016_j_envint_2024_108467 crossref_primary_10_1016_j_still_2024_106073 crossref_primary_10_3390_microorganisms12061108 crossref_primary_10_1016_j_scitotenv_2024_174783 crossref_primary_10_3390_su162411140 crossref_primary_10_1016_j_hazadv_2025_100605 crossref_primary_10_3390_molecules29133113 crossref_primary_10_1016_j_still_2024_106435 crossref_primary_10_1016_j_eja_2024_127358 crossref_primary_10_1016_j_still_2024_106436 crossref_primary_10_1016_j_apsoil_2024_105518 crossref_primary_10_3390_jof10120885 crossref_primary_10_1016_j_apsoil_2024_105319 crossref_primary_10_3390_f15122068 crossref_primary_10_1016_j_soilbio_2024_109512 crossref_primary_10_1016_j_eti_2023_103396 crossref_primary_10_1016_j_ecofro_2024_10_007 crossref_primary_10_1016_j_rhisph_2024_100887 crossref_primary_10_1016_j_jhazmat_2025_138018 crossref_primary_10_1016_j_geoderma_2024_116901 crossref_primary_10_3390_app14093591 crossref_primary_10_1016_j_scitotenv_2024_175708 crossref_primary_10_1016_j_envres_2024_120285 crossref_primary_10_1016_j_scitotenv_2024_176919 crossref_primary_10_1080_00380768_2024_2341669 crossref_primary_10_3389_fmicb_2024_1258934 |
Cites_doi | 10.1016/S1002‐0160(09)60169‐7 10.1038/s41579‐019‐0222‐5 10.1186/1471‐2180‐10‐149 10.5194/acp‐13‐10081‐2013 10.5772/65267 10.2307/1312897 10.1038/srep19601 10.1073/pnas.1904955116 10.3390/su12198209 10.3390/catal8100460 10.1007/s11104‐017‐3212‐2 10.1016/j.apsoil.2010.08.013 10.1016/B978-0-12-817880-5.00002-5 10.1007/s13595‐018‐0720‐z 10.1016/j.geoderma.2022.116083 10.1007/s00382‐015‐2636‐8 10.3390/agronomy9090480 10.1111/j.1365‐2486.2012.02745.x 10.1016/j.earscirev.2020.103501 10.1111/j.1469‐8137.2007.02290.x 10.1186/s43591‐021‐00007‐x 10.1016/jsoilbio2021108424 10.1146/annurev.es.23.110192.000431 10.1038/nature20139 10.1038/nature03972 10.1111/gcb.14113 10.1016/0038‐0717(94)90211‐9 10.1016/j.biortech.2012.07.117 10.1890/ES11‐00117.1 10.1890/14‐0088.1 10.1016/j.jenvman.2016.05.038 10.5897/AJB07.590 10.3389/fsufs.2020.00106 10.1128/mmbr.00020‐11 10.3390/su12187255 10.1016/j.scitotenv.2019.135062 10.1038/s41598‐017‐01418‐8 10.1016/j.mimet.2004.09.010 10.1038/ncomms3934 10.1016/j.soilbio.2016.12.004 10.1007/s00442‐012‐2578‐3 10.12691/ijebb‐3‐1‐5 10.4067/S0718‐95162017000300018 10.1155/2021/5599204 10.1186/s13717‐022‐00380‐2 10.1007/s10646‐020‐02323‐z 10.1038/nclimate3179 10.1016/j.marpolbul.2007.09.020 10.1016/jgeoderma201610025 10.1016/j.ejsobi.2021.103292 10.1111/gcb.15832 10.1016/j.soilbio.2004.08.004 10.1590/s1415‐475738420150053 10.1016/j.still.2004.08.001 10.1111/2041‐210X.13427 10.1016/j.soilbio.2017.03.002 10.3390/microorganisms9081722 10.3390/catal8020092 10.1016/j.soilbio.2008.03.015 10.1038/464499a 10.1038/s41467‐018‐05516‐7 10.1016/s0045‐6535(99)00218‐0 10.1016/jcatena201706003 10.1007/s10021‐021‐00715‐8 10.1038/s41598‐020‐65200‐z 10.1111/j.1365‐2486.2008.01819.x 10.1093/aob/mch211 10.1016/j.apsoil.2017.11.024 10.1111/j.1461‐0248.2008.01245.x 10.1016/jejsobi200809011 10.1038/s41396‐022‐01269‐w 10.1007/s11104‐017‐3235‐8 10.1088/1748‐9326/10/2/024019 10.1111/j.1461‐0248.2005.00756.x 10.1016/S0038‐0717(99)00051‐6 10.1016/S0038‐0717(01)00185‐7 10.1016/j.envexpbot.2017.05.012 10.1016/japsoil200411008 10.1016/j.agrformet.2011.01.018 10.1657/1523‐0430(2006)38[465:acroan]2.0.co;2 10.1007/s13205‐021‐02847‐z 10.1016/j.scitotenv.2007.03.023 10.1007/978-3-642-20256-8_4 10.1016/j.apsoil.2007.12.011 10.1007/s004420000544 10.1007/s11104‐006‐9131‐2 10.1016/j.soilbio.2005.11.008 10.1007/s10532‐012‐9576‐3 10.1016/S1002‐0160(17)60458‐2 10.1016/j.tree.2006.06.004 10.1016/j.envpol.2020.115544 10.1126/sciadv.1700782 10.1016/S0038‐0717(02)00074‐3 10.1023/A:1005757218475 10.1007/978-981-13-7264-3_12 10.2307/2679923 10.1007/s10535‐008‐0034‐3 10.3389/fpls.2021.725939 10.1007/s003740050268 10.1016/j.ibiod.2017.05.015 10.1111/j.1365‐2486.2009.02135.x 10.1038/s41559‐020‐01348‐1 10.3389/fenvs.2021.675803 10.1016/j.scitotenv.2016.05.045 10.1038/s41579-019-0265-7 10.1007/s42770‐020‐00289‐y 10.3109/10408417609102304 10.1016/j.soilbio.2004.09.014 10.1038/s41559‐017‐0274‐8 10.1016/jsoilbio201603011 10.1007/BF00017098 10.1016/S0926‐3373(00)00168‐5 10.1002/jpln19983581610310 10.1080/16000889.2017.1328945 10.1016/j.apsoil.2006.05.012 10.1117/12.2636836 10.1088/1748‐9326/9/6/064029 10.1016/S0038‐0717(01)00079‐7 10.1007/s10661‐016‐5342‐z 10.1016/j.copbio.2009.09.014 10.1038/s41598‐018‐36777‐3 10.1016/j.gloplacha.2021.103597 10.1111/j.1470‐8744.1998.tb00511.x 10.1038/nature08632 10.1111/1365‐2435.14027 10.1128/AEM.00560‐10 10.1038/s41467‐018‐02970‐1 10.1007/978-3-642-14225-3_3 10.1007/s10021‐004‐0009‐y 10.1071/SR18057 10.1111/gcb.14069 10.1371/journal.pone.0255669 10.1111/gcb.15077 10.1111/j.1462‐2920.2011.02480.x 10.1016/jsoilbio2021108448 10.1515/frp-2017-0004 10.1016/j.apsoil.2008.11.003 10.1038/nclimate1385 10.1002/ecy.2652 10.1016/jsoilbio200602021 10.1002/ecy.2830 10.1111/nph12252 10.1016/jjenvman201704023 10.3389/fpls.2018.01473 10.1038/s41396‐020‐0683‐6 10.1034/j.1399‐3054.2003.00174.x 10.1111/gcb.12029 10.1038/ngeo339 10.1111/gcb14981 10.1016/j.chemosphere.2021.133359 10.1007/s00442‐017‐3861‐0 10.1104/pp.111.175448 10.1890/08‐0127.1 10.3389/fpls.2019.01068 10.1016/j.soilbio.2012.12.004 10.1038/s42003‐020‐0839‐y 10.3390/soilsystems3040064 10.1111/gcb14281 10.1007/s003740050628 10.1016/jscitotenv2019135992 10.1186/s12302‐018‐0140‐6 10.1016/jsoilbio2019107601 10.5194/bg‐17‐3859‐2020 10.1016/j.envpol.2018.01.024 10.1016/j.soilbio.2016.07.003 10.3389/fmicb.2016.00525 10.1111/1365‐2435.13453 10.1371/journal.pone.0002527 10.1016/j.soilbio.2019.05.002 10.1038/s41558‐017‐0009‐5 10.1038/nature12670 10.1002/elsc.200620122 10.1038/nrmicro.2017.87 10.1038/srep40093 10.2134/jeq199900472425002800040045x 10.7717/peerj.358 10.1038/s41558‐018‐0299‐2 10.1016/0038‐0717(82)90101‐8 10.1016/jsoilbio201805001 10.1016/j.soilbio.2013.10.004 10.1007/s10661‐013‐3202‐7 10.5194/hess‐26‐6163‐2022 10.4236/gep.2021.96008 10.1016/jsoilbio201211009 10.1007/s00374‐005‐0039‐4 10.1016/j.jenvman.2014.07.014 10.1016/j.orggeochem.2011.07.005 10.1007/s00374‐008‐0288‐0 10.1007/s11676‐013‐0330‐4 10.1073/pnas.0812721106 10.1016/jenvexpbot2020104135 10.1016/j.scitotenv.2014.12.095 10.1038/s43705‐021‐00073‐5 10.1111/gcb12344 10.1111/gcb.13161 10.1111/1365‐274512711 10.1016/j.jhazmat.2022.129065 10.1016/j.soilbio.2011.03.017 10.1890/15‐0361.1 10.1016/jsoilbio200801024 10.1007/978-3-642-15271-9_9 10.1007/s42729‐021‐00724‐5 10.1146/annurev‐marine‐120709‐142731 10.1016/j.apgeog.2014.11.024 10.1007/s10311‐014‐0458‐2 10.1016/j.apsoil.2021.104159 10.1016/jchemosphere2019124512 10.1111/j.1365‐2672.2012.05417.x 10.1007/s00248‐009‐9508‐x 10.4137/ASWR.S8599 10.1007/978-3-642-14225-3_12 10.1016/j.scitotenv.2004.10.005 10.1016/j.chemosphere.2013.12.059 10.1016/j.soilbio.2013.03.034 10.1016/j.agee.2011.05.025 10.1016/j.biotechadv.2015.10.009 10.1111/gcb.13384 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. Copyright © 2023 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: Copyright © 2023 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 |
DOI | 10.1111/gcb.16604 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 2091 |
ExternalDocumentID | 36655298 10_1111_gcb_16604 GCB16604 |
Genre | reviewArticle Meta-Analysis Journal Article Review |
GrantInformation_xml | – fundername: European Commission funderid: Synergy Grant 610028: Effects of phosphorus limita – fundername: European Commission grantid: Synergy Grant 610028: Effects of phosphorus limita |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4524-1178b8061ce2f96b088900a376b1db4722d35a3c387670b7738bb631395f80553 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri Jul 11 18:35:49 EDT 2025 Fri Jul 11 16:45:20 EDT 2025 Fri Jul 25 10:48:47 EDT 2025 Mon Jul 21 05:50:29 EDT 2025 Tue Jul 01 03:53:10 EDT 2025 Thu Apr 24 23:00:56 EDT 2025 Wed Jan 22 16:23:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | CO2 fertilisation biomanipulation drought global change soil enzymes nitrogen deposition warming climate change |
Language | English |
License | 2023 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4524-1178b8061ce2f96b088900a376b1db4722d35a3c387670b7738bb631395f80553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7215-0150 0000-0003-2478-0219 0000-0001-6717-9568 |
PMID | 36655298 |
PQID | 2786054280 |
PQPubID | 30327 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_2811992461 proquest_miscellaneous_2767172115 proquest_journals_2786054280 pubmed_primary_36655298 crossref_citationtrail_10_1111_gcb_16604 crossref_primary_10_1111_gcb_16604 wiley_primary_10_1111_gcb_16604_GCB16604 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2022; 290 2019; 10 2004; 8 2021; 205 2013; 64 2008; 39 2020; 17 2019; 17 2016; 540 2020; 14 2012; 18 2020; 12 2020; 11 2005; 60 2020; 10 2017; 157 2020; 18 2013; 58 2010; 1 2017; 78 2020; 177 2017; 286 2012; 23 1998; 161 2016; 46 2011; 2 2019; 33 1999; 28 2008; 52 2005; 83 2020; 267 2011; 3 1999; 467 2020; 705 2016; 6 2016; 7 2015; 235 2005; 8 2020; 26 2020; 711 1999; 31 2008; 44 2001; 33 2008; 40 1992; 23 2011; 142 2016; 22 2007; 382 2013; 24 2016; 101 2008; 7 2014; 68 2008; 3 2017; 110 2008; 1 2007; 35 2013; 19 2020; 4 2020; 3 2014; 2 2000 2020; 51 2013; 13 2017; 122 2014; 9 2018; 75 2021; 9 2010; 76 2021; 5 2015; 3 2010 2021; 103 2017; 27 2002; 34 2015; 96 2017; 23 2008 2007 2017; 691 2002 2021; 1 2007; 54 2001; 126 2022; 435 2016; 566–567 2004; 94 2017; 15 2022 2017; 17 2021 2021; 214 2020 2006; 383 2019 2018 2017 2020; 238 2017; 19 2016 2014 2013 2018; 56 1996; 46 2022; 425 2017; 105 2017; 106 2010; 10 2010; 16 2013; 4 2021; 168 2006; 32 2006; 38 2010; 464 2021; 163 2012; 125 1978 2010; 22 2018; 9 2018; 8 2005; 341 2015; 85 2011; 72 2013; 199 2022; 36 2018; 30 2009; 19 2014; 12 2009; 15 2006; 289 2015; 57 2017; 416 2019; 9 2019; 3 1997; 24 2013; 502 2011; 75 2016; 97 2013; 185 2019; 100 1976; 4 2018; 24 2006; 42 2010; 46 2012; 113 2015; 511 1997; 37 2009; 462 2022; 11 2013; 171 2022; 16 2009; 106 2014; 146 2021; 25 1982; 14 2017; 7 2021; 27 2003; 119 2009; 41 2017; 1 2015; 38 2018; 123 2018; 126 2015; 33 2016; 188 2011; 13 1996; 187 1994; 26 2017; 197 2011; 151 2016; 180 2021; 30 2011; 156 2009; 58 2019; 116 2011; 26 2005; 37 2011; 29 1998; 28 2009; 20 2000; 28 2015; 10 2005; 437 2006; 6 2008; 11 2014; 107 2018; 152 2001; 82 2021; 16 2012; 2 2021; 12 2021; 11 2000; 31 2011; 42 2000; 40 2019; 138 2019; 135 2011; 43 2017; 184 2008; 177 2012; 5 e_1_2_10_40_1 e_1_2_10_210_1 e_1_2_10_233_1 e_1_2_10_158_1 e_1_2_10_207_1 Begum M. (e_1_2_10_25_1) 2021 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 e_1_2_10_51_1 e_1_2_10_222_1 e_1_2_10_219_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_41_1 Mathesius U. (e_1_2_10_129_1) 2011 e_1_2_10_211_1 e_1_2_10_234_1 e_1_2_10_90_1 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_200_1 e_1_2_10_223_1 e_1_2_10_148_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_212_1 e_1_2_10_235_1 IPBES (e_1_2_10_93_1) 2018 e_1_2_10_91_1 IPCC (e_1_2_10_96_1) 2021 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_175_1 e_1_2_10_30_1 e_1_2_10_224_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_20_1 Quiquampoix H. (e_1_2_10_159_1) 2000 e_1_2_10_236_1 e_1_2_10_213_1 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_31_1 e_1_2_10_225_1 e_1_2_10_188_1 Zavarzin G. A. (e_1_2_10_227_1) 2008 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_21_1 Coleman D. C. (e_1_2_10_43_1) 2018 e_1_2_10_44_1 FAO and UNEP (e_1_2_10_65_1) 2021 Burns R. G. (e_1_2_10_35_1) 1978 e_1_2_10_214_1 e_1_2_10_237_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_32_1 e_1_2_10_203_1 e_1_2_10_226_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_230_1 e_1_2_10_215_1 Koper J. (e_1_2_10_109_1) 1999; 467 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_204_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 Su X. (e_1_2_10_202_1) 2022 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_231_1 e_1_2_10_216_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_72_1 e_1_2_10_118_1 e_1_2_10_194_1 Sterner R. W. (e_1_2_10_201_1) 2002 e_1_2_10_171_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_220_1 e_1_2_10_11_1 e_1_2_10_119_1 Pachauri R. K. (e_1_2_10_147_1) 2014 e_1_2_10_205_1 e_1_2_10_228_1 Morgan J. B. (e_1_2_10_135_1) 2013; 4 e_1_2_10_145_1 Allen M. R. (e_1_2_10_8_1) 2019 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_160_1 e_1_2_10_122_1 e_1_2_10_24_1 IPCC (e_1_2_10_95_1) 2014 e_1_2_10_108_1 e_1_2_10_217_1 e_1_2_10_232_1 e_1_2_10_157_1 e_1_2_10_229_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_50_1 e_1_2_10_206_1 e_1_2_10_221_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_218_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 |
References_xml | – volume: 35 start-page: 35 year: 2007 end-page: 45 article-title: Enzyme activities as affected by soil properties and land use in a tropical watershed publication-title: Applied Soil Ecology – volume: 126 start-page: 121 year: 2018 end-page: 128 article-title: Simultaneous determination of multiple soil enzyme activities for soil health‐biogeochemical indices publication-title: Applied Soil Ecology – volume: 10 start-page: 8433 year: 2020 article-title: Linkages between soil organic carbon fractions and carbon‐hydrolyzing enzyme activities across riparian zones in the Three Gorges of China publication-title: Scientific Reports – volume: 177 year: 2020 article-title: Long‐term drought decreases ecosystem C and nutrient storage in a Mediterranean holm oak forest publication-title: Environmental and Experimental Botany – volume: 72 start-page: 125 year: 2011 end-page: 161 – volume: 7 start-page: 28 year: 2017 end-page: 37 article-title: IPCC reasons for concern regarding climate change risks publication-title: Nature Climate Change – volume: 151 start-page: 765 year: 2011 end-page: 773 article-title: Drought and ecosystem carbon cycling publication-title: Agricultural and Forest Meteorology – volume: 28 start-page: 1378 year: 1999 end-page: 1380 article-title: Simultaneous analysis of multiple enzymes in environmental samples using methylumbelliferyl substrates and HPLC publication-title: Journal of Environmental Quality – year: 2022 article-title: Recent Advances in PGPR and Molecular Mechanisms Involved in Drought Stress Resistance publication-title: Journal of Soil Science and Plant Nutrition – volume: 31 start-page: 85 year: 2000 end-page: 91 article-title: Enzyme activities in a limed agricultural soil publication-title: Biology and Fertility of Soils – volume: 12 start-page: 339 year: 2020 end-page: 344 article-title: Microplastics have shape‐ and polymer‐dependent effects on soil processes publication-title: BioRxiv – volume: 435 year: 2022 article-title: Effects of plastic residues and microplastics on soil ecosystems: A global meta‐analysis publication-title: The Journal of Hazardous Materials – volume: 31 start-page: 1471 year: 1999 end-page: 1479 article-title: Field management effects on enzyme activities publication-title: Soil Biology and Biochemistry – volume: 19 year: 2017 article-title: Production, use, and fate of all plastics ever made publication-title: Science Advances – volume: 11 start-page: 280 year: 2021 article-title: Cost‐effective production of biocatalysts using inexpensive plant biomass: A review publication-title: Biotech – year: 2014 – volume: 15 start-page: 1631 year: 2009 end-page: 1639 article-title: Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils publication-title: Global Change Biology – volume: 26 start-page: 215 year: 2011 end-page: 243 – year: 2021 article-title: More frequent flash flood events and extreme precipitation favouring atmospheric conditions in temperate regions of Europe publication-title: Hydrology and Earth System Sciences – volume: 43 start-page: 1387 year: 2011 end-page: 1397 article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies publication-title: Soil Biology and Biochemistry – volume: 7 start-page: 181 year: 2008 end-page: 191 article-title: Selected soil enzymes: Examples of their potential roles in the ecosystem publication-title: African Journal of Biotechnology – year: 2008 – volume: 9 start-page: 520 year: 2018 article-title: Afforestation neutralizes soil pH publication-title: Nature Communications – volume: 29 year: 2011 – volume: 10 year: 2015 article-title: A global analysis of soil acidification caused by nitrogen addition publication-title: Environmental Research Letters – volume: 18 start-page: 35 year: 2020 end-page: 46 article-title: Soil microbiomes and climate change publication-title: Nature Reviews Microbiology – volume: 58 start-page: 216 year: 2013 end-page: 234 article-title: Soil enzymes in a changing environment: Current knowledge and future directions publication-title: Soil Biology and Biochemistry – year: 2019 – start-page: 744 year: 2018 – volume: 23 start-page: 917 year: 2012 end-page: 926 article-title: Emerging technologies in bioremediation: Constraints and opportunities publication-title: Biodegradation – volume: 13 start-page: 10081 year: 2013 end-page: 10094 article-title: Expansion of global drylands under a warming climate publication-title: Atmospheric Chemical Physics – year: 2007 – volume: 1 start-page: 5 year: 2010 end-page: 15 article-title: Terrestrial phosphorus limitation: Mechanisms implications and nitrogen‐phosphorus interactions publication-title: Ecological Applications – volume: 464 start-page: 499 year: 2010 end-page: 500 article-title: C cycle: A warm response by soils publication-title: Nature – volume: 37 start-page: 455 year: 2005 end-page: 461 article-title: Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L forest publication-title: Soil Biology and Biochemistry – volume: 7 start-page: 1337 year: 2017 article-title: Global patterns of phosphatase activity in natural soils publication-title: Scientific Reports – volume: 566–567 start-page: 960 year: 2016 end-page: 967 article-title: Riparian reforestation: Are there changes in soil carbon and soil microbial communities? publication-title: Science of the Total Environment – volume: 3 start-page: 1 year: 2008 end-page: 13 article-title: Simultaneous assessment of soil microbial community structure and function through analysis of the meta‐transcriptome publication-title: PLoS One – volume: 171 start-page: 705 year: 2013 end-page: 717 article-title: Effects of drought and N Fertilization on N cycling in two grassland soils publication-title: Oecologia – volume: 15 start-page: 579 year: 2017 end-page: 590 article-title: Embracing the unknown: Disentangling the complexities of the soil microbiome publication-title: Nature Reviews Microbiology – volume: 17 start-page: 794 year: 2017 end-page: 807 article-title: The biological activities of β‐glucosidase, phosphatase and urease as soil quality indicators: A review publication-title: Journal of Soil Science and Plant Nutrition – volume: 25 start-page: 1279 year: 2021 end-page: 1294 article-title: Long‐term drought and warming alter soil bacterial and fungal communities in an Upland Heathland publication-title: Ecosystems – year: 2002 – volume: 16 start-page: 3111 year: 2010 end-page: 3119 article-title: Changes in soil pH across England and Wales in response to decreased acid deposition publication-title: Global Change Biology – volume: 34 start-page: 315 year: 2002 end-page: 325 article-title: Composition of hydrolyzable amino acids in soil organic matter and soil microbial biomass publication-title: Soil Biology and Biochemistry – volume: 705 year: 2020 article-title: Global meta‐analysis on the responses of soil extracellular enzyme activities to warming publication-title: Science of the Total Environment – volume: 197 start-page: 539 year: 2017 end-page: 549 article-title: Microbial extracellular enzymes in biogeochemical cycling of ecosystems publication-title: Journal of Environmental Management – volume: 168 year: 2021 article-title: Changes in soil enzymatic activity in a P‐limited Mediterranean shrubland subject to experimental nitrogen deposition publication-title: Applied Soil Ecology – volume: 9 year: 2021 article-title: Microplastics Increase Soil pH and Decrease Microbial Activities as a Function of Microplastic Shape, Polymer Type, and Exposure Time publication-title: Frontiers in Environmental Science – volume: 75 start-page: 583 year: 2011 end-page: 609 article-title: Bacterial‐fungal interactions: Hyphens between agricultural, clinical, environmental, and food microbiologists publication-title: Microbiology and Molecular Biology Reviews – volume: 52 start-page: 157 year: 2008 end-page: 160 article-title: Effects of silicon on photosynthesis, water relations and nutrient uptake of under NaCl stress publication-title: Biologia Plantarum – volume: 16 start-page: 2295 year: 2022 end-page: 2304 article-title: Routes and rates of bacterial dispersal impact surface soil microbiome composition and functioning publication-title: ISME Journal – volume: 24 start-page: 2818 year: 2018 end-page: 2827 article-title: Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents publication-title: Global Change Biology – volume: 135 start-page: 144 year: 2019 end-page: 153 article-title: Microbial carbon and nitrogen cycling responses to drought and temperature in differently managed mountain grasslands publication-title: Soil Biology and Biochemistry – volume: 157 start-page: 407 year: 2017 end-page: 414 article-title: Impacts of changes in land use/cover on soil microbial and enzyme activities publication-title: Catena – volume: 39 start-page: 223 year: 2008 end-page: 235 article-title: Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland publication-title: Applied Soil Ecology – volume: 416 start-page: 283 year: 2017 end-page: 295 article-title: Rhizosphere‐driven increase in nitrogen and phosphorus availability under elevated atmospheric CO in a mature Eucalyptus woodland publication-title: Plant and Soil – volume: 437 start-page: 529 year: 2005 end-page: 533 article-title: Europe‐ wide reduction in primary productivity caused by the heat and drought in 2003 publication-title: Nature – year: 2021 – volume: 9 year: 2014 article-title: Investigating afforestation and bioenergy CCS as climate change mitigation strategies publication-title: Environmental Research Letters – volume: 199 start-page: 441 year: 2013 end-page: 451 article-title: A meta‐analysis of experimental warming effects on terrestrial nitrogen pools and dynamics publication-title: The New Phytologist – volume: 116 start-page: 18848 year: 2019 end-page: 18853 article-title: Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 152 start-page: 49 year: 2018 end-page: 59 article-title: Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long‐term monitored field gradients in Catalonia publication-title: Environmental and Experimental Botany – volume: 467 start-page: 127 year: 1999 end-page: 134 article-title: Soil enzymatic activity as a factor of its fertility caused by the tillage system publication-title: Zeszyty Problemowe Postępów Nauk Rolniczych – volume: 40 start-page: 2098 year: 2008 end-page: 2106 article-title: Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes publication-title: Soil Biology and Biochemistry – volume: 33 start-page: 1633 year: 2001 end-page: 1640 article-title: A microplate fluorimetric assay for the study of enzyme diversity in soils publication-title: Soil Biology and Biochemistry – volume: 185 start-page: 8659 year: 2013 end-page: 8671 article-title: Influence of elevated carbon dioxide and temperature on belowground carbon allocation and enzyme activities in tropical flooded soil planted with rice publication-title: Environmental Monitoring and Assessment – volume: 12 start-page: 7255 year: 2020 article-title: Soil pollution from micro‐ and nanoplastic debris: A hidden and unknown biohazard publication-title: Sustainability – volume: 42 start-page: 1016 year: 2011 end-page: 1024 article-title: Effects of short‐term ecosystem experimental warming on water‐extractable organic matter in an ombrotrophic Sphagnum peatland (Le Forbonnet, France) publication-title: Organic Geochemistry – volume: 78 start-page: 39 year: 2017 end-page: 44 article-title: The relationship between soil properties, enzyme activity and land use publication-title: Forest Research Papers – volume: 54 start-page: 1845 year: 2007 end-page: 1856 article-title: Interactions between climate change and contaminants publication-title: Marine Pollution Bulletin – volume: 188 start-page: 346 year: 2016 article-title: Changes of soil carbon dioxide, methane, and nitrous oxide fluxes in relation to land use/cover management publication-title: Environmental Monitoring and Assessment – volume: 238 year: 2020 article-title: Coupling of bioaugmentation and biostimulation to improve lindane removal from different soil types publication-title: Chemosphere – volume: 9 start-page: 3033 year: 2018 article-title: Soil bacterial networks are less stable under drought than fungal networks publication-title: Nature Communications – volume: 6 year: 2016 article-title: Increasing aridity, temperature and soil pH induce soil C‐N‐P imbalance in grasslands publication-title: Scientific Reports – volume: 290 year: 2022 article-title: Combined bioaugmentation and biostimulation techniques in bioremediation of pentachlorophenol contaminated forest soil publication-title: Chemosphere – volume: 8 start-page: 972 year: 2018 end-page: 980 article-title: Climate change and interconnected risks to sustain‐able development in the Mediterranean publication-title: Nature Climate Change – volume: 502 start-page: 672 year: 2013 end-page: 676 article-title: Decoupling of soil nutrient cycles as a function of aridity in global drylands publication-title: Nature – volume: 44 start-page: 509 year: 2008 end-page: 520 article-title: Experimental drought reduced acid and alkaline phosphatase activity and increased organic extractable P in soil in a Mediterranean forest European publication-title: European Journal of Soil Biology – volume: 76 start-page: 6485 year: 2010 end-page: 6493 article-title: Variation in ph optima of hydrolytic enzyme activities in tropical rain forest soils publication-title: Applied and Environmental Microbiology – volume: 37 start-page: 63 year: 1997 end-page: 75 article-title: Nutrient limitation and soil development: Experimental test of a biogeochemical theory publication-title: Biogeochemistry – volume: 383 start-page: 465 year: 2006 end-page: 476 article-title: Are current rates of atmospheric nitrogen deposition influencing lakes in the eastern Canadian Arctic? publication-title: Arctic, Antarctic, and Alpine Research – volume: 97 start-page: 176 year: 2016 end-page: 187 article-title: Meta‐analysis approach to assess effect of tillage on microbial biomass and enzyme activities publication-title: Soil Biology and Biochemistry – volume: 9 start-page: 135 year: 2021 end-page: 154 article-title: Effect of heavy metal contamination on soil enzymes activities publication-title: Journal of Geosciences and Environment Protection – volume: 24 start-page: 4238 year: 2018 end-page: 4250 article-title: Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming publication-title: Global Change Biology – volume: 10 start-page: 149 year: 2010 article-title: Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments publication-title: BMC Microbiology – volume: 17 start-page: 569 year: 2019 end-page: 586 article-title: Scientists’ warning to humanity: Microorganisms and climate change publication-title: Nature Reviews Microbiology – start-page: 485 year: 2014 end-page: 533 – volume: 38 start-page: 2448 year: 2006 end-page: 2460 article-title: Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi‐arid grassland publication-title: Soil Biology and Biochemistry – volume: 163 year: 2021 article-title: Simulated climate change and seasonal drought increase carbon and phosphorus demand in Mediterranean forest soils publication-title: Soil Biology and Biochemistry – volume: 58 start-page: 275 year: 2013 end-page: 280 article-title: Soil zymography—A novel in situ method for mapping distribution of enzyme activity in soil publication-title: Soil Biology and Biochemistry – volume: 113 start-page: 1154 year: 2012 end-page: 1164 article-title: Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces spp from wheat rhizosphere publication-title: Journal of Applied Microbiology – volume: 711 year: 2020 article-title: Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration publication-title: Science of the Total Environment – volume: 511 start-page: 576 year: 2015 end-page: 583 article-title: Experimental warming differentially affects microbial structure and activity in two contrasted moisture sites in a Sphagnum‐dominated peatland publication-title: Science of the Total Environment – volume: 106 start-page: 1707 year: 2009 end-page: 1709 article-title: Irreversible climate change due to carbon dioxide emissions publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 11 start-page: 36 year: 2022 article-title: Effects of different forms of nitrogen addition on microbial extracellular enzyme activity in temperate grassland soil publication-title: Ecological Processes – volume: 100 year: 2019 article-title: The bioelements, the elementome, and the biogeochemical niche publication-title: Ecology – volume: 85 start-page: 505 year: 2015 end-page: 524 article-title: A general mathematical framework for representing soil organic matter dynamics publication-title: Ecological Monographs – volume: 22 start-page: 1809 year: 2016 end-page: 1820 article-title: Not all droughts are created equal: The impacts of interannual drought pattern and magnitude on grassland carbon cycling publication-title: Global Change Biology – volume: 156 start-page: 989 year: 2011 end-page: 996 article-title: Soil microorganisms mediating phosphorus availability publication-title: Plant Physiology – volume: 27 start-page: 5989 year: 2021 end-page: 6003 article-title: The effect of global change on soil phosphatase activity publication-title: Global Change Biology – volume: 5 start-page: 204 issue: 599 year: 2021 article-title: Recent advances in enzymes for the bioremediation of pollutants publication-title: Biochemistry Research International – volume: 28 start-page: 83 year: 2000 end-page: 99 article-title: Potential applications of oxidative enzymes and phenoloxidase‐like compounds in wastewater and soil treatment: A review publication-title: Applied Catalysis – volume: 462 start-page: 795 year: 2009 end-page: 798 article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment publication-title: Nature Reviews Microbiology – volume: 32 start-page: 149 year: 2006 end-page: 152 article-title: Effects of invasive scotch broom on soil proper‐ties in a Pacific coastal prairie soil publication-title: Applied Soil Ecology – volume: 26 start-page: 3698 year: 2020 end-page: 3714 article-title: Effects of seasonal and decadal warming on soil enzymatic activity in a P‐deficient Mediterranean shrubland publication-title: Global Change Biology – volume: 41 start-page: 137 year: 2009 end-page: 147 article-title: Soil community changes during secondary succession to naturalized grasslands publication-title: Applied Soil Ecology – year: 2020 – volume: 23 start-page: 1282 year: 2017 end-page: 1291 article-title: Plant invasion is associated with higher plant–soil nutrient concentrations in nutrient‐ poor environments publication-title: Global Change Biology – volume: 142 start-page: 280 year: 2011 end-page: 290 article-title: Differential influence of land use/cover change ontopsoil carbon and microbial activity in low‐latitude temperate forests publication-title: Agriculture, Ecosystems and Environment – volume: 122 start-page: 141 year: 2017 end-page: 150 article-title: Isolation of Ascomycota fungi with capability to transform PAHs: Insights into the biodegradation mechanisms of publication-title: International Biodeterioration & Biodegradation – volume: 8 start-page: 92 year: 2018 article-title: A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility publication-title: Catalysts – start-page: 295 year: 1978 end-page: 340 – start-page: 4 year: 2013 article-title: Human‐induced nitrogen‐phosphorus imbalances alter natural and managed ecosystems across the globe publication-title: Nature Communications – volume: 51 start-page: 1009 year: 2020 end-page: 1020 article-title: Fungal phytases: From genes to applications publication-title: Brazilian Journal of Microbiology – volume: 75 start-page: 34 year: 2018 article-title: Factors determining enzyme activities in soils under and plantations in Spain: A basis for establishing sustainable forest management strategies publication-title: Annals of Forest Science – volume: 184 start-page: 583 year: 2017 end-page: 596 article-title: Plant–microbial competition for nitrogen increases microbial activities and carbon loss in invaded soils publication-title: Oecologia – volume: 46 start-page: 674 year: 1996 end-page: 684 article-title: Organism size, life history, and N:P stoichiometry: Towards a unified view of cellular and ecosystem processes publication-title: Bioscience – volume: 60 start-page: 195 year: 2005 end-page: 205 article-title: Stability of the fluorogenic enzyme substrates and pH optima of enzyme activities in different Finnish soils publication-title: Journal of Microbiological Methods – volume: 14 start-page: 433 year: 1982 end-page: 437 article-title: Effect of pH on enzyme stability in soils publication-title: Soil Biology and Biochemistry – volume: 12 start-page: 8209 year: 2020 article-title: Use of soil enzymes as indicators for contaminated soil monitoring and sustainable management publication-title: Sustainability – volume: 19 start-page: 735 year: 2009 end-page: 747 article-title: Soil microbial activity during secondary vegetation succession in semiarid abandoned lands of Loess Plateau publication-title: Pedosphere – volume: 138 year: 2019 article-title: The pH optimum of soil exoenzymes adapt to long term changes in soil pH publication-title: Soil Biology and Biochemistry – volume: 14 start-page: 2236 year: 2020 end-page: 2247 article-title: Drought and plant litter chemistry alter microbial gene expression and metabolite production publication-title: The ISME Journal – volume: 146 start-page: 383 year: 2014 end-page: 399 article-title: Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: A review publication-title: Journal of Environmental Management – volume: 691 year: 2017 article-title: Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations publication-title: Tellus Series B: Chemical and Physical Meteorology – volume: 64 start-page: 68 year: 2013 end-page: 79 article-title: Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland publication-title: Soil Biology and Biochemistry – volume: 24 start-page: 109 year: 2013 end-page: 114 article-title: Ecological effects of atmospheric nitrogen deposition on soil enzyme activity publication-title: Journal of Forestry Research – volume: 56 start-page: 737 year: 2018 end-page: 751 article-title: Biostimulation of the activity of microorganisms and soil enzymes through fertilisation with composts publication-title: Soil Research – volume: 3 start-page: 401 year: 2011 end-page: 425 article-title: Microbial extracellular enzymes and the marine carbon cycle publication-title: Annual Review of Marine Science – volume: 4 start-page: 383 year: 1976 end-page: 421 article-title: Extracellular enzymes in soil publication-title: CRC Critical Reviews in Microbiology – volume: 12 start-page: 257 year: 2014 end-page: 273 article-title: Effects of pesticides on soil enzymes: A review publication-title: Environmental Chemistry Letters – volume: 123 start-page: 21 year: 2018 end-page: 32 article-title: A meta‐analysis of soil extracellular enzyme activities in response to global change publication-title: Soil Biology and Biochemistry – volume: 11 start-page: 1252 year: 2008 end-page: 1264 article-title: Stoichiometry of soil enzyme activity at global scale publication-title: Ecology Letters – volume: 30 start-page: 1446 year: 2021 end-page: 1453 article-title: Coupling of biostimulation and bioaugmentation for enhanced bioremoval of chloroethylenes and BTEX from clayey soil publication-title: Ecotoxicology – volume: 9 start-page: 1473 year: 2018 article-title: Plant growth‐promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture publication-title: Frontiers in Plant Science – volume: 267 year: 2020 article-title: Inhibitory effect of microplastics on soil extracellular enzymatic activities by changing soil properties and direct adsorption: An investigation at the aggregate‐fraction level publication-title: Environmental Pollution – volume: 205 year: 2021 article-title: How will the progressive global increase of arid areas affect population and land‐use in the 21st century? publication-title: Global and Planetary Change – year: 2022 – volume: 425 year: 2022 article-title: Climate warming masks the negative effect of microplastics on plant‐soil health in a silt loam soil publication-title: Geoderma – volume: 30 start-page: 11 year: 2018 article-title: Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil publication-title: Environmental Sciences Europe – volume: 9 start-page: 639 year: 2019 article-title: The effects of drought and nutrient addition on soil organisms vary across taxonomic groups, but are constant across seasons publication-title: Scientific Reports – volume: 42 start-page: 481 year: 2006 end-page: 489 article-title: Effect of the exotic invasive plant Solidago gigantea on soil phosphorus status publication-title: Biology and Fertility of Soils – volume: 8 start-page: 460 year: 2018 article-title: Combined cross‐linked enzyme aggregates as biocatalysts publication-title: Catalysts – volume: 26 start-page: 1305 year: 1994 end-page: 1311 article-title: Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litter decomposition publication-title: Soil Biology and Biochemistry – volume: 286 start-page: 25 year: 2017 end-page: 34 article-title: Effects of elevated CO and drought on the microbial biomass and enzymatic activities in the rhizospheres of two grass species in Chinese loess soil publication-title: Geoderma – volume: 58 start-page: 414 year: 2009 end-page: 424 article-title: Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils publication-title: Microbial Ecology – volume: 187 start-page: 333 year: 1996 end-page: 342 article-title: Assessing the impact of elevated CO on soil microbial activity in a Mediterranean model ecosystem publication-title: Plant and Soil – volume: 9 start-page: 1722 year: 2021 article-title: The effectiveness of biostimulation, bioaugmentation and sorption‐biological treatment of soil contaminated with petroleum products in the Russian subarctic publication-title: Microorganisms – volume: 540 start-page: 567 year: 2016 end-page: 569 article-title: Water balance creates a threshold in soil pH at the global scale publication-title: Nature – volume: 16 year: 2021 article-title: Soil enzyme responses to land use change in the tropical rainforest of the Colombian Amazon region publication-title: PLoS One – volume: 180 start-page: 197 year: 2016 end-page: 201 article-title: The effect of soil type on the bioremediation of petroleum contaminated soils publication-title: Journal of Environmental Management – volume: 96 start-page: 99 year: 2015 end-page: 112 article-title: Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment publication-title: Ecology – volume: 103 year: 2021 article-title: Soil enzymes activity: Effect of climate smart agriculture on rhizosphere and bulk soil under cereal based systems of north‐west India publication-title: European Journal of Soil Biology – volume: 3 start-page: 125 year: 2020 article-title: Increasing atmospheric CO concentrations correlate with declining nutritional status of European forests publication-title: Communications Biology – year: 2016 – volume: 37 start-page: 937 year: 2005 end-page: 944 article-title: Responses of extracellular enzymes to simple and complex nutrient inputs publication-title: Soil Biology and Biochemistry – volume: 46 start-page: 177 year: 2010 end-page: 182 article-title: Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content publication-title: Applied Soil Ecology – volume: 289 start-page: 227 year: 2006 end-page: 238 article-title: Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland publication-title: Plant and Soil – year: 2010 – volume: 7 start-page: 875 year: 2017 end-page: 879 article-title: Recently amplified arctic warming has contributed to a continual global warming trend publication-title: Nature Climate Change – start-page: 171 year: 2000 end-page: 206 – volume: 40 start-page: 339 year: 2000 end-page: 346 article-title: Monitoring of bioremediation by soil biological activities publication-title: Chemosphere – volume: 6 start-page: 252 year: 2006 end-page: 260 article-title: Dispersing pollutant‐degrading bacteria in contaminated soil without touching it publication-title: Engineering in Life Sciences – volume: 17 start-page: 3859 year: 2020 end-page: 3873 article-title: Reviews and syntheses: Soil responses to manipulated precipitation changes—An assessment of meta‐analyses publication-title: Biogeosciences – volume: 40 start-page: 2146 year: 2008 end-page: 2155 article-title: Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality publication-title: Soil Biology and Biochemistry – volume: 11 start-page: 910 year: 2020 end-page: 921 article-title: A practical approach to measuring the biodiversity impacts of land conversion publication-title: Methods in Ecology and Evolution – volume: 341 start-page: 265 year: 2005 end-page: 279 article-title: Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution publication-title: Science of the Total Environment – volume: 94 start-page: 843 year: 2004 end-page: 853 article-title: Contrasting growth changes in two dominant species of a mediterranean shrubland submitted to experimental drought and warming publication-title: Annals of Botany – volume: 24 start-page: 429 year: 1997 end-page: 434 article-title: Changes in the microbial activity of an arid soil amended with urban organic wastes publication-title: Biology and Fertility of Soils – volume: 1 start-page: 1438 year: 2017 end-page: 1445 article-title: Shifting from a fertilization‐dominated to a warming‐dominated period publication-title: Nature Ecology and Evolution – volume: 7 start-page: 1 year: 2017 end-page: 7 article-title: pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution publication-title: Scientific Reports – volume: 8 start-page: 626 year: 2005 end-page: 635 article-title: Cheaters, diffusion, and nutrients constrain decomposition by microbial enzymes in spatially structured environments publication-title: Ecology Letters – volume: 416 start-page: 527 year: 2017 end-page: 537 article-title: Responses of soil extracellular enzyme activities to experimental warming and CO enrichment at the alpine treeline publication-title: Plant and Soil – volume: 19 start-page: 3740 year: 2013 end-page: 3748 article-title: Will climate change promote future invasions? publication-title: Global Change Biology – volume: 235 start-page: 1030 year: 2015 end-page: 1034 article-title: Current opinion: What is a nanoplastic? publication-title: Environmental Pollution – volume: 82 start-page: 2397 year: 2001 end-page: 2404 article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass publication-title: Ecology – volume: 10 start-page: 1068 year: 2019 article-title: Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance publication-title: Frontiers in Plant Science – volume: 214 year: 2021 article-title: Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems publication-title: Earth‐Science Reviews – volume: 161 start-page: 243 year: 1998 end-page: 248 article-title: Intracellular and extracellular enzyme activity in soil with reference to elemental cycling publication-title: Zeitschrift fuÈr PflanzenernaÈhrung und Bodenkunde – volume: 33 start-page: 2402 year: 2019 end-page: 2416 article-title: Soil functional responses to drought under range‐expanding and native plant communities publication-title: Functional Ecology – volume: 20 start-page: 642 year: 2009 end-page: 650 article-title: Rhizosphere chemical dialogues: Plant‐microbe interactions publication-title: Current Opinion in Biotechnology – volume: 382 start-page: 165 year: 2007 end-page: 190 article-title: Carbon losses from soil and its consequences for land use management publication-title: Science of the Total Environment – volume: 44 start-page: 1025 year: 2008 end-page: 1034 article-title: Isolation of culturable phosphobacteria with both phytate‐mineralization and phosphate‐solubilization activity from the rhizosphere of plants grown in a volcanic soil publication-title: Biology and Fertility of Soils – volume: 28 start-page: 47 year: 1998 end-page: 54 article-title: Purification and characterization of the constitutive form of laccase from the basidiomycete and effect of inducers on laccase synthesis publication-title: Biotechnology and Applied Biochemistry – volume: 23 start-page: 63 year: 1992 end-page: 87 article-title: Biological invasions by exotic grasses, the grass/fire cycle, and global change publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 57 year: 2015 article-title: Mapping the world's degraded lands publication-title: Applied Geography – volume: 2 issue: 8 year: 2011 article-title: Atmospheric CO and soil extracellular enzyme activity: A meta‐analysis and CO gradient experiment publication-title: Ecosphere – volume: 177 start-page: 706 year: 2008 end-page: 714 article-title: Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta‐analysis publication-title: The New Phytologist – volume: 125 start-page: 267 year: 2012 end-page: 274 article-title: Engineering and production of laccase from Trametes versicolor in the yeast publication-title: Bioresource Technology – year: 2018 – volume: 33 start-page: 1845 year: 2015 end-page: 1854 article-title: Metagenomics for the discovery of pollutant degrading enzymes publication-title: Biotechnology Advances – volume: 27 start-page: 846 year: 2017 end-page: 855 article-title: Effects of elevated CO and drought on plant physiology, soil carbon and soil enzyme activities publication-title: Pedosphere – volume: 4 start-page: 106 year: 2020 article-title: The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses publication-title: Frontiers in Sustainable Food Systems – start-page: 13 year: 2020 end-page: 32 – volume: 8 start-page: 805 year: 2004 end-page: 814 article-title: An exotic tree alters decomposition and nutrient cycling in a Hawaiian montane forest publication-title: Ecosystems – volume: 7 start-page: 525 year: 2016 article-title: Belowground response to drought in a tropical Forest soil I changes in microbial functional potential and metabolism publication-title: Frontiers in Microbiology – volume: 163 year: 2021 article-title: Continuous in‐situ measurement of free extracellular enzyme activity as direct indicator for soil biological activity publication-title: Soil Biology and Biochemistry – volume: 105 start-page: 801 year: 2017 end-page: 815 article-title: Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest publication-title: Journal of Ecology – volume: 13 start-page: 1642 year: 2011 end-page: 1654 article-title: The bacterial biogeography of British soils publication-title: Environmental Microbiology – volume: 107 start-page: 145 year: 2014 end-page: 162 article-title: Enzymes as useful tools for environmental purposes publication-title: Chemosphere – volume: 119 start-page: 231 year: 2003 end-page: 243 article-title: Ecophysiological responses of two Mediterranean shrubs, Erica multiflora and Globularia alypum, to experimentally drier and warmer conditions publication-title: Physiologia Plantarum – volume: 110 start-page: 68 year: 2017 end-page: 78 article-title: Changes in substrate availability drive carbon cycle response to chronic warming publication-title: Soil Biology and Biochemistry – volume: 22 year: 2010 – volume: 18 start-page: 2681 year: 2012 end-page: 2693 article-title: Simple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO and temperature publication-title: Global Change Biology – volume: 2 start-page: 248 year: 2012 end-page: 253 article-title: Global warming under old and new scenarios using IPCC climate sensitivity range estimates publication-title: Nature Climate Change – volume: 106 start-page: 119 year: 2017 end-page: 128 article-title: Root exudates increase N availability by stimulating microbial turnover of fast‐cycling N pools publication-title: Soil Biology and Biochemistry – volume: 26 start-page: 1962 year: 2020 end-page: 1985 article-title: Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health publication-title: Global Change Biology – volume: 4 start-page: 2 year: 2013 article-title: Plant‐soil interactions: Nutrient uptake publication-title: Nature Education Knowledge – volume: 9 start-page: 480 year: 2019 article-title: Soil Extracellular Enzyme Activities and Uptake of N by Oilseed Rape Depending on Fertilization and Seaweed Biostimulant Application publication-title: Agronomy – volume: 38 start-page: 1537 year: 2006 end-page: 1544 article-title: Elevated enzyme activities in soils under the invasive nitrogen‐fixing tree publication-title: Soil Biology and Biochemistry – volume: 2 start-page: 1 year: 2014 end-page: 13 article-title: Microbial communities respond to experimental warming, but site matters publication-title: Peer J – volume: 36 start-page: 1378 year: 2022 end-page: 1395 article-title: Soil enzymes in response to climate warming: Mechanisms and feedbacks publication-title: Functional Ecology – volume: 68 start-page: 252 year: 2014 end-page: 262 article-title: Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively‐managed agricultural landscape publication-title: Soil Biology and Biochemistry – volume: 38 start-page: 401 year: 2015 end-page: 419 article-title: Plant growth‐promoting bacteria as inoculants in agricultural soils publication-title: Genetics and Molecular Biology – volume: 1 start-page: 69 year: 2021 article-title: Increased microbial expression of organic nitrogen cycling genes in long‐term warmed grassland soils publication-title: ISME Communications – volume: 34 start-page: 1309 year: 2002 end-page: 1315 article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil publication-title: Soil Biology and Biochemistry – volume: 46 start-page: 1131 year: 2016 end-page: 1150 article-title: Global semi‐ arid climate change over last 60 years publication-title: Climate Dynamics – volume: 3 start-page: 64 year: 2019 article-title: Control of soil extracellular enzyme activities by clay minerals—Perspectives on microbial responses publication-title: Soil System – volume: 100 year: 2019 article-title: Enhanced activity of soil nutrient‐releasing enzymes after plant invasion: A meta‐analysis publication-title: Ecology – volume: 1 start-page: 767 year: 2008 end-page: 770 article-title: Negative impact of nitrogen deposition on soil buffering capacity publication-title: Nature Geoscience – volume: 24 start-page: 1873 year: 2018 end-page: 1883 article-title: Impact of priming on global soil carbon stocks publication-title: Global Change Biology – volume: 12 year: 2021 article-title: Role of Cell Wall Polyphosphates in Phosphorus Transfer at the Arbuscular Interface in Mycorrhizas publication-title: Frontiers in Plant Science – volume: 19 start-page: 90 year: 2013 end-page: 102 article-title: How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming publication-title: Global Change Biology – volume: 5 start-page: 184 year: 2021 end-page: 194 article-title: Empirical support for the biogeochemical niche hypothesis in forest trees publication-title: Nature Ecology and Evolution – volume: 5 start-page: 1 year: 2012 article-title: The relationship between winter temperature rise and soil fertility properties publication-title: Air, Soil and Water Research – volume: 3 start-page: 28 year: 2015 end-page: 39 article-title: Bioremediation, biostimulation and bioaugmentation: A review publication-title: International Journal of Environmental Bioremediation & Biodegradation – year: 2017 – volume: 83 start-page: 270 year: 2005 end-page: 277 article-title: Land‐use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey publication-title: Soil and Tillage Research – volume: 101 start-page: 32 year: 2016 end-page: 43 article-title: Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta‐analysis publication-title: Soil Biology and Biochemistry – volume: 126 start-page: 543 year: 2001 end-page: 562 article-title: A meta‐analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental warming publication-title: Oecologia – ident: e_1_2_10_101_1 doi: 10.1016/S1002‐0160(09)60169‐7 – ident: e_1_2_10_38_1 doi: 10.1038/s41579‐019‐0222‐5 – ident: e_1_2_10_133_1 doi: 10.1186/1471‐2180‐10‐149 – ident: e_1_2_10_66_1 doi: 10.5194/acp‐13‐10081‐2013 – volume-title: Global assessment of soil pollution—Summary for policy makers year: 2021 ident: e_1_2_10_65_1 – ident: e_1_2_10_207_1 doi: 10.5772/65267 – ident: e_1_2_10_62_1 doi: 10.2307/1312897 – volume-title: Biodegradation technology of organic and inorganic pollutants year: 2021 ident: e_1_2_10_25_1 – ident: e_1_2_10_74_1 – ident: e_1_2_10_102_1 doi: 10.1038/srep19601 – ident: e_1_2_10_232_1 doi: 10.1073/pnas.1904955116 – volume-title: Basis contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change year: 2021 ident: e_1_2_10_96_1 – ident: e_1_2_10_111_1 doi: 10.3390/su12198209 – ident: e_1_2_10_222_1 doi: 10.3390/catal8100460 – ident: e_1_2_10_144_1 doi: 10.1007/s11104‐017‐3212‐2 – ident: e_1_2_10_23_1 doi: 10.1016/j.apsoil.2010.08.013 – ident: e_1_2_10_76_1 doi: 10.1016/B978-0-12-817880-5.00002-5 – ident: e_1_2_10_34_1 doi: 10.1007/s13595‐018‐0720‐z – ident: e_1_2_10_140_1 doi: 10.1016/j.geoderma.2022.116083 – ident: e_1_2_10_90_1 doi: 10.1007/s00382‐015‐2636‐8 – ident: e_1_2_10_191_1 doi: 10.3390/agronomy9090480 – ident: e_1_2_10_56_1 doi: 10.1111/j.1365‐2486.2012.02745.x – ident: e_1_2_10_54_1 doi: 10.1016/j.earscirev.2020.103501 – ident: e_1_2_10_115_1 doi: 10.1111/j.1469‐8137.2007.02290.x – ident: e_1_2_10_112_1 doi: 10.1186/s43591‐021‐00007‐x – ident: e_1_2_10_18_1 doi: 10.1016/jsoilbio2021108424 – ident: e_1_2_10_48_1 doi: 10.1146/annurev.es.23.110192.000431 – ident: e_1_2_10_193_1 doi: 10.1038/nature20139 – ident: e_1_2_10_42_1 doi: 10.1038/nature03972 – ident: e_1_2_10_143_1 doi: 10.1111/gcb.14113 – ident: e_1_2_10_190_1 doi: 10.1016/0038‐0717(94)90211‐9 – ident: e_1_2_10_204_1 doi: 10.1016/j.biortech.2012.07.117 – ident: e_1_2_10_106_1 doi: 10.1890/ES11‐00117.1 – ident: e_1_2_10_200_1 doi: 10.1890/14‐0088.1 – ident: e_1_2_10_84_1 doi: 10.1016/j.jenvman.2016.05.038 – ident: e_1_2_10_122_1 doi: 10.5897/AJB07.590 – ident: e_1_2_10_137_1 doi: 10.3389/fsufs.2020.00106 – ident: e_1_2_10_70_1 doi: 10.1128/mmbr.00020‐11 – ident: e_1_2_10_149_1 doi: 10.3390/su12187255 – ident: e_1_2_10_161_1 doi: 10.1016/j.scitotenv.2019.135062 – ident: e_1_2_10_125_1 doi: 10.1038/s41598‐017‐01418‐8 – ident: e_1_2_10_142_1 doi: 10.1016/j.mimet.2004.09.010 – ident: e_1_2_10_154_1 doi: 10.1038/ncomms3934 – ident: e_1_2_10_130_1 doi: 10.1016/j.soilbio.2016.12.004 – ident: e_1_2_10_87_1 doi: 10.1007/s00442‐012‐2578‐3 – ident: e_1_2_10_6_1 doi: 10.12691/ijebb‐3‐1‐5 – ident: e_1_2_10_7_1 doi: 10.4067/S0718‐95162017000300018 – ident: e_1_2_10_136_1 doi: 10.1155/2021/5599204 – ident: e_1_2_10_57_1 doi: 10.1186/s13717‐022‐00380‐2 – ident: e_1_2_10_114_1 doi: 10.1007/s10646‐020‐02323‐z – ident: e_1_2_10_146_1 doi: 10.1038/nclimate3179 – ident: e_1_2_10_181_1 doi: 10.1016/j.marpolbul.2007.09.020 – ident: e_1_2_10_223_1 doi: 10.1016/jgeoderma201610025 – ident: e_1_2_10_99_1 doi: 10.1016/j.ejsobi.2021.103292 – ident: e_1_2_10_126_1 doi: 10.1111/gcb.15832 – ident: e_1_2_10_174_1 doi: 10.1016/j.soilbio.2004.08.004 – ident: e_1_2_10_197_1 doi: 10.1590/s1415‐475738420150053 – ident: e_1_2_10_39_1 doi: 10.1016/j.still.2004.08.001 – ident: e_1_2_10_59_1 doi: 10.1111/2041‐210X.13427 – ident: e_1_2_10_157_1 doi: 10.1016/j.soilbio.2017.03.002 – ident: e_1_2_10_138_1 doi: 10.3390/microorganisms9081722 – ident: e_1_2_10_228_1 doi: 10.3390/catal8020092 – ident: e_1_2_10_206_1 doi: 10.1016/j.soilbio.2008.03.015 – ident: e_1_2_10_194_1 doi: 10.1038/464499a – ident: e_1_2_10_50_1 doi: 10.1038/s41467‐018‐05516‐7 – ident: e_1_2_10_127_1 doi: 10.1016/s0045‐6535(99)00218‐0 – ident: e_1_2_10_134_1 doi: 10.1016/jcatena201706003 – ident: e_1_2_10_182_1 doi: 10.1007/s10021‐021‐00715‐8 – ident: e_1_2_10_229_1 doi: 10.1038/s41598‐020‐65200‐z – ident: e_1_2_10_214_1 doi: 10.1111/j.1365‐2486.2008.01819.x – ident: e_1_2_10_118_1 doi: 10.1093/aob/mch211 – ident: e_1_2_10_3_1 doi: 10.1016/j.apsoil.2017.11.024 – ident: e_1_2_10_189_1 doi: 10.1111/j.1461‐0248.2008.01245.x – start-page: 171 volume-title: Soil biochemistry, vol 10 Marcel Dekker year: 2000 ident: e_1_2_10_159_1 – ident: e_1_2_10_177_1 doi: 10.1016/jejsobi200809011 – ident: e_1_2_10_216_1 doi: 10.1038/s41396‐022‐01269‐w – volume-title: Microbial cycles year: 2008 ident: e_1_2_10_227_1 – ident: e_1_2_10_196_1 doi: 10.1007/s11104‐017‐3235‐8 – ident: e_1_2_10_205_1 doi: 10.1088/1748‐9326/10/2/024019 – ident: e_1_2_10_9_1 doi: 10.1111/j.1461‐0248.2005.00756.x – ident: e_1_2_10_24_1 doi: 10.1016/S0038‐0717(99)00051‐6 – ident: e_1_2_10_71_1 doi: 10.1016/S0038‐0717(01)00185‐7 – ident: e_1_2_10_155_1 doi: 10.1016/j.envexpbot.2017.05.012 – ident: e_1_2_10_37_1 doi: 10.1016/japsoil200411008 – ident: e_1_2_10_211_1 doi: 10.1016/j.agrformet.2011.01.018 – volume-title: A global meta‐analysis reveals differential effects of microplastics on soil ecosystem (preprint) year: 2022 ident: e_1_2_10_202_1 – ident: e_1_2_10_219_1 doi: 10.1657/1523‐0430(2006)38[465:acroan]2.0.co;2 – ident: e_1_2_10_171_1 doi: 10.1007/s13205‐021‐02847‐z – ident: e_1_2_10_49_1 doi: 10.1016/j.scitotenv.2007.03.023 – ident: e_1_2_10_164_1 doi: 10.1007/978-3-642-20256-8_4 – ident: e_1_2_10_176_1 doi: 10.1016/j.apsoil.2007.12.011 – ident: e_1_2_10_169_1 doi: 10.1007/s004420000544 – volume: 467 start-page: 127 year: 1999 ident: e_1_2_10_109_1 article-title: Soil enzymatic activity as a factor of its fertility caused by the tillage system publication-title: Zeszyty Problemowe Postępów Nauk Rolniczych – start-page: 485 volume-title: Climate change 2014: Impacts, adaptation, and vulnerability (field C) year: 2014 ident: e_1_2_10_95_1 – ident: e_1_2_10_175_1 doi: 10.1007/s11104‐006‐9131‐2 – ident: e_1_2_10_10_1 doi: 10.1016/j.soilbio.2005.11.008 – ident: e_1_2_10_163_1 doi: 10.1007/s10532‐012‐9576‐3 – ident: e_1_2_10_218_1 doi: 10.1016/S1002‐0160(17)60458‐2 – ident: e_1_2_10_94_1 doi: 10.1016/j.tree.2006.06.004 – ident: e_1_2_10_225_1 doi: 10.1016/j.envpol.2020.115544 – ident: e_1_2_10_77_1 doi: 10.1126/sciadv.1700782 – ident: e_1_2_10_170_1 doi: 10.1016/S0038‐0717(02)00074‐3 – ident: e_1_2_10_213_1 doi: 10.1023/A:1005757218475 – ident: e_1_2_10_156_1 doi: 10.1007/978-981-13-7264-3_12 – ident: e_1_2_10_85_1 doi: 10.2307/2679923 – ident: e_1_2_10_235_1 doi: 10.1007/s10535‐008‐0034‐3 – ident: e_1_2_10_141_1 doi: 10.3389/fpls.2021.725939 – ident: e_1_2_10_148_1 doi: 10.1007/s003740050268 – ident: e_1_2_10_16_1 doi: 10.1016/j.ibiod.2017.05.015 – ident: e_1_2_10_107_1 doi: 10.1111/j.1365‐2486.2009.02135.x – ident: e_1_2_10_179_1 doi: 10.1038/s41559‐020‐01348‐1 – ident: e_1_2_10_231_1 doi: 10.3389/fenvs.2021.675803 – ident: e_1_2_10_120_1 doi: 10.1016/j.scitotenv.2016.05.045 – ident: e_1_2_10_98_1 doi: 10.1038/s41579-019-0265-7 – ident: e_1_2_10_44_1 doi: 10.1007/s42770‐020‐00289‐y – ident: e_1_2_10_192_1 doi: 10.3109/10408417609102304 – ident: e_1_2_10_11_1 doi: 10.1016/j.soilbio.2004.09.014 – ident: e_1_2_10_150_1 doi: 10.1038/s41559‐017‐0274‐8 – ident: e_1_2_10_234_1 doi: 10.1016/jsoilbio201603011 – ident: e_1_2_10_55_1 doi: 10.1007/BF00017098 – ident: e_1_2_10_60_1 doi: 10.1016/S0926‐3373(00)00168‐5 – start-page: 744 volume-title: Secretariat of the intergovernmental science‐policy platform on biodiversity and ecosystem services year: 2018 ident: e_1_2_10_93_1 – ident: e_1_2_10_58_1 doi: 10.1002/jpln19983581610310 – ident: e_1_2_10_63_1 doi: 10.1080/16000889.2017.1328945 – ident: e_1_2_10_4_1 doi: 10.1016/j.apsoil.2006.05.012 – ident: e_1_2_10_116_1 doi: 10.1117/12.2636836 – ident: e_1_2_10_92_1 doi: 10.1088/1748‐9326/9/6/064029 – ident: e_1_2_10_128_1 doi: 10.1016/S0038‐0717(01)00079‐7 – ident: e_1_2_10_108_1 doi: 10.1007/s10661‐016‐5342‐z – ident: e_1_2_10_21_1 doi: 10.1016/j.copbio.2009.09.014 – ident: e_1_2_10_185_1 doi: 10.1038/s41598‐018‐36777‐3 – ident: e_1_2_10_198_1 doi: 10.1016/j.gloplacha.2021.103597 – ident: e_1_2_10_110_1 doi: 10.1111/j.1470‐8744.1998.tb00511.x – ident: e_1_2_10_188_1 doi: 10.1038/nature08632 – ident: e_1_2_10_64_1 doi: 10.1111/1365‐2435.14027 – ident: e_1_2_10_208_1 doi: 10.1128/AEM.00560‐10 – ident: e_1_2_10_88_1 doi: 10.1038/s41467‐018‐02970‐1 – ident: e_1_2_10_184_1 doi: 10.1007/978-3-642-14225-3_3 – ident: e_1_2_10_168_1 doi: 10.1007/s10021‐004‐0009‐y – ident: e_1_2_10_226_1 doi: 10.1071/SR18057 – ident: e_1_2_10_82_1 doi: 10.1111/gcb.14069 – ident: e_1_2_10_187_1 doi: 10.1371/journal.pone.0255669 – ident: e_1_2_10_236_1 doi: 10.1111/gcb.15077 – ident: e_1_2_10_81_1 doi: 10.1111/j.1462‐2920.2011.02480.x – ident: e_1_2_10_113_1 doi: 10.1016/jsoilbio2021108448 – ident: e_1_2_10_30_1 doi: 10.1515/frp-2017-0004 – ident: e_1_2_10_121_1 doi: 10.1016/j.apsoil.2008.11.003 – ident: e_1_2_10_167_1 doi: 10.1038/nclimate1385 – ident: e_1_2_10_151_1 doi: 10.1002/ecy.2652 – ident: e_1_2_10_105_1 doi: 10.1016/jsoilbio200602021 – ident: e_1_2_10_233_1 doi: 10.1002/ecy.2830 – ident: e_1_2_10_22_1 doi: 10.1111/nph12252 – ident: e_1_2_10_119_1 doi: 10.1016/jjenvman201704023 – ident: e_1_2_10_20_1 doi: 10.3389/fpls.2018.01473 – ident: e_1_2_10_123_1 doi: 10.1038/s41396‐020‐0683‐6 – ident: e_1_2_10_117_1 doi: 10.1034/j.1399‐3054.2003.00174.x – ident: e_1_2_10_61_1 – ident: e_1_2_10_29_1 doi: 10.1111/gcb.12029 – ident: e_1_2_10_33_1 doi: 10.1038/ngeo339 – ident: e_1_2_10_153_1 doi: 10.1111/gcb14981 – ident: e_1_2_10_15_1 doi: 10.1016/j.chemosphere.2021.133359 – ident: e_1_2_10_45_1 doi: 10.1007/s00442‐017‐3861‐0 – ident: e_1_2_10_166_1 doi: 10.1104/pp.111.175448 – ident: e_1_2_10_212_1 doi: 10.1890/08‐0127.1 – ident: e_1_2_10_26_1 doi: 10.3389/fpls.2019.01068 – ident: e_1_2_10_199_1 doi: 10.1016/j.soilbio.2012.12.004 – volume-title: Global warming of 1,5°C. An IPCC special report on the impacts of global warming of 15°C above preindustrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty year: 2019 ident: e_1_2_10_8_1 – ident: e_1_2_10_152_1 doi: 10.1038/s42003‐020‐0839‐y – ident: e_1_2_10_145_1 doi: 10.3390/soilsystems3040064 – ident: e_1_2_10_14_1 doi: 10.1111/gcb14281 – ident: e_1_2_10_5_1 doi: 10.1007/s003740050628 – ident: e_1_2_10_131_1 doi: 10.1016/jscitotenv2019135992 – ident: e_1_2_10_19_1 doi: 10.1186/s12302‐018‐0140‐6 – ident: e_1_2_10_158_1 doi: 10.1016/jsoilbio2019107601 – ident: e_1_2_10_2_1 doi: 10.5194/bg‐17‐3859‐2020 – volume: 4 start-page: 2 year: 2013 ident: e_1_2_10_135_1 article-title: Plant‐soil interactions: Nutrient uptake publication-title: Nature Education Knowledge – ident: e_1_2_10_80_1 doi: 10.1016/j.envpol.2018.01.024 – ident: e_1_2_10_100_1 doi: 10.1016/j.soilbio.2016.07.003 – ident: e_1_2_10_31_1 doi: 10.3389/fmicb.2016.00525 – ident: e_1_2_10_124_1 doi: 10.1111/1365‐2435.13453 – ident: e_1_2_10_210_1 doi: 10.1371/journal.pone.0002527 – ident: e_1_2_10_72_1 doi: 10.1016/j.soilbio.2019.05.002 – ident: e_1_2_10_91_1 doi: 10.1038/s41558‐017‐0009‐5 – volume-title: Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change year: 2014 ident: e_1_2_10_147_1 – ident: e_1_2_10_53_1 doi: 10.1038/nature12670 – ident: e_1_2_10_86_1 doi: 10.1002/elsc.200620122 – ident: e_1_2_10_67_1 doi: 10.1038/nrmicro.2017.87 – ident: e_1_2_10_220_1 doi: 10.1038/srep40093 – ident: e_1_2_10_69_1 doi: 10.2134/jeq199900472425002800040045x – ident: e_1_2_10_47_1 doi: 10.7717/peerj.358 – ident: e_1_2_10_97_1 – ident: e_1_2_10_46_1 doi: 10.1038/s41558‐018‐0299‐2 – ident: e_1_2_10_68_1 doi: 10.1016/0038‐0717(82)90101‐8 – ident: e_1_2_10_221_1 doi: 10.1016/jsoilbio201805001 – ident: e_1_2_10_32_1 doi: 10.1016/j.soilbio.2013.10.004 – ident: e_1_2_10_28_1 doi: 10.1007/s10661‐013‐3202‐7 – ident: e_1_2_10_132_1 doi: 10.5194/hess‐26‐6163‐2022 – volume-title: Ecological stoichiometry: The biology of elements from molecules to the biosphere year: 2002 ident: e_1_2_10_201_1 – ident: e_1_2_10_224_1 doi: 10.4236/gep.2021.96008 – ident: e_1_2_10_36_1 doi: 10.1016/jsoilbio201211009 – ident: e_1_2_10_41_1 doi: 10.1007/s00374‐005‐0039‐4 – ident: e_1_2_10_203_1 doi: 10.1016/j.jenvman.2014.07.014 – ident: e_1_2_10_52_1 doi: 10.1016/j.orggeochem.2011.07.005 – ident: e_1_2_10_104_1 doi: 10.1007/s00374‐008‐0288‐0 – ident: e_1_2_10_217_1 doi: 10.1007/s11676‐013‐0330‐4 – ident: e_1_2_10_195_1 doi: 10.1073/pnas.0812721106 – ident: e_1_2_10_178_1 doi: 10.1016/jenvexpbot2020104135 – ident: e_1_2_10_51_1 doi: 10.1016/j.scitotenv.2014.12.095 – ident: e_1_2_10_183_1 doi: 10.1038/s43705‐021‐00073‐5 – ident: e_1_2_10_27_1 doi: 10.1111/gcb12344 – ident: e_1_2_10_89_1 doi: 10.1111/gcb.13161 – ident: e_1_2_10_172_1 doi: 10.1111/1365‐274512711 – ident: e_1_2_10_230_1 doi: 10.1016/j.jhazmat.2022.129065 – ident: e_1_2_10_75_1 doi: 10.1016/j.soilbio.2011.03.017 – ident: e_1_2_10_186_1 doi: 10.1890/15‐0361.1 – volume-title: Fundamentals of soil ecology year: 2018 ident: e_1_2_10_43_1 – ident: e_1_2_10_215_1 doi: 10.1016/jsoilbio200801024 – ident: e_1_2_10_139_1 doi: 10.1007/978-3-642-15271-9_9 – ident: e_1_2_10_180_1 doi: 10.1007/s42729‐021‐00724‐5 – ident: e_1_2_10_17_1 doi: 10.1146/annurev‐marine‐120709‐142731 – ident: e_1_2_10_79_1 doi: 10.1016/j.apgeog.2014.11.024 – ident: e_1_2_10_165_1 doi: 10.1007/s10311‐014‐0458‐2 – ident: e_1_2_10_237_1 doi: 10.1016/j.apsoil.2021.104159 – ident: e_1_2_10_160_1 doi: 10.1016/jchemosphere2019124512 – ident: e_1_2_10_103_1 doi: 10.1111/j.1365‐2672.2012.05417.x – start-page: 125 volume-title: Progress in botany year: 2011 ident: e_1_2_10_129_1 – ident: e_1_2_10_40_1 doi: 10.1007/s00248‐009‐9508‐x – ident: e_1_2_10_83_1 doi: 10.4137/ASWR.S8599 – ident: e_1_2_10_12_1 doi: 10.1007/978-3-642-14225-3_12 – ident: e_1_2_10_78_1 doi: 10.1016/j.scitotenv.2004.10.005 – ident: e_1_2_10_162_1 doi: 10.1016/j.chemosphere.2013.12.059 – ident: e_1_2_10_13_1 doi: 10.1016/j.soilbio.2013.03.034 – ident: e_1_2_10_73_1 doi: 10.1016/j.agee.2011.05.025 – ident: e_1_2_10_209_1 doi: 10.1016/j.biotechadv.2015.10.009 – start-page: 295 volume-title: Soil enzymes year: 1978 ident: e_1_2_10_35_1 – ident: e_1_2_10_173_1 doi: 10.1111/gcb.13384 |
SSID | ssj0003206 |
Score | 2.6582952 |
SecondaryResourceType | review_article |
Snippet | Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2067 |
SubjectTerms | applied research Bioengineering Biogeochemical cycle Biogeochemical cycles Biological Sciences Biomanipulation Biotechnology carbon Carbon dioxide Climate Change CO2 fertilisation Drought Droughts Ecosystem Ecosystem services ecosystems Environmental changes Enzymatic activity Enzyme activity Enzymes global change Meta-analysis Microbial activity Microbiota Microorganisms nitrogen deposition Soil soil enzymes Soil Microbiology Soils warming |
Title | Altered activities of extracellular soil enzymes by the interacting global environmental changes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16604 https://www.ncbi.nlm.nih.gov/pubmed/36655298 https://www.proquest.com/docview/2786054280 https://www.proquest.com/docview/2767172115 https://www.proquest.com/docview/2811992461 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD6MgeCLP65Oq5tEEfGll7RpkhaftsvmEOaDONiDUJM0HWPXVm7vFe7-ek-StvNuKuJbS05pkp5z8p3mnC8Ar1VtE1XLKuayKuLMKBmrOlUxVVIZnlNDtasdPvkojk-zD2f8bAveDbUwgR9i_OHmLMP7a2fgSne_GPm50dNECM8F6nK1HCD6dE0dxVJ_rmbCeIauJmE9q5DL4hmf3FyLbgHMTbzqF5yj-_Bl6GrIM7mcrpZ6aq5usDj-51gewL0eiJL9oDkPYcs2E7gTjqZcT2Dn8LoCDsV6F9BNIDpBmN0uvBh5Q2bzC8S8_u4RfN13e--2Iq5a4ofnaiVtTdD_L5TbIXApr6RrL-bENlfrb9iq1wQRKHGkFb5cqzkngaKE2I33h_rk7jGcHh1-nh3H_REOscl4ijOfyFzniBmMTetCaJdURalCr6aTSjuiyopxxQxDpyyplpLlWguGsJTXOeWc7cB20zb2KRBeK1pUqDs2YZmp65wJlaUZY0WmRKFZBG-Hj1mant_cHbMxL4c4B2e59LMcwatR9Hsg9fid0O6gEWVv112ZyhzjPwzZaAQvx2a0SDeJqrHtyskI6QNr_heZPHF5v5lIIngStG3sCROC87TIcUBeZ_7cxfL97MBfPPt30edwN0WcFpKPdmF7uVjZPcRVS_3CG9BPgzQd8g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQguPBYKgQIGIcQlqySOH5G4lKVlgW4PqJV6QantOFXFNqn2gbT99YydR1leQtwSZaLYzsz4sz3zDcBLVdpYlaIImSiyMDVKhKpMVBgpoQyTkYm0yx2eHPDxUfrxmB1vwJsuF6bhh-g33JxleH_tDNxtSP9g5adGD2POHRnoNVfR2zHnv_t8RR5FE19ZM6YsRWcT05ZXyMXx9K-uz0a_QMx1xOqnnL3b8KVrbBNp8nW4XOihufyJx_F_e3MHbrVYlOw0ynMXNmw1gOtNdcrVALZ2r5LgUKz1AvMBBBNE2vXMi5FXZDQ9Q9jr7-7ByY47frcFcQkT3zxdK6lLglPATLlDAhf1Sub12ZTY6nJ1jk_1iiAIJY63wmdsVaekYSkhdu37TYry_D4c7e0ejsZhW8UhNClLcOhjIbVE2GBsUmZcu7iqKFLo2HRcaMdVWVCmqKHol0WkhaBSa04RmbJSRozRLdis6so-BMJKFWUFqo-NaWrKUlKu0iSlNEsVzzQN4HX3N3PTUpy7ShvTvFvq4CjnfpQDeNGLXjS8Hr8T2u5UIm9Ne54nQuISEFdtUQDP-8dolG4QVWXrpZPhwq-t2V9kZOxCf1MeB_CgUbe-JZRzxpJMYoe80vy5ifn70Vt_8ejfRZ_BjfHhZD_f_3Dw6THcTBC2NbFI27C5mC3tE4RZC_3UW9N3UXIiDg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5VRSBeOBYKCwUMQoiXrJz4SsRT2XYpRyuEqNQHpGA7TlWxJNUeSNtfz9g5ynIJ8ZbIE8V2Zsaf45lvAJ7q0sW6VEUkVJFF3GoV6TLREdVKW5FSS43PHT44lPtH_M2xON6AF10uTMMP0f9w85YR_LU38LOi_MHIT6wZxVJ6LtBLXNLM123Y_XDBHcWSUFgzZoKjr4lZSyvkw3j6R9cXo18Q5jpgDSvO5Dp86vraBJp8GS0XZmTPf6Jx_M_B3IBrLRIlO43q3IQNVw3gclObcjWArb2LFDgUa33AfADDA8TZ9SyIkWdkPD1F0BvubsHnHX_47gri0yW-BbJWUpcEF4CZ9kcEPuaVzOvTKXHV-eortpoVQQhKPGtFyNeqTkjDUULc2vubBOX5bTia7H0c70dtDYfIcpHgzMcqNSmCBuuSMpPGR1VRqtGtmbgwnqmyYEIzy9ArK2qUYqkxkiEuFWVKhWBbsFnVlbsLRJSaZgUqj4sZt2WZMql5whnLuJaZYUN43n3M3LYE577OxjTvNjo4y3mY5SE86UXPGlaP3wltdxqRt4Y9zxOV4gYQ92x0CI_7ZjRJP4m6cvXSy0gVdtbiLzJp7AN_uYyHcKfRtr4nTEohkizFAQWd-XMX81fjl-Hi3r-LPoIr73cn-bvXh2_vw9UEMVsTiLQNm4vZ0j1AjLUwD4MtfQfQ3iC9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Altered+activities+of+extracellular+soil+enzymes+by+the+interacting+global+environmental+changes&rft.jtitle=Global+change+biology&rft.au=Zuccarini%2C+Paolo&rft.au=Sardans%2C+Jordi&rft.au=Asensio%2C+Loles&rft.au=Pe%C3%B1uelas%2C+Josep&rft.date=2023-04-01&rft.eissn=1365-2486&rft.volume=29&rft.issue=8&rft.spage=2067&rft_id=info:doi/10.1111%2Fgcb.16604&rft_id=info%3Apmid%2F36655298&rft.externalDocID=36655298 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |