Altered activities of extracellular soil enzymes by the interacting global environmental changes

Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually a...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 29; no. 8; pp. 2067 - 2091
Main Authors Zuccarini, Paolo, Sardans, Jordi, Asensio, Loles, Peñuelas, Josep
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta‐analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state‐of‐the‐art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO2, while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of “in situ” analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation. Soil enzymes are crucial for the functioning of terrestrial ecosystems. Their sensitivity to drivers of global change tightly connects their mechanisms of response to the ones of terrestrial ecosystems themselves. This review aims at providing exhaustive, state‐of‐the‐art information regarding the direct, indirect and combined effects of the main drivers of global change on the production and activity of soil extracellular enzymes. Information is also given regarding analytical methods, gaps in knowledge, future challenges and biomanipulation techniques for the improvement of ecosystem services.
AbstractList Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta‐analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state‐of‐the‐art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO2, while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of “in situ” analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation. Soil enzymes are crucial for the functioning of terrestrial ecosystems. Their sensitivity to drivers of global change tightly connects their mechanisms of response to the ones of terrestrial ecosystems themselves. This review aims at providing exhaustive, state‐of‐the‐art information regarding the direct, indirect and combined effects of the main drivers of global change on the production and activity of soil extracellular enzymes. Information is also given regarding analytical methods, gaps in knowledge, future challenges and biomanipulation techniques for the improvement of ecosystem services.
Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta-analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state-of-the-art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO2 , while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of "in situ" analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation.Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta-analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state-of-the-art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO2 , while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of "in situ" analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation.
Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta‐analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state‐of‐the‐art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO 2 , while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of “in situ” analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation.
Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta‐analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state‐of‐the‐art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO₂, while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of “in situ” analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation.
Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta‐analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state‐of‐the‐art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO2, while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of “in situ” analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation.
Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta-analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state-of-the-art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO , while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of "in situ" analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation.
Author Peñuelas, Josep
Zuccarini, Paolo
Asensio, Loles
Sardans, Jordi
Author_xml – sequence: 1
  givenname: Paolo
  orcidid: 0000-0001-6717-9568
  surname: Zuccarini
  fullname: Zuccarini, Paolo
  email: p.zuccarini@creaf.uab.cat
  organization: CREAF‐CSIC
– sequence: 2
  givenname: Jordi
  orcidid: 0000-0003-2478-0219
  surname: Sardans
  fullname: Sardans, Jordi
  organization: CREAF‐CSIC
– sequence: 3
  givenname: Loles
  surname: Asensio
  fullname: Asensio, Loles
  organization: CREAF‐CSIC
– sequence: 4
  givenname: Josep
  orcidid: 0000-0002-7215-0150
  surname: Peñuelas
  fullname: Peñuelas, Josep
  organization: CREAF‐CSIC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36655298$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PHSEUhomxqR_twj_QTOKmXVzlY2CYpb1R28Skm3ZNgXvmimHAAmN7_fUyvdeNaSMbIDzvezjnPUL7IQZA6ITgM1LX-dqaMyIEbvfQIWGCL2grxf585u2CYMIO0FHOdxhjRrF4iw6YEJzTXh6inxe-QIJVo21xD644yE0cGvhTkrbg_eR1anJ0voHwuBnrq9k05RYaF6puFoV1s_bR6Jl4cCmGEUKpN3urwxryO_Rm0D7D-91-jH5cXX5fflncfLv-ury4WdiW0_pL0kkjsSAW6NALg6XsMdasE4asTNtRumJcM8tkJzpsuo5JYwQjrOeDxJyzY_Rx63uf4q8JclGjy3MHOkCcsqKSkL6nrSCvo7UE6Sghs-vpC_QuTinURiolBeYtlbhSH3bUZEZYqfvkRp026nnMFTjfAjbFnBMMyrqii4uhjtl5RbCag1Q1SPU3yKr49ELxbPovduf-23nY_B9U18vPW8UTEuqqQg
CitedBy_id crossref_primary_10_1016_j_jenvman_2024_122428
crossref_primary_10_1002_saj2_20743
crossref_primary_10_1016_j_jenvman_2024_120641
crossref_primary_10_1007_s11356_024_35041_8
crossref_primary_10_1093_nsr_nwae371
crossref_primary_10_1016_j_apsoil_2024_105727
crossref_primary_10_1002_ldr_5239
crossref_primary_10_1002_ldr_5437
crossref_primary_10_3390_f14091846
crossref_primary_10_1016_j_catena_2025_108904
crossref_primary_10_1002_ldr_5032
crossref_primary_10_1016_j_apsoil_2025_105873
crossref_primary_10_3390_f15091651
crossref_primary_10_1016_j_apsoil_2025_105874
crossref_primary_10_59717_j_xinn_geo_2024_100117
crossref_primary_10_1016_j_agee_2023_108630
crossref_primary_10_1016_j_scitotenv_2024_174448
crossref_primary_10_1016_j_agee_2024_109306
crossref_primary_10_1002_saj2_20750
crossref_primary_10_1016_j_apsoil_2024_105774
crossref_primary_10_1016_j_jenvman_2024_122213
crossref_primary_10_1016_j_eja_2024_127135
crossref_primary_10_1016_j_jhazmat_2024_136430
crossref_primary_10_1016_j_stress_2024_100683
crossref_primary_10_1016_j_jhazmat_2024_134052
crossref_primary_10_1007_s00468_025_02615_z
crossref_primary_10_1016_j_ecoenv_2023_115807
crossref_primary_10_1016_j_scitotenv_2023_163896
crossref_primary_10_1007_s11104_024_06838_w
crossref_primary_10_3390_agronomy14020233
crossref_primary_10_3389_fmicb_2024_1523084
crossref_primary_10_1007_s42773_024_00411_5
crossref_primary_10_1111_gcb_17101
crossref_primary_10_1016_j_geoderma_2024_117024
crossref_primary_10_1016_j_jenvman_2025_124709
crossref_primary_10_1021_acs_est_4c06081
crossref_primary_10_3390_microorganisms11122941
crossref_primary_10_3390_su16135368
crossref_primary_10_3389_fmicb_2025_1506558
crossref_primary_10_1016_j_apsoil_2025_105987
crossref_primary_10_3390_f15030568
crossref_primary_10_31857_S0032180X24060066
crossref_primary_10_3390_f16010172
crossref_primary_10_1016_j_catena_2025_108767
crossref_primary_10_3389_fmicb_2024_1372866
crossref_primary_10_1134_S1064229324600076
crossref_primary_10_3390_plants13243481
crossref_primary_10_1111_1365_2664_14780
crossref_primary_10_1016_j_soilbio_2024_109321
crossref_primary_10_3390_agriculture14020288
crossref_primary_10_1016_j_soilbio_2024_109400
crossref_primary_10_3390_agronomy14122814
crossref_primary_10_1016_j_catena_2023_107754
crossref_primary_10_1016_j_envres_2024_119707
crossref_primary_10_3389_fmicb_2024_1290849
crossref_primary_10_3390_f16030418
crossref_primary_10_1016_j_soilbio_2023_109281
crossref_primary_10_1016_j_envint_2024_108467
crossref_primary_10_1016_j_still_2024_106073
crossref_primary_10_3390_microorganisms12061108
crossref_primary_10_1016_j_scitotenv_2024_174783
crossref_primary_10_3390_su162411140
crossref_primary_10_1016_j_hazadv_2025_100605
crossref_primary_10_3390_molecules29133113
crossref_primary_10_1016_j_still_2024_106435
crossref_primary_10_1016_j_eja_2024_127358
crossref_primary_10_1016_j_still_2024_106436
crossref_primary_10_1016_j_apsoil_2024_105518
crossref_primary_10_3390_jof10120885
crossref_primary_10_1016_j_apsoil_2024_105319
crossref_primary_10_3390_f15122068
crossref_primary_10_1016_j_soilbio_2024_109512
crossref_primary_10_1016_j_eti_2023_103396
crossref_primary_10_1016_j_ecofro_2024_10_007
crossref_primary_10_1016_j_rhisph_2024_100887
crossref_primary_10_1016_j_jhazmat_2025_138018
crossref_primary_10_1016_j_geoderma_2024_116901
crossref_primary_10_3390_app14093591
crossref_primary_10_1016_j_scitotenv_2024_175708
crossref_primary_10_1016_j_envres_2024_120285
crossref_primary_10_1016_j_scitotenv_2024_176919
crossref_primary_10_1080_00380768_2024_2341669
crossref_primary_10_3389_fmicb_2024_1258934
Cites_doi 10.1016/S1002‐0160(09)60169‐7
10.1038/s41579‐019‐0222‐5
10.1186/1471‐2180‐10‐149
10.5194/acp‐13‐10081‐2013
10.5772/65267
10.2307/1312897
10.1038/srep19601
10.1073/pnas.1904955116
10.3390/su12198209
10.3390/catal8100460
10.1007/s11104‐017‐3212‐2
10.1016/j.apsoil.2010.08.013
10.1016/B978-0-12-817880-5.00002-5
10.1007/s13595‐018‐0720‐z
10.1016/j.geoderma.2022.116083
10.1007/s00382‐015‐2636‐8
10.3390/agronomy9090480
10.1111/j.1365‐2486.2012.02745.x
10.1016/j.earscirev.2020.103501
10.1111/j.1469‐8137.2007.02290.x
10.1186/s43591‐021‐00007‐x
10.1016/jsoilbio2021108424
10.1146/annurev.es.23.110192.000431
10.1038/nature20139
10.1038/nature03972
10.1111/gcb.14113
10.1016/0038‐0717(94)90211‐9
10.1016/j.biortech.2012.07.117
10.1890/ES11‐00117.1
10.1890/14‐0088.1
10.1016/j.jenvman.2016.05.038
10.5897/AJB07.590
10.3389/fsufs.2020.00106
10.1128/mmbr.00020‐11
10.3390/su12187255
10.1016/j.scitotenv.2019.135062
10.1038/s41598‐017‐01418‐8
10.1016/j.mimet.2004.09.010
10.1038/ncomms3934
10.1016/j.soilbio.2016.12.004
10.1007/s00442‐012‐2578‐3
10.12691/ijebb‐3‐1‐5
10.4067/S0718‐95162017000300018
10.1155/2021/5599204
10.1186/s13717‐022‐00380‐2
10.1007/s10646‐020‐02323‐z
10.1038/nclimate3179
10.1016/j.marpolbul.2007.09.020
10.1016/jgeoderma201610025
10.1016/j.ejsobi.2021.103292
10.1111/gcb.15832
10.1016/j.soilbio.2004.08.004
10.1590/s1415‐475738420150053
10.1016/j.still.2004.08.001
10.1111/2041‐210X.13427
10.1016/j.soilbio.2017.03.002
10.3390/microorganisms9081722
10.3390/catal8020092
10.1016/j.soilbio.2008.03.015
10.1038/464499a
10.1038/s41467‐018‐05516‐7
10.1016/s0045‐6535(99)00218‐0
10.1016/jcatena201706003
10.1007/s10021‐021‐00715‐8
10.1038/s41598‐020‐65200‐z
10.1111/j.1365‐2486.2008.01819.x
10.1093/aob/mch211
10.1016/j.apsoil.2017.11.024
10.1111/j.1461‐0248.2008.01245.x
10.1016/jejsobi200809011
10.1038/s41396‐022‐01269‐w
10.1007/s11104‐017‐3235‐8
10.1088/1748‐9326/10/2/024019
10.1111/j.1461‐0248.2005.00756.x
10.1016/S0038‐0717(99)00051‐6
10.1016/S0038‐0717(01)00185‐7
10.1016/j.envexpbot.2017.05.012
10.1016/japsoil200411008
10.1016/j.agrformet.2011.01.018
10.1657/1523‐0430(2006)38[465:acroan]2.0.co;2
10.1007/s13205‐021‐02847‐z
10.1016/j.scitotenv.2007.03.023
10.1007/978-3-642-20256-8_4
10.1016/j.apsoil.2007.12.011
10.1007/s004420000544
10.1007/s11104‐006‐9131‐2
10.1016/j.soilbio.2005.11.008
10.1007/s10532‐012‐9576‐3
10.1016/S1002‐0160(17)60458‐2
10.1016/j.tree.2006.06.004
10.1016/j.envpol.2020.115544
10.1126/sciadv.1700782
10.1016/S0038‐0717(02)00074‐3
10.1023/A:1005757218475
10.1007/978-981-13-7264-3_12
10.2307/2679923
10.1007/s10535‐008‐0034‐3
10.3389/fpls.2021.725939
10.1007/s003740050268
10.1016/j.ibiod.2017.05.015
10.1111/j.1365‐2486.2009.02135.x
10.1038/s41559‐020‐01348‐1
10.3389/fenvs.2021.675803
10.1016/j.scitotenv.2016.05.045
10.1038/s41579-019-0265-7
10.1007/s42770‐020‐00289‐y
10.3109/10408417609102304
10.1016/j.soilbio.2004.09.014
10.1038/s41559‐017‐0274‐8
10.1016/jsoilbio201603011
10.1007/BF00017098
10.1016/S0926‐3373(00)00168‐5
10.1002/jpln19983581610310
10.1080/16000889.2017.1328945
10.1016/j.apsoil.2006.05.012
10.1117/12.2636836
10.1088/1748‐9326/9/6/064029
10.1016/S0038‐0717(01)00079‐7
10.1007/s10661‐016‐5342‐z
10.1016/j.copbio.2009.09.014
10.1038/s41598‐018‐36777‐3
10.1016/j.gloplacha.2021.103597
10.1111/j.1470‐8744.1998.tb00511.x
10.1038/nature08632
10.1111/1365‐2435.14027
10.1128/AEM.00560‐10
10.1038/s41467‐018‐02970‐1
10.1007/978-3-642-14225-3_3
10.1007/s10021‐004‐0009‐y
10.1071/SR18057
10.1111/gcb.14069
10.1371/journal.pone.0255669
10.1111/gcb.15077
10.1111/j.1462‐2920.2011.02480.x
10.1016/jsoilbio2021108448
10.1515/frp-2017-0004
10.1016/j.apsoil.2008.11.003
10.1038/nclimate1385
10.1002/ecy.2652
10.1016/jsoilbio200602021
10.1002/ecy.2830
10.1111/nph12252
10.1016/jjenvman201704023
10.3389/fpls.2018.01473
10.1038/s41396‐020‐0683‐6
10.1034/j.1399‐3054.2003.00174.x
10.1111/gcb.12029
10.1038/ngeo339
10.1111/gcb14981
10.1016/j.chemosphere.2021.133359
10.1007/s00442‐017‐3861‐0
10.1104/pp.111.175448
10.1890/08‐0127.1
10.3389/fpls.2019.01068
10.1016/j.soilbio.2012.12.004
10.1038/s42003‐020‐0839‐y
10.3390/soilsystems3040064
10.1111/gcb14281
10.1007/s003740050628
10.1016/jscitotenv2019135992
10.1186/s12302‐018‐0140‐6
10.1016/jsoilbio2019107601
10.5194/bg‐17‐3859‐2020
10.1016/j.envpol.2018.01.024
10.1016/j.soilbio.2016.07.003
10.3389/fmicb.2016.00525
10.1111/1365‐2435.13453
10.1371/journal.pone.0002527
10.1016/j.soilbio.2019.05.002
10.1038/s41558‐017‐0009‐5
10.1038/nature12670
10.1002/elsc.200620122
10.1038/nrmicro.2017.87
10.1038/srep40093
10.2134/jeq199900472425002800040045x
10.7717/peerj.358
10.1038/s41558‐018‐0299‐2
10.1016/0038‐0717(82)90101‐8
10.1016/jsoilbio201805001
10.1016/j.soilbio.2013.10.004
10.1007/s10661‐013‐3202‐7
10.5194/hess‐26‐6163‐2022
10.4236/gep.2021.96008
10.1016/jsoilbio201211009
10.1007/s00374‐005‐0039‐4
10.1016/j.jenvman.2014.07.014
10.1016/j.orggeochem.2011.07.005
10.1007/s00374‐008‐0288‐0
10.1007/s11676‐013‐0330‐4
10.1073/pnas.0812721106
10.1016/jenvexpbot2020104135
10.1016/j.scitotenv.2014.12.095
10.1038/s43705‐021‐00073‐5
10.1111/gcb12344
10.1111/gcb.13161
10.1111/1365‐274512711
10.1016/j.jhazmat.2022.129065
10.1016/j.soilbio.2011.03.017
10.1890/15‐0361.1
10.1016/jsoilbio200801024
10.1007/978-3-642-15271-9_9
10.1007/s42729‐021‐00724‐5
10.1146/annurev‐marine‐120709‐142731
10.1016/j.apgeog.2014.11.024
10.1007/s10311‐014‐0458‐2
10.1016/j.apsoil.2021.104159
10.1016/jchemosphere2019124512
10.1111/j.1365‐2672.2012.05417.x
10.1007/s00248‐009‐9508‐x
10.4137/ASWR.S8599
10.1007/978-3-642-14225-3_12
10.1016/j.scitotenv.2004.10.005
10.1016/j.chemosphere.2013.12.059
10.1016/j.soilbio.2013.03.034
10.1016/j.agee.2011.05.025
10.1016/j.biotechadv.2015.10.009
10.1111/gcb.13384
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
Copyright © 2023 John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: Copyright © 2023 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
DOI 10.1111/gcb.16604
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 2091
ExternalDocumentID 36655298
10_1111_gcb_16604
GCB16604
Genre reviewArticle
Meta-Analysis
Journal Article
Review
GrantInformation_xml – fundername: European Commission
  funderid: Synergy Grant 610028: Effects of phosphorus limita
– fundername: European Commission
  grantid: Synergy Grant 610028: Effects of phosphorus limita
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
ID FETCH-LOGICAL-c4524-1178b8061ce2f96b088900a376b1db4722d35a3c387670b7738bb631395f80553
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:35:49 EDT 2025
Fri Jul 11 16:45:20 EDT 2025
Fri Jul 25 10:48:47 EDT 2025
Mon Jul 21 05:50:29 EDT 2025
Tue Jul 01 03:53:10 EDT 2025
Thu Apr 24 23:00:56 EDT 2025
Wed Jan 22 16:23:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords CO2 fertilisation
biomanipulation
drought
global change
soil enzymes
nitrogen deposition
warming
climate change
Language English
License 2023 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4524-1178b8061ce2f96b088900a376b1db4722d35a3c387670b7738bb631395f80553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7215-0150
0000-0003-2478-0219
0000-0001-6717-9568
PMID 36655298
PQID 2786054280
PQPubID 30327
PageCount 25
ParticipantIDs proquest_miscellaneous_2811992461
proquest_miscellaneous_2767172115
proquest_journals_2786054280
pubmed_primary_36655298
crossref_citationtrail_10_1111_gcb_16604
crossref_primary_10_1111_gcb_16604
wiley_primary_10_1111_gcb_16604_GCB16604
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2022; 290
2019; 10
2004; 8
2021; 205
2013; 64
2008; 39
2020; 17
2019; 17
2016; 540
2020; 14
2012; 18
2020; 12
2020; 11
2005; 60
2020; 10
2017; 157
2020; 18
2013; 58
2010; 1
2017; 78
2020; 177
2017; 286
2012; 23
1998; 161
2016; 46
2011; 2
2019; 33
1999; 28
2008; 52
2005; 83
2020; 267
2011; 3
1999; 467
2020; 705
2016; 6
2016; 7
2015; 235
2005; 8
2020; 26
2020; 711
1999; 31
2008; 44
2001; 33
2008; 40
1992; 23
2011; 142
2016; 22
2007; 382
2013; 24
2016; 101
2008; 7
2014; 68
2008; 3
2017; 110
2008; 1
2007; 35
2013; 19
2020; 4
2020; 3
2014; 2
2000
2020; 51
2013; 13
2017; 122
2014; 9
2018; 75
2021; 9
2010; 76
2021; 5
2015; 3
2010
2021; 103
2017; 27
2002; 34
2015; 96
2017; 23
2008
2007
2017; 691
2002
2021; 1
2007; 54
2001; 126
2022; 435
2016; 566–567
2004; 94
2017; 15
2022
2017; 17
2021
2021; 214
2020
2006; 383
2019
2018
2017
2020; 238
2017; 19
2016
2014
2013
2018; 56
1996; 46
2022; 425
2017; 105
2017; 106
2010; 10
2010; 16
2013; 4
2021; 168
2006; 32
2006; 38
2010; 464
2021; 163
2012; 125
1978
2010; 22
2018; 9
2018; 8
2005; 341
2015; 85
2011; 72
2013; 199
2022; 36
2018; 30
2009; 19
2014; 12
2009; 15
2006; 289
2015; 57
2017; 416
2019; 9
2019; 3
1997; 24
2013; 502
2011; 75
2016; 97
2013; 185
2019; 100
1976; 4
2018; 24
2006; 42
2010; 46
2012; 113
2015; 511
1997; 37
2009; 462
2022; 11
2013; 171
2022; 16
2009; 106
2014; 146
2021; 25
1982; 14
2017; 7
2021; 27
2003; 119
2009; 41
2017; 1
2015; 38
2018; 123
2018; 126
2015; 33
2016; 188
2011; 13
1996; 187
1994; 26
2017; 197
2011; 151
2016; 180
2021; 30
2011; 156
2009; 58
2019; 116
2011; 26
2005; 37
2011; 29
1998; 28
2009; 20
2000; 28
2015; 10
2005; 437
2006; 6
2008; 11
2014; 107
2018; 152
2001; 82
2021; 16
2012; 2
2021; 12
2021; 11
2000; 31
2011; 42
2000; 40
2019; 138
2019; 135
2011; 43
2017; 184
2008; 177
2012; 5
e_1_2_10_40_1
e_1_2_10_210_1
e_1_2_10_233_1
e_1_2_10_158_1
e_1_2_10_207_1
Begum M. (e_1_2_10_25_1) 2021
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
e_1_2_10_51_1
e_1_2_10_222_1
e_1_2_10_219_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_41_1
Mathesius U. (e_1_2_10_129_1) 2011
e_1_2_10_211_1
e_1_2_10_234_1
e_1_2_10_90_1
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_200_1
e_1_2_10_223_1
e_1_2_10_148_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_212_1
e_1_2_10_235_1
IPBES (e_1_2_10_93_1) 2018
e_1_2_10_91_1
IPCC (e_1_2_10_96_1) 2021
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_175_1
e_1_2_10_30_1
e_1_2_10_224_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_20_1
Quiquampoix H. (e_1_2_10_159_1) 2000
e_1_2_10_236_1
e_1_2_10_213_1
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_92_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_31_1
e_1_2_10_225_1
e_1_2_10_188_1
Zavarzin G. A. (e_1_2_10_227_1) 2008
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_21_1
Coleman D. C. (e_1_2_10_43_1) 2018
e_1_2_10_44_1
FAO and UNEP (e_1_2_10_65_1) 2021
Burns R. G. (e_1_2_10_35_1) 1978
e_1_2_10_214_1
e_1_2_10_237_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_32_1
e_1_2_10_203_1
e_1_2_10_226_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_230_1
e_1_2_10_215_1
Koper J. (e_1_2_10_109_1) 1999; 467
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_204_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
Su X. (e_1_2_10_202_1) 2022
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_231_1
e_1_2_10_216_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_72_1
e_1_2_10_118_1
e_1_2_10_194_1
Sterner R. W. (e_1_2_10_201_1) 2002
e_1_2_10_171_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_220_1
e_1_2_10_11_1
e_1_2_10_119_1
Pachauri R. K. (e_1_2_10_147_1) 2014
e_1_2_10_205_1
e_1_2_10_228_1
Morgan J. B. (e_1_2_10_135_1) 2013; 4
e_1_2_10_145_1
Allen M. R. (e_1_2_10_8_1) 2019
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_160_1
e_1_2_10_122_1
e_1_2_10_24_1
IPCC (e_1_2_10_95_1) 2014
e_1_2_10_108_1
e_1_2_10_217_1
e_1_2_10_232_1
e_1_2_10_157_1
e_1_2_10_229_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_221_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_218_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 35
  start-page: 35
  year: 2007
  end-page: 45
  article-title: Enzyme activities as affected by soil properties and land use in a tropical watershed
  publication-title: Applied Soil Ecology
– volume: 126
  start-page: 121
  year: 2018
  end-page: 128
  article-title: Simultaneous determination of multiple soil enzyme activities for soil health‐biogeochemical indices
  publication-title: Applied Soil Ecology
– volume: 10
  start-page: 8433
  year: 2020
  article-title: Linkages between soil organic carbon fractions and carbon‐hydrolyzing enzyme activities across riparian zones in the Three Gorges of China
  publication-title: Scientific Reports
– volume: 177
  year: 2020
  article-title: Long‐term drought decreases ecosystem C and nutrient storage in a Mediterranean holm oak forest
  publication-title: Environmental and Experimental Botany
– volume: 72
  start-page: 125
  year: 2011
  end-page: 161
– volume: 7
  start-page: 28
  year: 2017
  end-page: 37
  article-title: IPCC reasons for concern regarding climate change risks
  publication-title: Nature Climate Change
– volume: 151
  start-page: 765
  year: 2011
  end-page: 773
  article-title: Drought and ecosystem carbon cycling
  publication-title: Agricultural and Forest Meteorology
– volume: 28
  start-page: 1378
  year: 1999
  end-page: 1380
  article-title: Simultaneous analysis of multiple enzymes in environmental samples using methylumbelliferyl substrates and HPLC
  publication-title: Journal of Environmental Quality
– year: 2022
  article-title: Recent Advances in PGPR and Molecular Mechanisms Involved in Drought Stress Resistance
  publication-title: Journal of Soil Science and Plant Nutrition
– volume: 31
  start-page: 85
  year: 2000
  end-page: 91
  article-title: Enzyme activities in a limed agricultural soil
  publication-title: Biology and Fertility of Soils
– volume: 12
  start-page: 339
  year: 2020
  end-page: 344
  article-title: Microplastics have shape‐ and polymer‐dependent effects on soil processes
  publication-title: BioRxiv
– volume: 435
  year: 2022
  article-title: Effects of plastic residues and microplastics on soil ecosystems: A global meta‐analysis
  publication-title: The Journal of Hazardous Materials
– volume: 31
  start-page: 1471
  year: 1999
  end-page: 1479
  article-title: Field management effects on enzyme activities
  publication-title: Soil Biology and Biochemistry
– volume: 19
  year: 2017
  article-title: Production, use, and fate of all plastics ever made
  publication-title: Science Advances
– volume: 11
  start-page: 280
  year: 2021
  article-title: Cost‐effective production of biocatalysts using inexpensive plant biomass: A review
  publication-title: Biotech
– year: 2014
– volume: 15
  start-page: 1631
  year: 2009
  end-page: 1639
  article-title: Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils
  publication-title: Global Change Biology
– volume: 26
  start-page: 215
  year: 2011
  end-page: 243
– year: 2021
  article-title: More frequent flash flood events and extreme precipitation favouring atmospheric conditions in temperate regions of Europe
  publication-title: Hydrology and Earth System Sciences
– volume: 43
  start-page: 1387
  year: 2011
  end-page: 1397
  article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies
  publication-title: Soil Biology and Biochemistry
– volume: 7
  start-page: 181
  year: 2008
  end-page: 191
  article-title: Selected soil enzymes: Examples of their potential roles in the ecosystem
  publication-title: African Journal of Biotechnology
– year: 2008
– volume: 9
  start-page: 520
  year: 2018
  article-title: Afforestation neutralizes soil pH
  publication-title: Nature Communications
– volume: 29
  year: 2011
– volume: 10
  year: 2015
  article-title: A global analysis of soil acidification caused by nitrogen addition
  publication-title: Environmental Research Letters
– volume: 18
  start-page: 35
  year: 2020
  end-page: 46
  article-title: Soil microbiomes and climate change
  publication-title: Nature Reviews Microbiology
– volume: 58
  start-page: 216
  year: 2013
  end-page: 234
  article-title: Soil enzymes in a changing environment: Current knowledge and future directions
  publication-title: Soil Biology and Biochemistry
– year: 2019
– start-page: 744
  year: 2018
– volume: 23
  start-page: 917
  year: 2012
  end-page: 926
  article-title: Emerging technologies in bioremediation: Constraints and opportunities
  publication-title: Biodegradation
– volume: 13
  start-page: 10081
  year: 2013
  end-page: 10094
  article-title: Expansion of global drylands under a warming climate
  publication-title: Atmospheric Chemical Physics
– year: 2007
– volume: 1
  start-page: 5
  year: 2010
  end-page: 15
  article-title: Terrestrial phosphorus limitation: Mechanisms implications and nitrogen‐phosphorus interactions
  publication-title: Ecological Applications
– volume: 464
  start-page: 499
  year: 2010
  end-page: 500
  article-title: C cycle: A warm response by soils
  publication-title: Nature
– volume: 37
  start-page: 455
  year: 2005
  end-page: 461
  article-title: Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L forest
  publication-title: Soil Biology and Biochemistry
– volume: 7
  start-page: 1337
  year: 2017
  article-title: Global patterns of phosphatase activity in natural soils
  publication-title: Scientific Reports
– volume: 566–567
  start-page: 960
  year: 2016
  end-page: 967
  article-title: Riparian reforestation: Are there changes in soil carbon and soil microbial communities?
  publication-title: Science of the Total Environment
– volume: 3
  start-page: 1
  year: 2008
  end-page: 13
  article-title: Simultaneous assessment of soil microbial community structure and function through analysis of the meta‐transcriptome
  publication-title: PLoS One
– volume: 171
  start-page: 705
  year: 2013
  end-page: 717
  article-title: Effects of drought and N Fertilization on N cycling in two grassland soils
  publication-title: Oecologia
– volume: 15
  start-page: 579
  year: 2017
  end-page: 590
  article-title: Embracing the unknown: Disentangling the complexities of the soil microbiome
  publication-title: Nature Reviews Microbiology
– volume: 17
  start-page: 794
  year: 2017
  end-page: 807
  article-title: The biological activities of β‐glucosidase, phosphatase and urease as soil quality indicators: A review
  publication-title: Journal of Soil Science and Plant Nutrition
– volume: 25
  start-page: 1279
  year: 2021
  end-page: 1294
  article-title: Long‐term drought and warming alter soil bacterial and fungal communities in an Upland Heathland
  publication-title: Ecosystems
– year: 2002
– volume: 16
  start-page: 3111
  year: 2010
  end-page: 3119
  article-title: Changes in soil pH across England and Wales in response to decreased acid deposition
  publication-title: Global Change Biology
– volume: 34
  start-page: 315
  year: 2002
  end-page: 325
  article-title: Composition of hydrolyzable amino acids in soil organic matter and soil microbial biomass
  publication-title: Soil Biology and Biochemistry
– volume: 705
  year: 2020
  article-title: Global meta‐analysis on the responses of soil extracellular enzyme activities to warming
  publication-title: Science of the Total Environment
– volume: 197
  start-page: 539
  year: 2017
  end-page: 549
  article-title: Microbial extracellular enzymes in biogeochemical cycling of ecosystems
  publication-title: Journal of Environmental Management
– volume: 168
  year: 2021
  article-title: Changes in soil enzymatic activity in a P‐limited Mediterranean shrubland subject to experimental nitrogen deposition
  publication-title: Applied Soil Ecology
– volume: 9
  year: 2021
  article-title: Microplastics Increase Soil pH and Decrease Microbial Activities as a Function of Microplastic Shape, Polymer Type, and Exposure Time
  publication-title: Frontiers in Environmental Science
– volume: 75
  start-page: 583
  year: 2011
  end-page: 609
  article-title: Bacterial‐fungal interactions: Hyphens between agricultural, clinical, environmental, and food microbiologists
  publication-title: Microbiology and Molecular Biology Reviews
– volume: 52
  start-page: 157
  year: 2008
  end-page: 160
  article-title: Effects of silicon on photosynthesis, water relations and nutrient uptake of under NaCl stress
  publication-title: Biologia Plantarum
– volume: 16
  start-page: 2295
  year: 2022
  end-page: 2304
  article-title: Routes and rates of bacterial dispersal impact surface soil microbiome composition and functioning
  publication-title: ISME Journal
– volume: 24
  start-page: 2818
  year: 2018
  end-page: 2827
  article-title: Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents
  publication-title: Global Change Biology
– volume: 135
  start-page: 144
  year: 2019
  end-page: 153
  article-title: Microbial carbon and nitrogen cycling responses to drought and temperature in differently managed mountain grasslands
  publication-title: Soil Biology and Biochemistry
– volume: 157
  start-page: 407
  year: 2017
  end-page: 414
  article-title: Impacts of changes in land use/cover on soil microbial and enzyme activities
  publication-title: Catena
– volume: 39
  start-page: 223
  year: 2008
  end-page: 235
  article-title: Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland
  publication-title: Applied Soil Ecology
– volume: 416
  start-page: 283
  year: 2017
  end-page: 295
  article-title: Rhizosphere‐driven increase in nitrogen and phosphorus availability under elevated atmospheric CO in a mature Eucalyptus woodland
  publication-title: Plant and Soil
– volume: 437
  start-page: 529
  year: 2005
  end-page: 533
  article-title: Europe‐ wide reduction in primary productivity caused by the heat and drought in 2003
  publication-title: Nature
– year: 2021
– volume: 9
  year: 2014
  article-title: Investigating afforestation and bioenergy CCS as climate change mitigation strategies
  publication-title: Environmental Research Letters
– volume: 199
  start-page: 441
  year: 2013
  end-page: 451
  article-title: A meta‐analysis of experimental warming effects on terrestrial nitrogen pools and dynamics
  publication-title: The New Phytologist
– volume: 116
  start-page: 18848
  year: 2019
  end-page: 18853
  article-title: Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 152
  start-page: 49
  year: 2018
  end-page: 59
  article-title: Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long‐term monitored field gradients in Catalonia
  publication-title: Environmental and Experimental Botany
– volume: 467
  start-page: 127
  year: 1999
  end-page: 134
  article-title: Soil enzymatic activity as a factor of its fertility caused by the tillage system
  publication-title: Zeszyty Problemowe Postępów Nauk Rolniczych
– volume: 40
  start-page: 2098
  year: 2008
  end-page: 2106
  article-title: Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes
  publication-title: Soil Biology and Biochemistry
– volume: 33
  start-page: 1633
  year: 2001
  end-page: 1640
  article-title: A microplate fluorimetric assay for the study of enzyme diversity in soils
  publication-title: Soil Biology and Biochemistry
– volume: 185
  start-page: 8659
  year: 2013
  end-page: 8671
  article-title: Influence of elevated carbon dioxide and temperature on belowground carbon allocation and enzyme activities in tropical flooded soil planted with rice
  publication-title: Environmental Monitoring and Assessment
– volume: 12
  start-page: 7255
  year: 2020
  article-title: Soil pollution from micro‐ and nanoplastic debris: A hidden and unknown biohazard
  publication-title: Sustainability
– volume: 42
  start-page: 1016
  year: 2011
  end-page: 1024
  article-title: Effects of short‐term ecosystem experimental warming on water‐extractable organic matter in an ombrotrophic Sphagnum peatland (Le Forbonnet, France)
  publication-title: Organic Geochemistry
– volume: 78
  start-page: 39
  year: 2017
  end-page: 44
  article-title: The relationship between soil properties, enzyme activity and land use
  publication-title: Forest Research Papers
– volume: 54
  start-page: 1845
  year: 2007
  end-page: 1856
  article-title: Interactions between climate change and contaminants
  publication-title: Marine Pollution Bulletin
– volume: 188
  start-page: 346
  year: 2016
  article-title: Changes of soil carbon dioxide, methane, and nitrous oxide fluxes in relation to land use/cover management
  publication-title: Environmental Monitoring and Assessment
– volume: 238
  year: 2020
  article-title: Coupling of bioaugmentation and biostimulation to improve lindane removal from different soil types
  publication-title: Chemosphere
– volume: 9
  start-page: 3033
  year: 2018
  article-title: Soil bacterial networks are less stable under drought than fungal networks
  publication-title: Nature Communications
– volume: 6
  year: 2016
  article-title: Increasing aridity, temperature and soil pH induce soil C‐N‐P imbalance in grasslands
  publication-title: Scientific Reports
– volume: 290
  year: 2022
  article-title: Combined bioaugmentation and biostimulation techniques in bioremediation of pentachlorophenol contaminated forest soil
  publication-title: Chemosphere
– volume: 8
  start-page: 972
  year: 2018
  end-page: 980
  article-title: Climate change and interconnected risks to sustain‐able development in the Mediterranean
  publication-title: Nature Climate Change
– volume: 502
  start-page: 672
  year: 2013
  end-page: 676
  article-title: Decoupling of soil nutrient cycles as a function of aridity in global drylands
  publication-title: Nature
– volume: 44
  start-page: 509
  year: 2008
  end-page: 520
  article-title: Experimental drought reduced acid and alkaline phosphatase activity and increased organic extractable P in soil in a Mediterranean forest European
  publication-title: European Journal of Soil Biology
– volume: 76
  start-page: 6485
  year: 2010
  end-page: 6493
  article-title: Variation in ph optima of hydrolytic enzyme activities in tropical rain forest soils
  publication-title: Applied and Environmental Microbiology
– volume: 37
  start-page: 63
  year: 1997
  end-page: 75
  article-title: Nutrient limitation and soil development: Experimental test of a biogeochemical theory
  publication-title: Biogeochemistry
– volume: 383
  start-page: 465
  year: 2006
  end-page: 476
  article-title: Are current rates of atmospheric nitrogen deposition influencing lakes in the eastern Canadian Arctic?
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 97
  start-page: 176
  year: 2016
  end-page: 187
  article-title: Meta‐analysis approach to assess effect of tillage on microbial biomass and enzyme activities
  publication-title: Soil Biology and Biochemistry
– volume: 9
  start-page: 135
  year: 2021
  end-page: 154
  article-title: Effect of heavy metal contamination on soil enzymes activities
  publication-title: Journal of Geosciences and Environment Protection
– volume: 24
  start-page: 4238
  year: 2018
  end-page: 4250
  article-title: Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming
  publication-title: Global Change Biology
– volume: 10
  start-page: 149
  year: 2010
  article-title: Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments
  publication-title: BMC Microbiology
– volume: 17
  start-page: 569
  year: 2019
  end-page: 586
  article-title: Scientists’ warning to humanity: Microorganisms and climate change
  publication-title: Nature Reviews Microbiology
– start-page: 485
  year: 2014
  end-page: 533
– volume: 38
  start-page: 2448
  year: 2006
  end-page: 2460
  article-title: Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi‐arid grassland
  publication-title: Soil Biology and Biochemistry
– volume: 163
  year: 2021
  article-title: Simulated climate change and seasonal drought increase carbon and phosphorus demand in Mediterranean forest soils
  publication-title: Soil Biology and Biochemistry
– volume: 58
  start-page: 275
  year: 2013
  end-page: 280
  article-title: Soil zymography—A novel in situ method for mapping distribution of enzyme activity in soil
  publication-title: Soil Biology and Biochemistry
– volume: 113
  start-page: 1154
  year: 2012
  end-page: 1164
  article-title: Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces spp from wheat rhizosphere
  publication-title: Journal of Applied Microbiology
– volume: 711
  year: 2020
  article-title: Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration
  publication-title: Science of the Total Environment
– volume: 511
  start-page: 576
  year: 2015
  end-page: 583
  article-title: Experimental warming differentially affects microbial structure and activity in two contrasted moisture sites in a Sphagnum‐dominated peatland
  publication-title: Science of the Total Environment
– volume: 106
  start-page: 1707
  year: 2009
  end-page: 1709
  article-title: Irreversible climate change due to carbon dioxide emissions
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 11
  start-page: 36
  year: 2022
  article-title: Effects of different forms of nitrogen addition on microbial extracellular enzyme activity in temperate grassland soil
  publication-title: Ecological Processes
– volume: 100
  year: 2019
  article-title: The bioelements, the elementome, and the biogeochemical niche
  publication-title: Ecology
– volume: 85
  start-page: 505
  year: 2015
  end-page: 524
  article-title: A general mathematical framework for representing soil organic matter dynamics
  publication-title: Ecological Monographs
– volume: 22
  start-page: 1809
  year: 2016
  end-page: 1820
  article-title: Not all droughts are created equal: The impacts of interannual drought pattern and magnitude on grassland carbon cycling
  publication-title: Global Change Biology
– volume: 156
  start-page: 989
  year: 2011
  end-page: 996
  article-title: Soil microorganisms mediating phosphorus availability
  publication-title: Plant Physiology
– volume: 27
  start-page: 5989
  year: 2021
  end-page: 6003
  article-title: The effect of global change on soil phosphatase activity
  publication-title: Global Change Biology
– volume: 5
  start-page: 204
  issue: 599
  year: 2021
  article-title: Recent advances in enzymes for the bioremediation of pollutants
  publication-title: Biochemistry Research International
– volume: 28
  start-page: 83
  year: 2000
  end-page: 99
  article-title: Potential applications of oxidative enzymes and phenoloxidase‐like compounds in wastewater and soil treatment: A review
  publication-title: Applied Catalysis
– volume: 462
  start-page: 795
  year: 2009
  end-page: 798
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature Reviews Microbiology
– volume: 32
  start-page: 149
  year: 2006
  end-page: 152
  article-title: Effects of invasive scotch broom on soil proper‐ties in a Pacific coastal prairie soil
  publication-title: Applied Soil Ecology
– volume: 26
  start-page: 3698
  year: 2020
  end-page: 3714
  article-title: Effects of seasonal and decadal warming on soil enzymatic activity in a P‐deficient Mediterranean shrubland
  publication-title: Global Change Biology
– volume: 41
  start-page: 137
  year: 2009
  end-page: 147
  article-title: Soil community changes during secondary succession to naturalized grasslands
  publication-title: Applied Soil Ecology
– year: 2020
– volume: 23
  start-page: 1282
  year: 2017
  end-page: 1291
  article-title: Plant invasion is associated with higher plant–soil nutrient concentrations in nutrient‐ poor environments
  publication-title: Global Change Biology
– volume: 142
  start-page: 280
  year: 2011
  end-page: 290
  article-title: Differential influence of land use/cover change ontopsoil carbon and microbial activity in low‐latitude temperate forests
  publication-title: Agriculture, Ecosystems and Environment
– volume: 122
  start-page: 141
  year: 2017
  end-page: 150
  article-title: Isolation of Ascomycota fungi with capability to transform PAHs: Insights into the biodegradation mechanisms of
  publication-title: International Biodeterioration & Biodegradation
– volume: 8
  start-page: 92
  year: 2018
  article-title: A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility
  publication-title: Catalysts
– start-page: 295
  year: 1978
  end-page: 340
– start-page: 4
  year: 2013
  article-title: Human‐induced nitrogen‐phosphorus imbalances alter natural and managed ecosystems across the globe
  publication-title: Nature Communications
– volume: 51
  start-page: 1009
  year: 2020
  end-page: 1020
  article-title: Fungal phytases: From genes to applications
  publication-title: Brazilian Journal of Microbiology
– volume: 75
  start-page: 34
  year: 2018
  article-title: Factors determining enzyme activities in soils under and plantations in Spain: A basis for establishing sustainable forest management strategies
  publication-title: Annals of Forest Science
– volume: 184
  start-page: 583
  year: 2017
  end-page: 596
  article-title: Plant–microbial competition for nitrogen increases microbial activities and carbon loss in invaded soils
  publication-title: Oecologia
– volume: 46
  start-page: 674
  year: 1996
  end-page: 684
  article-title: Organism size, life history, and N:P stoichiometry: Towards a unified view of cellular and ecosystem processes
  publication-title: Bioscience
– volume: 60
  start-page: 195
  year: 2005
  end-page: 205
  article-title: Stability of the fluorogenic enzyme substrates and pH optima of enzyme activities in different Finnish soils
  publication-title: Journal of Microbiological Methods
– volume: 14
  start-page: 433
  year: 1982
  end-page: 437
  article-title: Effect of pH on enzyme stability in soils
  publication-title: Soil Biology and Biochemistry
– volume: 12
  start-page: 8209
  year: 2020
  article-title: Use of soil enzymes as indicators for contaminated soil monitoring and sustainable management
  publication-title: Sustainability
– volume: 19
  start-page: 735
  year: 2009
  end-page: 747
  article-title: Soil microbial activity during secondary vegetation succession in semiarid abandoned lands of Loess Plateau
  publication-title: Pedosphere
– volume: 138
  year: 2019
  article-title: The pH optimum of soil exoenzymes adapt to long term changes in soil pH
  publication-title: Soil Biology and Biochemistry
– volume: 14
  start-page: 2236
  year: 2020
  end-page: 2247
  article-title: Drought and plant litter chemistry alter microbial gene expression and metabolite production
  publication-title: The ISME Journal
– volume: 146
  start-page: 383
  year: 2014
  end-page: 399
  article-title: Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: A review
  publication-title: Journal of Environmental Management
– volume: 691
  year: 2017
  article-title: Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations
  publication-title: Tellus Series B: Chemical and Physical Meteorology
– volume: 64
  start-page: 68
  year: 2013
  end-page: 79
  article-title: Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland
  publication-title: Soil Biology and Biochemistry
– volume: 24
  start-page: 109
  year: 2013
  end-page: 114
  article-title: Ecological effects of atmospheric nitrogen deposition on soil enzyme activity
  publication-title: Journal of Forestry Research
– volume: 56
  start-page: 737
  year: 2018
  end-page: 751
  article-title: Biostimulation of the activity of microorganisms and soil enzymes through fertilisation with composts
  publication-title: Soil Research
– volume: 3
  start-page: 401
  year: 2011
  end-page: 425
  article-title: Microbial extracellular enzymes and the marine carbon cycle
  publication-title: Annual Review of Marine Science
– volume: 4
  start-page: 383
  year: 1976
  end-page: 421
  article-title: Extracellular enzymes in soil
  publication-title: CRC Critical Reviews in Microbiology
– volume: 12
  start-page: 257
  year: 2014
  end-page: 273
  article-title: Effects of pesticides on soil enzymes: A review
  publication-title: Environmental Chemistry Letters
– volume: 123
  start-page: 21
  year: 2018
  end-page: 32
  article-title: A meta‐analysis of soil extracellular enzyme activities in response to global change
  publication-title: Soil Biology and Biochemistry
– volume: 11
  start-page: 1252
  year: 2008
  end-page: 1264
  article-title: Stoichiometry of soil enzyme activity at global scale
  publication-title: Ecology Letters
– volume: 30
  start-page: 1446
  year: 2021
  end-page: 1453
  article-title: Coupling of biostimulation and bioaugmentation for enhanced bioremoval of chloroethylenes and BTEX from clayey soil
  publication-title: Ecotoxicology
– volume: 9
  start-page: 1473
  year: 2018
  article-title: Plant growth‐promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture
  publication-title: Frontiers in Plant Science
– volume: 267
  year: 2020
  article-title: Inhibitory effect of microplastics on soil extracellular enzymatic activities by changing soil properties and direct adsorption: An investigation at the aggregate‐fraction level
  publication-title: Environmental Pollution
– volume: 205
  year: 2021
  article-title: How will the progressive global increase of arid areas affect population and land‐use in the 21st century?
  publication-title: Global and Planetary Change
– year: 2022
– volume: 425
  year: 2022
  article-title: Climate warming masks the negative effect of microplastics on plant‐soil health in a silt loam soil
  publication-title: Geoderma
– volume: 30
  start-page: 11
  year: 2018
  article-title: Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil
  publication-title: Environmental Sciences Europe
– volume: 9
  start-page: 639
  year: 2019
  article-title: The effects of drought and nutrient addition on soil organisms vary across taxonomic groups, but are constant across seasons
  publication-title: Scientific Reports
– volume: 42
  start-page: 481
  year: 2006
  end-page: 489
  article-title: Effect of the exotic invasive plant Solidago gigantea on soil phosphorus status
  publication-title: Biology and Fertility of Soils
– volume: 8
  start-page: 460
  year: 2018
  article-title: Combined cross‐linked enzyme aggregates as biocatalysts
  publication-title: Catalysts
– volume: 26
  start-page: 1305
  year: 1994
  end-page: 1311
  article-title: Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litter decomposition
  publication-title: Soil Biology and Biochemistry
– volume: 286
  start-page: 25
  year: 2017
  end-page: 34
  article-title: Effects of elevated CO and drought on the microbial biomass and enzymatic activities in the rhizospheres of two grass species in Chinese loess soil
  publication-title: Geoderma
– volume: 58
  start-page: 414
  year: 2009
  end-page: 424
  article-title: Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils
  publication-title: Microbial Ecology
– volume: 187
  start-page: 333
  year: 1996
  end-page: 342
  article-title: Assessing the impact of elevated CO on soil microbial activity in a Mediterranean model ecosystem
  publication-title: Plant and Soil
– volume: 9
  start-page: 1722
  year: 2021
  article-title: The effectiveness of biostimulation, bioaugmentation and sorption‐biological treatment of soil contaminated with petroleum products in the Russian subarctic
  publication-title: Microorganisms
– volume: 540
  start-page: 567
  year: 2016
  end-page: 569
  article-title: Water balance creates a threshold in soil pH at the global scale
  publication-title: Nature
– volume: 16
  year: 2021
  article-title: Soil enzyme responses to land use change in the tropical rainforest of the Colombian Amazon region
  publication-title: PLoS One
– volume: 180
  start-page: 197
  year: 2016
  end-page: 201
  article-title: The effect of soil type on the bioremediation of petroleum contaminated soils
  publication-title: Journal of Environmental Management
– volume: 96
  start-page: 99
  year: 2015
  end-page: 112
  article-title: Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment
  publication-title: Ecology
– volume: 103
  year: 2021
  article-title: Soil enzymes activity: Effect of climate smart agriculture on rhizosphere and bulk soil under cereal based systems of north‐west India
  publication-title: European Journal of Soil Biology
– volume: 3
  start-page: 125
  year: 2020
  article-title: Increasing atmospheric CO concentrations correlate with declining nutritional status of European forests
  publication-title: Communications Biology
– year: 2016
– volume: 37
  start-page: 937
  year: 2005
  end-page: 944
  article-title: Responses of extracellular enzymes to simple and complex nutrient inputs
  publication-title: Soil Biology and Biochemistry
– volume: 46
  start-page: 177
  year: 2010
  end-page: 182
  article-title: Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content
  publication-title: Applied Soil Ecology
– volume: 289
  start-page: 227
  year: 2006
  end-page: 238
  article-title: Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland
  publication-title: Plant and Soil
– year: 2010
– volume: 7
  start-page: 875
  year: 2017
  end-page: 879
  article-title: Recently amplified arctic warming has contributed to a continual global warming trend
  publication-title: Nature Climate Change
– start-page: 171
  year: 2000
  end-page: 206
– volume: 40
  start-page: 339
  year: 2000
  end-page: 346
  article-title: Monitoring of bioremediation by soil biological activities
  publication-title: Chemosphere
– volume: 6
  start-page: 252
  year: 2006
  end-page: 260
  article-title: Dispersing pollutant‐degrading bacteria in contaminated soil without touching it
  publication-title: Engineering in Life Sciences
– volume: 17
  start-page: 3859
  year: 2020
  end-page: 3873
  article-title: Reviews and syntheses: Soil responses to manipulated precipitation changes—An assessment of meta‐analyses
  publication-title: Biogeosciences
– volume: 40
  start-page: 2146
  year: 2008
  end-page: 2155
  article-title: Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality
  publication-title: Soil Biology and Biochemistry
– volume: 11
  start-page: 910
  year: 2020
  end-page: 921
  article-title: A practical approach to measuring the biodiversity impacts of land conversion
  publication-title: Methods in Ecology and Evolution
– volume: 341
  start-page: 265
  year: 2005
  end-page: 279
  article-title: Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution
  publication-title: Science of the Total Environment
– volume: 94
  start-page: 843
  year: 2004
  end-page: 853
  article-title: Contrasting growth changes in two dominant species of a mediterranean shrubland submitted to experimental drought and warming
  publication-title: Annals of Botany
– volume: 24
  start-page: 429
  year: 1997
  end-page: 434
  article-title: Changes in the microbial activity of an arid soil amended with urban organic wastes
  publication-title: Biology and Fertility of Soils
– volume: 1
  start-page: 1438
  year: 2017
  end-page: 1445
  article-title: Shifting from a fertilization‐dominated to a warming‐dominated period
  publication-title: Nature Ecology and Evolution
– volume: 7
  start-page: 1
  year: 2017
  end-page: 7
  article-title: pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution
  publication-title: Scientific Reports
– volume: 8
  start-page: 626
  year: 2005
  end-page: 635
  article-title: Cheaters, diffusion, and nutrients constrain decomposition by microbial enzymes in spatially structured environments
  publication-title: Ecology Letters
– volume: 416
  start-page: 527
  year: 2017
  end-page: 537
  article-title: Responses of soil extracellular enzyme activities to experimental warming and CO enrichment at the alpine treeline
  publication-title: Plant and Soil
– volume: 19
  start-page: 3740
  year: 2013
  end-page: 3748
  article-title: Will climate change promote future invasions?
  publication-title: Global Change Biology
– volume: 235
  start-page: 1030
  year: 2015
  end-page: 1034
  article-title: Current opinion: What is a nanoplastic?
  publication-title: Environmental Pollution
– volume: 82
  start-page: 2397
  year: 2001
  end-page: 2404
  article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass
  publication-title: Ecology
– volume: 10
  start-page: 1068
  year: 2019
  article-title: Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance
  publication-title: Frontiers in Plant Science
– volume: 214
  year: 2021
  article-title: Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems
  publication-title: Earth‐Science Reviews
– volume: 161
  start-page: 243
  year: 1998
  end-page: 248
  article-title: Intracellular and extracellular enzyme activity in soil with reference to elemental cycling
  publication-title: Zeitschrift fuÈr PflanzenernaÈhrung und Bodenkunde
– volume: 33
  start-page: 2402
  year: 2019
  end-page: 2416
  article-title: Soil functional responses to drought under range‐expanding and native plant communities
  publication-title: Functional Ecology
– volume: 20
  start-page: 642
  year: 2009
  end-page: 650
  article-title: Rhizosphere chemical dialogues: Plant‐microbe interactions
  publication-title: Current Opinion in Biotechnology
– volume: 382
  start-page: 165
  year: 2007
  end-page: 190
  article-title: Carbon losses from soil and its consequences for land use management
  publication-title: Science of the Total Environment
– volume: 44
  start-page: 1025
  year: 2008
  end-page: 1034
  article-title: Isolation of culturable phosphobacteria with both phytate‐mineralization and phosphate‐solubilization activity from the rhizosphere of plants grown in a volcanic soil
  publication-title: Biology and Fertility of Soils
– volume: 28
  start-page: 47
  year: 1998
  end-page: 54
  article-title: Purification and characterization of the constitutive form of laccase from the basidiomycete and effect of inducers on laccase synthesis
  publication-title: Biotechnology and Applied Biochemistry
– volume: 23
  start-page: 63
  year: 1992
  end-page: 87
  article-title: Biological invasions by exotic grasses, the grass/fire cycle, and global change
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 57
  year: 2015
  article-title: Mapping the world's degraded lands
  publication-title: Applied Geography
– volume: 2
  issue: 8
  year: 2011
  article-title: Atmospheric CO and soil extracellular enzyme activity: A meta‐analysis and CO gradient experiment
  publication-title: Ecosphere
– volume: 177
  start-page: 706
  year: 2008
  end-page: 714
  article-title: Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta‐analysis
  publication-title: The New Phytologist
– volume: 125
  start-page: 267
  year: 2012
  end-page: 274
  article-title: Engineering and production of laccase from Trametes versicolor in the yeast
  publication-title: Bioresource Technology
– year: 2018
– volume: 33
  start-page: 1845
  year: 2015
  end-page: 1854
  article-title: Metagenomics for the discovery of pollutant degrading enzymes
  publication-title: Biotechnology Advances
– volume: 27
  start-page: 846
  year: 2017
  end-page: 855
  article-title: Effects of elevated CO and drought on plant physiology, soil carbon and soil enzyme activities
  publication-title: Pedosphere
– volume: 4
  start-page: 106
  year: 2020
  article-title: The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses
  publication-title: Frontiers in Sustainable Food Systems
– start-page: 13
  year: 2020
  end-page: 32
– volume: 8
  start-page: 805
  year: 2004
  end-page: 814
  article-title: An exotic tree alters decomposition and nutrient cycling in a Hawaiian montane forest
  publication-title: Ecosystems
– volume: 7
  start-page: 525
  year: 2016
  article-title: Belowground response to drought in a tropical Forest soil I changes in microbial functional potential and metabolism
  publication-title: Frontiers in Microbiology
– volume: 163
  year: 2021
  article-title: Continuous in‐situ measurement of free extracellular enzyme activity as direct indicator for soil biological activity
  publication-title: Soil Biology and Biochemistry
– volume: 105
  start-page: 801
  year: 2017
  end-page: 815
  article-title: Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest
  publication-title: Journal of Ecology
– volume: 13
  start-page: 1642
  year: 2011
  end-page: 1654
  article-title: The bacterial biogeography of British soils
  publication-title: Environmental Microbiology
– volume: 107
  start-page: 145
  year: 2014
  end-page: 162
  article-title: Enzymes as useful tools for environmental purposes
  publication-title: Chemosphere
– volume: 119
  start-page: 231
  year: 2003
  end-page: 243
  article-title: Ecophysiological responses of two Mediterranean shrubs, Erica multiflora and Globularia alypum, to experimentally drier and warmer conditions
  publication-title: Physiologia Plantarum
– volume: 110
  start-page: 68
  year: 2017
  end-page: 78
  article-title: Changes in substrate availability drive carbon cycle response to chronic warming
  publication-title: Soil Biology and Biochemistry
– volume: 22
  year: 2010
– volume: 18
  start-page: 2681
  year: 2012
  end-page: 2693
  article-title: Simple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO and temperature
  publication-title: Global Change Biology
– volume: 2
  start-page: 248
  year: 2012
  end-page: 253
  article-title: Global warming under old and new scenarios using IPCC climate sensitivity range estimates
  publication-title: Nature Climate Change
– volume: 106
  start-page: 119
  year: 2017
  end-page: 128
  article-title: Root exudates increase N availability by stimulating microbial turnover of fast‐cycling N pools
  publication-title: Soil Biology and Biochemistry
– volume: 26
  start-page: 1962
  year: 2020
  end-page: 1985
  article-title: Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health
  publication-title: Global Change Biology
– volume: 4
  start-page: 2
  year: 2013
  article-title: Plant‐soil interactions: Nutrient uptake
  publication-title: Nature Education Knowledge
– volume: 9
  start-page: 480
  year: 2019
  article-title: Soil Extracellular Enzyme Activities and Uptake of N by Oilseed Rape Depending on Fertilization and Seaweed Biostimulant Application
  publication-title: Agronomy
– volume: 38
  start-page: 1537
  year: 2006
  end-page: 1544
  article-title: Elevated enzyme activities in soils under the invasive nitrogen‐fixing tree
  publication-title: Soil Biology and Biochemistry
– volume: 2
  start-page: 1
  year: 2014
  end-page: 13
  article-title: Microbial communities respond to experimental warming, but site matters
  publication-title: Peer J
– volume: 36
  start-page: 1378
  year: 2022
  end-page: 1395
  article-title: Soil enzymes in response to climate warming: Mechanisms and feedbacks
  publication-title: Functional Ecology
– volume: 68
  start-page: 252
  year: 2014
  end-page: 262
  article-title: Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively‐managed agricultural landscape
  publication-title: Soil Biology and Biochemistry
– volume: 38
  start-page: 401
  year: 2015
  end-page: 419
  article-title: Plant growth‐promoting bacteria as inoculants in agricultural soils
  publication-title: Genetics and Molecular Biology
– volume: 1
  start-page: 69
  year: 2021
  article-title: Increased microbial expression of organic nitrogen cycling genes in long‐term warmed grassland soils
  publication-title: ISME Communications
– volume: 34
  start-page: 1309
  year: 2002
  end-page: 1315
  article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil
  publication-title: Soil Biology and Biochemistry
– volume: 46
  start-page: 1131
  year: 2016
  end-page: 1150
  article-title: Global semi‐ arid climate change over last 60 years
  publication-title: Climate Dynamics
– volume: 3
  start-page: 64
  year: 2019
  article-title: Control of soil extracellular enzyme activities by clay minerals—Perspectives on microbial responses
  publication-title: Soil System
– volume: 100
  year: 2019
  article-title: Enhanced activity of soil nutrient‐releasing enzymes after plant invasion: A meta‐analysis
  publication-title: Ecology
– volume: 1
  start-page: 767
  year: 2008
  end-page: 770
  article-title: Negative impact of nitrogen deposition on soil buffering capacity
  publication-title: Nature Geoscience
– volume: 24
  start-page: 1873
  year: 2018
  end-page: 1883
  article-title: Impact of priming on global soil carbon stocks
  publication-title: Global Change Biology
– volume: 12
  year: 2021
  article-title: Role of Cell Wall Polyphosphates in Phosphorus Transfer at the Arbuscular Interface in Mycorrhizas
  publication-title: Frontiers in Plant Science
– volume: 19
  start-page: 90
  year: 2013
  end-page: 102
  article-title: How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming
  publication-title: Global Change Biology
– volume: 5
  start-page: 184
  year: 2021
  end-page: 194
  article-title: Empirical support for the biogeochemical niche hypothesis in forest trees
  publication-title: Nature Ecology and Evolution
– volume: 5
  start-page: 1
  year: 2012
  article-title: The relationship between winter temperature rise and soil fertility properties
  publication-title: Air, Soil and Water Research
– volume: 3
  start-page: 28
  year: 2015
  end-page: 39
  article-title: Bioremediation, biostimulation and bioaugmentation: A review
  publication-title: International Journal of Environmental Bioremediation & Biodegradation
– year: 2017
– volume: 83
  start-page: 270
  year: 2005
  end-page: 277
  article-title: Land‐use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey
  publication-title: Soil and Tillage Research
– volume: 101
  start-page: 32
  year: 2016
  end-page: 43
  article-title: Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta‐analysis
  publication-title: Soil Biology and Biochemistry
– volume: 126
  start-page: 543
  year: 2001
  end-page: 562
  article-title: A meta‐analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental warming
  publication-title: Oecologia
– ident: e_1_2_10_101_1
  doi: 10.1016/S1002‐0160(09)60169‐7
– ident: e_1_2_10_38_1
  doi: 10.1038/s41579‐019‐0222‐5
– ident: e_1_2_10_133_1
  doi: 10.1186/1471‐2180‐10‐149
– ident: e_1_2_10_66_1
  doi: 10.5194/acp‐13‐10081‐2013
– volume-title: Global assessment of soil pollution—Summary for policy makers
  year: 2021
  ident: e_1_2_10_65_1
– ident: e_1_2_10_207_1
  doi: 10.5772/65267
– ident: e_1_2_10_62_1
  doi: 10.2307/1312897
– volume-title: Biodegradation technology of organic and inorganic pollutants
  year: 2021
  ident: e_1_2_10_25_1
– ident: e_1_2_10_74_1
– ident: e_1_2_10_102_1
  doi: 10.1038/srep19601
– ident: e_1_2_10_232_1
  doi: 10.1073/pnas.1904955116
– volume-title: Basis contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change
  year: 2021
  ident: e_1_2_10_96_1
– ident: e_1_2_10_111_1
  doi: 10.3390/su12198209
– ident: e_1_2_10_222_1
  doi: 10.3390/catal8100460
– ident: e_1_2_10_144_1
  doi: 10.1007/s11104‐017‐3212‐2
– ident: e_1_2_10_23_1
  doi: 10.1016/j.apsoil.2010.08.013
– ident: e_1_2_10_76_1
  doi: 10.1016/B978-0-12-817880-5.00002-5
– ident: e_1_2_10_34_1
  doi: 10.1007/s13595‐018‐0720‐z
– ident: e_1_2_10_140_1
  doi: 10.1016/j.geoderma.2022.116083
– ident: e_1_2_10_90_1
  doi: 10.1007/s00382‐015‐2636‐8
– ident: e_1_2_10_191_1
  doi: 10.3390/agronomy9090480
– ident: e_1_2_10_56_1
  doi: 10.1111/j.1365‐2486.2012.02745.x
– ident: e_1_2_10_54_1
  doi: 10.1016/j.earscirev.2020.103501
– ident: e_1_2_10_115_1
  doi: 10.1111/j.1469‐8137.2007.02290.x
– ident: e_1_2_10_112_1
  doi: 10.1186/s43591‐021‐00007‐x
– ident: e_1_2_10_18_1
  doi: 10.1016/jsoilbio2021108424
– ident: e_1_2_10_48_1
  doi: 10.1146/annurev.es.23.110192.000431
– ident: e_1_2_10_193_1
  doi: 10.1038/nature20139
– ident: e_1_2_10_42_1
  doi: 10.1038/nature03972
– ident: e_1_2_10_143_1
  doi: 10.1111/gcb.14113
– ident: e_1_2_10_190_1
  doi: 10.1016/0038‐0717(94)90211‐9
– ident: e_1_2_10_204_1
  doi: 10.1016/j.biortech.2012.07.117
– ident: e_1_2_10_106_1
  doi: 10.1890/ES11‐00117.1
– ident: e_1_2_10_200_1
  doi: 10.1890/14‐0088.1
– ident: e_1_2_10_84_1
  doi: 10.1016/j.jenvman.2016.05.038
– ident: e_1_2_10_122_1
  doi: 10.5897/AJB07.590
– ident: e_1_2_10_137_1
  doi: 10.3389/fsufs.2020.00106
– ident: e_1_2_10_70_1
  doi: 10.1128/mmbr.00020‐11
– ident: e_1_2_10_149_1
  doi: 10.3390/su12187255
– ident: e_1_2_10_161_1
  doi: 10.1016/j.scitotenv.2019.135062
– ident: e_1_2_10_125_1
  doi: 10.1038/s41598‐017‐01418‐8
– ident: e_1_2_10_142_1
  doi: 10.1016/j.mimet.2004.09.010
– ident: e_1_2_10_154_1
  doi: 10.1038/ncomms3934
– ident: e_1_2_10_130_1
  doi: 10.1016/j.soilbio.2016.12.004
– ident: e_1_2_10_87_1
  doi: 10.1007/s00442‐012‐2578‐3
– ident: e_1_2_10_6_1
  doi: 10.12691/ijebb‐3‐1‐5
– ident: e_1_2_10_7_1
  doi: 10.4067/S0718‐95162017000300018
– ident: e_1_2_10_136_1
  doi: 10.1155/2021/5599204
– ident: e_1_2_10_57_1
  doi: 10.1186/s13717‐022‐00380‐2
– ident: e_1_2_10_114_1
  doi: 10.1007/s10646‐020‐02323‐z
– ident: e_1_2_10_146_1
  doi: 10.1038/nclimate3179
– ident: e_1_2_10_181_1
  doi: 10.1016/j.marpolbul.2007.09.020
– ident: e_1_2_10_223_1
  doi: 10.1016/jgeoderma201610025
– ident: e_1_2_10_99_1
  doi: 10.1016/j.ejsobi.2021.103292
– ident: e_1_2_10_126_1
  doi: 10.1111/gcb.15832
– ident: e_1_2_10_174_1
  doi: 10.1016/j.soilbio.2004.08.004
– ident: e_1_2_10_197_1
  doi: 10.1590/s1415‐475738420150053
– ident: e_1_2_10_39_1
  doi: 10.1016/j.still.2004.08.001
– ident: e_1_2_10_59_1
  doi: 10.1111/2041‐210X.13427
– ident: e_1_2_10_157_1
  doi: 10.1016/j.soilbio.2017.03.002
– ident: e_1_2_10_138_1
  doi: 10.3390/microorganisms9081722
– ident: e_1_2_10_228_1
  doi: 10.3390/catal8020092
– ident: e_1_2_10_206_1
  doi: 10.1016/j.soilbio.2008.03.015
– ident: e_1_2_10_194_1
  doi: 10.1038/464499a
– ident: e_1_2_10_50_1
  doi: 10.1038/s41467‐018‐05516‐7
– ident: e_1_2_10_127_1
  doi: 10.1016/s0045‐6535(99)00218‐0
– ident: e_1_2_10_134_1
  doi: 10.1016/jcatena201706003
– ident: e_1_2_10_182_1
  doi: 10.1007/s10021‐021‐00715‐8
– ident: e_1_2_10_229_1
  doi: 10.1038/s41598‐020‐65200‐z
– ident: e_1_2_10_214_1
  doi: 10.1111/j.1365‐2486.2008.01819.x
– ident: e_1_2_10_118_1
  doi: 10.1093/aob/mch211
– ident: e_1_2_10_3_1
  doi: 10.1016/j.apsoil.2017.11.024
– ident: e_1_2_10_189_1
  doi: 10.1111/j.1461‐0248.2008.01245.x
– start-page: 171
  volume-title: Soil biochemistry, vol 10 Marcel Dekker
  year: 2000
  ident: e_1_2_10_159_1
– ident: e_1_2_10_177_1
  doi: 10.1016/jejsobi200809011
– ident: e_1_2_10_216_1
  doi: 10.1038/s41396‐022‐01269‐w
– volume-title: Microbial cycles
  year: 2008
  ident: e_1_2_10_227_1
– ident: e_1_2_10_196_1
  doi: 10.1007/s11104‐017‐3235‐8
– ident: e_1_2_10_205_1
  doi: 10.1088/1748‐9326/10/2/024019
– ident: e_1_2_10_9_1
  doi: 10.1111/j.1461‐0248.2005.00756.x
– ident: e_1_2_10_24_1
  doi: 10.1016/S0038‐0717(99)00051‐6
– ident: e_1_2_10_71_1
  doi: 10.1016/S0038‐0717(01)00185‐7
– ident: e_1_2_10_155_1
  doi: 10.1016/j.envexpbot.2017.05.012
– ident: e_1_2_10_37_1
  doi: 10.1016/japsoil200411008
– ident: e_1_2_10_211_1
  doi: 10.1016/j.agrformet.2011.01.018
– volume-title: A global meta‐analysis reveals differential effects of microplastics on soil ecosystem (preprint)
  year: 2022
  ident: e_1_2_10_202_1
– ident: e_1_2_10_219_1
  doi: 10.1657/1523‐0430(2006)38[465:acroan]2.0.co;2
– ident: e_1_2_10_171_1
  doi: 10.1007/s13205‐021‐02847‐z
– ident: e_1_2_10_49_1
  doi: 10.1016/j.scitotenv.2007.03.023
– ident: e_1_2_10_164_1
  doi: 10.1007/978-3-642-20256-8_4
– ident: e_1_2_10_176_1
  doi: 10.1016/j.apsoil.2007.12.011
– ident: e_1_2_10_169_1
  doi: 10.1007/s004420000544
– volume: 467
  start-page: 127
  year: 1999
  ident: e_1_2_10_109_1
  article-title: Soil enzymatic activity as a factor of its fertility caused by the tillage system
  publication-title: Zeszyty Problemowe Postępów Nauk Rolniczych
– start-page: 485
  volume-title: Climate change 2014: Impacts, adaptation, and vulnerability (field C)
  year: 2014
  ident: e_1_2_10_95_1
– ident: e_1_2_10_175_1
  doi: 10.1007/s11104‐006‐9131‐2
– ident: e_1_2_10_10_1
  doi: 10.1016/j.soilbio.2005.11.008
– ident: e_1_2_10_163_1
  doi: 10.1007/s10532‐012‐9576‐3
– ident: e_1_2_10_218_1
  doi: 10.1016/S1002‐0160(17)60458‐2
– ident: e_1_2_10_94_1
  doi: 10.1016/j.tree.2006.06.004
– ident: e_1_2_10_225_1
  doi: 10.1016/j.envpol.2020.115544
– ident: e_1_2_10_77_1
  doi: 10.1126/sciadv.1700782
– ident: e_1_2_10_170_1
  doi: 10.1016/S0038‐0717(02)00074‐3
– ident: e_1_2_10_213_1
  doi: 10.1023/A:1005757218475
– ident: e_1_2_10_156_1
  doi: 10.1007/978-981-13-7264-3_12
– ident: e_1_2_10_85_1
  doi: 10.2307/2679923
– ident: e_1_2_10_235_1
  doi: 10.1007/s10535‐008‐0034‐3
– ident: e_1_2_10_141_1
  doi: 10.3389/fpls.2021.725939
– ident: e_1_2_10_148_1
  doi: 10.1007/s003740050268
– ident: e_1_2_10_16_1
  doi: 10.1016/j.ibiod.2017.05.015
– ident: e_1_2_10_107_1
  doi: 10.1111/j.1365‐2486.2009.02135.x
– ident: e_1_2_10_179_1
  doi: 10.1038/s41559‐020‐01348‐1
– ident: e_1_2_10_231_1
  doi: 10.3389/fenvs.2021.675803
– ident: e_1_2_10_120_1
  doi: 10.1016/j.scitotenv.2016.05.045
– ident: e_1_2_10_98_1
  doi: 10.1038/s41579-019-0265-7
– ident: e_1_2_10_44_1
  doi: 10.1007/s42770‐020‐00289‐y
– ident: e_1_2_10_192_1
  doi: 10.3109/10408417609102304
– ident: e_1_2_10_11_1
  doi: 10.1016/j.soilbio.2004.09.014
– ident: e_1_2_10_150_1
  doi: 10.1038/s41559‐017‐0274‐8
– ident: e_1_2_10_234_1
  doi: 10.1016/jsoilbio201603011
– ident: e_1_2_10_55_1
  doi: 10.1007/BF00017098
– ident: e_1_2_10_60_1
  doi: 10.1016/S0926‐3373(00)00168‐5
– start-page: 744
  volume-title: Secretariat of the intergovernmental science‐policy platform on biodiversity and ecosystem services
  year: 2018
  ident: e_1_2_10_93_1
– ident: e_1_2_10_58_1
  doi: 10.1002/jpln19983581610310
– ident: e_1_2_10_63_1
  doi: 10.1080/16000889.2017.1328945
– ident: e_1_2_10_4_1
  doi: 10.1016/j.apsoil.2006.05.012
– ident: e_1_2_10_116_1
  doi: 10.1117/12.2636836
– ident: e_1_2_10_92_1
  doi: 10.1088/1748‐9326/9/6/064029
– ident: e_1_2_10_128_1
  doi: 10.1016/S0038‐0717(01)00079‐7
– ident: e_1_2_10_108_1
  doi: 10.1007/s10661‐016‐5342‐z
– ident: e_1_2_10_21_1
  doi: 10.1016/j.copbio.2009.09.014
– ident: e_1_2_10_185_1
  doi: 10.1038/s41598‐018‐36777‐3
– ident: e_1_2_10_198_1
  doi: 10.1016/j.gloplacha.2021.103597
– ident: e_1_2_10_110_1
  doi: 10.1111/j.1470‐8744.1998.tb00511.x
– ident: e_1_2_10_188_1
  doi: 10.1038/nature08632
– ident: e_1_2_10_64_1
  doi: 10.1111/1365‐2435.14027
– ident: e_1_2_10_208_1
  doi: 10.1128/AEM.00560‐10
– ident: e_1_2_10_88_1
  doi: 10.1038/s41467‐018‐02970‐1
– ident: e_1_2_10_184_1
  doi: 10.1007/978-3-642-14225-3_3
– ident: e_1_2_10_168_1
  doi: 10.1007/s10021‐004‐0009‐y
– ident: e_1_2_10_226_1
  doi: 10.1071/SR18057
– ident: e_1_2_10_82_1
  doi: 10.1111/gcb.14069
– ident: e_1_2_10_187_1
  doi: 10.1371/journal.pone.0255669
– ident: e_1_2_10_236_1
  doi: 10.1111/gcb.15077
– ident: e_1_2_10_81_1
  doi: 10.1111/j.1462‐2920.2011.02480.x
– ident: e_1_2_10_113_1
  doi: 10.1016/jsoilbio2021108448
– ident: e_1_2_10_30_1
  doi: 10.1515/frp-2017-0004
– ident: e_1_2_10_121_1
  doi: 10.1016/j.apsoil.2008.11.003
– ident: e_1_2_10_167_1
  doi: 10.1038/nclimate1385
– ident: e_1_2_10_151_1
  doi: 10.1002/ecy.2652
– ident: e_1_2_10_105_1
  doi: 10.1016/jsoilbio200602021
– ident: e_1_2_10_233_1
  doi: 10.1002/ecy.2830
– ident: e_1_2_10_22_1
  doi: 10.1111/nph12252
– ident: e_1_2_10_119_1
  doi: 10.1016/jjenvman201704023
– ident: e_1_2_10_20_1
  doi: 10.3389/fpls.2018.01473
– ident: e_1_2_10_123_1
  doi: 10.1038/s41396‐020‐0683‐6
– ident: e_1_2_10_117_1
  doi: 10.1034/j.1399‐3054.2003.00174.x
– ident: e_1_2_10_61_1
– ident: e_1_2_10_29_1
  doi: 10.1111/gcb.12029
– ident: e_1_2_10_33_1
  doi: 10.1038/ngeo339
– ident: e_1_2_10_153_1
  doi: 10.1111/gcb14981
– ident: e_1_2_10_15_1
  doi: 10.1016/j.chemosphere.2021.133359
– ident: e_1_2_10_45_1
  doi: 10.1007/s00442‐017‐3861‐0
– ident: e_1_2_10_166_1
  doi: 10.1104/pp.111.175448
– ident: e_1_2_10_212_1
  doi: 10.1890/08‐0127.1
– ident: e_1_2_10_26_1
  doi: 10.3389/fpls.2019.01068
– ident: e_1_2_10_199_1
  doi: 10.1016/j.soilbio.2012.12.004
– volume-title: Global warming of 1,5°C. An IPCC special report on the impacts of global warming of 15°C above preindustrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty
  year: 2019
  ident: e_1_2_10_8_1
– ident: e_1_2_10_152_1
  doi: 10.1038/s42003‐020‐0839‐y
– ident: e_1_2_10_145_1
  doi: 10.3390/soilsystems3040064
– ident: e_1_2_10_14_1
  doi: 10.1111/gcb14281
– ident: e_1_2_10_5_1
  doi: 10.1007/s003740050628
– ident: e_1_2_10_131_1
  doi: 10.1016/jscitotenv2019135992
– ident: e_1_2_10_19_1
  doi: 10.1186/s12302‐018‐0140‐6
– ident: e_1_2_10_158_1
  doi: 10.1016/jsoilbio2019107601
– ident: e_1_2_10_2_1
  doi: 10.5194/bg‐17‐3859‐2020
– volume: 4
  start-page: 2
  year: 2013
  ident: e_1_2_10_135_1
  article-title: Plant‐soil interactions: Nutrient uptake
  publication-title: Nature Education Knowledge
– ident: e_1_2_10_80_1
  doi: 10.1016/j.envpol.2018.01.024
– ident: e_1_2_10_100_1
  doi: 10.1016/j.soilbio.2016.07.003
– ident: e_1_2_10_31_1
  doi: 10.3389/fmicb.2016.00525
– ident: e_1_2_10_124_1
  doi: 10.1111/1365‐2435.13453
– ident: e_1_2_10_210_1
  doi: 10.1371/journal.pone.0002527
– ident: e_1_2_10_72_1
  doi: 10.1016/j.soilbio.2019.05.002
– ident: e_1_2_10_91_1
  doi: 10.1038/s41558‐017‐0009‐5
– volume-title: Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change
  year: 2014
  ident: e_1_2_10_147_1
– ident: e_1_2_10_53_1
  doi: 10.1038/nature12670
– ident: e_1_2_10_86_1
  doi: 10.1002/elsc.200620122
– ident: e_1_2_10_67_1
  doi: 10.1038/nrmicro.2017.87
– ident: e_1_2_10_220_1
  doi: 10.1038/srep40093
– ident: e_1_2_10_69_1
  doi: 10.2134/jeq199900472425002800040045x
– ident: e_1_2_10_47_1
  doi: 10.7717/peerj.358
– ident: e_1_2_10_97_1
– ident: e_1_2_10_46_1
  doi: 10.1038/s41558‐018‐0299‐2
– ident: e_1_2_10_68_1
  doi: 10.1016/0038‐0717(82)90101‐8
– ident: e_1_2_10_221_1
  doi: 10.1016/jsoilbio201805001
– ident: e_1_2_10_32_1
  doi: 10.1016/j.soilbio.2013.10.004
– ident: e_1_2_10_28_1
  doi: 10.1007/s10661‐013‐3202‐7
– ident: e_1_2_10_132_1
  doi: 10.5194/hess‐26‐6163‐2022
– volume-title: Ecological stoichiometry: The biology of elements from molecules to the biosphere
  year: 2002
  ident: e_1_2_10_201_1
– ident: e_1_2_10_224_1
  doi: 10.4236/gep.2021.96008
– ident: e_1_2_10_36_1
  doi: 10.1016/jsoilbio201211009
– ident: e_1_2_10_41_1
  doi: 10.1007/s00374‐005‐0039‐4
– ident: e_1_2_10_203_1
  doi: 10.1016/j.jenvman.2014.07.014
– ident: e_1_2_10_52_1
  doi: 10.1016/j.orggeochem.2011.07.005
– ident: e_1_2_10_104_1
  doi: 10.1007/s00374‐008‐0288‐0
– ident: e_1_2_10_217_1
  doi: 10.1007/s11676‐013‐0330‐4
– ident: e_1_2_10_195_1
  doi: 10.1073/pnas.0812721106
– ident: e_1_2_10_178_1
  doi: 10.1016/jenvexpbot2020104135
– ident: e_1_2_10_51_1
  doi: 10.1016/j.scitotenv.2014.12.095
– ident: e_1_2_10_183_1
  doi: 10.1038/s43705‐021‐00073‐5
– ident: e_1_2_10_27_1
  doi: 10.1111/gcb12344
– ident: e_1_2_10_89_1
  doi: 10.1111/gcb.13161
– ident: e_1_2_10_172_1
  doi: 10.1111/1365‐274512711
– ident: e_1_2_10_230_1
  doi: 10.1016/j.jhazmat.2022.129065
– ident: e_1_2_10_75_1
  doi: 10.1016/j.soilbio.2011.03.017
– ident: e_1_2_10_186_1
  doi: 10.1890/15‐0361.1
– volume-title: Fundamentals of soil ecology
  year: 2018
  ident: e_1_2_10_43_1
– ident: e_1_2_10_215_1
  doi: 10.1016/jsoilbio200801024
– ident: e_1_2_10_139_1
  doi: 10.1007/978-3-642-15271-9_9
– ident: e_1_2_10_180_1
  doi: 10.1007/s42729‐021‐00724‐5
– ident: e_1_2_10_17_1
  doi: 10.1146/annurev‐marine‐120709‐142731
– ident: e_1_2_10_79_1
  doi: 10.1016/j.apgeog.2014.11.024
– ident: e_1_2_10_165_1
  doi: 10.1007/s10311‐014‐0458‐2
– ident: e_1_2_10_237_1
  doi: 10.1016/j.apsoil.2021.104159
– ident: e_1_2_10_160_1
  doi: 10.1016/jchemosphere2019124512
– ident: e_1_2_10_103_1
  doi: 10.1111/j.1365‐2672.2012.05417.x
– start-page: 125
  volume-title: Progress in botany
  year: 2011
  ident: e_1_2_10_129_1
– ident: e_1_2_10_40_1
  doi: 10.1007/s00248‐009‐9508‐x
– ident: e_1_2_10_83_1
  doi: 10.4137/ASWR.S8599
– ident: e_1_2_10_12_1
  doi: 10.1007/978-3-642-14225-3_12
– ident: e_1_2_10_78_1
  doi: 10.1016/j.scitotenv.2004.10.005
– ident: e_1_2_10_162_1
  doi: 10.1016/j.chemosphere.2013.12.059
– ident: e_1_2_10_13_1
  doi: 10.1016/j.soilbio.2013.03.034
– ident: e_1_2_10_73_1
  doi: 10.1016/j.agee.2011.05.025
– ident: e_1_2_10_209_1
  doi: 10.1016/j.biotechadv.2015.10.009
– start-page: 295
  volume-title: Soil enzymes
  year: 1978
  ident: e_1_2_10_35_1
– ident: e_1_2_10_173_1
  doi: 10.1111/gcb.13384
SSID ssj0003206
Score 2.6582952
SecondaryResourceType review_article
Snippet Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2067
SubjectTerms applied research
Bioengineering
Biogeochemical cycle
Biogeochemical cycles
Biological Sciences
Biomanipulation
Biotechnology
carbon
Carbon dioxide
Climate Change
CO2 fertilisation
Drought
Droughts
Ecosystem
Ecosystem services
ecosystems
Environmental changes
Enzymatic activity
Enzyme activity
Enzymes
global change
Meta-analysis
Microbial activity
Microbiota
Microorganisms
nitrogen deposition
Soil
soil enzymes
Soil Microbiology
Soils
warming
Title Altered activities of extracellular soil enzymes by the interacting global environmental changes
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16604
https://www.ncbi.nlm.nih.gov/pubmed/36655298
https://www.proquest.com/docview/2786054280
https://www.proquest.com/docview/2767172115
https://www.proquest.com/docview/2811992461
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD6MgeCLP65Oq5tEEfGll7RpkhaftsvmEOaDONiDUJM0HWPXVm7vFe7-ek-StvNuKuJbS05pkp5z8p3mnC8Ar1VtE1XLKuayKuLMKBmrOlUxVVIZnlNDtasdPvkojk-zD2f8bAveDbUwgR9i_OHmLMP7a2fgSne_GPm50dNECM8F6nK1HCD6dE0dxVJ_rmbCeIauJmE9q5DL4hmf3FyLbgHMTbzqF5yj-_Bl6GrIM7mcrpZ6aq5usDj-51gewL0eiJL9oDkPYcs2E7gTjqZcT2Dn8LoCDsV6F9BNIDpBmN0uvBh5Q2bzC8S8_u4RfN13e--2Iq5a4ofnaiVtTdD_L5TbIXApr6RrL-bENlfrb9iq1wQRKHGkFb5cqzkngaKE2I33h_rk7jGcHh1-nh3H_REOscl4ijOfyFzniBmMTetCaJdURalCr6aTSjuiyopxxQxDpyyplpLlWguGsJTXOeWc7cB20zb2KRBeK1pUqDs2YZmp65wJlaUZY0WmRKFZBG-Hj1mant_cHbMxL4c4B2e59LMcwatR9Hsg9fid0O6gEWVv112ZyhzjPwzZaAQvx2a0SDeJqrHtyskI6QNr_heZPHF5v5lIIngStG3sCROC87TIcUBeZ_7cxfL97MBfPPt30edwN0WcFpKPdmF7uVjZPcRVS_3CG9BPgzQd8g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQguPBYKgQIGIcQlqySOH5G4lKVlgW4PqJV6QantOFXFNqn2gbT99YydR1leQtwSZaLYzsz4sz3zDcBLVdpYlaIImSiyMDVKhKpMVBgpoQyTkYm0yx2eHPDxUfrxmB1vwJsuF6bhh-g33JxleH_tDNxtSP9g5adGD2POHRnoNVfR2zHnv_t8RR5FE19ZM6YsRWcT05ZXyMXx9K-uz0a_QMx1xOqnnL3b8KVrbBNp8nW4XOihufyJx_F_e3MHbrVYlOw0ynMXNmw1gOtNdcrVALZ2r5LgUKz1AvMBBBNE2vXMi5FXZDQ9Q9jr7-7ByY47frcFcQkT3zxdK6lLglPATLlDAhf1Sub12ZTY6nJ1jk_1iiAIJY63wmdsVaekYSkhdu37TYry_D4c7e0ejsZhW8UhNClLcOhjIbVE2GBsUmZcu7iqKFLo2HRcaMdVWVCmqKHol0WkhaBSa04RmbJSRozRLdis6so-BMJKFWUFqo-NaWrKUlKu0iSlNEsVzzQN4HX3N3PTUpy7ShvTvFvq4CjnfpQDeNGLXjS8Hr8T2u5UIm9Ne54nQuISEFdtUQDP-8dolG4QVWXrpZPhwq-t2V9kZOxCf1MeB_CgUbe-JZRzxpJMYoe80vy5ifn70Vt_8ejfRZ_BjfHhZD_f_3Dw6THcTBC2NbFI27C5mC3tE4RZC_3UW9N3UXIiDg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5VRSBeOBYKCwUMQoiXrJz4SsRT2XYpRyuEqNQHpGA7TlWxJNUeSNtfz9g5ynIJ8ZbIE8V2Zsaf45lvAJ7q0sW6VEUkVJFF3GoV6TLREdVKW5FSS43PHT44lPtH_M2xON6AF10uTMMP0f9w85YR_LU38LOi_MHIT6wZxVJ6LtBLXNLM123Y_XDBHcWSUFgzZoKjr4lZSyvkw3j6R9cXo18Q5jpgDSvO5Dp86vraBJp8GS0XZmTPf6Jx_M_B3IBrLRIlO43q3IQNVw3gclObcjWArb2LFDgUa33AfADDA8TZ9SyIkWdkPD1F0BvubsHnHX_47gri0yW-BbJWUpcEF4CZ9kcEPuaVzOvTKXHV-eortpoVQQhKPGtFyNeqTkjDUULc2vubBOX5bTia7H0c70dtDYfIcpHgzMcqNSmCBuuSMpPGR1VRqtGtmbgwnqmyYEIzy9ArK2qUYqkxkiEuFWVKhWBbsFnVlbsLRJSaZgUqj4sZt2WZMql5whnLuJaZYUN43n3M3LYE577OxjTvNjo4y3mY5SE86UXPGlaP3wltdxqRt4Y9zxOV4gYQ92x0CI_7ZjRJP4m6cvXSy0gVdtbiLzJp7AN_uYyHcKfRtr4nTEohkizFAQWd-XMX81fjl-Hi3r-LPoIr73cn-bvXh2_vw9UEMVsTiLQNm4vZ0j1AjLUwD4MtfQfQ3iC9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Altered+activities+of+extracellular+soil+enzymes+by+the+interacting+global+environmental+changes&rft.jtitle=Global+change+biology&rft.au=Zuccarini%2C+Paolo&rft.au=Sardans%2C+Jordi&rft.au=Asensio%2C+Loles&rft.au=Pe%C3%B1uelas%2C+Josep&rft.date=2023-04-01&rft.eissn=1365-2486&rft.volume=29&rft.issue=8&rft.spage=2067&rft_id=info:doi/10.1111%2Fgcb.16604&rft_id=info%3Apmid%2F36655298&rft.externalDocID=36655298
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon