An exploratory study of contrast agents for soft tissue visualization by means of high resolution X‐ray computed tomography imaging

Summary High resolution X‐ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for histological purposes it has great potential. Although microCT has proven to be a valuable technique for the imaging of bone structures, the vis...

Full description

Saved in:
Bibliographic Details
Published inJournal of microscopy (Oxford) Vol. 250; no. 1; pp. 21 - 31
Main Authors PAUWELS, E., VAN LOO, D., CORNILLIE, P., BRABANT, L., VAN HOOREBEKE, L.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary High resolution X‐ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for histological purposes it has great potential. Although microCT has proven to be a valuable technique for the imaging of bone structures, the visualization of soft tissue structures is still an important challenge due to their low inherent X‐ray contrast. One way to achieve contrast enhancement is to make use of contrast agents. However, contrary to light and electron microscopy, knowledge about contrast agents and staining procedures is limited for X‐ray CT. The purpose of this paper is to identify useful X‐ray contrast agents for soft tissue visualization, which can be applied in a simple way and are also suited for samples larger than (1 cm)3. And 28 chemical substances have been investigated. All chemicals were applied in the form of concentrated aqueous solutions in which the samples were immersed. First, strips of green Bacon were stained to evaluate contrast enhancement between muscle and adipose tissue. Furthermore it was also tested whether the contrast agents remained fixed in the tissue after staining by re‐immersing them in water. Based on the results, 12 contrast agents were selected for further testing on postmortem mice hind legs, containing a variety of different tissues, including muscle, fat, bone, cartilage and tendons. It was evaluated whether the contrast agents allowed a clearer distinction between the different soft tissue structures present. Finally also penetration depth was measured. And 26 chemicals resulted in contrast enhancement between muscle and adipose tissue in the Bacon strips. Mercury(II)chloride (HgCl2), phosphotungstic acid (PTA), phosphomolybdic acid (PMA) and ammonium orthomolybdate ((NH4)2MoO4) remained fixed after re‐immersion in water. The penetration tests showed that potassium iodide (KI) and sodium tungstate can be most efficiently used for large samples of the order of several tens of cm3. PMA, PTA, HgCl2 and also to a lesser extent Na2WO4 and (NH4)2MoO4 allowed a clearer distinction between the different soft tissue structures present.
AbstractList Summary High resolution X-ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for histological purposes it has great potential. Although microCT has proven to be a valuable technique for the imaging of bone structures, the visualization of soft tissue structures is still an important challenge due to their low inherent X-ray contrast. One way to achieve contrast enhancement is to make use of contrast agents. However, contrary to light and electron microscopy, knowledge about contrast agents and staining procedures is limited for X-ray CT. The purpose of this paper is to identify useful X-ray contrast agents for soft tissue visualization, which can be applied in a simple way and are also suited for samples larger than (1 cm)3. And 28 chemical substances have been investigated. All chemicals were applied in the form of concentrated aqueous solutions in which the samples were immersed. First, strips of green Bacon were stained to evaluate contrast enhancement between muscle and adipose tissue. Furthermore it was also tested whether the contrast agents remained fixed in the tissue after staining by re-immersing them in water. Based on the results, 12 contrast agents were selected for further testing on postmortem mice hind legs, containing a variety of different tissues, including muscle, fat, bone, cartilage and tendons. It was evaluated whether the contrast agents allowed a clearer distinction between the different soft tissue structures present. Finally also penetration depth was measured. And 26 chemicals resulted in contrast enhancement between muscle and adipose tissue in the Bacon strips. Mercury(II)chloride (HgCl2), phosphotungstic acid (PTA), phosphomolybdic acid (PMA) and ammonium orthomolybdate ((NH4)2MoO4) remained fixed after re-immersion in water. The penetration tests showed that potassium iodide (KI) and sodium tungstate can be most efficiently used for large samples of the order of several tens of cm3. PMA, PTA, HgCl2 and also to a lesser extent Na2WO4 and (NH4)2MoO4 allowed a clearer distinction between the different soft tissue structures present. [PUBLICATION ABSTRACT]
High resolution X-ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for histological purposes it has great potential. Although microCT has proven to be a valuable technique for the imaging of bone structures, the visualization of soft tissue structures is still an important challenge due to their low inherent X-ray contrast. One way to achieve contrast enhancement is to make use of contrast agents. However, contrary to light and electron microscopy, knowledge about contrast agents and staining procedures is limited for X-ray CT. The purpose of this paper is to identify useful X-ray contrast agents for soft tissue visualization, which can be applied in a simple way and are also suited for samples larger than (1 cm)(3) . And 28 chemical substances have been investigated. All chemicals were applied in the form of concentrated aqueous solutions in which the samples were immersed. First, strips of green Bacon were stained to evaluate contrast enhancement between muscle and adipose tissue. Furthermore it was also tested whether the contrast agents remained fixed in the tissue after staining by re-immersing them in water. Based on the results, 12 contrast agents were selected for further testing on postmortem mice hind legs, containing a variety of different tissues, including muscle, fat, bone, cartilage and tendons. It was evaluated whether the contrast agents allowed a clearer distinction between the different soft tissue structures present. Finally also penetration depth was measured. And 26 chemicals resulted in contrast enhancement between muscle and adipose tissue in the Bacon strips. Mercury(II)chloride (HgCl2 ), phosphotungstic acid (PTA), phosphomolybdic acid (PMA) and ammonium orthomolybdate ((NH4 )2 MoO4 ) remained fixed after re-immersion in water. The penetration tests showed that potassium iodide (KI) and sodium tungstate can be most efficiently used for large samples of the order of several tens of cm(3) . PMA, PTA, HgCl2 and also to a lesser extent Na2 WO4 and (NH4 )2 MoO4 allowed a clearer distinction between the different soft tissue structures present.
High resolution X-ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for histological purposes it has great potential. Although microCT has proven to be a valuable technique for the imaging of bone structures, the visualization of soft tissue structures is still an important challenge due to their low inherent X-ray contrast. One way to achieve contrast enhancement is to make use of contrast agents. However, contrary to light and electron microscopy, knowledge about contrast agents and staining procedures is limited for X-ray CT. The purpose of this paper is to identify useful X-ray contrast agents for soft tissue visualization, which can be applied in a simple way and are also suited for samples larger than (1 cm)3. And 28 chemical substances have been investigated. All chemicals were applied in the form of concentrated aqueous solutions in which the samples were immersed. First, strips of green Bacon were stained to evaluate contrast enhancement between muscle and adipose tissue. Furthermore it was also tested whether the contrast agents remained fixed in the tissue after staining by re-immersing them in water. Based on the results, 12 contrast agents were selected for further testing on postmortem mice hind legs, containing a variety of different tissues, including muscle, fat, bone, cartilage and tendons. It was evaluated whether the contrast agents allowed a clearer distinction between the different soft tissue structures present. Finally also penetration depth was measured. And 26 chemicals resulted in contrast enhancement between muscle and adipose tissue in the Bacon strips. Mercury(II)chloride (HgCl2), phosphotungstic acid (PTA), phosphomolybdic acid (PMA) and ammonium orthomolybdate ((NH4)2MoO4) remained fixed after re-immersion in water. The penetration tests showed that potassium iodide (KI) and sodium tungstate can be most efficiently used for large samples of the order of several tens of cm3. PMA, PTA, HgCl2 and also to a lesser extent Na2WO4 and (NH4)2MoO4 allowed a clearer distinction between the different soft tissue structures present.
Summary High resolution X‐ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for histological purposes it has great potential. Although microCT has proven to be a valuable technique for the imaging of bone structures, the visualization of soft tissue structures is still an important challenge due to their low inherent X‐ray contrast. One way to achieve contrast enhancement is to make use of contrast agents. However, contrary to light and electron microscopy, knowledge about contrast agents and staining procedures is limited for X‐ray CT. The purpose of this paper is to identify useful X‐ray contrast agents for soft tissue visualization, which can be applied in a simple way and are also suited for samples larger than (1 cm)3. And 28 chemical substances have been investigated. All chemicals were applied in the form of concentrated aqueous solutions in which the samples were immersed. First, strips of green Bacon were stained to evaluate contrast enhancement between muscle and adipose tissue. Furthermore it was also tested whether the contrast agents remained fixed in the tissue after staining by re‐immersing them in water. Based on the results, 12 contrast agents were selected for further testing on postmortem mice hind legs, containing a variety of different tissues, including muscle, fat, bone, cartilage and tendons. It was evaluated whether the contrast agents allowed a clearer distinction between the different soft tissue structures present. Finally also penetration depth was measured. And 26 chemicals resulted in contrast enhancement between muscle and adipose tissue in the Bacon strips. Mercury(II)chloride (HgCl2), phosphotungstic acid (PTA), phosphomolybdic acid (PMA) and ammonium orthomolybdate ((NH4)2MoO4) remained fixed after re‐immersion in water. The penetration tests showed that potassium iodide (KI) and sodium tungstate can be most efficiently used for large samples of the order of several tens of cm3. PMA, PTA, HgCl2 and also to a lesser extent Na2WO4 and (NH4)2MoO4 allowed a clearer distinction between the different soft tissue structures present.
Summary High resolution X‐ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for histological purposes it has great potential. Although microCT has proven to be a valuable technique for the imaging of bone structures, the visualization of soft tissue structures is still an important challenge due to their low inherent X‐ray contrast. One way to achieve contrast enhancement is to make use of contrast agents. However, contrary to light and electron microscopy, knowledge about contrast agents and staining procedures is limited for X‐ray CT. The purpose of this paper is to identify useful X‐ray contrast agents for soft tissue visualization, which can be applied in a simple way and are also suited for samples larger than (1 cm) 3 . And 28 chemical substances have been investigated. All chemicals were applied in the form of concentrated aqueous solutions in which the samples were immersed. First, strips of green Bacon were stained to evaluate contrast enhancement between muscle and adipose tissue. Furthermore it was also tested whether the contrast agents remained fixed in the tissue after staining by re‐immersing them in water. Based on the results, 12 contrast agents were selected for further testing on postmortem mice hind legs, containing a variety of different tissues, including muscle, fat, bone, cartilage and tendons. It was evaluated whether the contrast agents allowed a clearer distinction between the different soft tissue structures present. Finally also penetration depth was measured. And 26 chemicals resulted in contrast enhancement between muscle and adipose tissue in the Bacon strips. Mercury(II)chloride (HgCl 2 ), phosphotungstic acid (PTA), phosphomolybdic acid (PMA) and ammonium orthomolybdate ((NH 4 ) 2 MoO 4 ) remained fixed after re‐immersion in water. The penetration tests showed that potassium iodide (KI) and sodium tungstate can be most efficiently used for large samples of the order of several tens of cm 3 . PMA, PTA, HgCl 2 and also to a lesser extent Na 2 WO 4 and (NH 4 ) 2 MoO 4 allowed a clearer distinction between the different soft tissue structures present.
Author CORNILLIE, P.
BRABANT, L.
VAN LOO, D.
VAN HOOREBEKE, L.
PAUWELS, E.
Author_xml – sequence: 1
  givenname: E.
  surname: PAUWELS
  fullname: PAUWELS, E.
– sequence: 2
  givenname: D.
  surname: VAN LOO
  fullname: VAN LOO, D.
– sequence: 3
  givenname: P.
  surname: CORNILLIE
  fullname: CORNILLIE, P.
– sequence: 4
  givenname: L.
  surname: BRABANT
  fullname: BRABANT, L.
– sequence: 5
  givenname: L.
  surname: VAN HOOREBEKE
  fullname: VAN HOOREBEKE, L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23432572$$D View this record in MEDLINE/PubMed
BookMark eNqN0btu1TAcBnALFdHTwsALIEssMKT1JRd7rCouRUUsILFFjvNPjo8SO_hSCBMLO8_Ik-DTUxiQkPDiwT9_0qfvBB1ZZwGhx5Sc0XzOd7M5o4xQfg9tKK-rggkqjtCGEMYK1jByjE5C2BFCRCXIA3TMeMlZ1bAN-n5hMXxZJudVdH7FIaZ-xW7A2tnoVYhYjWBjwIPzOLgh4mhCSIBvTEhqMl9VNM7ibsUzKBv2P7dm3GIPwU3p9u3jz28_vFpz4rykCD2ObnajV8t2xWZWo7HjQ3R_UFOAR3f3Kfrw8sX7y9fF9btXV5cX14UuK8YLUWsiukGpWpeqJ1rXRDV8qHUlNeOiLLtcqqlh0IKVUgH0jGuQZQ-i6_qa8VP07JC7ePcpQYjtbIKGaVIWXAot5VJK0nAh_4PSUsiaVnWmT_-iO5e8zUX2qikl45Rn9fygtHcheBjaxef6fm0pafcztnnG9nbGbJ_cJaZuhv6P_L1bBucH8NlMsP47qX3z9uoQ-QsTwKu9
CODEN JMICAR
CitedBy_id crossref_primary_10_1134_S0031030123090034
crossref_primary_10_1523_ENEURO_0076_20_2020
crossref_primary_10_1111_vop_12198
crossref_primary_10_1371_journal_pone_0153552
crossref_primary_10_1111_jfb_15320
crossref_primary_10_1093_biosci_biad120
crossref_primary_10_1093_icb_icac027
crossref_primary_10_1073_pnas_2301876120
crossref_primary_10_1002_ar_22845
crossref_primary_10_3389_fphys_2023_1057394
crossref_primary_10_1111_iej_13408
crossref_primary_10_3389_fonc_2021_594915
crossref_primary_10_1002_ppp3_10509
crossref_primary_10_1007_s10329_021_00917_7
crossref_primary_10_1016_j_compositesa_2020_105821
crossref_primary_10_1016_j_crvi_2015_04_009
crossref_primary_10_1111_str_12168
crossref_primary_10_1371_journal_pone_0219411
crossref_primary_10_1111_jmi_12543
crossref_primary_10_3109_03008207_2015_1005211
crossref_primary_10_1016_j_actbio_2020_01_038
crossref_primary_10_1080_0305215X_2023_2218799
crossref_primary_10_1111_jmi_12701
crossref_primary_10_1016_j_otsr_2014_11_013
crossref_primary_10_3389_fbioe_2021_787538
crossref_primary_10_1002_ar_24212
crossref_primary_10_1016_j_conbuildmat_2018_06_182
crossref_primary_10_1038_s41598_018_36905_z
crossref_primary_10_1186_s12880_018_0280_6
crossref_primary_10_1111_2041_210X_14132
crossref_primary_10_2460_ajvr_81_4_326
crossref_primary_10_1016_j_ttbdis_2020_101559
crossref_primary_10_1080_10520295_2017_1369162
crossref_primary_10_1364_OPTICA_399421
crossref_primary_10_1371_journal_pone_0238783
crossref_primary_10_1002_pd_6361
crossref_primary_10_1002_jez_b_22561
crossref_primary_10_1016_j_joca_2019_10_007
crossref_primary_10_3390_jimaging7090172
crossref_primary_10_1016_j_trac_2023_117513
crossref_primary_10_3390_ijms21113902
crossref_primary_10_1136_annrheumdis_2013_203643
crossref_primary_10_1016_j_micron_2017_03_008
crossref_primary_10_1155_2019_8617406
crossref_primary_10_1364_BOE_10_002909
crossref_primary_10_1098_rsos_150643
crossref_primary_10_3389_finsc_2023_1016277
crossref_primary_10_3389_fphys_2022_899626
crossref_primary_10_1007_s10914_022_09608_6
crossref_primary_10_1186_1742_9994_10_63
crossref_primary_10_1111_ahe_12834
crossref_primary_10_1186_s40824_018_0136_8
crossref_primary_10_1002_cmmi_1695
crossref_primary_10_1038_s41598_021_96589_w
crossref_primary_10_1111_jmi_12688
crossref_primary_10_1111_joa_13101
crossref_primary_10_1038_s41598_017_16354_w
crossref_primary_10_1002_jemt_23225
crossref_primary_10_1016_j_ajpath_2019_05_004
crossref_primary_10_1016_j_jfoodeng_2018_05_038
crossref_primary_10_2351_1_5096089
crossref_primary_10_3390_ma11081482
crossref_primary_10_1002_jmor_21495
crossref_primary_10_1016_j_actbio_2018_12_014
crossref_primary_10_1016_j_jmbbm_2024_106414
crossref_primary_10_1038_s41598_022_23592_0
crossref_primary_10_1016_j_jmbbm_2017_11_032
crossref_primary_10_1016_j_morpho_2020_05_004
crossref_primary_10_1002_dvdy_136
crossref_primary_10_1016_j_joca_2014_07_014
crossref_primary_10_7717_peerj_3039
crossref_primary_10_2109_jcersj2_122_574
crossref_primary_10_1111_joa_12964
crossref_primary_10_1111_joa_12449
crossref_primary_10_1016_j_micron_2023_103533
crossref_primary_10_1186_s12915_020_0753_2
crossref_primary_10_1016_j_jconrel_2016_11_004
crossref_primary_10_1186_s12872_020_01393_5
crossref_primary_10_1186_s12903_021_01551_x
crossref_primary_10_1093_gigascience_gix027
crossref_primary_10_1074_jbc_REV120_009633
crossref_primary_10_3389_fonc_2020_550171
crossref_primary_10_1002_ar_23857
crossref_primary_10_1111_joa_13410
crossref_primary_10_1016_j_isci_2022_104600
crossref_primary_10_1038_s41467_019_13405_w
crossref_primary_10_1242_jcs_179077
crossref_primary_10_3390_ma13245734
crossref_primary_10_1371_journal_pone_0130227
crossref_primary_10_1017_S1431927614001329
crossref_primary_10_3390_ma14226763
crossref_primary_10_1038_s41598_018_34848_z
crossref_primary_10_1088_1748_0221_11_03_C03048
crossref_primary_10_1111_ahe_12604
crossref_primary_10_29130_dubited_641594
crossref_primary_10_1073_pnas_2220404120
crossref_primary_10_4003_006_036_0205
crossref_primary_10_1016_j_biombioe_2015_06_009
crossref_primary_10_1002_jemt_23363
crossref_primary_10_1016_j_jneumeth_2020_108652
crossref_primary_10_3390_ph16121719
crossref_primary_10_15252_emmm_202216283
crossref_primary_10_3168_jds_2014_8374
crossref_primary_10_1139_cjfr_2023_0200
crossref_primary_10_1007_s00223_017_0371_3
crossref_primary_10_1371_journal_pone_0170597
crossref_primary_10_1371_journal_pone_0170633
crossref_primary_10_1016_j_jrras_2022_100490
crossref_primary_10_1098_rsif_2016_0992
crossref_primary_10_1017_S0031182017002074
crossref_primary_10_1002_cpmo_50
crossref_primary_10_1016_j_biomaterials_2017_12_016
crossref_primary_10_1088_1748_0221_17_01_P01004
crossref_primary_10_1055_a_2111_8415
crossref_primary_10_1107_S1600577519011299
crossref_primary_10_1002_ar_23716
crossref_primary_10_1002_jemt_22435
crossref_primary_10_1016_j_forsciint_2019_05_038
crossref_primary_10_3389_fcell_2020_566152
crossref_primary_10_1242_jeb_246808
crossref_primary_10_3390_math9182243
crossref_primary_10_1002_jmor_20808
crossref_primary_10_1093_zoolinnean_zly089
crossref_primary_10_1016_j_mex_2024_102565
crossref_primary_10_1017_S1431927618000399
crossref_primary_10_3897_BDJ_9_e71542
crossref_primary_10_1177_0021955X20948556
crossref_primary_10_1007_s11604_019_00830_6
crossref_primary_10_1038_s41598_018_36067_y
crossref_primary_10_1002_jmor_21045
crossref_primary_10_1155_2017_4035160
crossref_primary_10_1002_jmor_21048
crossref_primary_10_1038_s41596_021_00512_6
crossref_primary_10_1016_j_geoderma_2013_08_036
crossref_primary_10_1371_journal_pone_0096617
crossref_primary_10_1093_iob_obaa009
crossref_primary_10_1111_2041_210X_13669
crossref_primary_10_1093_aob_mcz126
crossref_primary_10_1016_j_jneumeth_2015_08_016
crossref_primary_10_1016_j_ces_2015_05_010
Cites_doi 10.1016/j.copbio.2004.11.004
10.1002/ar.21381
10.1002/dvdy.21857
10.1136/jcp.15.5.401
10.1111/j.1365-2818.2008.02142.x
10.1111/j.1365-2818.2009.03335.x
10.1111/j.1365-2818.2010.03381.x
10.1186/1472-6793-9-11
10.1089/ten.tec.2008.0436
10.1111/j.1365-2818.2011.03493.x
10.1016/j.nima.2007.05.099
10.1016/j.micron.2011.10.002
10.1161/CIRCIMAGING.109.918482
10.1093/ilar.49.1.35
10.1021/cr078250m
10.1016/j.jneumeth.2008.02.010
10.1148/radiol.2363041142
10.1002/jmri.10175
10.1107/S0909049507009004
10.1111/j.1365-2818.2011.03573.x
10.1016/j.micron.2010.06.003
10.1364/BOE.3.001924
10.1016/j.jneumeth.2008.03.006
10.1002/jmor.10699
10.11646/mr.27.3.2
10.1016/j.jbiomech.2010.08.027
10.1177/40.1.1370308
10.1016/j.nima.2007.05.073
10.1016/j.meatsci.2010.01.008
10.1111/j.1365-2818.2008.03088.x
10.1111/j.1365-2818.2005.01469.x
10.1371/journal.pgen.0020061
10.1179/his.2003.26.2.127
ContentType Journal Article
Copyright 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society
2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Copyright_xml – notice: 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society
– notice: 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7U5
8FD
L7M
7X8
7QO
FR3
P64
DOI 10.1111/jmi.12013
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Biotechnology Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Technology Research Database
MEDLINE - Academic
MEDLINE
Engineering Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2818
EndPage 31
ExternalDocumentID 2920218021
10_1111_jmi_12013
23432572
JMI12013
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
E3Z
EAD
EAP
EAS
EBB
EBC
EBD
EBO
EBS
EBX
EJD
EMB
EMK
EMOBN
EPT
ESX
EX3
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
G8K
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
RNS
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TH9
TN5
TUS
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WIN
WOHZO
WOW
WQJ
WRC
WVDHM
WXSBR
X7M
XG1
XOL
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7U5
8FD
L7M
7X8
7QO
FR3
P64
ID FETCH-LOGICAL-c4523-86c08bfaa6c4ad0cc60a73f6c59c23844b25776efc8249aeed23ce94de8bbd623
IEDL.DBID DR2
ISSN 0022-2720
IngestDate Fri Aug 16 23:44:47 EDT 2024
Sat Aug 17 00:24:49 EDT 2024
Thu Oct 10 17:56:52 EDT 2024
Fri Aug 23 01:33:42 EDT 2024
Sat Sep 28 07:50:46 EDT 2024
Sat Aug 24 01:05:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4523-86c08bfaa6c4ad0cc60a73f6c59c23844b25776efc8249aeed23ce94de8bbd623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23432572
PQID 1317492313
PQPubID 1086390
PageCount 11
ParticipantIDs proquest_miscellaneous_1399907389
proquest_miscellaneous_1314896156
proquest_journals_1317492313
crossref_primary_10_1111_jmi_12013
pubmed_primary_23432572
wiley_primary_10_1111_jmi_12013_JMI12013
PublicationCentury 2000
PublicationDate April 2013
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: April 2013
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Journal of microscopy (Oxford)
PublicationTitleAlternate J Microsc
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References 2002; 16
1993; 9
2009a; 9
2012; 245
2007; 580
2011
2010; 18
1986; 35
1977; 29
2005; 236
2008; 108
2005; 218
2010; 240
2009; 233
1962; 15
2006; 2
2011; 294
2010; 85
2007; 14
2009b; 238
2012; 3
2010; 238
2009; 270
2008; 49
2011; 42
2003; 26
2011; 44
2010; 3
2008; 232
2005; 16
2012; 43
2009; 15
2011; 243
1992; 40
2008; 171
2007; 27
Golding R.E. (e_1_2_6_14_1) 2007; 27
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Stockert J.C. (e_1_2_6_34_1) 1977; 29
e_1_2_6_19_1
Johnson G.A. (e_1_2_6_20_1) 1993; 9
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_37_1
Johnson J.T. (e_1_2_6_22_1) 2006; 2
Dierick M. (e_1_2_6_9_1) 2010; 18
e_1_2_6_21_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
Metscher B.D. (e_1_2_6_28_1) 2011
e_1_2_6_29_1
Hanaichi T. (e_1_2_6_16_1) 1986; 35
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 42
  start-page: 117
  year: 2011
  end-page: 131
  article-title: Negative staining and cryo‐negative staining of macromolecules and viruses for TEM
  publication-title: Micron.
– volume: 44
  start-page: 189
  year: 2011
  end-page: 192
  article-title: Micro‐computed tomography with iodine staining resolves the arrangement of muscle fibres
  publication-title: J. Biomech.
– volume: 16
  start-page: 423
  year: 2002
  end-page: 429
  article-title: Magnetic resonance histology for morphologic phenotyping
  publication-title: J. Magn. Reson. Imaging
– volume: 15
  start-page: 401
  year: 1962
  end-page: 413
  article-title: Studies on character and staining of fibrin
  publication-title: J. Clin. Pathol.
– volume: 35
  start-page: 304
  year: 1986
  end-page: 306
  article-title: A stable lead by modification of Sato's method
  publication-title: J. Electron Microsc. (Tokyo)
– volume: 43
  start-page: 104
  year: 2012
  end-page: 115
  article-title: X‐ray microtomography in biology
  publication-title: Micron.
– volume: 218
  start-page: 171
  year: 2005
  end-page: 179
  article-title: Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies
  publication-title: J. Microsc.
– volume: 580
  start-page: 266
  year: 2007
  end-page: 269
  article-title: UGCT: new X‐ray radiography and tomography facility
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 9
  start-page: 11
  year: 2009a
  article-title: MicroCT for comparative morphology: simple staining methods allow high‐contrast 3D imaging of diverse non‐mineralized animal tissues
  publication-title: BMC Physiol.
– volume: 26
  start-page: 127
  year: 2003
  end-page: 129
  article-title: Improved methods for staining fibrin
  publication-title: J. Histotechnol.
– volume: 232
  start-page: 476
  year: 2008
  end-page: 485
  article-title: Virtual histology by means of high‐resolution X‐ray CT
  publication-title: J. Microsc.
– volume: 2
  start-page: 471
  year: 2006
  end-page: 477
  article-title: Virtual histology of transgenic mouse embryos for high‐throughput phenotyping
  publication-title: PLoS Genet.
– volume: 16
  start-page: 93
  year: 2005
  end-page: 99
  article-title: Magnetic resonance microscopy: recent advances and applications
  publication-title: Curr. Opin. Biotechnol.
– volume: 18
  start-page: 451
  year: 2010
  end-page: 461
  article-title: A LabVIEW (R) based generic CT scanner control software platform
  publication-title: J. X-Ray Sci. Technol.
– volume: 40
  start-page: 123
  year: 1992
  end-page: 133
  article-title: Alternative staining methods for Lowicryl sections
  publication-title: J. Histochem. Cytochem.
– volume: 15
  start-page: 493
  year: 2009
  end-page: 499
  article-title: Micro‐computed tomographical imaging of soft biological materials using contrast techniques
  publication-title: Tissue Eng. Part C
– volume: 270
  start-page: 558
  year: 2009
  end-page: 587
  article-title: Three‐dimensional reconstruction of the odontophoral cartilages of caenogastropoda (mollusca: gastropoda) using micro‐CT: morphology and phylogenetic significance
  publication-title: J. Morphol.
– volume: 3
  start-page: 314
  year: 2010
  end-page: 322
  article-title: Rapid 3D phenotyping of cardiovascular development in mouse embryos by micro‐CT with iodine staining
  publication-title: Circ. Cardiovasc. Imaging
– volume: 580
  start-page: 442
  year: 2007
  end-page: 445
  article-title: Software tools for quantification of X‐ray microtomography at the UGCT
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 243
  start-page: 184
  year: 2011
  end-page: 196
  article-title: Transmission electron microscopy staining methods for the cortex of human hair: a modified osmium method and comparison with other stains
  publication-title: J. Microsc.
– volume: 14
  start-page: 282
  year: 2007
  end-page: 287
  article-title: Computed tomography imaging of the neuronal structure of Drosophila brain
  publication-title: J. Synchrotron Rad.
– volume: 3
  start-page: 1924
  year: 2012
  end-page: 1932
  article-title: Nondestructive volumetric imaging of tissue microstructure with benchtop X‐ray phase‐contrast tomography and critical point drying
  publication-title: Biomed. Opt. Express
– start-page: 1462
  year: 2011
  end-page: 1471
  article-title: X‐ray microtomographic imaging of intact vertebrate embryos
  publication-title: Cold Spring Harb. Protoc.
– volume: 238
  start-page: 632
  year: 2009b
  end-page: 640
  article-title: MicroCT for developmental biology: a versatile tool for high‐contrast 3D imaging at histological resolutions
  publication-title: Dev. Dyn.
– volume: 171
  start-page: 93
  year: 2008
  end-page: 97
  article-title: Imaging honey bee brain anatomy with micro‐X‐ray‐computed tomography
  publication-title: J. Neurosci. Methods
– volume: 27
  start-page: 123
  year: 2007
  end-page: 128
  article-title: Micro‐CT as a novel technique for 3D reconstruction of Molluscan anatomy
  publication-title: Molluscan Res.
– volume: 245
  start-page: 302
  year: 2012
  end-page: 310
  article-title: A comparison between micro‐CT and histology for the evaluation of cortical bone: effect of polymethylmethacrylate embedding on structural parameters
  publication-title: J. Microsc.
– volume: 85
  start-page: 250
  year: 2010
  end-page: 255
  article-title: Assessment of intramuscular fat level and distribution in beef muscles using X‐ray microcomputed tomography
  publication-title: Meat Sci.
– volume: 294
  start-page: 915
  year: 2011
  end-page: 928
  article-title: Reviewing the morphology of the jaw‐closing musculature in squirrels, rats, and guinea pigs with contrast‐enhanced microCT
  publication-title: Anat. Rec.
– volume: 9
  start-page: 1
  year: 1993
  end-page: 30
  article-title: Histology by magnetic resonance microscopy
  publication-title: Magn. Reson. Q.
– volume: 49
  start-page: 35
  year: 2008
  end-page: 53
  article-title: Small animal imaging with magnetic resonance microscopy
  publication-title: ILAR J.
– volume: 236
  start-page: 1053
  year: 2005
  end-page: 1058
  article-title: Micro‐CT of the human lung: imaging of alveoli and virtual endoscopy of an alveolar duct in a normal lung and in a lung with centrilobular emphysema–initial observations
  publication-title: Radiology
– volume: 240
  start-page: 32
  year: 2010
  end-page: 37
  article-title: 3D visualization and quantification of rat cortical bone porosity using a desktop micro‐CT system: a case study in the Tibia
  publication-title: J. Microsc.
– volume: 171
  start-page: 207
  year: 2008
  end-page: 213
  article-title: 3D micro‐CT imaging of the postmortem brain
  publication-title: J. Neurosci. Methods
– volume: 108
  start-page: 4734
  year: 2008
  end-page: 4741
  article-title: X‐ray microcomputer tomography for the study of biomineralized endo‐ and exoskeletons of animals
  publication-title: Chem. Rev.
– volume: 29
  start-page: 211
  year: 1977
  end-page: 214
  article-title: Sodium tungstate as a stain in electron‐microscopy
  publication-title: Biol. Cell.
– volume: 238
  start-page: 123
  year: 2010
  end-page: 133
  article-title: Micro‐computed X‐ray tomography: a new non‐destructive method of assessing sectional, fly‐through and 3D imaging of a soft‐bodied marine worm
  publication-title: J. Microsc.
– volume: 233
  start-page: 1
  year: 2009
  end-page: 4
  article-title: A new preparation method to study fresh plant structures with X‐ray computed tomography
  publication-title: J. Microsc.
– ident: e_1_2_6_36_1
  doi: 10.1016/j.copbio.2004.11.004
– ident: e_1_2_6_5_1
  doi: 10.1002/ar.21381
– ident: e_1_2_6_27_1
  doi: 10.1002/dvdy.21857
– volume: 9
  start-page: 1
  year: 1993
  ident: e_1_2_6_20_1
  article-title: Histology by magnetic resonance microscopy
  publication-title: Magn. Reson. Q.
  contributor:
    fullname: Johnson G.A.
– ident: e_1_2_6_23_1
  doi: 10.1136/jcp.15.5.401
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1365-2818.2008.02142.x
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1365-2818.2009.03335.x
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1365-2818.2010.03381.x
– volume: 35
  start-page: 304
  year: 1986
  ident: e_1_2_6_16_1
  article-title: A stable lead by modification of Sato's method
  publication-title: J. Electron Microsc. (Tokyo)
  contributor:
    fullname: Hanaichi T.
– volume: 18
  start-page: 451
  year: 2010
  ident: e_1_2_6_9_1
  article-title: A LabVIEW (R) based generic CT scanner control software platform
  publication-title: J. X-Ray Sci. Technol.
  contributor:
    fullname: Dierick M.
– volume: 29
  start-page: 211
  year: 1977
  ident: e_1_2_6_34_1
  article-title: Sodium tungstate as a stain in electron‐microscopy
  publication-title: Biol. Cell.
  contributor:
    fullname: Stockert J.C.
– ident: e_1_2_6_26_1
  doi: 10.1186/1472-6793-9-11
– ident: e_1_2_6_12_1
  doi: 10.1089/ten.tec.2008.0436
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1365-2818.2011.03493.x
– ident: e_1_2_6_25_1
  doi: 10.1016/j.nima.2007.05.099
– ident: e_1_2_6_29_1
  doi: 10.1016/j.micron.2011.10.002
– ident: e_1_2_6_8_1
  doi: 10.1161/CIRCIMAGING.109.918482
– ident: e_1_2_6_11_1
  doi: 10.1093/ilar.49.1.35
– ident: e_1_2_6_31_1
  doi: 10.1021/cr078250m
– ident: e_1_2_6_33_1
  doi: 10.1016/j.jneumeth.2008.02.010
– ident: e_1_2_6_38_1
  doi: 10.1148/radiol.2363041142
– ident: e_1_2_6_21_1
  doi: 10.1002/jmri.10175
– ident: e_1_2_6_30_1
  doi: 10.1107/S0909049507009004
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1365-2818.2011.03573.x
– start-page: 1462
  year: 2011
  ident: e_1_2_6_28_1
  article-title: X‐ray microtomographic imaging of intact vertebrate embryos
  publication-title: Cold Spring Harb. Protoc.
  contributor:
    fullname: Metscher B.D.
– ident: e_1_2_6_6_1
  doi: 10.1016/j.micron.2010.06.003
– ident: e_1_2_6_39_1
  doi: 10.1364/BOE.3.001924
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jneumeth.2008.03.006
– ident: e_1_2_6_15_1
  doi: 10.1002/jmor.10699
– volume: 27
  start-page: 123
  year: 2007
  ident: e_1_2_6_14_1
  article-title: Micro‐CT as a novel technique for 3D reconstruction of Molluscan anatomy
  publication-title: Molluscan Res.
  doi: 10.11646/mr.27.3.2
  contributor:
    fullname: Golding R.E.
– ident: e_1_2_6_19_1
  doi: 10.1016/j.jbiomech.2010.08.027
– ident: e_1_2_6_18_1
  doi: 10.1177/40.1.1370308
– ident: e_1_2_6_37_1
  doi: 10.1016/j.nima.2007.05.073
– ident: e_1_2_6_13_1
  doi: 10.1016/j.meatsci.2010.01.008
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1365-2818.2008.03088.x
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1365-2818.2005.01469.x
– volume: 2
  start-page: 471
  year: 2006
  ident: e_1_2_6_22_1
  article-title: Virtual histology of transgenic mouse embryos for high‐throughput phenotyping
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0020061
  contributor:
    fullname: Johnson J.T.
– ident: e_1_2_6_3_1
  doi: 10.1179/his.2003.26.2.127
SSID ssj0008580
Score 2.4957669
Snippet Summary High resolution X‐ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for...
High resolution X-ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for...
Summary High resolution X-ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 21
SubjectTerms Adipose tissue
Animals
Aqueous solutions
Cardiovascular disease
Contrast agent
Contrast agents
Contrast Media - isolation & purification
histology
Image Processing, Computer-Assisted - methods
Lower Extremity - diagnostic imaging
Medical imaging
Mice
soft tissue
soft tissue visualization
staining
Staining and Labeling - methods
Swine
Tomography
X-Ray Microtomography - methods
X‐ray microCT
Title An exploratory study of contrast agents for soft tissue visualization by means of high resolution X‐ray computed tomography imaging
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjmi.12013
https://www.ncbi.nlm.nih.gov/pubmed/23432572
https://www.proquest.com/docview/1317492313
https://search.proquest.com/docview/1314896156
https://search.proquest.com/docview/1399907389
Volume 250
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB5EEHxpq9b2WpVp6YMvOZK7TbLBJ_EHp9A-lAr3IITdzQaOkpyYXOH61Bff_Rv9S5ydJFdPsUjzFNjdsMns7HyTnfkG4Euoycj5JvdimUhPaKk8lencC00cm5xMdJBxtMW3aHQhzsfheAUOulyYhh9i8cPNaQbv107Bla4eKnkx6QdkvhzTZzCMXTjX8fe_1FEylH7HFO7OGltWIY7i6UYu26InAHMZr7LBOX0Nl91UmziTn_1Zrfvm9yMWx_98lzfwqgWieNisnA1YseUmrDWlKedbcHNYouX4PD6GR6ahxWmOHNuuqhqVS8qqkEAvVrSXY80ixF-TyuVpNtmdqOdYWLKGbqRjRkby7tvFjuO7P7fXao6mKSyRYT0tWgJtnBRcPektXJye_DgaeW3JBs8Icmk9GRlf6lypyAiV-cZEvoqHeWTCxBA4EELTFhFHNjeS_D5FBnowNDYRmZVaZwTFtmG1nJb2PaCga6glPUQEIpeJ1uQLKpKsNlmUKduDz53w0quGmSNdeDTFJOXv2YOdTqxpq5xVGhBmYl46av60aCa1cmclqrTTGfcRMiG4F_2rD6Fr2iJl0oN3zZJZzGTgEnbDeNCDfRb881NMz7-e8c2Hl3f9COsDLsvhIoh2YLW-ntldAke13mMtuAf80A4v
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RqqpcSr-gW2g7RRy4ZJXdOIkjcUFt0UKBAwJpLyiyHUdaoWQrkq20nLj03t_YX8J4kmwLVauqOUWKHTkZj-eNPfMGYDvUZOR8k3uxTKQntFSeynTuhSaOTU4mepBxtMVJNDoXh-NwvAS7XS5Mww-x2HBzmsHrtVNwtyH9q5YXk_6A7FfwAB6SugeucMPH05_kUTKUfscV7k4bW14hjuPput61Rr9BzLuIlU3O_ipcdINtIk0u-7Na9831PR7H__2ap_CkxaK410yeZ7Bky-fwqKlOOX8B3_ZKtByixyfxyEy0OM2Rw9tVVaNyeVkVEu7FipZzrFmK-HVSuVTNJsET9RwLSwbR9XTkyEgOfjvfcfzj5vuVmqNpaktkWE-LlkMbJwUXUHoJ5_ufzj6MvLZqg2cEebWejIwvda5UZITKfGMiX8VBHpkwMYQPhNC0SsSRzY0k10-RjR4GxiYis1LrjNDYGiyX09K-AhR0BVrSS8RA5DLRmtxBRaLVJosyZXuw1Ukv_dKQc6QLp6aYpPw_e7DZyTVt9bNKBwSbmJqOHr9fPCbNcsclqrTTGbcRMiHEF_2tDQFsWiVl0oP1Zs4sRjJ0ObthPOzBDkv-z0NMD48P-Ob1vzd9B49HZ8dH6dHByecNWBlylQ4XULQJy_XVzL4hrFTrt6wSt7ixEkc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qi-KL9av1bNVRfPAlR-5us9ngU2l7tFWLiIV7EMJ-wlGSK01OOJ988b1_Y_8SZzfJ2VYUMU-B3Q2bzM7Ob7IzvwF4nSgycrF2USoyETElZCSNclGi01Q7MtEDE6ItjvnBCTuaJJMVeNvlwjT8EMsfbl4zwn7tFfzMuKtKXkz7AzJfo1uwxjghX4-IPv3ijhKJiDuqcH_Y2NIKhTCebuh1Y_QbwrwOWIPFGa_Dl26uTaDJaX9eq77-doPG8T9f5j7ca5Eo7jRL5wGs2PIh3G5qUy4ewY-dEm0I0Avn8Bh4aHHmMAS3y6pG6bOyKiTUixVt5lgHGeLXaeUTNZv0TlQLLCyZQz_SUyMjufftasfJ5feLc7lA3VSWMFjPipZBG6dFKJ_0GE7G-593D6K2ZkOkGfm0keA6FspJyTWTJtaaxzIdOa6TTBM6YEzRHpFy67Qgx0-ShR6OtM2YsUIpQ1hsA1bLWWmfADK6RkrQQ9iAOZEpRc6gJMkqbbiRtgevOuHlZw01R750aYppHr5nD7Y7seatdlb5gEBTIKaj5pfLZtIrf1giSzubhz5MZIT3-N_6ELymPVJkPdhslsxyJkOfsZukwx68CYL_8xTzow-H4ebpv3d9AXc-7o3z94fH77bg7jCU6PDRRNuwWp_P7TMCSrV6HhTiJ4HpEPY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+exploratory+study+of+contrast+agents+for+soft+tissue+visualization+by+means+of+high+resolution+X-ray+computed+tomography+imaging&rft.jtitle=Journal+of+microscopy+%28Oxford%29&rft.au=Pauwels%2C+E&rft.au=Van+Loo%2C+D&rft.au=Cornillie%2C+P&rft.au=Brabant%2C+L&rft.date=2013-04-01&rft.eissn=1365-2818&rft.volume=250&rft.issue=1&rft.spage=21&rft_id=info:doi/10.1111%2Fjmi.12013&rft_id=info%3Apmid%2F23432572&rft.externalDocID=23432572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2720&client=summon