Multiscale Structural Engineering of Ni‐Doped CoO Nanosheets for Zinc–Air Batteries with High Power Density

Zinc–air batteries offer a possible solution for large‐scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni‐dop...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 46; pp. e1804653 - n/a
Main Authors Li, Yue‐Jiao, Cui, Lan, Da, Peng‐Fei, Qiu, Kang‐Wen, Qin, Wen‐Jing, Hu, Wen‐Bin, Du, Xi‐Wen, Davey, Kenneth, Ling, Tao, Qiao, Shi‐Zhang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zinc–air batteries offer a possible solution for large‐scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni‐doped CoO nanosheets (NSs) for zinc–air batteries with superior high power density/energy density and durability is reported for the first time. In micro‐ and nanoscale, robust 2D architecture together with numerous nanopores inside the nanosheets provides an advantageous micro/nanostructured surface for O2 diffusion and a high electrocatalytic active surface area. In atomic scale, Ni doping significantly enhances the intrinsic oxygen reduction reaction activity per active site. As a result of controlled multiscale structure, the primary zinc–air battery with engineered Ni‐doped CoO NSs electrode shows excellent performance with a record‐high discharge peak power density of 377 mW cm−2, and works stable for >400 h at 5 mA cm−2. Rechargeable zinc–air battery based on Ni‐doped CoO NSs affords an unprecedented small charge–discharge voltage of 0.63 V, outperforming state‐of‐the‐art Pt/C catalyst‐based device. Moreover, it is shown that Ni‐doped CoO NSs assembled into all‐solid‐state coin cells can power 17 light‐emitting diodes and charge an iPhone 7 mobile phone. A multiscale structure engineering of Ni‐doped CoO nanosheets from micro‐ through nano‐ to atomic scale for high‐power‐density zinc–air batteries is demonstrated. The engineered zinc–air battery based on Ni‐doped CoO nanosheets realizes sufficient mass transport, abundant catalysts active sites, and excellent intrinsic activity simultaneously, affording a record‐high discharge peak power density of 377 mW cm−2.
AbstractList Zinc-air batteries offer a possible solution for large-scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni-doped CoO nanosheets (NSs) for zinc-air batteries with superior high power density/energy density and durability is reported for the first time. In micro- and nanoscale, robust 2D architecture together with numerous nanopores inside the nanosheets provides an advantageous micro/nanostructured surface for O diffusion and a high electrocatalytic active surface area. In atomic scale, Ni doping significantly enhances the intrinsic oxygen reduction reaction activity per active site. As a result of controlled multiscale structure, the primary zinc-air battery with engineered Ni-doped CoO NSs electrode shows excellent performance with a record-high discharge peak power density of 377 mW cm , and works stable for >400 h at 5 mA cm . Rechargeable zinc-air battery based on Ni-doped CoO NSs affords an unprecedented small charge-discharge voltage of 0.63 V, outperforming state-of-the-art Pt/C catalyst-based device. Moreover, it is shown that Ni-doped CoO NSs assembled into all-solid-state coin cells can power 17 light-emitting diodes and charge an iPhone 7 mobile phone.
Zinc–air batteries offer a possible solution for large‐scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni‐doped CoO nanosheets (NSs) for zinc–air batteries with superior high power density/energy density and durability is reported for the first time. In micro‐ and nanoscale, robust 2D architecture together with numerous nanopores inside the nanosheets provides an advantageous micro/nanostructured surface for O2 diffusion and a high electrocatalytic active surface area. In atomic scale, Ni doping significantly enhances the intrinsic oxygen reduction reaction activity per active site. As a result of controlled multiscale structure, the primary zinc–air battery with engineered Ni‐doped CoO NSs electrode shows excellent performance with a record‐high discharge peak power density of 377 mW cm−2, and works stable for >400 h at 5 mA cm−2. Rechargeable zinc–air battery based on Ni‐doped CoO NSs affords an unprecedented small charge–discharge voltage of 0.63 V, outperforming state‐of‐the‐art Pt/C catalyst‐based device. Moreover, it is shown that Ni‐doped CoO NSs assembled into all‐solid‐state coin cells can power 17 light‐emitting diodes and charge an iPhone 7 mobile phone. A multiscale structure engineering of Ni‐doped CoO nanosheets from micro‐ through nano‐ to atomic scale for high‐power‐density zinc–air batteries is demonstrated. The engineered zinc–air battery based on Ni‐doped CoO nanosheets realizes sufficient mass transport, abundant catalysts active sites, and excellent intrinsic activity simultaneously, affording a record‐high discharge peak power density of 377 mW cm−2.
Zinc–air batteries offer a possible solution for large‐scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni‐doped CoO nanosheets (NSs) for zinc–air batteries with superior high power density/energy density and durability is reported for the first time. In micro‐ and nanoscale, robust 2D architecture together with numerous nanopores inside the nanosheets provides an advantageous micro/nanostructured surface for O2 diffusion and a high electrocatalytic active surface area. In atomic scale, Ni doping significantly enhances the intrinsic oxygen reduction reaction activity per active site. As a result of controlled multiscale structure, the primary zinc–air battery with engineered Ni‐doped CoO NSs electrode shows excellent performance with a record‐high discharge peak power density of 377 mW cm−2, and works stable for >400 h at 5 mA cm−2. Rechargeable zinc–air battery based on Ni‐doped CoO NSs affords an unprecedented small charge–discharge voltage of 0.63 V, outperforming state‐of‐the‐art Pt/C catalyst‐based device. Moreover, it is shown that Ni‐doped CoO NSs assembled into all‐solid‐state coin cells can power 17 light‐emitting diodes and charge an iPhone 7 mobile phone.
Zinc-air batteries offer a possible solution for large-scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni-doped CoO nanosheets (NSs) for zinc-air batteries with superior high power density/energy density and durability is reported for the first time. In micro- and nanoscale, robust 2D architecture together with numerous nanopores inside the nanosheets provides an advantageous micro/nanostructured surface for O2 diffusion and a high electrocatalytic active surface area. In atomic scale, Ni doping significantly enhances the intrinsic oxygen reduction reaction activity per active site. As a result of controlled multiscale structure, the primary zinc-air battery with engineered Ni-doped CoO NSs electrode shows excellent performance with a record-high discharge peak power density of 377 mW cm-2 , and works stable for >400 h at 5 mA cm-2 . Rechargeable zinc-air battery based on Ni-doped CoO NSs affords an unprecedented small charge-discharge voltage of 0.63 V, outperforming state-of-the-art Pt/C catalyst-based device. Moreover, it is shown that Ni-doped CoO NSs assembled into all-solid-state coin cells can power 17 light-emitting diodes and charge an iPhone 7 mobile phone.Zinc-air batteries offer a possible solution for large-scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni-doped CoO nanosheets (NSs) for zinc-air batteries with superior high power density/energy density and durability is reported for the first time. In micro- and nanoscale, robust 2D architecture together with numerous nanopores inside the nanosheets provides an advantageous micro/nanostructured surface for O2 diffusion and a high electrocatalytic active surface area. In atomic scale, Ni doping significantly enhances the intrinsic oxygen reduction reaction activity per active site. As a result of controlled multiscale structure, the primary zinc-air battery with engineered Ni-doped CoO NSs electrode shows excellent performance with a record-high discharge peak power density of 377 mW cm-2 , and works stable for >400 h at 5 mA cm-2 . Rechargeable zinc-air battery based on Ni-doped CoO NSs affords an unprecedented small charge-discharge voltage of 0.63 V, outperforming state-of-the-art Pt/C catalyst-based device. Moreover, it is shown that Ni-doped CoO NSs assembled into all-solid-state coin cells can power 17 light-emitting diodes and charge an iPhone 7 mobile phone.
Zinc–air batteries offer a possible solution for large‐scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni‐doped CoO nanosheets (NSs) for zinc–air batteries with superior high power density/energy density and durability is reported for the first time. In micro‐ and nanoscale, robust 2D architecture together with numerous nanopores inside the nanosheets provides an advantageous micro/nanostructured surface for O 2 diffusion and a high electrocatalytic active surface area. In atomic scale, Ni doping significantly enhances the intrinsic oxygen reduction reaction activity per active site. As a result of controlled multiscale structure, the primary zinc–air battery with engineered Ni‐doped CoO NSs electrode shows excellent performance with a record‐high discharge peak power density of 377 mW cm −2 , and works stable for >400 h at 5 mA cm −2 . Rechargeable zinc–air battery based on Ni‐doped CoO NSs affords an unprecedented small charge–discharge voltage of 0.63 V, outperforming state‐of‐the‐art Pt/C catalyst‐based device. Moreover, it is shown that Ni‐doped CoO NSs assembled into all‐solid‐state coin cells can power 17 light‐emitting diodes and charge an iPhone 7 mobile phone.
Author Ling, Tao
Li, Yue‐Jiao
Hu, Wen‐Bin
Da, Peng‐Fei
Davey, Kenneth
Qiao, Shi‐Zhang
Qin, Wen‐Jing
Du, Xi‐Wen
Cui, Lan
Qiu, Kang‐Wen
Author_xml – sequence: 1
  givenname: Yue‐Jiao
  surname: Li
  fullname: Li, Yue‐Jiao
  organization: Tianjin University
– sequence: 2
  givenname: Lan
  surname: Cui
  fullname: Cui, Lan
  organization: Tianjin University
– sequence: 3
  givenname: Peng‐Fei
  surname: Da
  fullname: Da, Peng‐Fei
  organization: Tianjin University
– sequence: 4
  givenname: Kang‐Wen
  surname: Qiu
  fullname: Qiu, Kang‐Wen
  organization: Tianjin University
– sequence: 5
  givenname: Wen‐Jing
  surname: Qin
  fullname: Qin, Wen‐Jing
  organization: Tianjin University of Technology
– sequence: 6
  givenname: Wen‐Bin
  surname: Hu
  fullname: Hu, Wen‐Bin
  organization: Tianjin University
– sequence: 7
  givenname: Xi‐Wen
  surname: Du
  fullname: Du, Xi‐Wen
  organization: Tianjin University
– sequence: 8
  givenname: Kenneth
  surname: Davey
  fullname: Davey, Kenneth
  organization: The University of Adelaide
– sequence: 9
  givenname: Tao
  orcidid: 0000-0002-8830-4492
  surname: Ling
  fullname: Ling, Tao
  email: lingt04@tju.edu.cn
  organization: Tianjin University
– sequence: 10
  givenname: Shi‐Zhang
  surname: Qiao
  fullname: Qiao, Shi‐Zhang
  organization: The University of Adelaide
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30368937$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URNPCliWyxIbNBN_GM16GpLRIvSABGzYjz8xx4mpip7ZHUXZ9BCTesE9SVylFqoRYnc33ndt_hA6cd4DQW0qmlBD2UfdrPWWE1kTIkr9AE1oyWgiiygM0IYqXhZKiPkRHMV4TQpQk8hU65ITLWvFqgvzFOCQbOz0A_pbC2KUx6AGfuKV1AMG6JfYGX9q7218Lv4Eez_0VvtTOxxVAitj4gH9a193d_p7ZgD_plLIFEW9tWuEzu1zhr34LAS_ARZt2r9FLo4cIbx7rMfrx-eT7_Kw4vzr9Mp-dF50oGS9Y3_Ke1KBkVbO2Iy2r812SaqpkWYtetIIb01WV1oLJlgpJAIzSpubaEOj4Mfqw77sJ_maEmJp1vhKGQTvwY2wYZVJRXiqS0ffP0Gs_Bpe3yxSnVZ1Hlpl690iN7Rr6ZhPsWodd8-eVGZjugS74GAOYJ4SS5iGr5iGr5imrLIhnQmeTTta7FLQd_q2pvba1A-z-M6SZLS5mf9176eap8g
CitedBy_id crossref_primary_10_1016_j_ijhydene_2024_11_148
crossref_primary_10_1142_S1793292020500708
crossref_primary_10_1021_acsami_0c09385
crossref_primary_10_1002_aenm_201900196
crossref_primary_10_1016_j_rser_2021_111970
crossref_primary_10_1016_j_jallcom_2021_161172
crossref_primary_10_1016_j_ijhydene_2020_09_174
crossref_primary_10_1016_j_cej_2025_159958
crossref_primary_10_1016_j_jmgm_2021_108101
crossref_primary_10_1002_adma_202307790
crossref_primary_10_1016_j_electacta_2020_136145
crossref_primary_10_1021_acsaem_2c01417
crossref_primary_10_1002_adma_201807771
crossref_primary_10_1073_pnas_2307901120
crossref_primary_10_1007_s41918_020_00071_6
crossref_primary_10_1039_C9TA03324F
crossref_primary_10_1016_j_jcis_2024_09_187
crossref_primary_10_1021_acsnano_2c00557
crossref_primary_10_1021_acsaem_9b00932
crossref_primary_10_1002_anie_202318924
crossref_primary_10_1002_cssc_202202192
crossref_primary_10_1039_C9NR07008G
crossref_primary_10_1002_ange_201907477
crossref_primary_10_1021_acsaem_0c02676
crossref_primary_10_1007_s11706_020_0521_9
crossref_primary_10_1016_j_diamond_2023_110509
crossref_primary_10_1016_j_jcis_2024_09_213
crossref_primary_10_1016_j_mtener_2022_101150
crossref_primary_10_1039_D2QI02564G
crossref_primary_10_1016_j_nanoen_2020_105710
crossref_primary_10_1016_j_cej_2022_139831
crossref_primary_10_1002_smll_202408627
crossref_primary_10_1016_j_apcatb_2022_122250
crossref_primary_10_1016_j_jcis_2022_07_062
crossref_primary_10_1016_j_mtener_2021_100682
crossref_primary_10_1002_aesr_202100034
crossref_primary_10_1021_acsami_0c03672
crossref_primary_10_1007_s40843_020_1292_6
crossref_primary_10_1002_adma_202001651
crossref_primary_10_1016_j_mtener_2020_100624
crossref_primary_10_1186_s40580_024_00437_2
crossref_primary_10_1021_acs_chemmater_4c02686
crossref_primary_10_1039_D1TA05812F
crossref_primary_10_1039_D3TC03275B
crossref_primary_10_1016_j_jpowsour_2021_230280
crossref_primary_10_1021_acsnano_1c11012
crossref_primary_10_1016_j_jcis_2022_10_086
crossref_primary_10_1016_j_colsurfa_2024_135499
crossref_primary_10_1039_C9TA04253A
crossref_primary_10_1016_j_matt_2019_05_008
crossref_primary_10_1007_s10853_021_06122_7
crossref_primary_10_1016_j_jallcom_2021_158940
crossref_primary_10_1002_batt_202000006
crossref_primary_10_1007_s41918_023_00181_x
crossref_primary_10_1021_acs_langmuir_1c02844
crossref_primary_10_1039_D0CE00325E
crossref_primary_10_1016_j_jpowsour_2019_227177
crossref_primary_10_1016_j_jcis_2021_03_170
crossref_primary_10_1002_adfm_202107928
crossref_primary_10_1021_acscatal_1c01585
crossref_primary_10_1039_D2CS00684G
crossref_primary_10_1016_j_jcis_2024_08_045
crossref_primary_10_1039_C9NR07159H
crossref_primary_10_1039_D2RA07648A
crossref_primary_10_1016_j_gee_2020_06_022
crossref_primary_10_1016_j_jcis_2023_08_142
crossref_primary_10_3389_fenrg_2022_1082239
crossref_primary_10_1016_j_apcatb_2019_117852
crossref_primary_10_1016_j_electacta_2019_06_121
crossref_primary_10_1016_j_apsusc_2022_153522
crossref_primary_10_1039_C9DT01046G
crossref_primary_10_1002_anie_202002650
crossref_primary_10_1002_smll_201804832
crossref_primary_10_1016_j_jpowsour_2021_229584
crossref_primary_10_1002_advs_202101438
crossref_primary_10_1002_advs_201901837
crossref_primary_10_1016_j_jcis_2019_09_083
crossref_primary_10_1002_adma_202107103
crossref_primary_10_1016_j_jpowsour_2021_229547
crossref_primary_10_3389_fmats_2022_1089695
crossref_primary_10_1016_j_jcis_2021_10_144
crossref_primary_10_1016_j_cej_2022_137049
crossref_primary_10_1016_j_jcis_2022_04_043
crossref_primary_10_1016_j_apcatb_2021_120281
crossref_primary_10_1002_aesr_202400001
crossref_primary_10_1002_adma_202109407
crossref_primary_10_1002_ange_202002650
crossref_primary_10_1016_j_ensm_2021_08_022
crossref_primary_10_1039_D2TA09161E
crossref_primary_10_1002_slct_202405622
crossref_primary_10_1002_adhm_202401836
crossref_primary_10_1002_smll_202310694
crossref_primary_10_1007_s12209_022_00321_2
crossref_primary_10_1016_j_jechem_2021_07_009
crossref_primary_10_1002_adma_202001866
crossref_primary_10_1021_acssuschemeng_9b05033
crossref_primary_10_1007_s11426_020_9739_2
crossref_primary_10_1016_j_nanoen_2021_105813
crossref_primary_10_1021_acssuschemeng_9b05713
crossref_primary_10_20517_energymater_2023_66
crossref_primary_10_1002_adfm_202315039
crossref_primary_10_1016_j_ensm_2025_104109
crossref_primary_10_1016_j_jallcom_2021_161637
crossref_primary_10_1002_anie_202000690
crossref_primary_10_1002_batt_201900052
crossref_primary_10_3390_nano13061066
crossref_primary_10_1039_D3CS00295K
crossref_primary_10_1007_s11431_021_1942_6
crossref_primary_10_1016_j_ensm_2022_08_035
crossref_primary_10_1002_ange_202318924
crossref_primary_10_1016_j_nanoen_2018_12_094
crossref_primary_10_1039_D4CC05217J
crossref_primary_10_1039_C9MH00502A
crossref_primary_10_1016_j_isci_2025_112133
crossref_primary_10_1002_adma_201907168
crossref_primary_10_1016_j_micromeso_2024_113292
crossref_primary_10_1016_j_nanoen_2019_06_023
crossref_primary_10_1002_anie_201907477
crossref_primary_10_1021_prechem_3c00059
crossref_primary_10_1007_s40820_020_00522_1
crossref_primary_10_1039_D2QM00858K
crossref_primary_10_1088_1361_6528_ab2af0
crossref_primary_10_1021_acsami_0c08676
crossref_primary_10_1002_adfm_202301947
crossref_primary_10_1016_j_est_2023_106656
crossref_primary_10_1039_C9TA09395H
crossref_primary_10_1002_ange_202000690
crossref_primary_10_1002_cctc_201901634
crossref_primary_10_1021_acscatal_3c01400
crossref_primary_10_1002_cctc_202300936
crossref_primary_10_1016_j_est_2023_106926
crossref_primary_10_1016_j_cattod_2024_115108
crossref_primary_10_1016_j_cej_2021_130313
crossref_primary_10_1016_j_gce_2020_09_013
crossref_primary_10_1021_acs_inorgchem_4c02599
crossref_primary_10_1002_adma_201908488
crossref_primary_10_1016_j_cej_2023_141358
crossref_primary_10_1002_celc_202001419
crossref_primary_10_1039_D0TA00793E
crossref_primary_10_1016_j_ensm_2019_07_028
crossref_primary_10_1149_1945_7111_ac5794
crossref_primary_10_1016_j_electacta_2020_137264
crossref_primary_10_1016_j_jpowsour_2022_231076
crossref_primary_10_1002_aenm_202300927
crossref_primary_10_1039_D0NR00138D
crossref_primary_10_1016_j_nanoen_2023_109236
crossref_primary_10_1002_adma_201807468
crossref_primary_10_1039_C9TA10079B
Cites_doi 10.1002/aenm.201602420
10.1103/PhysRevB.57.1505
10.1038/nmat3087
10.1021/cm3005198
10.1002/anie.201503612
10.1103/PhysRevB.50.17953
10.1039/C4CS00015C
10.1002/advs.201700691
10.1021/ja305623m
10.1002/aenm.201301389
10.1002/adma.201703657
10.1039/C4CC01625D
10.1126/science.1142593
10.1038/nnano.2015.48
10.1039/C4CS00470A
10.1021/cr020730k
10.1021/acsnano.5b02266
10.1002/adma.201506197
10.1038/nchem.2740
10.1016/j.jpowsour.2015.02.114
10.1088/0957-4484/22/24/245607
10.1002/smll.201401869
10.1039/C3CS60248F
10.1002/adma.201704681
10.1126/sciadv.1501122
10.1103/PhysRevLett.77.3865
10.1002/adma.201302569
10.1016/0927-0256(96)00008-0
10.1021/jp047349j
10.1002/adfm.201600636
10.1038/ncomms12876
10.1038/35104644
10.1126/science.1168049
10.1039/C2CS35241A
10.1021/acsnano.6b05914
10.1038/s41467-017-01872-y
10.1002/adma.201705796
10.1002/aenm.201700779
10.1021/ja5082553
10.1002/adma.201401848
10.1038/ncomms2812
10.1038/nchem.931
10.1021/jacs.6b05046
10.1021/acs.accounts.8b00070
10.1039/c3nr05835b
10.1002/anie.201610119
10.1002/anie.201104004
10.1002/anie.201209548
10.1038/ncomms5973
10.1002/anie.201206720
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201804653
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30368937
10_1002_adma_201804653
ADMA201804653
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Fund for Excellent Young Scholars
  funderid: 51722103
– fundername: Natural Science Foundation of China
  funderid: 51571149; 21576202
– fundername: National Natural Science Foundation of China and Guangdong Province
  funderid: U1601216
– fundername: Australian Research Council
  funderid: FL170100154; DP170104464; DP160104866
– fundername: Australian Research Council
  grantid: FL170100154
– fundername: Natural Science Foundation of China
  grantid: 51571149
– fundername: Australian Research Council
  grantid: DP170104464
– fundername: National Science Fund for Excellent Young Scholars
  grantid: 51722103
– fundername: Natural Science Foundation of China
  grantid: 21576202
– fundername: Australian Research Council
  grantid: DP160104866
– fundername: National Natural Science Foundation of China and Guangdong Province
  grantid: U1601216
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4523-2db3d08e96782bc0b2852161a196584d4b43ffc77aa426b1460eef9af83af0ec3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 22:27:47 EDT 2025
Mon Jul 14 09:02:15 EDT 2025
Wed Feb 19 02:41:39 EST 2025
Tue Jul 01 00:44:46 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Wed Jan 22 17:00:50 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords oxygen reduction reaction
electrocatalysis
transitional metal oxide
zinc-air batteries
nanosheets
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4523-2db3d08e96782bc0b2852161a196584d4b43ffc77aa426b1460eef9af83af0ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8830-4492
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201804653
PMID 30368937
PQID 2131789655
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2126913590
proquest_journals_2131789655
pubmed_primary_30368937
crossref_primary_10_1002_adma_201804653
crossref_citationtrail_10_1002_adma_201804653
wiley_primary_10_1002_adma_201804653_ADMA201804653
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Nov
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-Nov
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 283
2017; 7
2017; 8
2004; 104
2013; 4
2013; 25
2013; 42
2015; 11
2015; 10
2015; 54
2014; 26
2011; 10
2017; 29
2015; 9
2011; 3
2004; 108
2014; 136
2017; 9
2014; 43
2012; 51
1996; 77
2016; 7
2014; 5
2014; 4
2007; 317
2018; 5
2012; 134
2016; 2
2017; 11
2015; 44
2011; 50
2017; 56
2013; 52
2018
2011; 22
2018; 30
2016; 138
2018; 51
2016; 28
2012; 24
2014; 50
1994; 50
2016; 26
2014; 6
2009; 323
2001; 414
1996; 6
1998; 57
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
Da P. (e_1_2_5_32_1) 2018
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_50_1
References_xml – volume: 138
  start-page: 10226
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 347
  year: 2017
  publication-title: ACS Nano
– volume: 44
  start-page: 2060
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 1704681
  year: 2017
  publication-title: Adv. Mater.
– volume: 25
  start-page: 6226
  year: 2013
  publication-title: Adv. Mater.
– volume: 26
  start-page: 4397
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 3173
  year: 2014
  publication-title: Nanoscale
– volume: 10
  start-page: 780
  year: 2011
  publication-title: Nat. Mater.
– volume: 43
  start-page: 7746
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 1602420
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 43
  start-page: 5257
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 30
  start-page: 1703657
  year: 2018
  publication-title: Adv. Mater.
– volume: 56
  start-page: 610
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 3777
  year: 2016
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1939
  year: 2015
  publication-title: Small
– volume: 30
  start-page: 1705796
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1301389
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 51
  start-page: 1590
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 54
  start-page: 9654
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 11496
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 1505
  year: 1998
  publication-title: Phys. Rev. B
– volume: 283
  start-page: 358
  year: 2015
  publication-title: J. Power Sources
– volume: 108
  start-page: 17886
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 9
  start-page: 810
  year: 2017
  publication-title: Nat. Chem.
– year: 2018
  publication-title: Chem. Eng. Sci.
– volume: 52
  start-page: 3110
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 1700691
  year: 2018
  publication-title: Adv. Sci.
– volume: 5
  start-page: 4973
  year: 2014
  publication-title: Nat. Commun.
– volume: 50
  start-page: 10969
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: e1501122
  year: 2016
  publication-title: Sci. Adv.
– volume: 317
  start-page: 355
  year: 2007
  publication-title: Science
– volume: 26
  start-page: 6074
  year: 2014
  publication-title: Adv. Mater.
– volume: 104
  start-page: 4245
  year: 2004
  publication-title: Chem. Rev.
– volume: 3
  start-page: 79
  year: 2011
  publication-title: Nat. Chem.
– volume: 7
  start-page: 1700779
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 1509
  year: 2017
  publication-title: Nat. Commun.
– volume: 134
  start-page: 15849
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 6493
  year: 2015
  publication-title: ACS Nano
– volume: 136
  start-page: 13925
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 12876
  year: 2016
  publication-title: Nat. Commun.
– volume: 24
  start-page: 2311
  year: 2012
  publication-title: Chem. Mater.
– volume: 323
  start-page: 760
  year: 2009
  publication-title: Science
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comput. Mater. Sci.
– volume: 42
  start-page: 89
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 50
  start-page: 6479
  year: 2014
  publication-title: Chem. Commun.
– volume: 4
  start-page: 1805
  year: 2013
  publication-title: Nat. Commun.
– volume: 50
  start-page: 17953
  year: 1994
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 444
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 22
  start-page: 245607
  year: 2011
  publication-title: Nanotechnology
– ident: e_1_2_5_20_1
  doi: 10.1002/aenm.201602420
– ident: e_1_2_5_51_1
  doi: 10.1103/PhysRevB.57.1505
– ident: e_1_2_5_14_1
  doi: 10.1038/nmat3087
– year: 2018
  ident: e_1_2_5_32_1
  publication-title: Chem. Eng. Sci.
– ident: e_1_2_5_43_1
  doi: 10.1021/cm3005198
– ident: e_1_2_5_30_1
  doi: 10.1002/anie.201503612
– ident: e_1_2_5_49_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_5_3_1
  doi: 10.1039/C4CS00015C
– ident: e_1_2_5_4_1
  doi: 10.1002/advs.201700691
– ident: e_1_2_5_12_1
  doi: 10.1021/ja305623m
– ident: e_1_2_5_31_1
  doi: 10.1002/aenm.201301389
– ident: e_1_2_5_33_1
  doi: 10.1002/adma.201703657
– ident: e_1_2_5_46_1
  doi: 10.1039/C4CC01625D
– ident: e_1_2_5_37_1
  doi: 10.1126/science.1142593
– ident: e_1_2_5_22_1
  doi: 10.1038/nnano.2015.48
– ident: e_1_2_5_39_1
  doi: 10.1039/C4CS00470A
– ident: e_1_2_5_2_1
  doi: 10.1021/cr020730k
– ident: e_1_2_5_9_1
  doi: 10.1021/acsnano.5b02266
– ident: e_1_2_5_28_1
  doi: 10.1002/adma.201506197
– ident: e_1_2_5_42_1
  doi: 10.1038/nchem.2740
– ident: e_1_2_5_6_1
  doi: 10.1016/j.jpowsour.2015.02.114
– ident: e_1_2_5_47_1
  doi: 10.1088/0957-4484/22/24/245607
– ident: e_1_2_5_45_1
  doi: 10.1002/smll.201401869
– ident: e_1_2_5_5_1
  doi: 10.1039/C3CS60248F
– ident: e_1_2_5_18_1
  doi: 10.1002/adma.201704681
– ident: e_1_2_5_23_1
  doi: 10.1126/sciadv.1501122
– ident: e_1_2_5_50_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_5_24_1
  doi: 10.1002/adma.201302569
– ident: e_1_2_5_48_1
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_5_41_1
  doi: 10.1021/jp047349j
– ident: e_1_2_5_10_1
  doi: 10.1002/adfm.201600636
– ident: e_1_2_5_15_1
  doi: 10.1038/ncomms12876
– ident: e_1_2_5_1_1
  doi: 10.1038/35104644
– ident: e_1_2_5_21_1
  doi: 10.1126/science.1168049
– ident: e_1_2_5_36_1
  doi: 10.1039/C2CS35241A
– ident: e_1_2_5_44_1
  doi: 10.1021/acsnano.6b05914
– ident: e_1_2_5_38_1
  doi: 10.1038/s41467-017-01872-y
– ident: e_1_2_5_17_1
  doi: 10.1002/adma.201705796
– ident: e_1_2_5_34_1
  doi: 10.1002/aenm.201700779
– ident: e_1_2_5_13_1
  doi: 10.1021/ja5082553
– ident: e_1_2_5_8_1
  doi: 10.1002/adma.201401848
– ident: e_1_2_5_7_1
  doi: 10.1038/ncomms2812
– ident: e_1_2_5_40_1
  doi: 10.1038/nchem.931
– ident: e_1_2_5_29_1
  doi: 10.1021/jacs.6b05046
– ident: e_1_2_5_35_1
  doi: 10.1021/acs.accounts.8b00070
– ident: e_1_2_5_11_1
  doi: 10.1039/c3nr05835b
– ident: e_1_2_5_19_1
  doi: 10.1002/anie.201610119
– ident: e_1_2_5_16_1
  doi: 10.1002/anie.201104004
– ident: e_1_2_5_26_1
  doi: 10.1002/anie.201209548
– ident: e_1_2_5_27_1
  doi: 10.1038/ncomms5973
– ident: e_1_2_5_25_1
  doi: 10.1002/anie.201206720
SSID ssj0009606
Score 2.6154053
Snippet Zinc–air batteries offer a possible solution for large‐scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and...
Zinc-air batteries offer a possible solution for large-scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1804653
SubjectTerms Diffusion
Discharge
Durability
electrocatalysis
Energy storage
Flux density
Metal air batteries
Nanosheets
Nanostructure
Organic light emitting diodes
oxygen reduction reaction
Oxygen reduction reactions
Porosity
Rechargeable batteries
Smartphones
Storage batteries
Structural engineering
transitional metal oxide
Zinc
Zinc-oxygen batteries
zinc–air batteries
Title Multiscale Structural Engineering of Ni‐Doped CoO Nanosheets for Zinc–Air Batteries with High Power Density
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201804653
https://www.ncbi.nlm.nih.gov/pubmed/30368937
https://www.proquest.com/docview/2131789655
https://www.proquest.com/docview/2126913590
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NatwwEMeHkFNz6Eeatm7ToEKhJyW2JDv2cck2hELS0iYQejH6pEuKHerNITnlEQp9wzxJZ-RdZ7clFNKbjSVsSTOjv2TpJ4C3RVagShCG-2AVV5XNuJFBcmW1wAy5FBGSdHhUHJyoD6f56cIu_p4PMUy4kWfEeE0Ork23cwsN1S5yg7IyJUQYBmFasEWq6PMtP4rkeYTtyZxXhSrn1MZU7CxnX-6V_pKay8o1dj37j0DPP7pfcXK2fTE12_bqD57j_5TqMTyc6VI26g3pCaz4Zh3WFmiFT6GNm3U7bFTPvkTsLCE72EIa1gZ2NLm5_jluz71je-1HhtG77b55P-0YymP2ddLYm-tfo8kP1pM9caDOaC6Y0YIT9onObGNjWlQ_vdyAk_33x3sHfHZeA7cKx7NcOCNdWvoKO0BhbGpEieKgyDRRC0vllFEyBLu7qzXqAoMxOvU-VDqUUofUW_kMVpu28S-AFXkgK8m1dgYFn9PKaayU3HqHEkYXCfB5e9V2BjOnMzW-1z2GWdRUkfVQkQm8G9Kf9xiPO1Nuzpu_nrlzV4sMZVaJpcgTeDM8Rkekvyu68e0FpRFFlcm8ShN43pvN8CrSCSQMExCx8f_xDfVofDga7l7eJ9MreEDX_a7JTVhFq_CvUT5NzVZ0kd9XtxJg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHUA7QQ8tXIbSAkZA4uU1sJ02Oqy7VAt0FQSshLpHt2GJVlFTd7QFOfQQk3rBPwoyzSbsghATHJLYS2zP23479G4DnWZKhShCGO28VV4VNuJFecmW1wAypFAGSNJ5koyP1-mPa7SakszAtH6JfcCPPCP01OTgtSO9cUkN1FcBBSR4TI-w63KCw3oTPH76_JEiRQA-4PZnyIlN5x22Mxc5y_uVx6Texuaxdw-Czvw6m--x2z8nx9tncbNtvvxAd_6tct2FtIU3ZoLWlO3DN1Xdh9Qqw8B404bzuDNvVsQ-BPEvUDnYlDWs8m0wvzr8PmxNXsb3mLcMOvJl9dm4-Y6iQ2adpbS_Ofwymp6yFe-JcndFyMKM9J-wdhW1jQ9pXP_96H472Xx7ujfgiZAO3Cqe0XFRGVnHuChwDhbGxETnqgyzRBC7MVaWMkt7b3V2tURoY7KZj53yhfS61j52VG7BSN7V7CCxLPRlKqnVlUPNVWlUaKyW1rkIVo7MIeNdgpV3wzCmsxpeyJTGLkiqy7Csyghd9-pOW5PHHlFtd-5cLj56VIkGllWMp0gie9Y_RF-kHi65dc0ZpRFYkMi3iCB60dtO_iqQCacMIRGj9v3xDORiOB_3Vo3_J9BRujg7HB-XBq8mbTbhF99tDlFuwghbiHqOampsnwV9-AnexFnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHUCQEh_IsBAoYCYlT2sR20uS4aliVR5cKqFRxifwUK1Cy6m4PcOpHQOo37CfpjLOb7oIQEhyT2Ers8dh_O_ZvAF7kaY4qgevYeSNjWZo01sKLWBrFMUMmeIAk7Y_yvUP55ig7WjrF3_Eh-gU38ozQX5ODT6zfvoSGKhu4QWmRECLsKlyTeVJS8IbqwyVAivR5oO2JLC5zWSywjQnfXs2_Oiz9pjVXpWsYe4a3QC2-utty8nXrZKa3zI9fgI7_U6zbsD4XpmzQtaQ7cMU1d-HmEq7wHrThtO4UrerYx8CdJWYHW0rDWs9G4_PTn1U7cZbttu8Zdt_t9ItzsylDfcw-jxtzfno2GB-zDu2JM3VGi8GMdpywAwraxiraVT_7fh8Oh68-7e7F84ANsZE4oY251cImhStxBOTaJJoXqA7yVBG2sJBWaim8Nzs7SqEw0NhJJ875UvlCKJ84IzZgrWkb9xBYnnlqJplSVqPis0pahZWSGWdRw6g8gnhhr9rMaeYUVONb3XGYeU0VWfcVGcHLPv2k43j8MeXmwvz13J-nNU9RZxVYiiyC5_1j9ET6vaIa155QGp6XqcjKJIIHXbPpX0VCgZRhBDwY_y_fUA-q_UF_9ehfMj2D6wfVsH73evT2Mdyg290Jyk1YwwbinqCUmumnwVsuAB8CFSs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Structural+Engineering+of+Ni%E2%80%90Doped+CoO+Nanosheets+for+Zinc%E2%80%93Air+Batteries+with+High+Power+Density&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Yue%E2%80%90Jiao&rft.au=Cui%2C+Lan&rft.au=Da%2C+Peng%E2%80%90Fei&rft.au=Qiu%2C+Kang%E2%80%90Wen&rft.date=2018-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=46&rft_id=info:doi/10.1002%2Fadma.201804653&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201804653
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon