Multiscale Structural Engineering of Ni‐Doped CoO Nanosheets for Zinc–Air Batteries with High Power Density
Zinc–air batteries offer a possible solution for large‐scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni‐dop...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 46; pp. e1804653 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zinc–air batteries offer a possible solution for large‐scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni‐doped CoO nanosheets (NSs) for zinc–air batteries with superior high power density/energy density and durability is reported for the first time. In micro‐ and nanoscale, robust 2D architecture together with numerous nanopores inside the nanosheets provides an advantageous micro/nanostructured surface for O2 diffusion and a high electrocatalytic active surface area. In atomic scale, Ni doping significantly enhances the intrinsic oxygen reduction reaction activity per active site. As a result of controlled multiscale structure, the primary zinc–air battery with engineered Ni‐doped CoO NSs electrode shows excellent performance with a record‐high discharge peak power density of 377 mW cm−2, and works stable for >400 h at 5 mA cm−2. Rechargeable zinc–air battery based on Ni‐doped CoO NSs affords an unprecedented small charge–discharge voltage of 0.63 V, outperforming state‐of‐the‐art Pt/C catalyst‐based device. Moreover, it is shown that Ni‐doped CoO NSs assembled into all‐solid‐state coin cells can power 17 light‐emitting diodes and charge an iPhone 7 mobile phone.
A multiscale structure engineering of Ni‐doped CoO nanosheets from micro‐ through nano‐ to atomic scale for high‐power‐density zinc–air batteries is demonstrated. The engineered zinc–air battery based on Ni‐doped CoO nanosheets realizes sufficient mass transport, abundant catalysts active sites, and excellent intrinsic activity simultaneously, affording a record‐high discharge peak power density of 377 mW cm−2. |
---|---|
AbstractList | Zinc-air batteries offer a possible solution for large-scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni-doped CoO nanosheets (NSs) for zinc-air batteries with superior high power density/energy density and durability is reported for the first time. In micro- and nanoscale, robust 2D architecture together with numerous nanopores inside the nanosheets provides an advantageous micro/nanostructured surface for O
diffusion and a high electrocatalytic active surface area. In atomic scale, Ni doping significantly enhances the intrinsic oxygen reduction reaction activity per active site. As a result of controlled multiscale structure, the primary zinc-air battery with engineered Ni-doped CoO NSs electrode shows excellent performance with a record-high discharge peak power density of 377 mW cm
, and works stable for >400 h at 5 mA cm
. Rechargeable zinc-air battery based on Ni-doped CoO NSs affords an unprecedented small charge-discharge voltage of 0.63 V, outperforming state-of-the-art Pt/C catalyst-based device. Moreover, it is shown that Ni-doped CoO NSs assembled into all-solid-state coin cells can power 17 light-emitting diodes and charge an iPhone 7 mobile phone. Zinc–air batteries offer a possible solution for large‐scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni‐doped CoO nanosheets (NSs) for zinc–air batteries with superior high power density/energy density and durability is reported for the first time. In micro‐ and nanoscale, robust 2D architecture together with numerous nanopores inside the nanosheets provides an advantageous micro/nanostructured surface for O2 diffusion and a high electrocatalytic active surface area. In atomic scale, Ni doping significantly enhances the intrinsic oxygen reduction reaction activity per active site. As a result of controlled multiscale structure, the primary zinc–air battery with engineered Ni‐doped CoO NSs electrode shows excellent performance with a record‐high discharge peak power density of 377 mW cm−2, and works stable for >400 h at 5 mA cm−2. Rechargeable zinc–air battery based on Ni‐doped CoO NSs affords an unprecedented small charge–discharge voltage of 0.63 V, outperforming state‐of‐the‐art Pt/C catalyst‐based device. Moreover, it is shown that Ni‐doped CoO NSs assembled into all‐solid‐state coin cells can power 17 light‐emitting diodes and charge an iPhone 7 mobile phone. A multiscale structure engineering of Ni‐doped CoO nanosheets from micro‐ through nano‐ to atomic scale for high‐power‐density zinc–air batteries is demonstrated. The engineered zinc–air battery based on Ni‐doped CoO nanosheets realizes sufficient mass transport, abundant catalysts active sites, and excellent intrinsic activity simultaneously, affording a record‐high discharge peak power density of 377 mW cm−2. Zinc–air batteries offer a possible solution for large‐scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni‐doped CoO nanosheets (NSs) for zinc–air batteries with superior high power density/energy density and durability is reported for the first time. In micro‐ and nanoscale, robust 2D architecture together with numerous nanopores inside the nanosheets provides an advantageous micro/nanostructured surface for O2 diffusion and a high electrocatalytic active surface area. In atomic scale, Ni doping significantly enhances the intrinsic oxygen reduction reaction activity per active site. As a result of controlled multiscale structure, the primary zinc–air battery with engineered Ni‐doped CoO NSs electrode shows excellent performance with a record‐high discharge peak power density of 377 mW cm−2, and works stable for >400 h at 5 mA cm−2. Rechargeable zinc–air battery based on Ni‐doped CoO NSs affords an unprecedented small charge–discharge voltage of 0.63 V, outperforming state‐of‐the‐art Pt/C catalyst‐based device. Moreover, it is shown that Ni‐doped CoO NSs assembled into all‐solid‐state coin cells can power 17 light‐emitting diodes and charge an iPhone 7 mobile phone. Zinc-air batteries offer a possible solution for large-scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni-doped CoO nanosheets (NSs) for zinc-air batteries with superior high power density/energy density and durability is reported for the first time. In micro- and nanoscale, robust 2D architecture together with numerous nanopores inside the nanosheets provides an advantageous micro/nanostructured surface for O2 diffusion and a high electrocatalytic active surface area. In atomic scale, Ni doping significantly enhances the intrinsic oxygen reduction reaction activity per active site. As a result of controlled multiscale structure, the primary zinc-air battery with engineered Ni-doped CoO NSs electrode shows excellent performance with a record-high discharge peak power density of 377 mW cm-2 , and works stable for >400 h at 5 mA cm-2 . Rechargeable zinc-air battery based on Ni-doped CoO NSs affords an unprecedented small charge-discharge voltage of 0.63 V, outperforming state-of-the-art Pt/C catalyst-based device. Moreover, it is shown that Ni-doped CoO NSs assembled into all-solid-state coin cells can power 17 light-emitting diodes and charge an iPhone 7 mobile phone.Zinc-air batteries offer a possible solution for large-scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni-doped CoO nanosheets (NSs) for zinc-air batteries with superior high power density/energy density and durability is reported for the first time. In micro- and nanoscale, robust 2D architecture together with numerous nanopores inside the nanosheets provides an advantageous micro/nanostructured surface for O2 diffusion and a high electrocatalytic active surface area. In atomic scale, Ni doping significantly enhances the intrinsic oxygen reduction reaction activity per active site. As a result of controlled multiscale structure, the primary zinc-air battery with engineered Ni-doped CoO NSs electrode shows excellent performance with a record-high discharge peak power density of 377 mW cm-2 , and works stable for >400 h at 5 mA cm-2 . Rechargeable zinc-air battery based on Ni-doped CoO NSs affords an unprecedented small charge-discharge voltage of 0.63 V, outperforming state-of-the-art Pt/C catalyst-based device. Moreover, it is shown that Ni-doped CoO NSs assembled into all-solid-state coin cells can power 17 light-emitting diodes and charge an iPhone 7 mobile phone. Zinc–air batteries offer a possible solution for large‐scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni‐doped CoO nanosheets (NSs) for zinc–air batteries with superior high power density/energy density and durability is reported for the first time. In micro‐ and nanoscale, robust 2D architecture together with numerous nanopores inside the nanosheets provides an advantageous micro/nanostructured surface for O 2 diffusion and a high electrocatalytic active surface area. In atomic scale, Ni doping significantly enhances the intrinsic oxygen reduction reaction activity per active site. As a result of controlled multiscale structure, the primary zinc–air battery with engineered Ni‐doped CoO NSs electrode shows excellent performance with a record‐high discharge peak power density of 377 mW cm −2 , and works stable for >400 h at 5 mA cm −2 . Rechargeable zinc–air battery based on Ni‐doped CoO NSs affords an unprecedented small charge–discharge voltage of 0.63 V, outperforming state‐of‐the‐art Pt/C catalyst‐based device. Moreover, it is shown that Ni‐doped CoO NSs assembled into all‐solid‐state coin cells can power 17 light‐emitting diodes and charge an iPhone 7 mobile phone. |
Author | Ling, Tao Li, Yue‐Jiao Hu, Wen‐Bin Da, Peng‐Fei Davey, Kenneth Qiao, Shi‐Zhang Qin, Wen‐Jing Du, Xi‐Wen Cui, Lan Qiu, Kang‐Wen |
Author_xml | – sequence: 1 givenname: Yue‐Jiao surname: Li fullname: Li, Yue‐Jiao organization: Tianjin University – sequence: 2 givenname: Lan surname: Cui fullname: Cui, Lan organization: Tianjin University – sequence: 3 givenname: Peng‐Fei surname: Da fullname: Da, Peng‐Fei organization: Tianjin University – sequence: 4 givenname: Kang‐Wen surname: Qiu fullname: Qiu, Kang‐Wen organization: Tianjin University – sequence: 5 givenname: Wen‐Jing surname: Qin fullname: Qin, Wen‐Jing organization: Tianjin University of Technology – sequence: 6 givenname: Wen‐Bin surname: Hu fullname: Hu, Wen‐Bin organization: Tianjin University – sequence: 7 givenname: Xi‐Wen surname: Du fullname: Du, Xi‐Wen organization: Tianjin University – sequence: 8 givenname: Kenneth surname: Davey fullname: Davey, Kenneth organization: The University of Adelaide – sequence: 9 givenname: Tao orcidid: 0000-0002-8830-4492 surname: Ling fullname: Ling, Tao email: lingt04@tju.edu.cn organization: Tianjin University – sequence: 10 givenname: Shi‐Zhang surname: Qiao fullname: Qiao, Shi‐Zhang organization: The University of Adelaide |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30368937$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhi1URNPCliWyxIbNBN_GM16GpLRIvSABGzYjz8xx4mpip7ZHUXZ9BCTesE9SVylFqoRYnc33ndt_hA6cd4DQW0qmlBD2UfdrPWWE1kTIkr9AE1oyWgiiygM0IYqXhZKiPkRHMV4TQpQk8hU65ITLWvFqgvzFOCQbOz0A_pbC2KUx6AGfuKV1AMG6JfYGX9q7218Lv4Eez_0VvtTOxxVAitj4gH9a193d_p7ZgD_plLIFEW9tWuEzu1zhr34LAS_ARZt2r9FLo4cIbx7rMfrx-eT7_Kw4vzr9Mp-dF50oGS9Y3_Ke1KBkVbO2Iy2r812SaqpkWYtetIIb01WV1oLJlgpJAIzSpubaEOj4Mfqw77sJ_maEmJp1vhKGQTvwY2wYZVJRXiqS0ffP0Gs_Bpe3yxSnVZ1Hlpl690iN7Rr6ZhPsWodd8-eVGZjugS74GAOYJ4SS5iGr5iGr5imrLIhnQmeTTta7FLQd_q2pvba1A-z-M6SZLS5mf9176eap8g |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2024_11_148 crossref_primary_10_1142_S1793292020500708 crossref_primary_10_1021_acsami_0c09385 crossref_primary_10_1002_aenm_201900196 crossref_primary_10_1016_j_rser_2021_111970 crossref_primary_10_1016_j_jallcom_2021_161172 crossref_primary_10_1016_j_ijhydene_2020_09_174 crossref_primary_10_1016_j_cej_2025_159958 crossref_primary_10_1016_j_jmgm_2021_108101 crossref_primary_10_1002_adma_202307790 crossref_primary_10_1016_j_electacta_2020_136145 crossref_primary_10_1021_acsaem_2c01417 crossref_primary_10_1002_adma_201807771 crossref_primary_10_1073_pnas_2307901120 crossref_primary_10_1007_s41918_020_00071_6 crossref_primary_10_1039_C9TA03324F crossref_primary_10_1016_j_jcis_2024_09_187 crossref_primary_10_1021_acsnano_2c00557 crossref_primary_10_1021_acsaem_9b00932 crossref_primary_10_1002_anie_202318924 crossref_primary_10_1002_cssc_202202192 crossref_primary_10_1039_C9NR07008G crossref_primary_10_1002_ange_201907477 crossref_primary_10_1021_acsaem_0c02676 crossref_primary_10_1007_s11706_020_0521_9 crossref_primary_10_1016_j_diamond_2023_110509 crossref_primary_10_1016_j_jcis_2024_09_213 crossref_primary_10_1016_j_mtener_2022_101150 crossref_primary_10_1039_D2QI02564G crossref_primary_10_1016_j_nanoen_2020_105710 crossref_primary_10_1016_j_cej_2022_139831 crossref_primary_10_1002_smll_202408627 crossref_primary_10_1016_j_apcatb_2022_122250 crossref_primary_10_1016_j_jcis_2022_07_062 crossref_primary_10_1016_j_mtener_2021_100682 crossref_primary_10_1002_aesr_202100034 crossref_primary_10_1021_acsami_0c03672 crossref_primary_10_1007_s40843_020_1292_6 crossref_primary_10_1002_adma_202001651 crossref_primary_10_1016_j_mtener_2020_100624 crossref_primary_10_1186_s40580_024_00437_2 crossref_primary_10_1021_acs_chemmater_4c02686 crossref_primary_10_1039_D1TA05812F crossref_primary_10_1039_D3TC03275B crossref_primary_10_1016_j_jpowsour_2021_230280 crossref_primary_10_1021_acsnano_1c11012 crossref_primary_10_1016_j_jcis_2022_10_086 crossref_primary_10_1016_j_colsurfa_2024_135499 crossref_primary_10_1039_C9TA04253A crossref_primary_10_1016_j_matt_2019_05_008 crossref_primary_10_1007_s10853_021_06122_7 crossref_primary_10_1016_j_jallcom_2021_158940 crossref_primary_10_1002_batt_202000006 crossref_primary_10_1007_s41918_023_00181_x crossref_primary_10_1021_acs_langmuir_1c02844 crossref_primary_10_1039_D0CE00325E crossref_primary_10_1016_j_jpowsour_2019_227177 crossref_primary_10_1016_j_jcis_2021_03_170 crossref_primary_10_1002_adfm_202107928 crossref_primary_10_1021_acscatal_1c01585 crossref_primary_10_1039_D2CS00684G crossref_primary_10_1016_j_jcis_2024_08_045 crossref_primary_10_1039_C9NR07159H crossref_primary_10_1039_D2RA07648A crossref_primary_10_1016_j_gee_2020_06_022 crossref_primary_10_1016_j_jcis_2023_08_142 crossref_primary_10_3389_fenrg_2022_1082239 crossref_primary_10_1016_j_apcatb_2019_117852 crossref_primary_10_1016_j_electacta_2019_06_121 crossref_primary_10_1016_j_apsusc_2022_153522 crossref_primary_10_1039_C9DT01046G crossref_primary_10_1002_anie_202002650 crossref_primary_10_1002_smll_201804832 crossref_primary_10_1016_j_jpowsour_2021_229584 crossref_primary_10_1002_advs_202101438 crossref_primary_10_1002_advs_201901837 crossref_primary_10_1016_j_jcis_2019_09_083 crossref_primary_10_1002_adma_202107103 crossref_primary_10_1016_j_jpowsour_2021_229547 crossref_primary_10_3389_fmats_2022_1089695 crossref_primary_10_1016_j_jcis_2021_10_144 crossref_primary_10_1016_j_cej_2022_137049 crossref_primary_10_1016_j_jcis_2022_04_043 crossref_primary_10_1016_j_apcatb_2021_120281 crossref_primary_10_1002_aesr_202400001 crossref_primary_10_1002_adma_202109407 crossref_primary_10_1002_ange_202002650 crossref_primary_10_1016_j_ensm_2021_08_022 crossref_primary_10_1039_D2TA09161E crossref_primary_10_1002_slct_202405622 crossref_primary_10_1002_adhm_202401836 crossref_primary_10_1002_smll_202310694 crossref_primary_10_1007_s12209_022_00321_2 crossref_primary_10_1016_j_jechem_2021_07_009 crossref_primary_10_1002_adma_202001866 crossref_primary_10_1021_acssuschemeng_9b05033 crossref_primary_10_1007_s11426_020_9739_2 crossref_primary_10_1016_j_nanoen_2021_105813 crossref_primary_10_1021_acssuschemeng_9b05713 crossref_primary_10_20517_energymater_2023_66 crossref_primary_10_1002_adfm_202315039 crossref_primary_10_1016_j_ensm_2025_104109 crossref_primary_10_1016_j_jallcom_2021_161637 crossref_primary_10_1002_anie_202000690 crossref_primary_10_1002_batt_201900052 crossref_primary_10_3390_nano13061066 crossref_primary_10_1039_D3CS00295K crossref_primary_10_1007_s11431_021_1942_6 crossref_primary_10_1016_j_ensm_2022_08_035 crossref_primary_10_1002_ange_202318924 crossref_primary_10_1016_j_nanoen_2018_12_094 crossref_primary_10_1039_D4CC05217J crossref_primary_10_1039_C9MH00502A crossref_primary_10_1016_j_isci_2025_112133 crossref_primary_10_1002_adma_201907168 crossref_primary_10_1016_j_micromeso_2024_113292 crossref_primary_10_1016_j_nanoen_2019_06_023 crossref_primary_10_1002_anie_201907477 crossref_primary_10_1021_prechem_3c00059 crossref_primary_10_1007_s40820_020_00522_1 crossref_primary_10_1039_D2QM00858K crossref_primary_10_1088_1361_6528_ab2af0 crossref_primary_10_1021_acsami_0c08676 crossref_primary_10_1002_adfm_202301947 crossref_primary_10_1016_j_est_2023_106656 crossref_primary_10_1039_C9TA09395H crossref_primary_10_1002_ange_202000690 crossref_primary_10_1002_cctc_201901634 crossref_primary_10_1021_acscatal_3c01400 crossref_primary_10_1002_cctc_202300936 crossref_primary_10_1016_j_est_2023_106926 crossref_primary_10_1016_j_cattod_2024_115108 crossref_primary_10_1016_j_cej_2021_130313 crossref_primary_10_1016_j_gce_2020_09_013 crossref_primary_10_1021_acs_inorgchem_4c02599 crossref_primary_10_1002_adma_201908488 crossref_primary_10_1016_j_cej_2023_141358 crossref_primary_10_1002_celc_202001419 crossref_primary_10_1039_D0TA00793E crossref_primary_10_1016_j_ensm_2019_07_028 crossref_primary_10_1149_1945_7111_ac5794 crossref_primary_10_1016_j_electacta_2020_137264 crossref_primary_10_1016_j_jpowsour_2022_231076 crossref_primary_10_1002_aenm_202300927 crossref_primary_10_1039_D0NR00138D crossref_primary_10_1016_j_nanoen_2023_109236 crossref_primary_10_1002_adma_201807468 crossref_primary_10_1039_C9TA10079B |
Cites_doi | 10.1002/aenm.201602420 10.1103/PhysRevB.57.1505 10.1038/nmat3087 10.1021/cm3005198 10.1002/anie.201503612 10.1103/PhysRevB.50.17953 10.1039/C4CS00015C 10.1002/advs.201700691 10.1021/ja305623m 10.1002/aenm.201301389 10.1002/adma.201703657 10.1039/C4CC01625D 10.1126/science.1142593 10.1038/nnano.2015.48 10.1039/C4CS00470A 10.1021/cr020730k 10.1021/acsnano.5b02266 10.1002/adma.201506197 10.1038/nchem.2740 10.1016/j.jpowsour.2015.02.114 10.1088/0957-4484/22/24/245607 10.1002/smll.201401869 10.1039/C3CS60248F 10.1002/adma.201704681 10.1126/sciadv.1501122 10.1103/PhysRevLett.77.3865 10.1002/adma.201302569 10.1016/0927-0256(96)00008-0 10.1021/jp047349j 10.1002/adfm.201600636 10.1038/ncomms12876 10.1038/35104644 10.1126/science.1168049 10.1039/C2CS35241A 10.1021/acsnano.6b05914 10.1038/s41467-017-01872-y 10.1002/adma.201705796 10.1002/aenm.201700779 10.1021/ja5082553 10.1002/adma.201401848 10.1038/ncomms2812 10.1038/nchem.931 10.1021/jacs.6b05046 10.1021/acs.accounts.8b00070 10.1039/c3nr05835b 10.1002/anie.201610119 10.1002/anie.201104004 10.1002/anie.201209548 10.1038/ncomms5973 10.1002/anie.201206720 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201804653 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 30368937 10_1002_adma_201804653 ADMA201804653 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Fund for Excellent Young Scholars funderid: 51722103 – fundername: Natural Science Foundation of China funderid: 51571149; 21576202 – fundername: National Natural Science Foundation of China and Guangdong Province funderid: U1601216 – fundername: Australian Research Council funderid: FL170100154; DP170104464; DP160104866 – fundername: Australian Research Council grantid: FL170100154 – fundername: Natural Science Foundation of China grantid: 51571149 – fundername: Australian Research Council grantid: DP170104464 – fundername: National Science Fund for Excellent Young Scholars grantid: 51722103 – fundername: Natural Science Foundation of China grantid: 21576202 – fundername: Australian Research Council grantid: DP160104866 – fundername: National Natural Science Foundation of China and Guangdong Province grantid: U1601216 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4523-2db3d08e96782bc0b2852161a196584d4b43ffc77aa426b1460eef9af83af0ec3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 22:27:47 EDT 2025 Mon Jul 14 09:02:15 EDT 2025 Wed Feb 19 02:41:39 EST 2025 Tue Jul 01 00:44:46 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Wed Jan 22 17:00:50 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | oxygen reduction reaction electrocatalysis transitional metal oxide zinc-air batteries nanosheets |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4523-2db3d08e96782bc0b2852161a196584d4b43ffc77aa426b1460eef9af83af0ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8830-4492 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201804653 |
PMID | 30368937 |
PQID | 2131789655 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2126913590 proquest_journals_2131789655 pubmed_primary_30368937 crossref_primary_10_1002_adma_201804653 crossref_citationtrail_10_1002_adma_201804653 wiley_primary_10_1002_adma_201804653_ADMA201804653 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Nov |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-Nov |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 283 2017; 7 2017; 8 2004; 104 2013; 4 2013; 25 2013; 42 2015; 11 2015; 10 2015; 54 2014; 26 2011; 10 2017; 29 2015; 9 2011; 3 2004; 108 2014; 136 2017; 9 2014; 43 2012; 51 1996; 77 2016; 7 2014; 5 2014; 4 2007; 317 2018; 5 2012; 134 2016; 2 2017; 11 2015; 44 2011; 50 2017; 56 2013; 52 2018 2011; 22 2018; 30 2016; 138 2018; 51 2016; 28 2012; 24 2014; 50 1994; 50 2016; 26 2014; 6 2009; 323 2001; 414 1996; 6 1998; 57 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 Da P. (e_1_2_5_32_1) 2018 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_50_1 |
References_xml | – volume: 138 start-page: 10226 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 347 year: 2017 publication-title: ACS Nano – volume: 44 start-page: 2060 year: 2015 publication-title: Chem. Soc. Rev. – volume: 29 start-page: 1704681 year: 2017 publication-title: Adv. Mater. – volume: 25 start-page: 6226 year: 2013 publication-title: Adv. Mater. – volume: 26 start-page: 4397 year: 2016 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 3173 year: 2014 publication-title: Nanoscale – volume: 10 start-page: 780 year: 2011 publication-title: Nat. Mater. – volume: 43 start-page: 7746 year: 2014 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 1602420 year: 2017 publication-title: Adv. Energy Mater. – volume: 43 start-page: 5257 year: 2014 publication-title: Chem. Soc. Rev. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 30 start-page: 1703657 year: 2018 publication-title: Adv. Mater. – volume: 56 start-page: 610 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 3777 year: 2016 publication-title: Adv. Mater. – volume: 11 start-page: 1939 year: 2015 publication-title: Small – volume: 30 start-page: 1705796 year: 2018 publication-title: Adv. Mater. – volume: 4 start-page: 1301389 year: 2014 publication-title: Adv. Energy Mater. – volume: 51 start-page: 1590 year: 2018 publication-title: Acc. Chem. Res. – volume: 54 start-page: 9654 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 11496 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 1505 year: 1998 publication-title: Phys. Rev. B – volume: 283 start-page: 358 year: 2015 publication-title: J. Power Sources – volume: 108 start-page: 17886 year: 2004 publication-title: J. Phys. Chem. B – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 9 start-page: 810 year: 2017 publication-title: Nat. Chem. – year: 2018 publication-title: Chem. Eng. Sci. – volume: 52 start-page: 3110 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 1700691 year: 2018 publication-title: Adv. Sci. – volume: 5 start-page: 4973 year: 2014 publication-title: Nat. Commun. – volume: 50 start-page: 10969 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: e1501122 year: 2016 publication-title: Sci. Adv. – volume: 317 start-page: 355 year: 2007 publication-title: Science – volume: 26 start-page: 6074 year: 2014 publication-title: Adv. Mater. – volume: 104 start-page: 4245 year: 2004 publication-title: Chem. Rev. – volume: 3 start-page: 79 year: 2011 publication-title: Nat. Chem. – volume: 7 start-page: 1700779 year: 2017 publication-title: Adv. Energy Mater. – volume: 8 start-page: 1509 year: 2017 publication-title: Nat. Commun. – volume: 134 start-page: 15849 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 6493 year: 2015 publication-title: ACS Nano – volume: 136 start-page: 13925 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 12876 year: 2016 publication-title: Nat. Commun. – volume: 24 start-page: 2311 year: 2012 publication-title: Chem. Mater. – volume: 323 start-page: 760 year: 2009 publication-title: Science – volume: 6 start-page: 15 year: 1996 publication-title: Comput. Mater. Sci. – volume: 42 start-page: 89 year: 2013 publication-title: Chem. Soc. Rev. – volume: 50 start-page: 6479 year: 2014 publication-title: Chem. Commun. – volume: 4 start-page: 1805 year: 2013 publication-title: Nat. Commun. – volume: 50 start-page: 17953 year: 1994 publication-title: Phys. Rev. B – volume: 10 start-page: 444 year: 2015 publication-title: Nat. Nanotechnol. – volume: 22 start-page: 245607 year: 2011 publication-title: Nanotechnology – ident: e_1_2_5_20_1 doi: 10.1002/aenm.201602420 – ident: e_1_2_5_51_1 doi: 10.1103/PhysRevB.57.1505 – ident: e_1_2_5_14_1 doi: 10.1038/nmat3087 – year: 2018 ident: e_1_2_5_32_1 publication-title: Chem. Eng. Sci. – ident: e_1_2_5_43_1 doi: 10.1021/cm3005198 – ident: e_1_2_5_30_1 doi: 10.1002/anie.201503612 – ident: e_1_2_5_49_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_5_3_1 doi: 10.1039/C4CS00015C – ident: e_1_2_5_4_1 doi: 10.1002/advs.201700691 – ident: e_1_2_5_12_1 doi: 10.1021/ja305623m – ident: e_1_2_5_31_1 doi: 10.1002/aenm.201301389 – ident: e_1_2_5_33_1 doi: 10.1002/adma.201703657 – ident: e_1_2_5_46_1 doi: 10.1039/C4CC01625D – ident: e_1_2_5_37_1 doi: 10.1126/science.1142593 – ident: e_1_2_5_22_1 doi: 10.1038/nnano.2015.48 – ident: e_1_2_5_39_1 doi: 10.1039/C4CS00470A – ident: e_1_2_5_2_1 doi: 10.1021/cr020730k – ident: e_1_2_5_9_1 doi: 10.1021/acsnano.5b02266 – ident: e_1_2_5_28_1 doi: 10.1002/adma.201506197 – ident: e_1_2_5_42_1 doi: 10.1038/nchem.2740 – ident: e_1_2_5_6_1 doi: 10.1016/j.jpowsour.2015.02.114 – ident: e_1_2_5_47_1 doi: 10.1088/0957-4484/22/24/245607 – ident: e_1_2_5_45_1 doi: 10.1002/smll.201401869 – ident: e_1_2_5_5_1 doi: 10.1039/C3CS60248F – ident: e_1_2_5_18_1 doi: 10.1002/adma.201704681 – ident: e_1_2_5_23_1 doi: 10.1126/sciadv.1501122 – ident: e_1_2_5_50_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_5_24_1 doi: 10.1002/adma.201302569 – ident: e_1_2_5_48_1 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_5_41_1 doi: 10.1021/jp047349j – ident: e_1_2_5_10_1 doi: 10.1002/adfm.201600636 – ident: e_1_2_5_15_1 doi: 10.1038/ncomms12876 – ident: e_1_2_5_1_1 doi: 10.1038/35104644 – ident: e_1_2_5_21_1 doi: 10.1126/science.1168049 – ident: e_1_2_5_36_1 doi: 10.1039/C2CS35241A – ident: e_1_2_5_44_1 doi: 10.1021/acsnano.6b05914 – ident: e_1_2_5_38_1 doi: 10.1038/s41467-017-01872-y – ident: e_1_2_5_17_1 doi: 10.1002/adma.201705796 – ident: e_1_2_5_34_1 doi: 10.1002/aenm.201700779 – ident: e_1_2_5_13_1 doi: 10.1021/ja5082553 – ident: e_1_2_5_8_1 doi: 10.1002/adma.201401848 – ident: e_1_2_5_7_1 doi: 10.1038/ncomms2812 – ident: e_1_2_5_40_1 doi: 10.1038/nchem.931 – ident: e_1_2_5_29_1 doi: 10.1021/jacs.6b05046 – ident: e_1_2_5_35_1 doi: 10.1021/acs.accounts.8b00070 – ident: e_1_2_5_11_1 doi: 10.1039/c3nr05835b – ident: e_1_2_5_19_1 doi: 10.1002/anie.201610119 – ident: e_1_2_5_16_1 doi: 10.1002/anie.201104004 – ident: e_1_2_5_26_1 doi: 10.1002/anie.201209548 – ident: e_1_2_5_27_1 doi: 10.1038/ncomms5973 – ident: e_1_2_5_25_1 doi: 10.1002/anie.201206720 |
SSID | ssj0009606 |
Score | 2.6154053 |
Snippet | Zinc–air batteries offer a possible solution for large‐scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and... Zinc-air batteries offer a possible solution for large-scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1804653 |
SubjectTerms | Diffusion Discharge Durability electrocatalysis Energy storage Flux density Metal air batteries Nanosheets Nanostructure Organic light emitting diodes oxygen reduction reaction Oxygen reduction reactions Porosity Rechargeable batteries Smartphones Storage batteries Structural engineering transitional metal oxide Zinc Zinc-oxygen batteries zinc–air batteries |
Title | Multiscale Structural Engineering of Ni‐Doped CoO Nanosheets for Zinc–Air Batteries with High Power Density |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201804653 https://www.ncbi.nlm.nih.gov/pubmed/30368937 https://www.proquest.com/docview/2131789655 https://www.proquest.com/docview/2126913590 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NatwwEMeHkFNz6Eeatm7ToEKhJyW2JDv2cck2hELS0iYQejH6pEuKHerNITnlEQp9wzxJZ-RdZ7clFNKbjSVsSTOjv2TpJ4C3RVagShCG-2AVV5XNuJFBcmW1wAy5FBGSdHhUHJyoD6f56cIu_p4PMUy4kWfEeE0Ork23cwsN1S5yg7IyJUQYBmFasEWq6PMtP4rkeYTtyZxXhSrn1MZU7CxnX-6V_pKay8o1dj37j0DPP7pfcXK2fTE12_bqD57j_5TqMTyc6VI26g3pCaz4Zh3WFmiFT6GNm3U7bFTPvkTsLCE72EIa1gZ2NLm5_jluz71je-1HhtG77b55P-0YymP2ddLYm-tfo8kP1pM9caDOaC6Y0YIT9onObGNjWlQ_vdyAk_33x3sHfHZeA7cKx7NcOCNdWvoKO0BhbGpEieKgyDRRC0vllFEyBLu7qzXqAoMxOvU-VDqUUofUW_kMVpu28S-AFXkgK8m1dgYFn9PKaayU3HqHEkYXCfB5e9V2BjOnMzW-1z2GWdRUkfVQkQm8G9Kf9xiPO1Nuzpu_nrlzV4sMZVaJpcgTeDM8Rkekvyu68e0FpRFFlcm8ShN43pvN8CrSCSQMExCx8f_xDfVofDga7l7eJ9MreEDX_a7JTVhFq_CvUT5NzVZ0kd9XtxJg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHUA7QQ8tXIbSAkZA4uU1sJ02Oqy7VAt0FQSshLpHt2GJVlFTd7QFOfQQk3rBPwoyzSbsghATHJLYS2zP23479G4DnWZKhShCGO28VV4VNuJFecmW1wAypFAGSNJ5koyP1-mPa7SakszAtH6JfcCPPCP01OTgtSO9cUkN1FcBBSR4TI-w63KCw3oTPH76_JEiRQA-4PZnyIlN5x22Mxc5y_uVx6Texuaxdw-Czvw6m--x2z8nx9tncbNtvvxAd_6tct2FtIU3ZoLWlO3DN1Xdh9Qqw8B404bzuDNvVsQ-BPEvUDnYlDWs8m0wvzr8PmxNXsb3mLcMOvJl9dm4-Y6iQ2adpbS_Ofwymp6yFe-JcndFyMKM9J-wdhW1jQ9pXP_96H472Xx7ujfgiZAO3Cqe0XFRGVnHuChwDhbGxETnqgyzRBC7MVaWMkt7b3V2tURoY7KZj53yhfS61j52VG7BSN7V7CCxLPRlKqnVlUPNVWlUaKyW1rkIVo7MIeNdgpV3wzCmsxpeyJTGLkiqy7Csyghd9-pOW5PHHlFtd-5cLj56VIkGllWMp0gie9Y_RF-kHi65dc0ZpRFYkMi3iCB60dtO_iqQCacMIRGj9v3xDORiOB_3Vo3_J9BRujg7HB-XBq8mbTbhF99tDlFuwghbiHqOampsnwV9-AnexFnw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHUCQEh_IsBAoYCYlT2sR20uS4aliVR5cKqFRxifwUK1Cy6m4PcOpHQOo37CfpjLOb7oIQEhyT2Ers8dh_O_ZvAF7kaY4qgevYeSNjWZo01sKLWBrFMUMmeIAk7Y_yvUP55ig7WjrF3_Eh-gU38ozQX5ODT6zfvoSGKhu4QWmRECLsKlyTeVJS8IbqwyVAivR5oO2JLC5zWSywjQnfXs2_Oiz9pjVXpWsYe4a3QC2-utty8nXrZKa3zI9fgI7_U6zbsD4XpmzQtaQ7cMU1d-HmEq7wHrThtO4UrerYx8CdJWYHW0rDWs9G4_PTn1U7cZbttu8Zdt_t9ItzsylDfcw-jxtzfno2GB-zDu2JM3VGi8GMdpywAwraxiraVT_7fh8Oh68-7e7F84ANsZE4oY251cImhStxBOTaJJoXqA7yVBG2sJBWaim8Nzs7SqEw0NhJJ875UvlCKJ84IzZgrWkb9xBYnnlqJplSVqPis0pahZWSGWdRw6g8gnhhr9rMaeYUVONb3XGYeU0VWfcVGcHLPv2k43j8MeXmwvz13J-nNU9RZxVYiiyC5_1j9ET6vaIa155QGp6XqcjKJIIHXbPpX0VCgZRhBDwY_y_fUA-q_UF_9ehfMj2D6wfVsH73evT2Mdyg290Jyk1YwwbinqCUmumnwVsuAB8CFSs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Structural+Engineering+of+Ni%E2%80%90Doped+CoO+Nanosheets+for+Zinc%E2%80%93Air+Batteries+with+High+Power+Density&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Yue%E2%80%90Jiao&rft.au=Cui%2C+Lan&rft.au=Da%2C+Peng%E2%80%90Fei&rft.au=Qiu%2C+Kang%E2%80%90Wen&rft.date=2018-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=46&rft_id=info:doi/10.1002%2Fadma.201804653&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201804653 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |