Understanding the mechanistic basis of adaptation of perennial Sarcocornia quinqueflora species to soil salinity

Succulent halophytes can be used as convenient models for understanding the mechanistic basis of plant adaptation to salt stress. In this work, effects of salinity (0–1000 mM NaCl range) on growth, ion accumulation, and stomatal features were investigated in the succulent halophyte Sarcocornia quinq...

Full description

Saved in:
Bibliographic Details
Published inPhysiologia plantarum Vol. 172; no. 4; pp. 1997 - 2010
Main Authors Ahmed, Hassan Ahmed Ibraheem, Shabala, Lana, Shabala, Sergey
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Succulent halophytes can be used as convenient models for understanding the mechanistic basis of plant adaptation to salt stress. In this work, effects of salinity (0–1000 mM NaCl range) on growth, ion accumulation, and stomatal features were investigated in the succulent halophyte Sarcocornia quinqueflora. Elevated salinity levels up to 400 mM NaCl largely promoted dry matter yield, succulence, shoot surface area, and stomatal characteristics. Plant growth was optimal at 200 mM NaCl and reduced at concentrations exceeding 600 mM NaCl. Osmotic adjustment in a succulent shoot was achieved by a massive accumulation of inorganic ions, with Na+ and Cl− contributing approximately 85% of its osmolality, while organic compatible solutes and K+ were responsible for only approximately 15%. Shoot K+ was unchanged across the entire range of salinity treatments (200–1000 mM NaCl) and positively correlated with the transpiration rate (R = 0.98). Carbohydrates were not reduced at high salinity compared to plants at optimal conditions, implying that growth retardation at severe salt dosages was attributed to limitations in a vacuolar Na+ and Cl− sequestrations capacity rather than inadequate photosynthesis and/or substrate limitation. It is concluded that the superior salt tolerance of S. quinqueflora is achieved by the effective reliance on Na+ and Cl− accumulation for osmoregulation and turgor maintenance, and efficient K+ homeostasis for adequate stomatal functioning over the entire salinity range. The above findings could be instrumental in developing strategies to improve salinity stress tolerance in perennial horticultural crops and optimize their water‐use efficiency.
AbstractList Succulent halophytes can be used as convenient models for understanding the mechanistic basis of plant adaptation to salt stress. In this work, effects of salinity (0-1000 mM NaCl range) on growth, ion accumulation, and stomatal features were investigated in the succulent halophyte Sarcocornia quinqueflora. Elevated salinity levels up to 400 mM NaCl largely promoted dry matter yield, succulence, shoot surface area, and stomatal characteristics. Plant growth was optimal at 200 mM NaCl and reduced at concentrations exceeding 600 mM NaCl. Osmotic adjustment in a succulent shoot was achieved by a massive accumulation of inorganic ions, with Na+ and Cl- contributing approximately 85% of its osmolality, while organic compatible solutes and K+ were responsible for only approximately 15%. Shoot K+ was unchanged across the entire range of salinity treatments (200-1000 mM NaCl) and positively correlated with the transpiration rate (R = 0.98). Carbohydrates were not reduced at high salinity compared to plants at optimal conditions, implying that growth retardation at severe salt dosages was attributed to limitations in a vacuolar Na+ and Cl- sequestrations capacity rather than inadequate photosynthesis and/or substrate limitation. It is concluded that the superior salt tolerance of S. quinqueflora is achieved by the effective reliance on Na+ and Cl- accumulation for osmoregulation and turgor maintenance, and efficient K+ homeostasis for adequate stomatal functioning over the entire salinity range. The above findings could be instrumental in developing strategies to improve salinity stress tolerance in perennial horticultural crops and optimize their water-use efficiency.Succulent halophytes can be used as convenient models for understanding the mechanistic basis of plant adaptation to salt stress. In this work, effects of salinity (0-1000 mM NaCl range) on growth, ion accumulation, and stomatal features were investigated in the succulent halophyte Sarcocornia quinqueflora. Elevated salinity levels up to 400 mM NaCl largely promoted dry matter yield, succulence, shoot surface area, and stomatal characteristics. Plant growth was optimal at 200 mM NaCl and reduced at concentrations exceeding 600 mM NaCl. Osmotic adjustment in a succulent shoot was achieved by a massive accumulation of inorganic ions, with Na+ and Cl- contributing approximately 85% of its osmolality, while organic compatible solutes and K+ were responsible for only approximately 15%. Shoot K+ was unchanged across the entire range of salinity treatments (200-1000 mM NaCl) and positively correlated with the transpiration rate (R = 0.98). Carbohydrates were not reduced at high salinity compared to plants at optimal conditions, implying that growth retardation at severe salt dosages was attributed to limitations in a vacuolar Na+ and Cl- sequestrations capacity rather than inadequate photosynthesis and/or substrate limitation. It is concluded that the superior salt tolerance of S. quinqueflora is achieved by the effective reliance on Na+ and Cl- accumulation for osmoregulation and turgor maintenance, and efficient K+ homeostasis for adequate stomatal functioning over the entire salinity range. The above findings could be instrumental in developing strategies to improve salinity stress tolerance in perennial horticultural crops and optimize their water-use efficiency.
Succulent halophytes can be used as convenient models for understanding the mechanistic basis of plant adaptation to salt stress. In this work, effects of salinity (0-1000 mM NaCl range) on growth, ion accumulation, and stomatal features were investigated in the succulent halophyte Sarcocornia quinqueflora. Elevated salinity levels up to 400 mM NaCl largely promoted dry matter yield, succulence, shoot surface area, and stomatal characteristics. Plant growth was optimal at 200 mM NaCl and reduced at concentrations exceeding 600 mM NaCl. Osmotic adjustment in a succulent shoot was achieved by a massive accumulation of inorganic ions, with Na and Cl contributing approximately 85% of its osmolality, while organic compatible solutes and K were responsible for only approximately 15%. Shoot K was unchanged across the entire range of salinity treatments (200-1000 mM NaCl) and positively correlated with the transpiration rate (R = 0.98). Carbohydrates were not reduced at high salinity compared to plants at optimal conditions, implying that growth retardation at severe salt dosages was attributed to limitations in a vacuolar Na and Cl sequestrations capacity rather than inadequate photosynthesis and/or substrate limitation. It is concluded that the superior salt tolerance of S. quinqueflora is achieved by the effective reliance on Na and Cl accumulation for osmoregulation and turgor maintenance, and efficient K homeostasis for adequate stomatal functioning over the entire salinity range. The above findings could be instrumental in developing strategies to improve salinity stress tolerance in perennial horticultural crops and optimize their water-use efficiency.
Succulent halophytes can be used as convenient models for understanding the mechanistic basis of plant adaptation to salt stress. In this work, effects of salinity (0–1000 mM NaCl range) on growth, ion accumulation, and stomatal features were investigated in the succulent halophyte Sarcocornia quinqueflora . Elevated salinity levels up to 400 mM NaCl largely promoted dry matter yield, succulence, shoot surface area, and stomatal characteristics. Plant growth was optimal at 200 mM NaCl and reduced at concentrations exceeding 600 mM NaCl. Osmotic adjustment in a succulent shoot was achieved by a massive accumulation of inorganic ions, with Na + and Cl − contributing approximately 85% of its osmolality, while organic compatible solutes and K + were responsible for only approximately 15%. Shoot K + was unchanged across the entire range of salinity treatments (200–1000 mM NaCl) and positively correlated with the transpiration rate ( R  = 0.98). Carbohydrates were not reduced at high salinity compared to plants at optimal conditions, implying that growth retardation at severe salt dosages was attributed to limitations in a vacuolar Na + and Cl − sequestrations capacity rather than inadequate photosynthesis and/or substrate limitation. It is concluded that the superior salt tolerance of S. quinqueflora is achieved by the effective reliance on Na + and Cl − accumulation for osmoregulation and turgor maintenance, and efficient K + homeostasis for adequate stomatal functioning over the entire salinity range. The above findings could be instrumental in developing strategies to improve salinity stress tolerance in perennial horticultural crops and optimize their water‐use efficiency.
Succulent halophytes can be used as convenient models for understanding the mechanistic basis of plant adaptation to salt stress. In this work, effects of salinity (0–1000 mM NaCl range) on growth, ion accumulation, and stomatal features were investigated in the succulent halophyte Sarcocornia quinqueflora. Elevated salinity levels up to 400 mM NaCl largely promoted dry matter yield, succulence, shoot surface area, and stomatal characteristics. Plant growth was optimal at 200 mM NaCl and reduced at concentrations exceeding 600 mM NaCl. Osmotic adjustment in a succulent shoot was achieved by a massive accumulation of inorganic ions, with Na+ and Cl− contributing approximately 85% of its osmolality, while organic compatible solutes and K+ were responsible for only approximately 15%. Shoot K+ was unchanged across the entire range of salinity treatments (200–1000 mM NaCl) and positively correlated with the transpiration rate (R = 0.98). Carbohydrates were not reduced at high salinity compared to plants at optimal conditions, implying that growth retardation at severe salt dosages was attributed to limitations in a vacuolar Na+ and Cl− sequestrations capacity rather than inadequate photosynthesis and/or substrate limitation. It is concluded that the superior salt tolerance of S. quinqueflora is achieved by the effective reliance on Na+ and Cl− accumulation for osmoregulation and turgor maintenance, and efficient K+ homeostasis for adequate stomatal functioning over the entire salinity range. The above findings could be instrumental in developing strategies to improve salinity stress tolerance in perennial horticultural crops and optimize their water‐use efficiency.
Succulent halophytes can be used as convenient models for understanding the mechanistic basis of plant adaptation to salt stress. In this work, effects of salinity (0–1000 mM NaCl range) on growth, ion accumulation, and stomatal features were investigated in the succulent halophyte Sarcocornia quinqueflora. Elevated salinity levels up to 400 mM NaCl largely promoted dry matter yield, succulence, shoot surface area, and stomatal characteristics. Plant growth was optimal at 200 mM NaCl and reduced at concentrations exceeding 600 mM NaCl. Osmotic adjustment in a succulent shoot was achieved by a massive accumulation of inorganic ions, with Na+ and Cl− contributing approximately 85% of its osmolality, while organic compatible solutes and K+ were responsible for only approximately 15%. Shoot K+ was unchanged across the entire range of salinity treatments (200–1000 mM NaCl) and positively correlated with the transpiration rate (R = 0.98). Carbohydrates were not reduced at high salinity compared to plants at optimal conditions, implying that growth retardation at severe salt dosages was attributed to limitations in a vacuolar Na+ and Cl− sequestrations capacity rather than inadequate photosynthesis and/or substrate limitation. It is concluded that the superior salt tolerance of S. quinqueflora is achieved by the effective reliance on Na+ and Cl− accumulation for osmoregulation and turgor maintenance, and efficient K+ homeostasis for adequate stomatal functioning over the entire salinity range. The above findings could be instrumental in developing strategies to improve salinity stress tolerance in perennial horticultural crops and optimize their water‐use efficiency.
Succulent halophytes can be used as convenient models for understanding the mechanistic basis of plant adaptation to salt stress. In this work, effects of salinity (0–1000 mM NaCl range) on growth, ion accumulation, and stomatal features were investigated in the succulent halophyte Sarcocornia quinqueflora. Elevated salinity levels up to 400 mM NaCl largely promoted dry matter yield, succulence, shoot surface area, and stomatal characteristics. Plant growth was optimal at 200 mM NaCl and reduced at concentrations exceeding 600 mM NaCl. Osmotic adjustment in a succulent shoot was achieved by a massive accumulation of inorganic ions, with Na⁺ and Cl⁻ contributing approximately 85% of its osmolality, while organic compatible solutes and K⁺ were responsible for only approximately 15%. Shoot K⁺ was unchanged across the entire range of salinity treatments (200–1000 mM NaCl) and positively correlated with the transpiration rate (R = 0.98). Carbohydrates were not reduced at high salinity compared to plants at optimal conditions, implying that growth retardation at severe salt dosages was attributed to limitations in a vacuolar Na⁺ and Cl⁻ sequestrations capacity rather than inadequate photosynthesis and/or substrate limitation. It is concluded that the superior salt tolerance of S. quinqueflora is achieved by the effective reliance on Na⁺ and Cl⁻ accumulation for osmoregulation and turgor maintenance, and efficient K⁺ homeostasis for adequate stomatal functioning over the entire salinity range. The above findings could be instrumental in developing strategies to improve salinity stress tolerance in perennial horticultural crops and optimize their water‐use efficiency.
Author Shabala, Sergey
Shabala, Lana
Ahmed, Hassan Ahmed Ibraheem
Author_xml – sequence: 1
  givenname: Hassan Ahmed Ibraheem
  orcidid: 0000-0003-1990-8951
  surname: Ahmed
  fullname: Ahmed, Hassan Ahmed Ibraheem
  organization: Port Said University
– sequence: 2
  givenname: Lana
  orcidid: 0000-0002-5360-8496
  surname: Shabala
  fullname: Shabala, Lana
  organization: University of Tasmania
– sequence: 3
  givenname: Sergey
  orcidid: 0000-0003-2345-8981
  surname: Shabala
  fullname: Shabala, Sergey
  email: sergey.shabala@utas.edu.au
  organization: Foshan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33826749$$D View this record in MEDLINE/PubMed
BookMark eNqN0c9rFTEQB_AgFftaPfgPSMCLHrbNr81mj1KsCg8saM_LbDJrU_KSbbKLvP_etK96KCjmEgY-M2TyPSFHMUUk5DVnZ7ye83kOZ1wqLp-RDZd930jWqiOyYUzyppe8OyYnpdwyxrXm4gU5ltII3al-Q-br6DCXBaLz8QddbpDu0N5A9GXxlo5QfKFpouBgXmDxKd5XM2aM0UOg3yDbZFOuBb1bfbxbcQopAy0zWo-FLomW5AMtEHz0y_4leT5BKPjq8T4l15cfv198brZfP325-LBtrGqFbLhzYEzbozJOdazTchROCAGi47KduOSaI8A0jsoI7BlM2ky2H53U4EbRylPy7jB3zqk-qizDzheLIUDEtJZBaKmVMsr8B205E1obpSp9-4TepjXHukhVbau6XghZ1ZtHtY47dMOc_Q7yfvj97RW8PwCbUykZpz-Es-E-0qFGOjxEWu35E2v9IYklgw__6vjpA-7_Pnq4utoeOn4BYRGyhQ
CitedBy_id crossref_primary_10_1071_FP21083
crossref_primary_10_3390_plants11081058
crossref_primary_10_1080_00380768_2025_2465332
crossref_primary_10_3390_horticulturae9010074
crossref_primary_10_3390_ijms232415495
crossref_primary_10_1007_s00344_024_11266_2
crossref_primary_10_1007_s11356_022_19089_y
crossref_primary_10_1007_s11738_023_03609_5
crossref_primary_10_1016_j_marenvres_2024_106485
crossref_primary_10_1038_s41598_022_06502_2
crossref_primary_10_3390_plants12061238
crossref_primary_10_3390_plants11192461
crossref_primary_10_1111_ppl_13581
crossref_primary_10_1002_fft2_214
crossref_primary_10_1016_j_aquatox_2024_106887
crossref_primary_10_1016_j_envexpbot_2022_105004
crossref_primary_10_1016_j_envexpbot_2023_105455
Cites_doi 10.1093/aob/mcu217
10.1093/aob/mcu260
10.1111/nph.13347
10.1093/jxb/erx096
10.1007/0-306-48155-3_8
10.1086/415032
10.1016/j.pbi.2018.07.015
10.1093/jexbot/51.350.1543
10.1016/S0021-9258(19)52451-6
10.1007/BF00390296
10.1016/j.sajb.2014.08.009
10.1016/B978-0-12-380868-4.00004-1
10.1007/s11738-008-0254-3
10.1006/jare.1999.0617
10.1111/j.1469-8137.2005.01487.x
10.3390/ijerph16020275
10.1093/aob/mcy164
10.1007/BF00012008
10.1104/pp.107.110262
10.1016/j.plaphy.2011.10.009
10.1186/1471-2229-14-113
10.1111/ppl.12447
10.1016/j.plantsci.2008.09.019
10.1007/s10535-009-0046-7
10.1093/jexbot/53.371.1055
10.1016/j.biortech.2010.03.097
10.1007/s11104-011-0924-6
10.1016/j.aquabot.2019.04.001
10.1016/j.xinn.2020.100017
10.1093/aob/mcu267
10.1016/j.febslet.2007.03.050
10.1111/j.1469-8137.2008.02531.x
10.1016/j.envexpbot.2013.03.001
10.1111/pce.13391
10.1515/BMC.2011.032
10.1007/BF00392237
10.1046/j.1365-3040.1998.00317.x
10.1104/pp.113.4.1177
10.1007/s11738-009-0371-7
10.1080/02508060.2011.631873
10.1007/BF00018060
10.1071/FP16025
10.3390/agriculture8070115
10.1111/j.1365-3040.1994.tb02008.x
10.1086/297241
10.1093/jxb/47.1.25
10.1093/aob/mct205
10.1002/j.1537-2197.1981.tb07794.x
10.1111/j.1399-3054.2012.01599.x
10.1111/pce.12140
10.1016/j.sajb.2011.11.007
10.1111/j.1365-3040.2003.01137.x
10.2307/25065639
10.1515/biol-2019-0021
10.1007/978-94-009-5111-2_3
10.1134/S1021443717040112
10.1111/nph.15862
10.3389/fpls.2012.00077
10.3390/plants4010112
10.1111/j.1744-7909.2010.00895.x
10.1071/FP09229
10.1007/s00468-003-0293-8
10.1111/j.1438-8677.2009.00207.x
10.1007/s10535-005-1304-y
10.1007/978-1-4020-9065-3_17
10.1093/jxb/41.4.497
10.1038/srep13639
10.1007/BF00009275
10.1071/FP11088
10.1111/j.1399-3054.2011.01450.x
10.1016/j.envexpbot.2012.07.010
10.1093/jxb/34.7.795
10.1080/0028825X.1984.10425275
10.1016/S0735-2689(99)00388-3
10.1016/j.jaridenv.2003.12.003
10.1007/0-306-48155-3_9
10.1080/07352680590910410
10.1016/j.plaphy.2011.10.015
10.1007/s11099-005-7159-9
10.1071/FP12304
10.1007/s11099-010-0059-7
10.1016/S1360-1385(00)01838-0
10.1590/S1415-43662006000400010
ContentType Journal Article
Copyright 2021 Scandinavian Plant Physiology Society.
2021 Scandinavian Plant Physiology Society
Copyright_xml – notice: 2021 Scandinavian Plant Physiology Society.
– notice: 2021 Scandinavian Plant Physiology Society
DBID AAYXX
CITATION
NPM
7SN
7ST
8FD
C1K
FR3
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1111/ppl.13413
DatabaseName CrossRef
PubMed
Ecology Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef

Genetics Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1399-3054
EndPage 2010
ExternalDocumentID 33826749
10_1111_ppl_13413
PPL13413
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBTR
ACBWZ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TWZ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7SN
7ST
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4523-1dda8859e48d470763b2d222a27135f13161eaafbb482e90af68fc9bd36adb253
IEDL.DBID DR2
ISSN 0031-9317
1399-3054
IngestDate Fri Jul 11 18:33:03 EDT 2025
Fri Jul 11 02:33:06 EDT 2025
Fri Jul 25 10:39:25 EDT 2025
Thu Apr 03 07:07:24 EDT 2025
Tue Jul 01 03:00:51 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Wed Jan 22 16:29:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2021 Scandinavian Plant Physiology Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4523-1dda8859e48d470763b2d222a27135f13161eaafbb482e90af68fc9bd36adb253
Notes B. Huang
Edited by
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5360-8496
0000-0003-1990-8951
0000-0003-2345-8981
PMID 33826749
PQID 2555479223
PQPubID 1096353
PageCount 14
ParticipantIDs proquest_miscellaneous_2636448485
proquest_miscellaneous_2510266844
proquest_journals_2555479223
pubmed_primary_33826749
crossref_primary_10_1111_ppl_13413
crossref_citationtrail_10_1111_ppl_13413
wiley_primary_10_1111_ppl_13413_PPL13413
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Denmark
– name: Malden
PublicationTitle Physiologia plantarum
PublicationTitleAlternate Physiol Plant
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References 2010; 12
1997; 113
2009; 44
2010; 55
2007; 145
2002; 53
2000; 45
2004; 27
1984; 22
2007; 581
2010; 101
2000; 7
2019; 14
2019; 16
2000; 51
2018; 41
1975; 52
1971
2019; 123
2005; 24
1985; 165
2018; 46
2012; 51
1990; 41
2018; 8
2009; 53
2020; 1
1999; 18
1951; 193
2016; 43
2013; 112
1987
2014; 14
1985
2016; 158
2014; 95
2019; 156
2010; 32
2017; 64
2010; 37
2015; 5
2015; 4
2018; 140
2011; 2
2011; 1
2012; 146
2006; 10
2006; 55
2013; 40
1992; 146
1973; 39
2017; 68
2009; 176
1981; 68
2008
2020; 225
2008; 59
2013; 92
2005; 43
2015; 207
1995; 156
2011; 36
2002
1974; 120
2005; 49
1990; 124
2011; 38
2012; 79
1998; 21
1983; 34
2013; 36
2012; 3
2010; 48
1986; 61
2009; 31
2011; 348
2015; 115
2004; 18
2001; 6
2004; 58
1962
2015
2008; 179
1994; 17
1996; 47
2010; 52
2011; 142
e_1_2_9_75_1
e_1_2_9_31_1
Koyro H. (e_1_2_9_46_1) 2008
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_92_1
e_1_2_9_71_1
Geilfus C.‐M. (e_1_2_9_33_1) 2015
Rhodes D. (e_1_2_9_72_1) 2002
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_60_1
e_1_2_9_2_1
Jones G.W. (e_1_2_9_41_1) 2002
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Misra P. (e_1_2_9_53_1) 1975; 52
e_1_2_9_30_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_93_1
e_1_2_9_70_1
Albert R. (e_1_2_9_4_1) 2000; 7
Prahalad V.N. (e_1_2_9_65_1) 2018; 140
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Carillo P. (e_1_2_9_12_1) 2011; 1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
Hedge J. (e_1_2_9_38_1) 1962
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
Zeiger E. (e_1_2_9_89_1) 1987
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – start-page: 17
  year: 1962
– volume: 51
  start-page: 47
  year: 2012
  end-page: 52
  article-title: Multiple compartmentalization of sodium conferred salt tolerance in
  publication-title: Plant Physiology and Biochemistry
– volume: 53
  start-page: 243
  issue: 2
  year: 2009
  end-page: 248
  article-title: Salt stress effects on growth, pigments, proteins and lipid peroxidation in and
  publication-title: Biologia Plantarum
– volume: 4
  start-page: 112
  issue: 1
  year: 2015
  end-page: 166
  article-title: Cell wall metabolism in response to abiotic stress
  publication-title: Plants
– volume: 18
  start-page: 167
  issue: 2
  year: 2004
  end-page: 174
  article-title: Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove,
  publication-title: Trees
– volume: 146
  start-page: 26
  issue: 1
  year: 2012
  end-page: 38
  article-title: Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa ( )
  publication-title: Physiologia Plantarum
– volume: 18
  start-page: 227
  issue: 2
  year: 1999
  end-page: 255
  article-title: Salt tolerance and crop potential of halophytes
  publication-title: Critical Reviews in Plant Sciences
– volume: 27
  start-page: 219
  issue: 2
  year: 2004
  end-page: 228
  article-title: Aquaporins account for variations in hydraulic conductance for metabolically active root regions of in wet, dry, and rewetted soil
  publication-title: Plant, Cell and Environment
– volume: 207
  start-page: 188
  issue: 1
  year: 2015
  end-page: 195
  article-title: Increasing water‐use efficiency directly through genetic manipulation of stomatal density
  publication-title: New Phytologist
– start-page: 159
  year: 2002
  end-page: 180
– volume: 48
  start-page: 446
  issue: 3
  year: 2010
  end-page: 456
  article-title: Relationships between gas‐exchange characteristics and stomatal structural modifications in some desert grasses under high salinity
  publication-title: Photosynthetica
– volume: 156
  start-page: 25
  year: 2019
  end-page: 37
  article-title: Uptake and partitioning of metals in the Australian saltmarsh halophyte, samphire ( )
  publication-title: Aquatic Botany
– volume: 115
  start-page: 327
  issue: 3
  year: 2015
  end-page: 331
  article-title: Plant salt tolerance: adaptations in halophytes
  publication-title: Annals of Botany
– year: 1971
– volume: 36
  start-page: 1691
  issue: 9
  year: 2013
  end-page: 1699
  article-title: Modelling stomatal conductance in response to environmental factors
  publication-title: Plant, Cell and Environment
– volume: 51
  start-page: 1543
  issue: 350
  year: 2000
  end-page: 1553
  article-title: Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins
  publication-title: Journal of Experimental Botany
– volume: 6
  start-page: 66
  issue: 2
  year: 2001
  end-page: 71
  article-title: Plant salt tolerance
  publication-title: Trends in Plant Science
– volume: 95
  start-page: 70
  year: 2014
  end-page: 77
  article-title: Effect of high salinity on : growth, leaf water relations and solute accumulation in relation with osmotic adjustment
  publication-title: South African Journal of Botany
– volume: 52
  start-page: 844
  issue: 6
  year: 1975
  end-page: 848
  article-title: Studies on corn proteins. VIII. Free amino acid content of opaque‐2 double mutants
  publication-title: Cereal Chemistry
– start-page: 41
  year: 1985
  end-page: 56
– volume: 68
  start-page: 507
  issue: 4
  year: 1981
  end-page: 516
  article-title: Light, temperature and salinity effects on growth, leaf anatomy and photosyntesis of (L.) Greene
  publication-title: American Journal of Botany
– volume: 53
  start-page: 1055
  issue: 371
  year: 2002
  end-page: 1065
  article-title: Increased vacuolar Na /H exchange activity in Torr. In response to NaCl
  publication-title: Journal of Experimental Botany
– volume: 55
  start-page: 617
  issue: 3
  year: 2006
  end-page: 642
  article-title: Phylogeny of Salicornioideae (Chenopodiaceae): diversification, biogeography, and evolutionary trends in leaf and flower morphology
  publication-title: Taxon
– volume: 58
  start-page: 463
  issue: 4
  year: 2004
  end-page: 481
  article-title: Responses to salt stress in the halophyte (Plantaginaceae)
  publication-title: Journal of Arid Environments
– volume: 21
  start-page: 705
  issue: 7
  year: 1998
  end-page: 713
  article-title: Water uptake and structural plasticity along roots of a desert succulent during prolonged drought
  publication-title: Plant, Cell and Environment
– volume: 16
  start-page: 275
  issue: 2
  year: 2019
  article-title: Root and shoot biomass growth of constructed floating wetlands plants in saline environments
  publication-title: International Journal of Environmental Research and Public Health
– volume: 3
  start-page: 77
  year: 2012
  article-title: Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms
  publication-title: Frontiers in Plant Science
– volume: 92
  start-page: 144
  year: 2013
  end-page: 153
  article-title: Halophyte crop cultivation: the case for and
  publication-title: Environmental and Experimental Botany
– volume: 124
  start-page: 291
  year: 1990
  end-page: 295
  article-title: Starch synthesis in potato ( ) tubers: activity of selected enzymes in dependence of potassium content in storage tissue
  publication-title: Plant and Soil
– volume: 79
  start-page: 39
  year: 2012
  end-page: 47
  article-title: Photosynthetic responses to salinity in two obligate halophytes: and
  publication-title: South African Journal of Botany
– volume: 39
  start-page: 205
  issue: 1
  year: 1973
  end-page: 207
  article-title: Rapid determination of free proline for water‐stress studies
  publication-title: Plant and Soil
– volume: 10
  start-page: 848
  issue: 4
  year: 2006
  end-page: 854
  article-title: Salinity tolerance of halophyte L. grown under increasing NaCl levels
  publication-title: Revista Brasileira de Engenharia Agrícola e Ambiental
– volume: 14
  start-page: 191
  issue: 1
  year: 2019
  end-page: 200
  article-title: Beneficial effects of salt on halophyte growth: morphology, cells, and genes
  publication-title: Open Life Sciences
– volume: 115
  start-page: 419
  issue: 3
  year: 2015
  end-page: 431
  article-title: Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes
  publication-title: Annals of Botany
– volume: 34
  start-page: 795
  issue: 7
  year: 1983
  end-page: 810
  article-title: Ionic relations of garden orache, L.: growth and ion distribution at moderate salinity and the function of bladder hairs
  publication-title: Journal of Experimental Botany
– volume: 348
  start-page: 379
  issue: 1–2
  year: 2011
  end-page: 396
  article-title: Salinity and waterlogging tolerances in three stem‐succulent halophytes ( species) from the margins of ephemeral salt lakes
  publication-title: Plant and Soil
– start-page: 83
  year: 2008
  end-page: 104
– volume: 156
  start-page: 197
  issue: 2
  year: 1995
  end-page: 205
  article-title: Growth and physiology of Torr. At suboptimal salinity
  publication-title: International Journal of Plant Sciences
– volume: 43
  start-page: 157
  issue: 1
  year: 2005
  end-page: 159
  article-title: Presence of internal photosynthetic cylinder surrounding the stele in stems of the tribe Salicornieae (Chenopodiaceae) from SW Iberian Peninsula
  publication-title: Photosynthetica
– volume: 165
  start-page: 392
  issue: 3
  year: 1985
  end-page: 396
  article-title: Salt tolerance in the halophyte L
  publication-title: Dum. Planta
– year: 2015
– volume: 1
  start-page: 100017
  issue: 1
  year: 2020
  article-title: Mechanisms of plant responses and adaptation to soil salinity
  publication-title: The Innovation
– volume: 49
  start-page: 301
  issue: 2
  year: 2005
  end-page: 304
  article-title: The effects of NaCl on growth, water relations, osmolytes and ion content in
  publication-title: Biologia Plantarum
– volume: 41
  start-page: 2654
  issue: 11
  year: 2018
  end-page: 2667
  article-title: Revealing mechanisms of salinity tissue tolerance in succulent halophytes: a case study for Carpobrotus rossi
  publication-title: Plant, Cell & Environment
– volume: 7
  start-page: 69
  year: 2000
  end-page: 87
  article-title: The physiotype approach to understanding halophytes and xerophytes
  publication-title: Ergebnisse Weltweiter Ökologischer Forschung
– volume: 45
  start-page: 73
  issue: 1
  year: 2000
  end-page: 84
  article-title: The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, (L.) Forssk
  publication-title: Journal of Arid Environments
– volume: 176
  start-page: 200
  issue: 2
  year: 2009
  end-page: 205
  article-title: Increase in aquaporin activity is involved in leaf succulence of the euhalophyte Suaeda salsa, under salinity
  publication-title: Plant Science
– volume: 112
  start-page: 1209
  issue: 7
  year: 2013
  end-page: 1221
  article-title: Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops
  publication-title: Annals of Botany
– volume: 120
  start-page: 279
  issue: 3
  year: 1974
  end-page: 289
  article-title: The role of proline accumulation in halophytes
  publication-title: Planta
– volume: 12
  start-page: 79
  issue: 1
  year: 2010
  end-page: 87
  article-title: Salt stimulation of growth and photosynthesis in an extreme halophyte,
  publication-title: Plant Biology (Stuttgart)
– volume: 5
  start-page: 13639
  year: 2015
  article-title: Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress
  publication-title: Scientific Reports
– volume: 225
  start-page: 1091
  issue: 3
  year: 2020
  end-page: 1096
  article-title: Osmotic adjustment and energy limitations to plant growth in saline soil
  publication-title: New Phytologist
– volume: 92
  start-page: 19
  year: 2013
  end-page: 31
  article-title: Sodium (Na ) homeostasis and salt tolerance of plants
  publication-title: Environmental and Experimental Botany
– year: 1987
– volume: 37
  start-page: 656
  issue: 7
  year: 2010
  end-page: 664
  article-title: Wheat cultivars can be screened for NaCl salinity tolerance by measuring leaf chlorophyll content and shoot sap potassium
  publication-title: Functional Plant Biology
– volume: 61
  start-page: 313
  issue: 3
  year: 1986
  end-page: 337
  article-title: Halophytes
  publication-title: The Quarterly Review of Biology
– volume: 64
  start-page: 464
  issue: 4
  year: 2017
  end-page: 477
  article-title: Structural, physiological, and biochemical aspects of salinity tolerance of halophytes
  publication-title: Russian Journal of Plant Physiology
– volume: 140
  start-page: 52
  year: 2018
  end-page: 81
  article-title: Inventory and monitoring of the vascular plants of Tasmanian saltmarsh wetlands
  publication-title: Tasmanian Naturalist
– volume: 8
  start-page: 115
  issue: 7
  year: 2018
  article-title: Growth, phenolics, photosynthetic pigments, and antioxidant response of two new genotypes of sea asparagus ( Lag.) to salinity under greenhouse and field conditions
  publication-title: Agriculture
– volume: 36
  start-page: 784
  issue: 7
  year: 2011
  end-page: 798
  article-title: Water‐use efficiency and productivity: rethinking the basin approach
  publication-title: Water International
– volume: 44
  start-page: 167
  year: 2009
  end-page: 177
– volume: 43
  start-page: 739
  issue: 8
  year: 2016
  end-page: 750
  article-title: Salinity tolerances of three succulent halophytes ( spp.) differentially distributed along a salinity gradient
  publication-title: Functional Plant Biology
– volume: 55
  start-page: 179
  year: 2010
  end-page: 225
– volume: 123
  start-page: 1
  issue: 1
  year: 2019
  end-page: 18
  article-title: Could vesicular transport of Na and Cl be a feature of salt tolerance in halophytes?
  publication-title: Annals of Botany
– volume: 581
  start-page: 2204
  issue: 12
  year: 2007
  end-page: 2214
  article-title: Plant proton pumps
  publication-title: FEBS Letters
– volume: 193
  start-page: 265
  year: 1951
  end-page: 275
  article-title: Protein measurement with the Folin phenol reagent
  publication-title: Journal of Biological Chemistry
– volume: 47
  start-page: 25
  issue: 1
  year: 1996
  end-page: 32
  article-title: Increased vacuolar and plasma membrane H+‐ATPase activities in Torr. In response to NaCl
  publication-title: Journal of Experimental Botany
– volume: 38
  start-page: 818
  issue: 10
  year: 2011
  end-page: 831
  article-title: Beyond the ionic and osmotic response to salinity in : functional elements of successful halophytism
  publication-title: Functional Plant Biology
– volume: 1
  start-page: 21
  year: 2011
  end-page: 38
  article-title: Salinity stress and salt tolerance
  publication-title: Abiotic Stress in Plants‐Mechanisms and Adaptations
– volume: 145
  start-page: 1714
  issue: 4
  year: 2007
  end-page: 1725
  article-title: Root plasma membrane transporters controlling K /Na homeostasis in salt‐stressed barley
  publication-title: Plant Physiology
– volume: 46
  start-page: 87
  year: 2018
  end-page: 95
  article-title: Stomata in a saline world
  publication-title: Current Opinion in Plant Biology
– volume: 41
  start-page: 497
  issue: 4
  year: 1990
  end-page: 502
  article-title: Salt tolerance in the succulent, coastal halophyte,
  publication-title: Journal of Experimental Botany
– volume: 179
  start-page: 945
  issue: 4
  year: 2008
  end-page: 963
  article-title: Salinity tolerance in halophytes
  publication-title: New Phytologist
– volume: 68
  start-page: 2121
  issue: 9
  year: 2017
  end-page: 2134
  article-title: Secrets of succulence
  publication-title: Journal of Experimental Botany
– start-page: 181
  year: 2002
  end-page: 204
– volume: 24
  start-page: 23
  issue: 1
  year: 2005
  end-page: 58
  article-title: Drought and salt tolerance in plants
  publication-title: Critical Reviews in Plant Sciences
– volume: 115
  start-page: 353
  issue: 3
  year: 2015
  end-page: 368
  article-title: Phylogeny, biogeography and ecological diversification of (Salicornioideae, Amaranthaceae)
  publication-title: Annals of Botany
– volume: 40
  start-page: 897
  issue: 9
  year: 2013
  end-page: 912
  article-title: Tolerance of extreme salinity in two stem‐succulent halophytes ( species)
  publication-title: Functional Plant Biology
– volume: 51
  start-page: 53
  year: 2012
  end-page: 62
  article-title: Sodium instead of potassium and chloride is an important macronutrient to improve leaf succulence and shoot development for halophyte
  publication-title: Plant Physiology and Biochemistry
– volume: 2
  start-page: 407
  issue: 5
  year: 2011
  end-page: 419
  article-title: Ion transport and osmotic adjustment in plants and bacteria
  publication-title: Biomolecular Concepts
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  article-title: Mechanisms of salinity tolerance
  publication-title: Annual Review of Plant Biology
– volume: 113
  start-page: 1177
  issue: 4
  year: 1997
  end-page: 1183
  article-title: Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts
  publication-title: Plant Physiology
– volume: 31
  start-page: 463
  issue: 3
  year: 2009
  end-page: 476
  article-title: Photosystem II photochemistry and physiological parameters of three fodder shrubs, , and under salt stress
  publication-title: Acta Physiologiae Plantarum
– volume: 32
  start-page: 27
  issue: 1
  year: 2010
  end-page: 36
  article-title: NaCl increases the activity of the plasma membrane H ‐ATPase in C3 halophyte callus
  publication-title: Acta Physiologiae Plantarum
– volume: 22
  start-page: 433
  issue: 3
  year: 1984
  end-page: 439
  article-title: Gynodioecism in (Salicornieae) in New Zealand
  publication-title: New Zealand Journal of Botany
– volume: 101
  start-page: 6822
  issue: 17
  year: 2010
  end-page: 6828
  article-title: Phytodesalination of a salt‐affected soil with the halophyte L. to arrange in advance the requirements for the successful growth of a glycophytic crop
  publication-title: Bioresource Technology
– volume: 142
  start-page: 128
  issue: 2
  year: 2011
  end-page: 143
  article-title: Early effects of salt stress on the physiological and oxidative status of (halophyte) and (glycophyte)
  publication-title: Physiologia Plantarum
– volume: 52
  start-page: 308
  issue: 3
  year: 2010
  end-page: 314
  article-title: Organ‐specific responses of vacuolar H ‐ATPase in the shoots and roots of C3 halophyte to NaCl
  publication-title: Journal of Integrative Plant Biology
– volume: 14
  start-page: 113
  issue: 1
  year: 2014
  article-title: Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley
  publication-title: BMC Plant Biology
– volume: 17
  start-page: 1101
  issue: 10
  year: 1994
  end-page: 1112
  article-title: Adaptation of the tonoplast V‐type H ‐ATPase of to salt stress, C3–CAM transition and plant age
  publication-title: Plant, Cell and Environment
– volume: 158
  start-page: 135
  issue: 2
  year: 2016
  end-page: 151
  article-title: Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three species
  publication-title: Physiologia Plantarum
– volume: 146
  start-page: 153
  issue: 1
  year: 1992
  end-page: 161
  article-title: Protein synthesis in halophytes: the influence of potassium, sodium and magnesium in vitro
  publication-title: Plant and Soil
– ident: e_1_2_9_30_1
  doi: 10.1093/aob/mcu217
– ident: e_1_2_9_79_1
  doi: 10.1093/aob/mcu260
– ident: e_1_2_9_31_1
  doi: 10.1111/nph.13347
– ident: e_1_2_9_52_1
  doi: 10.1093/jxb/erx096
– start-page: 159
  volume-title: Salinity: environment‐plants‐molecules
  year: 2002
  ident: e_1_2_9_41_1
  doi: 10.1007/0-306-48155-3_8
– ident: e_1_2_9_25_1
  doi: 10.1086/415032
– ident: e_1_2_9_39_1
  doi: 10.1016/j.pbi.2018.07.015
– ident: e_1_2_9_86_1
  doi: 10.1093/jexbot/51.350.1543
– ident: e_1_2_9_50_1
  doi: 10.1016/S0021-9258(19)52451-6
– ident: e_1_2_9_80_1
  doi: 10.1007/BF00390296
– ident: e_1_2_9_9_1
  doi: 10.1016/j.sajb.2014.08.009
– volume-title: Stomatal function
  year: 1987
  ident: e_1_2_9_89_1
– ident: e_1_2_9_61_1
  doi: 10.1016/B978-0-12-380868-4.00004-1
– ident: e_1_2_9_10_1
  doi: 10.1007/s11738-008-0254-3
– ident: e_1_2_9_45_1
  doi: 10.1006/jare.1999.0617
– ident: e_1_2_9_56_1
  doi: 10.1111/j.1469-8137.2005.01487.x
– ident: e_1_2_9_74_1
  doi: 10.3390/ijerph16020275
– ident: e_1_2_9_29_1
  doi: 10.1093/aob/mcy164
– ident: e_1_2_9_28_1
  doi: 10.1007/BF00012008
– ident: e_1_2_9_15_1
  doi: 10.1104/pp.107.110262
– ident: e_1_2_9_84_1
  doi: 10.1016/j.plaphy.2011.10.009
– volume-title: Chloride‐inducible transient apoplastic alkalinizations trigger stomata closure by controlling abscisic acid distribution: a pilot study linking proteome and phenome in salt stressed Vicia faba L
  year: 2015
  ident: e_1_2_9_33_1
– ident: e_1_2_9_2_1
  doi: 10.1186/1471-2229-14-113
– ident: e_1_2_9_13_1
  doi: 10.1111/ppl.12447
– ident: e_1_2_9_66_1
  doi: 10.1016/j.plantsci.2008.09.019
– ident: e_1_2_9_3_1
  doi: 10.1007/s10535-009-0046-7
– ident: e_1_2_9_64_1
  doi: 10.1093/jexbot/53.371.1055
– ident: e_1_2_9_68_1
  doi: 10.1016/j.biortech.2010.03.097
– ident: e_1_2_9_22_1
  doi: 10.1007/s11104-011-0924-6
– ident: e_1_2_9_81_1
  doi: 10.1016/j.aquabot.2019.04.001
– ident: e_1_2_9_92_1
  doi: 10.1016/j.xinn.2020.100017
– ident: e_1_2_9_27_1
  doi: 10.1093/aob/mcu267
– ident: e_1_2_9_32_1
  doi: 10.1016/j.febslet.2007.03.050
– start-page: 17
  volume-title: Carbohydrate chemistry
  year: 1962
  ident: e_1_2_9_38_1
– ident: e_1_2_9_26_1
  doi: 10.1111/j.1469-8137.2008.02531.x
– start-page: 83
  volume-title: Strategies of halophytes to survive in a salty environment
  year: 2008
  ident: e_1_2_9_46_1
– ident: e_1_2_9_37_1
  doi: 10.1016/j.envexpbot.2013.03.001
– ident: e_1_2_9_90_1
  doi: 10.1111/pce.13391
– ident: e_1_2_9_77_1
  doi: 10.1515/BMC.2011.032
– ident: e_1_2_9_16_1
  doi: 10.1007/BF00392237
– ident: e_1_2_9_60_1
  doi: 10.1046/j.1365-3040.1998.00317.x
– ident: e_1_2_9_78_1
  doi: 10.1104/pp.113.4.1177
– ident: e_1_2_9_14_1
  doi: 10.1007/s11738-009-0371-7
– ident: e_1_2_9_34_1
  doi: 10.1080/02508060.2011.631873
– ident: e_1_2_9_8_1
  doi: 10.1007/BF00018060
– ident: e_1_2_9_54_1
  doi: 10.1071/FP16025
– ident: e_1_2_9_20_1
  doi: 10.3390/agriculture8070115
– ident: e_1_2_9_69_1
  doi: 10.1111/j.1365-3040.1994.tb02008.x
– ident: e_1_2_9_5_1
  doi: 10.1086/297241
– ident: e_1_2_9_6_1
  doi: 10.1093/jxb/47.1.25
– ident: e_1_2_9_76_1
  doi: 10.1093/aob/mct205
– ident: e_1_2_9_44_1
  doi: 10.1002/j.1537-2197.1981.tb07794.x
– ident: e_1_2_9_75_1
  doi: 10.1111/j.1399-3054.2012.01599.x
– ident: e_1_2_9_11_1
  doi: 10.1111/pce.12140
– ident: e_1_2_9_67_1
  doi: 10.1016/j.sajb.2011.11.007
– volume: 7
  start-page: 69
  year: 2000
  ident: e_1_2_9_4_1
  article-title: The physiotype approach to understanding halophytes and xerophytes
  publication-title: Ergebnisse Weltweiter Ökologischer Forschung
– volume: 140
  start-page: 52
  year: 2018
  ident: e_1_2_9_65_1
  article-title: Inventory and monitoring of the vascular plants of Tasmanian saltmarsh wetlands
  publication-title: Tasmanian Naturalist
– ident: e_1_2_9_59_1
  doi: 10.1111/j.1365-3040.2003.01137.x
– ident: e_1_2_9_42_1
  doi: 10.2307/25065639
– ident: e_1_2_9_88_1
  doi: 10.1515/biol-2019-0021
– ident: e_1_2_9_24_1
  doi: 10.1007/978-94-009-5111-2_3
– ident: e_1_2_9_73_1
  doi: 10.1134/S1021443717040112
– ident: e_1_2_9_55_1
  doi: 10.1111/nph.15862
– ident: e_1_2_9_36_1
  doi: 10.3389/fpls.2012.00077
– ident: e_1_2_9_85_1
– ident: e_1_2_9_48_1
  doi: 10.3390/plants4010112
– ident: e_1_2_9_87_1
  doi: 10.1111/j.1744-7909.2010.00895.x
– ident: e_1_2_9_18_1
  doi: 10.1071/FP09229
– ident: e_1_2_9_63_1
  doi: 10.1007/s00468-003-0293-8
– ident: e_1_2_9_70_1
  doi: 10.1111/j.1438-8677.2009.00207.x
– ident: e_1_2_9_43_1
  doi: 10.1007/s10535-005-1304-y
– ident: e_1_2_9_47_1
  doi: 10.1007/978-1-4020-9065-3_17
– ident: e_1_2_9_57_1
  doi: 10.1093/jxb/41.4.497
– ident: e_1_2_9_91_1
  doi: 10.1038/srep13639
– ident: e_1_2_9_49_1
  doi: 10.1007/BF00009275
– volume: 1
  start-page: 21
  year: 2011
  ident: e_1_2_9_12_1
  article-title: Salinity stress and salt tolerance
  publication-title: Abiotic Stress in Plants‐Mechanisms and Adaptations
– ident: e_1_2_9_62_1
  doi: 10.1071/FP11088
– ident: e_1_2_9_21_1
  doi: 10.1111/j.1399-3054.2011.01450.x
– ident: e_1_2_9_82_1
  doi: 10.1016/j.envexpbot.2012.07.010
– ident: e_1_2_9_40_1
  doi: 10.1093/jxb/34.7.795
– ident: e_1_2_9_17_1
  doi: 10.1080/0028825X.1984.10425275
– ident: e_1_2_9_35_1
  doi: 10.1016/S0735-2689(99)00388-3
– ident: e_1_2_9_83_1
  doi: 10.1016/j.jaridenv.2003.12.003
– volume: 52
  start-page: 844
  issue: 6
  year: 1975
  ident: e_1_2_9_53_1
  article-title: Studies on corn proteins. VIII. Free amino acid content of opaque‐2 double mutants
  publication-title: Cereal Chemistry
– start-page: 181
  volume-title: Salinity: environment‐plants‐molecules
  year: 2002
  ident: e_1_2_9_72_1
  doi: 10.1007/0-306-48155-3_9
– ident: e_1_2_9_7_1
  doi: 10.1080/07352680590910410
– ident: e_1_2_9_51_1
  doi: 10.1016/j.plaphy.2011.10.015
– ident: e_1_2_9_71_1
  doi: 10.1007/s11099-005-7159-9
– ident: e_1_2_9_23_1
  doi: 10.1071/FP12304
– ident: e_1_2_9_58_1
  doi: 10.1007/s11099-010-0059-7
– ident: e_1_2_9_93_1
  doi: 10.1016/S1360-1385(00)01838-0
– ident: e_1_2_9_19_1
  doi: 10.1590/S1415-43662006000400010
SSID ssj0016612
Score 2.4578507
Snippet Succulent halophytes can be used as convenient models for understanding the mechanistic basis of plant adaptation to salt stress. In this work, effects of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1997
SubjectTerms Accumulation
Adaptation
Carbohydrates
Dry matter
dry matter accumulation
Growth rate
growth retardation
Halophytes
Homeostasis
Horticultural crops
horticulture
Ion accumulation
Optimization
osmolality
Osmoregulation
Perennial crops
Photosynthesis
plant adaptation
Plant growth
Potassium
Salinity
Salinity effects
Salinity tolerance
salt stress
Salt tolerance
Sarcocornia
Sarcocornia quinqueflora
Sodium
Sodium chloride
Soil salinity
Solutes
Stomata
stress tolerance
Substrates
surface area
Transpiration
Turgor
vacuoles
water use efficiency
Title Understanding the mechanistic basis of adaptation of perennial Sarcocornia quinqueflora species to soil salinity
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.13413
https://www.ncbi.nlm.nih.gov/pubmed/33826749
https://www.proquest.com/docview/2555479223
https://www.proquest.com/docview/2510266844
https://www.proquest.com/docview/2636448485
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0h1AOXQksL29LKVBy4ZLUbO4mjntqqK4QArVpW4oAU2bEtrViSLcke6K_vjPMhoC1C3BJlItnJjOe9ZOYZ4MBYoxIRmSA3PAkEcohAuQSpiuWSFkyVJNQ7fHoWH83E8UV0sQafu16YRh-i_-BGkeHXawpwpas7QY4gbUhqZKT0SbVaBIh-9NJRY8w7jVI4HwcpJslWVYiqePo77-eivwDmfbzqE85kEy67oTZ1JlfDVa2H-e8HKo7PnMsWvGyBKPvSeM4rWLPFa3jxtUSweLsNy9ndpheGKJFdW2oS9rrODHPfvGKlY8qoZfMzn86W1DtYoEeznxg_Ze57vtiv1bzAKbsFehujzk4k56wuWVXOF6xS1JpZ376B2eT7-bejoN2cIcgFktdgbIySMkqtkEYkI1ymdGgQbKiQNv1zY45Q0irltBYytOlIuVi6PNWGx8roMOJvYb0oC7sLjLtwZBzVr6SxGJlcS6Vyqx36l-ERTwdw2L2mLG-Vy2kDjUXWMRh8fpl_fgP41JsuG7mOfxntde86ayO2ypBaRSJJES0NYL-_jLFGP1BUYcsV2SAci2MpxCM2MSfKK2Q0gJ3Gj_qRcI5kLhE0Ie8N_x9iNp2e-IN3Tzd9DxshFdz46sQ9WK9vVvYDIqZaf_Sh8QeH9BQy
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBQkuvB-BAgsCiYujxLu21wcOQKlSmlYVNFJv7q53V4oIdsCOUPhN_BX-EzPrh1pe4tIDN0eewz7m8Y0z8w3AU2ONSkRkgtzwJBCYQwTKJZiqWC7JYaokod7h_YN4MhNvj6PjDfjW9cI0_BD9BzeyDO-vycDpg_QpK0eUNiQ6sm509Z5df8GErXqxu423-ywMd94cvZ4E7UyBIBeYcwVjY5SUUWqFNCLBJJ7r0GCMVCHNqnNjjgjIKuW0FjK06Ui5WLo81YbHyuiQZkSgw79AE8SJqX_7XU9WNcZI13CT83GQYlhueYyobqhf6tno9wukPYuQfYjbuQrfu8NpKls-DFe1HuZff-KN_F9O7xpcabE2e9kYx3XYsMUNuPiqRDy8vgnL2em-HoZAmH201AftqasZhvd5xUrHlFHLpl6Bfi2pPbJAo2XvcT9l7tva2KfVvMAzdgs0KEbNq3NbsbpkVTlfsEpR92m9vgWzc9ntbdgsysLeBcZdODKOSnTSWIxMrqVSudUOTcjwiKcDeN7pRZa35Ow0I2SRdUka3lfm72sAT3rRZcNI8juhrU65stYpVRlmj5FIUgSEA3jcv0Z3Qv8RqcKWK5JBxBnHUoi_yMScsnohowHcaRS3XwnnmK8mgjbk1e_PS8wOD6f-4d6_iz6CS5Oj_Wk23T3Yuw-XQ6ov8sWYW7BZf17ZBwgQa_3Q2yWDk_NW5R8I03He
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH6qCkJc2JeUAgMCiYujxDPeDj0AIWppqSIgUm_ujGdGigi2qR2h8Jf4K_1RvDde1LKJSw_cYuUdZnnL99lvAXimjZaRCLSXaR55AjmEJ22EVMXwmBymjCKqHX53GO7Oxduj4GgDvne1ME1_iP6FG1mG89dk4KW2Z4wcQdqQupF1k6v3zfor8rVqZ2-Cl_vc96dvPr7e9dqRAl4mkHJ5Y61lHAeJEbEWEXJ4rnyNIVL6NKrOjjkCICOlVUrEvklG0oaxzRKleSi18mlEBPr7SyIcJTQnYvK-71U1xkDXtCbnYy_BqNy2MaK0oX6p54PfL4j2PEB2EW56HU67s2kSWz4NV7UaZt9-ahv5nxzeDbjWIm32sjGNm7Bh8ltw-VWBaHh9G8r52aoehjCYfTZUBe0aVzMM7ouKFZZJLcsmW4GeSiqOzNFk2QfcT5G5ojb2ZbXI8YjtEs2JUenqwlSsLlhVLJasklR7Wq_vwPxCdnsXNvMiN_eBceuPtKUEnSQUI52pWMrMKIsGpHnAkwG86NQizdrW7DQhZJl2FA3vK3X3NYCnvWjZ9CP5ndB2p1tp65KqFLljIKIE4eAAnvR_ozOhL0QyN8WKZBBvhmEsxF9kQk6cXsTBAO41etuvhHNkq5GgDTnt-_MS09nswP3Y-nfRx3BlNpmmB3uH-w_gqk_JRS4Tcxs265OVeYjosFaPnFUyOL5oTf4BNJ5wjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+mechanistic+basis+of+adaptation+of+perennial+Sarcocornia+quinqueflora+species+to+soil+salinity&rft.jtitle=Physiologia+plantarum&rft.au=Ahmed%2C+Hassan+Ahmed+Ibraheem&rft.au=Shabala%2C+Lana&rft.au=Shabala%2C+Sergey&rft.date=2021-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0031-9317&rft.eissn=1399-3054&rft.volume=172&rft.issue=4&rft.spage=1997&rft.epage=2010&rft_id=info:doi/10.1111%2Fppl.13413&rft.externalDBID=10.1111%252Fppl.13413&rft.externalDocID=PPL13413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon