The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines
In recent years, numerous studies have demonstrated the health benefits of polyphenols. A major portion of polyphenols in western diet are derived from coffee, which is one of the most consumed beverages in the world. It has been shown that many polyphenols gain their beneficial properties (e.g. can...
Saved in:
Published in | Redox biology Vol. 4; no. C; pp. 48 - 59 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, numerous studies have demonstrated the health benefits of polyphenols. A major portion of polyphenols in western diet are derived from coffee, which is one of the most consumed beverages in the world. It has been shown that many polyphenols gain their beneficial properties (e.g. cancer prevention) through the activation of the Nrf2/Keap1 pathway as well as their direct antioxidant activity. However, activation of Nrf2 in cancer cells might lead to resistance towards therapy through induction of phase II enzymes. In the present work we hypothesize that caffeic acid (CA), a coffee polyphenol, might act as an electrophile in addition to its nucleophilic properties and is capable of inducing the Nrf2/EpRE pathway in cancer cells. The results indicate that CA induces Nrf2 translocation into the nucleus and consequently its transcription. It has been demonstrated that generated hydrogen peroxide is involved in the induction process. It has also been found that this process is induced predominantly via the double bond in CA (Michael acceptor). However, surprisingly the presence of both nucleophilic and electrophilic moieties in CA resulted in a synergetic activation of Nrf2 and phase II enzymes. We also found that CA possesses a dual activity, although inducing GSTP1 and GSR, it inhibiting their enzymatic activity. In conclusion, the mechanism of induction of Nrf2 pathway and phase II enzymes by CA has been elucidated. The electrophilic moiety in CA is essential for the oxidation of the Keap1 protein. It should be noted that while the nucleophilic moiety (the catechol/quinone moiety) can provide scavenging ability, it cannot contribute directly to Nrf2 induction. It was found that this process may be induced by H2O2 produced by the catechol group. On the whole, it appears that CA might play a major role in the cancer cells by enhancing their resistance to treatment. |
---|---|
AbstractList | In recent years, numerous studies have demonstrated the health benefits of polyphenols. A major portion of polyphenols in western diet are derived from coffee, which is one of the most consumed beverages in the world. It has been shown that many polyphenols gain their beneficial properties (e.g. cancer prevention) through the activation of the Nrf2/Keap1 pathway as well as their direct antioxidant activity. However, activation of Nrf2 in cancer cells might lead to resistance towards therapy through induction of phase II enzymes. In the present work we hypothesize that caffeic acid (CA), a coffee polyphenol, might act as an electrophile in addition to its nucleophilic properties and is capable of inducing the Nrf2/EpRE pathway in cancer cells. The results indicate that CA induces Nrf2 translocation into the nucleus and consequently its transcription. It has been demonstrated that generated hydrogen peroxide is involved in the induction process. It has also been found that this process is induced predominantly via the double bond in CA (Michael acceptor). However, surprisingly the presence of both nucleophilic and electrophilic moieties in CA resulted in a synergetic activation of Nrf2 and phase II enzymes. We also found that CA possesses a dual activity, although inducing GSTP1 and GSR, it inhibiting their enzymatic activity. In conclusion, the mechanism of induction of Nrf2 pathway and phase II enzymes by CA has been elucidated. The electrophilic moiety in CA is essential for the oxidation of the Keap1 protein. It should be noted that while the nucleophilic moiety (the catechol/quinone moiety) can provide scavenging ability, it cannot contribute directly to Nrf2 induction. It was found that this process may be induced by H2O2 produced by the catechol group. On the whole, it appears that CA might play a major role in the cancer cells by enhancing their resistance to treatment.In recent years, numerous studies have demonstrated the health benefits of polyphenols. A major portion of polyphenols in western diet are derived from coffee, which is one of the most consumed beverages in the world. It has been shown that many polyphenols gain their beneficial properties (e.g. cancer prevention) through the activation of the Nrf2/Keap1 pathway as well as their direct antioxidant activity. However, activation of Nrf2 in cancer cells might lead to resistance towards therapy through induction of phase II enzymes. In the present work we hypothesize that caffeic acid (CA), a coffee polyphenol, might act as an electrophile in addition to its nucleophilic properties and is capable of inducing the Nrf2/EpRE pathway in cancer cells. The results indicate that CA induces Nrf2 translocation into the nucleus and consequently its transcription. It has been demonstrated that generated hydrogen peroxide is involved in the induction process. It has also been found that this process is induced predominantly via the double bond in CA (Michael acceptor). However, surprisingly the presence of both nucleophilic and electrophilic moieties in CA resulted in a synergetic activation of Nrf2 and phase II enzymes. We also found that CA possesses a dual activity, although inducing GSTP1 and GSR, it inhibiting their enzymatic activity. In conclusion, the mechanism of induction of Nrf2 pathway and phase II enzymes by CA has been elucidated. The electrophilic moiety in CA is essential for the oxidation of the Keap1 protein. It should be noted that while the nucleophilic moiety (the catechol/quinone moiety) can provide scavenging ability, it cannot contribute directly to Nrf2 induction. It was found that this process may be induced by H2O2 produced by the catechol group. On the whole, it appears that CA might play a major role in the cancer cells by enhancing their resistance to treatment. In recent years, numerous studies have demonstrated the health benefits of polyphenols. A major portion of polyphenols in western diet are derived from coffee, which is one of the most consumed beverages in the world. It has been shown that many polyphenols gain their beneficial properties (e.g. cancer prevention) through the activation of the Nrf2/Keap1 pathway as well as their direct antioxidant activity. However, activation of Nrf2 in cancer cells might lead to resistance towards therapy through induction of phase II enzymes. In the present work we hypothesize that caffeic acid (CA), a coffee polyphenol, might act as an electrophile in addition to its nucleophilic properties and is capable of inducing the Nrf2/EpRE pathway in cancer cells. The results indicate that CA induces Nrf2 translocation into the nucleus and consequently its transcription. It has been demonstrated that generated hydrogen peroxide is involved in the induction process. It has also been found that this process is induced predominantly via the double bond in CA (Michael acceptor). However, surprisingly the presence of both nucleophilic and electrophilic moieties in CA resulted in a synergetic activation of Nrf2 and phase II enzymes. We also found that CA possesses a dual activity, although inducing GSTP1 and GSR, it inhibiting their enzymatic activity. In conclusion, the mechanism of induction of Nrf2 pathway and phase II enzymes by CA has been elucidated. The electrophilic moiety in CA is essential for the oxidation of the Keap1 protein. It should be noted that while the nucleophilic moiety (the catechol/quinone moiety) can provide scavenging ability, it cannot contribute directly to Nrf2 induction. It was found that this process may be induced by H 2 O 2 produced by the catechol group. On the whole, it appears that CA might play a major role in the cancer cells by enhancing their resistance to treatment. • The electrophilic moiety in CA is essential for the oxidation of the Keap1 protein. • The nucleophilic moiety contribute to Nrf2/Keap1 activation via production of H 2 O 2 . • CA possesses a dual activity, as inducer and as inhibitor of GSTP1 and GSR1. • The effect of coffee on healthy subjects and cancer patients may be different. In recent years, numerous studies have demonstrated the health benefits of polyphenols. A major portion of polyphenols in western diet are derived from coffee, which is one of the most consumed beverages in the world. It has been shown that many polyphenols gain their beneficial properties (e.g. cancer prevention) through the activation of the Nrf2/Keap1 pathway as well as their direct antioxidant activity. However, activation of Nrf2 in cancer cells might lead to resistance towards therapy through induction of phase II enzymes. In the present work we hypothesize that caffeic acid (CA), a coffee polyphenol, might act as an electrophile in addition to its nucleophilic properties and is capable of inducing the Nrf2/EpRE pathway in cancer cells. The results indicate that CA induces Nrf2 translocation into the nucleus and consequently its transcription. It has been demonstrated that generated hydrogen peroxide is involved in the induction process. It has also been found that this process is induced predominantly via the double bond in CA (Michael acceptor). However, surprisingly the presence of both nucleophilic and electrophilic moieties in CA resulted in a synergetic activation of Nrf2 and phase II enzymes. We also found that CA possesses a dual activity, although inducing GSTP1 and GSR, it inhibiting their enzymatic activity. In conclusion, the mechanism of induction of Nrf2 pathway and phase II enzymes by CA has been elucidated. The electrophilic moiety in CA is essential for the oxidation of the Keap1 protein. It should be noted that while the nucleophilic moiety (the catechol/quinone moiety) can provide scavenging ability, it cannot contribute directly to Nrf2 induction. It was found that this process may be induced by H2O2 produced by the catechol group. On the whole, it appears that CA might play a major role in the cancer cells by enhancing their resistance to treatment. |
Author | Sirota, R. Gibson, D. Kohen, R. |
AuthorAffiliation | Faculty of Medicine, Institute for Drug Research, Hebrew University of Jerusalem, Israel |
AuthorAffiliation_xml | – name: Faculty of Medicine, Institute for Drug Research, Hebrew University of Jerusalem, Israel |
Author_xml | – sequence: 1 givenname: R. surname: Sirota fullname: Sirota, R. – sequence: 2 givenname: D. surname: Gibson fullname: Gibson, D. – sequence: 3 givenname: R. surname: Kohen fullname: Kohen, R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25498967$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaW_AAnlyGVTfyWxL0iograigks5WxN73PUqay-Od6F_gV-Ns1uqlgO-eDTz3pvRzHtdHYUYsKreUtJQQrvzVZPQxl8NI1Q0lDaEshfVCWOULxin_dGT-Lg6m6YVKU9KwSh5VR2zViipuv6k-n27xDrFEevo6lxiAxnNMo7e1BDsPoUjmpziZunn7Dp6zB6nmWDAOZyRxtvah_prcuz8C8KG1hvIy59wX0rZ7yD7GGZA3EHyEAoxGR_iGmqD41iPPuD0pnrpYJzw7OE_rb5__nR7cbW4-XZ5ffHxZmFEy9gCum6QQ98pUASlRNMr6Kl0nRwcMdxyITrHnTXMqqEnlKOjkgyKC0BmW-Sn1fVB10ZY6U3ya0j3OoLX-0RMdxpS9mZEDYpjawdBVWdFC2ZoWwlliwPrmZDWFK0PB63NdlijNRhygvGZ6PNK8Et9F3dacKKkkEXg_YNAij-2OGW99tO8EwgYt5OmXUfLqWjLCvTd016PTf4eswD4AWBSnKaE7hFCiZ5do1d67xo9u0ZTqotrCkv9wzI-7w9WBvbjf7l_ALD4y8w |
CitedBy_id | crossref_primary_10_1016_j_repbio_2019_07_002 crossref_primary_10_1155_2021_8388258 crossref_primary_10_3390_pr11092771 crossref_primary_10_1007_s00204_023_03665_3 crossref_primary_10_1007_s12298_024_01509_7 crossref_primary_10_1016_j_fbio_2022_102162 crossref_primary_10_1089_bio_2021_0167 crossref_primary_10_1007_s11356_022_24045_x crossref_primary_10_1007_s12551_016_0244_4 crossref_primary_10_1016_j_advms_2017_07_003 crossref_primary_10_3390_app10030947 crossref_primary_10_1038_onc_2016_113 crossref_primary_10_1016_j_phrs_2022_106365 crossref_primary_10_1155_2017_6501046 crossref_primary_10_1007_s00044_020_02539_y crossref_primary_10_31883_pjfns_120017 crossref_primary_10_3892_ijmm_2017_3238 crossref_primary_10_1021_acs_jafc_6b04933 crossref_primary_10_3390_nu10111605 crossref_primary_10_1002_mnfr_201900779 crossref_primary_10_2174_0115672018253815230922070558 crossref_primary_10_1007_s12013_018_0857_2 crossref_primary_10_1016_j_biocel_2018_02_007 crossref_primary_10_1021_acs_jmedchem_5b01509 crossref_primary_10_3892_mmr_2018_8924 crossref_primary_10_3390_antiox14030285 crossref_primary_10_3390_antiox9090797 crossref_primary_10_1016_j_jff_2020_104294 crossref_primary_10_1039_c5tx00214a crossref_primary_10_1111_exd_14103 crossref_primary_10_1002_cmdc_202300184 crossref_primary_10_3390_nu13041144 crossref_primary_10_1016_j_bbrep_2023_101521 crossref_primary_10_3390_nu14163392 crossref_primary_10_1016_j_foodres_2023_112994 crossref_primary_10_1016_j_mad_2021_111551 crossref_primary_10_1016_j_biopha_2017_08_055 crossref_primary_10_1016_j_copbio_2024_103074 crossref_primary_10_1016_j_biocel_2016_10_021 crossref_primary_10_3390_molecules27196425 crossref_primary_10_1371_journal_pone_0294932 crossref_primary_10_1002_cbdv_201900400 crossref_primary_10_1016_j_freeradbiomed_2021_12_267 crossref_primary_10_3109_10408363_2015_1129530 crossref_primary_10_1016_j_bioorg_2024_108067 crossref_primary_10_52711_0974_360X_2022_00398 crossref_primary_10_1016_j_heliyon_2024_e28442 crossref_primary_10_1080_02713683_2016_1262877 crossref_primary_10_1002_cplu_201700539 crossref_primary_10_1016_j_freeradbiomed_2021_12_304 crossref_primary_10_1016_j_redox_2016_12_006 crossref_primary_10_3892_etm_2018_7092 |
Cites_doi | 10.1007/s00011-013-0674-4 10.1016/j.jdermsci.2009.05.006 10.1021/jp1053875 10.1089/ars.2009.3074 10.1016/S0021-9258(19)42083-8 10.1016/j.ijpharm.2010.09.035 10.1016/S0003-2697(03)00143-X 10.1006/bbrc.1997.6254 10.1016/j.taap.2012.03.024 10.1080/09674845.2011.11730326 10.1080/10715760802074462 10.1111/jam.12129 10.1080/03602530600971974 10.1002/mnfr.200900087 10.1039/c2fo30037k 10.1042/bst0240790 10.1158/1078-0432.CCR-08-0998 10.1186/1471-230X-13-34 10.1080/10408390500400009 10.3109/03602532.2011.552912 10.1186/1476-4598-10-37 10.1016/j.bcp.2012.11.016 10.1186/1743-7075-10-7 10.1016/S0022-2143(03)00111-2 10.1093/ajcn/79.5.727 10.1093/carcin/bgn095 10.1158/0008-5472.CAN-07-5840 10.1002/mnfr.201200557 10.1016/0003-2697(76)90527-3 10.1371/journal.pone.0069452 10.1016/0278-6915(93)90106-9 10.1002/biof.1101 10.1006/gcen.2000.7471 10.1158/1535-7163.MCT-08-0250 10.1007/s10162-008-0126-y 10.1016/j.canep.2013.02.001 10.1038/onc.2012.493 10.1007/s10552-013-0200-6 10.1080/01635581.2013.767367 10.4161/oxim.3.1.10095 10.1016/j.abb.2008.01.028 10.1007/s10552-013-0234-9 10.1016/j.taap.2012.12.001 10.1016/j.pneurobio.2012.09.003 10.1007/s10552-012-0126-4 10.1155/2013/412576 10.1016/j.bbamem.2011.08.011 |
ContentType | Journal Article |
Copyright | Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved. 2014 The Authors 2014 |
Copyright_xml | – notice: Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2014 The Authors 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.redox.2014.11.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-2317 |
EndPage | 59 |
ExternalDocumentID | oai_doaj_org_article_a93e5db4196d45acb558a884b27248dc PMC4309848 25498967 10_1016_j_redox_2014_11_012 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO AAYXX ABGSF ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADUVX ADVLN AENEX AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV CITATION DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB M48 MO0 M~E O-L O9- OK1 RIG ROL RPM SSZ AACTN CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c4522-a66b8b769a90e88ec79a718f68bf0c3d3446f3fdc2d9b7013ef180b934ae2d5e3 |
IEDL.DBID | M48 |
ISSN | 2213-2317 |
IngestDate | Wed Aug 27 01:28:52 EDT 2025 Thu Aug 21 14:05:45 EDT 2025 Fri Jul 11 06:53:05 EDT 2025 Thu Apr 03 07:01:33 EDT 2025 Tue Jul 01 00:46:58 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Polyphenols Coffee Nrf2 Caffeic acid Cisplatin |
Language | English |
License | Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4522-a66b8b769a90e88ec79a718f68bf0c3d3446f3fdc2d9b7013ef180b934ae2d5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.redox.2014.11.012 |
PMID | 25498967 |
PQID | 1661989152 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a93e5db4196d45acb558a884b27248dc pubmedcentral_primary_oai_pubmedcentral_nih_gov_4309848 proquest_miscellaneous_1661989152 pubmed_primary_25498967 crossref_primary_10_1016_j_redox_2014_11_012 crossref_citationtrail_10_1016_j_redox_2014_11_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Redox biology |
PublicationTitleAlternate | Redox Biol |
PublicationYear | 2015 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Soroka (10.1016/j.redox.2014.11.012_bib32) 2000; 118 Radoï (10.1016/j.redox.2014.11.012_bib1) 2013; 37 Schumaker (10.1016/j.redox.2014.11.012_bib29) 2008; 14 Zhang (10.1016/j.redox.2014.11.012_bib21) 2006; 38 Baek (10.1016/j.redox.2014.11.012_bib50) 2003; 142 Wang (10.1016/j.redox.2014.11.012_bib25) 2008; 29 Manach (10.1016/j.redox.2014.11.012_bib16) 2004; 79 Halliwell (10.1016/j.redox.2014.11.012_bib40) 2014; 37 Sirota (10.1016/j.redox.2014.11.012_bib14) 2013; 57 Arlt (10.1016/j.redox.2014.11.012_bib38) 2013; 32 Bryan (10.1016/j.redox.2014.11.012_bib22) 2013; 85 Pecorelli (10.1016/j.redox.2014.11.012_bib31) 2013; 267 Chao (10.1016/j.redox.2014.11.012_bib10) 2010; 54 Wilson (10.1016/j.redox.2014.11.012_bib4) 2013; 24 Vitaglione (10.1016/j.redox.2014.11.012_bib17) 2012; 3 Han (10.1016/j.redox.2014.11.012_bib18) 2012; 261 Sang (10.1016/j.redox.2014.11.012_bib2) 2013; 13 Halliwell (10.1016/j.redox.2014.11.012_bib30) 2008; 476 Lister (10.1016/j.redox.2014.11.012_bib45) 2011; 10 Dourado (10.1016/j.redox.2014.11.012_bib27) 2010; 114 Wang (10.1016/j.redox.2014.11.012_bib39) 2008; 42 Hao (10.1016/j.redox.2014.11.012_bib19) 2013; 8 Habig (10.1016/j.redox.2014.11.012_bib34) 1974; 249 Hirano (10.1016/j.redox.2014.11.012_bib49) 2011; 38 Lu (10.1016/j.redox.2014.11.012_bib28) 2011; 68 Tian (10.1016/j.redox.2014.11.012_bib3) 2013; 24 Zhang (10.1016/j.redox.2014.11.012_bib23) 2013; 100 Erk (10.1016/j.redox.2014.11.012_bib15) 2014; 40 Ploemen (10.1016/j.redox.2014.11.012_bib53) 1993; 31 Calabrese (10.1016/j.redox.2014.11.012_bib43) 2010; 13 Acharya (10.1016/j.redox.2014.11.012_bib24) 2010; 3 Tew (10.1016/j.redox.2014.11.012_bib48) 2011; 43 Rolland (10.1016/j.redox.2014.11.012_bib47) 2010; 30 Bradford (10.1016/j.redox.2014.11.012_bib33) 1976; 72 Portugal-Cohen (10.1016/j.redox.2014.11.012_bib37) 2009; 55 Rashed (10.1016/j.redox.2014.11.012_bib9) 2014; 4 Kilic (10.1016/j.redox.2014.11.012_bib51) 2013; 10 Malerba (10.1016/j.redox.2014.11.012_bib13) 2013; 24 Higdon (10.1016/j.redox.2014.11.012_bib5) 2006; 46 Beutler (10.1016/j.redox.2014.11.012_bib35) 1963; 61 Bao (10.1016/j.redox.2014.11.012_bib44) 2014; 7 Fadel (10.1016/j.redox.2014.11.012_bib41) 2011; 1808 Sato (10.1016/j.redox.2014.11.012_bib42) 2011; 403 Rice-Evans (10.1016/j.redox.2014.11.012_bib7) 1996; 24 White (10.1016/j.redox.2014.11.012_bib36) 2003; 318 Hwang (10.1016/j.redox.2014.11.012_bib11) 2014; 63 Peklak-Scott (10.1016/j.redox.2014.11.012_bib46) 2008; 7 Darvesh (10.1016/j.redox.2014.11.012_bib12) 2013; 65 So (10.1016/j.redox.2014.11.012_bib52) 2008; 9 Pannala (10.1016/j.redox.2014.11.012_bib6) 1997; 232 Pasello (10.1016/j.redox.2014.11.012_bib26) 2008; 68 Zhao (10.1016/j.redox.2014.11.012_bib20) 2013; 2013 Brown (10.1016/j.redox.2014.11.012_bib8) 2013; 114 21351850 - Drug Metab Rev. 2011 May;43(2):179-93 18584244 - J Assoc Res Otolaryngol. 2008 Sep;9(3):290-306 20853826 - J Phys Chem B. 2010 Oct 14;114(40):12972-80 14532906 - J Lab Clin Med. 2003 Sep;142(3):178-86 18413364 - Carcinogenesis. 2008 Jun;29(6):1235-43 22521609 - Toxicol Appl Pharmacol. 2012 Jun 1;261(2):181-8 10890562 - Gen Comp Endocrinol. 2000 May;118(2):200-8 23247638 - Cancer Causes Control. 2013 Feb;24(2):267-76 19539448 - J Dermatol Sci. 2009 Aug;55(2):82-90 23294280 - J Appl Microbiol. 2013 Apr;114(4):982-91 21706917 - Br J Biomed Sci. 2011;68(2):69-74 21864504 - Biochim Biophys Acta. 2011 Dec;1808(12):2973-80 21036708 - Anticancer Res. 2010 Oct;30(10):3951-7 8340025 - Food Chem Toxicol. 1993 Jul;31(7):475-82 24817946 - Int J Clin Exp Pathol. 2014;7(4):1502-13 23108405 - Oncogene. 2013 Oct;32(40):4825-35 24409413 - Adv Pharm Bull. 2014;4(1):75-81 23433483 - BMC Gastroenterol. 2013;13:34 23219527 - Biochem Pharmacol. 2013 Mar 15;85(6):705-17 19885845 - Mol Nutr Food Res. 2010 Mar;54(3):388-95 23322503 - Mol Nutr Food Res. 2013 May;57(5):916-9 13967893 - J Lab Clin Med. 1963 May;61:882-8 23546611 - Cancer Causes Control. 2013 Jun;24(6):1265-8 20446769 - Antioxid Redox Signal. 2010 Dec 1;13(11):1763-811 18484276 - Free Radic Res. 2008 May;42(5):435-41 20716925 - Oxid Med Cell Longev. 2010 Jan-Feb;3(1):23-34 23311701 - Nutr Metab (Lond). 2013 Jan 12;10(1):7 16507475 - Crit Rev Food Sci Nutr. 2006;46(2):101-23 17145701 - Drug Metab Rev. 2006;38(4):769-89 23553742 - Biofactors. 2014 Jan-Feb;40(1):103-12 23710286 - Oxid Med Cell Longev. 2013;2013:412576 942051 - Anal Biochem. 1976 May 7;72:248-54 12814619 - Anal Biochem. 2003 Jul 15;318(2):175-80 9125123 - Biochem Biophys Res Commun. 1997 Mar 6;232(1):164-8 23530632 - Nutr Cancer. 2013;65(3):329-44 18794100 - Clin Cancer Res. 2008 Sep 15;14(18):5877-83 18852128 - Mol Cancer Ther. 2008 Oct;7(10):3247-55 15113710 - Am J Clin Nutr. 2004 May;79(5):727-47 20933071 - Int J Pharm. 2011 Jan 17;403(1-2):136-8 23253326 - Toxicol Appl Pharmacol. 2013 Feb 15;267(1):30-40 18701490 - Cancer Res. 2008 Aug 15;68(16):6661-8 23025925 - Prog Neurobiol. 2013 Jan;100:30-47 23702886 - Cancer Causes Control. 2013 Aug;24(8):1575-81 23453554 - Cancer Epidemiol. 2013 Jun;37(3):284-9 23894482 - PLoS One. 2013;8(7):e69452 18284912 - Arch Biochem Biophys. 2008 Aug 15;476(2):107-12 4436300 - J Biol Chem. 1974 Nov 25;249(22):7130-9 8878849 - Biochem Soc Trans. 1996 Aug;24(3):790-5 24923566 - Biomed J. 2014 May-Jun;37(3):99-105 24127072 - Inflamm Res. 2014 Jan;63(1):81-90 22627289 - Food Funct. 2012 Sep;3(9):916-22 21489257 - Mol Cancer. 2011;10:37 21308351 - Int J Oncol. 2011 Apr;38(4):893-902 |
References_xml | – volume: 63 start-page: 81 issue: 1 year: 2014 ident: 10.1016/j.redox.2014.11.012_bib11 article-title: Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells publication-title: Inflammation Research doi: 10.1007/s00011-013-0674-4 – volume: 55 start-page: 82 issue: 2 year: 2009 ident: 10.1016/j.redox.2014.11.012_bib37 article-title: Exposure of human keratinocytes to ischemia, hyperglycemia and their combination induces oxidative stress via the enzymes inducible nitric oxide synthase and xanthine oxidase publication-title: Journal of Dermatological Science doi: 10.1016/j.jdermsci.2009.05.006 – volume: 4 start-page: 75 issue: 1 year: 2014 ident: 10.1016/j.redox.2014.11.012_bib9 article-title: Isolation and antimicrobial and antioxidant evaluation of bio-active compounds from Eriobotrya japonica stems publication-title: Advanced Pharmaceutical Bulletin – volume: 114 start-page: 12972 issue: 40 year: 2010 ident: 10.1016/j.redox.2014.11.012_bib27 article-title: Glutathione transferase classes alpha, pi, and mu: GSH activation mechanism publication-title: Journal of Physical Chemistry B doi: 10.1021/jp1053875 – volume: 30 start-page: 3951 issue: 10 year: 2010 ident: 10.1016/j.redox.2014.11.012_bib47 article-title: Inhibition of GST-pi nuclear transfer increases mantle cell lymphoma sensitivity to cisplatin, cytarabine, gemcitabine, bortezomib and doxorubicin publication-title: Anticancer Research – volume: 13 start-page: 1763 issue: 11 year: 2010 ident: 10.1016/j.redox.2014.11.012_bib43 article-title: Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders publication-title: Antioxidants & Redox Signaling doi: 10.1089/ars.2009.3074 – volume: 7 start-page: 1502 issue: 4 year: 2014 ident: 10.1016/j.redox.2014.11.012_bib44 article-title: Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma publication-title: International Journal of Clinical and Experimental Pathology – volume: 249 start-page: 7130 issue: 22 year: 1974 ident: 10.1016/j.redox.2014.11.012_bib34 article-title: Glutathione S-transferases. The first enzymatic step in mercapturic acid formation publication-title: Journal of Biological Chemistry doi: 10.1016/S0021-9258(19)42083-8 – volume: 403 start-page: 136 issue: 1–2 year: 2011 ident: 10.1016/j.redox.2014.11.012_bib42 article-title: In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid publication-title: International Journal of Pharmaceutics doi: 10.1016/j.ijpharm.2010.09.035 – volume: 318 start-page: 175 issue: 2 year: 2003 ident: 10.1016/j.redox.2014.11.012_bib36 article-title: Fluorescence-based microtiter plate assay for glutamate–cysteine ligase activity publication-title: Analytical Biochemistry doi: 10.1016/S0003-2697(03)00143-X – volume: 232 start-page: 164 issue: 1 year: 1997 ident: 10.1016/j.redox.2014.11.012_bib6 article-title: Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols publication-title: Biochemical and Biophysical Research Communications doi: 10.1006/bbrc.1997.6254 – volume: 261 start-page: 181 issue: 2 year: 2012 ident: 10.1016/j.redox.2014.11.012_bib18 article-title: EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes publication-title: Toxicology and Applied Pharmacology doi: 10.1016/j.taap.2012.03.024 – volume: 68 start-page: 69 issue: 2 year: 2011 ident: 10.1016/j.redox.2014.11.012_bib28 article-title: Multidrug resistance-associated biomarkers PGP, GST-pi, Topo-II and LRP as prognostic factors in primary ovarian carcinoma publication-title: British Journal of Biomedical Science doi: 10.1080/09674845.2011.11730326 – volume: 42 start-page: 435 issue: 5 year: 2008 ident: 10.1016/j.redox.2014.11.012_bib39 article-title: Cell lysis with dimethyl sulphoxide produces stable homogeneous solutions in the dichlorofluorescein oxidative stress assay publication-title: Free Radical Research doi: 10.1080/10715760802074462 – volume: 114 start-page: 982 issue: 4 year: 2013 ident: 10.1016/j.redox.2014.11.012_bib8 article-title: Activities of muscadine grape skin and polyphenolic constituents against Helicobacter pylori publication-title: Journal of Applied Microbiology doi: 10.1111/jam.12129 – volume: 38 start-page: 769 issue: 4 year: 2006 ident: 10.1016/j.redox.2014.11.012_bib21 article-title: Mechanistic studies of the Nrf2–Keap1 signaling pathway publication-title: Drug Metabolism Reviews doi: 10.1080/03602530600971974 – volume: 54 start-page: 388 issue: 3 year: 2010 ident: 10.1016/j.redox.2014.11.012_bib10 article-title: Anti-glycative and anti-inflammatory effects of caffeic acid and ellagic acid in kidney of diabetic mice publication-title: Molecular Nutrition & Food Research doi: 10.1002/mnfr.200900087 – volume: 3 start-page: 916 issue: 9 year: 2012 ident: 10.1016/j.redox.2014.11.012_bib17 article-title: Coffee, colon function and colorectal cancer publication-title: Food & Function doi: 10.1039/c2fo30037k – volume: 24 start-page: 790 issue: 3 year: 1996 ident: 10.1016/j.redox.2014.11.012_bib7 article-title: Antioxidant activities of flavonoids as bioactive components of food publication-title: Biochemical Society Transactions doi: 10.1042/bst0240790 – volume: 14 start-page: 5877 issue: 18 year: 2008 ident: 10.1016/j.redox.2014.11.012_bib29 article-title: Elevated expression of glutathione S-transferase pi and p53 confers poor prognosis in head and neck cancer patients treated with chemoradiotherapy but not radiotherapy alone publication-title: Clinical Cancer Research doi: 10.1158/1078-0432.CCR-08-0998 – volume: 13 start-page: 34 year: 2013 ident: 10.1016/j.redox.2014.11.012_bib2 article-title: Consumption of coffee associated with reduced risk of liver cancer: a meta-analysis publication-title: BMC Gastroenterology doi: 10.1186/1471-230X-13-34 – volume: 46 start-page: 101 issue: 2 year: 2006 ident: 10.1016/j.redox.2014.11.012_bib5 article-title: Coffee and health: a review of recent human research publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408390500400009 – volume: 37 start-page: 99 issue: 3 year: 2014 ident: 10.1016/j.redox.2014.11.012_bib40 article-title: Cell culture, oxidative stress, and antioxidants: avoiding pitfalls publication-title: Biomedical Journal – volume: 43 start-page: 179 issue: 2 year: 2011 ident: 10.1016/j.redox.2014.11.012_bib48 article-title: Regulatory functions of glutathione S-transferase P1-1 unrelated to detoxification publication-title: Drug Metabolism Reviews doi: 10.3109/03602532.2011.552912 – volume: 10 start-page: 37 year: 2011 ident: 10.1016/j.redox.2014.11.012_bib45 article-title: Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy publication-title: Molecular Cancer doi: 10.1186/1476-4598-10-37 – volume: 85 start-page: 705 issue: 6 year: 2013 ident: 10.1016/j.redox.2014.11.012_bib22 article-title: The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation publication-title: Biochemical Pharmacology doi: 10.1016/j.bcp.2012.11.016 – volume: 10 start-page: 7 issue: 1 year: 2013 ident: 10.1016/j.redox.2014.11.012_bib51 article-title: Melatonin suppresses cisplatin-induced nephrotoxicity via activation of Nrf-2/HO-1 pathway publication-title: Nutrition & Metabolism doi: 10.1186/1743-7075-10-7 – volume: 142 start-page: 178 issue: 3 year: 2003 ident: 10.1016/j.redox.2014.11.012_bib50 article-title: Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells publication-title: Journal of Laboratory and Clinical Medicine doi: 10.1016/S0022-2143(03)00111-2 – volume: 79 start-page: 727 issue: 5 year: 2004 ident: 10.1016/j.redox.2014.11.012_bib16 article-title: Polyphenols: food sources and bioavailability publication-title: American Journal of Clinical Nutrition doi: 10.1093/ajcn/79.5.727 – volume: 29 start-page: 1235 issue: 6 year: 2008 ident: 10.1016/j.redox.2014.11.012_bib25 article-title: Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2 publication-title: Carcinogenesis doi: 10.1093/carcin/bgn095 – volume: 38 start-page: 893 issue: 4 year: 2011 ident: 10.1016/j.redox.2014.11.012_bib49 article-title: Involvement of riboflavin kinase expression in cellular sensitivity against cisplatin publication-title: International Journal of Oncology – volume: 68 start-page: 6661 issue: 16 year: 2008 ident: 10.1016/j.redox.2014.11.012_bib26 article-title: Overcoming glutathione S-transferase P1-related cisplatin resistance in osteosarcoma publication-title: Cancer Research doi: 10.1158/0008-5472.CAN-07-5840 – volume: 57 start-page: 916 issue: 5 year: 2013 ident: 10.1016/j.redox.2014.11.012_bib14 article-title: Coffee polyphenols protect human plasma from postprandial carbonyl modifications publication-title: Molecular Nutrition & Food Research doi: 10.1002/mnfr.201200557 – volume: 72 start-page: 248 year: 1976 ident: 10.1016/j.redox.2014.11.012_bib33 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding publication-title: Analytical Biochemistry doi: 10.1016/0003-2697(76)90527-3 – volume: 8 start-page: e69452 issue: 7 year: 2013 ident: 10.1016/j.redox.2014.11.012_bib19 article-title: Resveratrol alleviates endotoxin-induced myocardial toxicity via the Nrf2 transcription factor publication-title: PLOS One doi: 10.1371/journal.pone.0069452 – volume: 31 start-page: 475 issue: 7 year: 1993 ident: 10.1016/j.redox.2014.11.012_bib53 article-title: In vitro and in vivo reversible and irreversible inhibition of rat glutathione S-transferase isoenzymes by caffeic acid and its 2-S-glutathionyl conjugate publication-title: Food and Chemical Toxicology doi: 10.1016/0278-6915(93)90106-9 – volume: 40 start-page: 103 issue: 1 year: 2014 ident: 10.1016/j.redox.2014.11.012_bib15 article-title: Structure- and dose-absorption relationships of coffee polyphenols publication-title: Biofactors doi: 10.1002/biof.1101 – volume: 118 start-page: 200 issue: 2 year: 2000 ident: 10.1016/j.redox.2014.11.012_bib32 article-title: Changes in protein kinase C during vitellogenesis in the crayfish Cherax quadricarinatus − possible activation by methyl farnesoate publication-title: General and Comparative Endocrinology doi: 10.1006/gcen.2000.7471 – volume: 7 start-page: 3247 issue: 10 year: 2008 ident: 10.1016/j.redox.2014.11.012_bib46 article-title: Role of glutathione S-transferase P1-1 in the cellular detoxification of cisplatin publication-title: Molecular Cancer Therapeutics doi: 10.1158/1535-7163.MCT-08-0250 – volume: 9 start-page: 290 issue: 3 year: 2008 ident: 10.1016/j.redox.2014.11.012_bib52 article-title: Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/HO-1 publication-title: Journal of the Association for Research in Otolaryngology doi: 10.1007/s10162-008-0126-y – volume: 37 start-page: 284 issue: 3 year: 2013 ident: 10.1016/j.redox.2014.11.012_bib1 article-title: Tea and coffee consumption and risk of oral cavity cancer: results of a large population-based case-control study, the ICARE study publication-title: Cancer Epidemiology doi: 10.1016/j.canep.2013.02.001 – volume: 32 start-page: 4825 issue: 40 year: 2013 ident: 10.1016/j.redox.2014.11.012_bib38 article-title: Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity publication-title: Oncogene doi: 10.1038/onc.2012.493 – volume: 24 start-page: 1265 issue: 6 year: 2013 ident: 10.1016/j.redox.2014.11.012_bib3 article-title: Coffee consumption and risk of colorectal cancer: a dose–response analysis of observational studies publication-title: Cancer Causes Control doi: 10.1007/s10552-013-0200-6 – volume: 65 start-page: 329 issue: 3 year: 2013 ident: 10.1016/j.redox.2014.11.012_bib12 article-title: Chemopreventive and therapeutic potential of tea polyphenols in hepatocellular cancer publication-title: Nutrition and Cancer doi: 10.1080/01635581.2013.767367 – volume: 3 start-page: 23 issue: 1 year: 2010 ident: 10.1016/j.redox.2014.11.012_bib24 article-title: Redox regulation in cancer: a double-edged sword with therapeutic potential publication-title: Oxidative Medicine and Cellular Longevity doi: 10.4161/oxim.3.1.10095 – volume: 476 start-page: 107 issue: 2 year: 2008 ident: 10.1016/j.redox.2014.11.012_bib30 article-title: Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? publication-title: Archives of Biochemistry and Biophysics doi: 10.1016/j.abb.2008.01.028 – volume: 61 start-page: 882 year: 1963 ident: 10.1016/j.redox.2014.11.012_bib35 article-title: Improved method for the determination of blood glutathione publication-title: Journal of Laboratory and Clinical Medicine – volume: 24 start-page: 1575 issue: 8 year: 2013 ident: 10.1016/j.redox.2014.11.012_bib4 article-title: Coffee and risk of prostate cancer incidence and mortality in the cancer of the prostate in Sweden Study publication-title: Cancer Causes & Control doi: 10.1007/s10552-013-0234-9 – volume: 267 start-page: 30 issue: 1 year: 2013 ident: 10.1016/j.redox.2014.11.012_bib31 article-title: NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells publication-title: Toxicology and Applied Pharmacology doi: 10.1016/j.taap.2012.12.001 – volume: 100 start-page: 30 year: 2013 ident: 10.1016/j.redox.2014.11.012_bib23 article-title: Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection publication-title: Progress in Neurobiology doi: 10.1016/j.pneurobio.2012.09.003 – volume: 24 start-page: 267 issue: 2 year: 2013 ident: 10.1016/j.redox.2014.11.012_bib13 article-title: A meta-analysis of coffee and tea consumption and the risk of glioma in adults publication-title: Cancer Causes & Control doi: 10.1007/s10552-012-0126-4 – volume: 2013 start-page: 412576 year: 2013 ident: 10.1016/j.redox.2014.11.012_bib20 article-title: Curcumin protects human keratinocytes against inorganic arsenite-induced acute cytotoxicity through an NRF2-dependent mechanism publication-title: Oxidative Medicine and Cellular Longevity doi: 10.1155/2013/412576 – volume: 1808 start-page: 2973 issue: 12 year: 2011 ident: 10.1016/j.redox.2014.11.012_bib41 article-title: The natural antioxidant rosmarinic acid spontaneously penetrates membranes to inhibit lipid peroxidation in situ publication-title: Biochimica et Biophysica Acta doi: 10.1016/j.bbamem.2011.08.011 – reference: 23894482 - PLoS One. 2013;8(7):e69452 – reference: 21036708 - Anticancer Res. 2010 Oct;30(10):3951-7 – reference: 23025925 - Prog Neurobiol. 2013 Jan;100:30-47 – reference: 20933071 - Int J Pharm. 2011 Jan 17;403(1-2):136-8 – reference: 19539448 - J Dermatol Sci. 2009 Aug;55(2):82-90 – reference: 10890562 - Gen Comp Endocrinol. 2000 May;118(2):200-8 – reference: 15113710 - Am J Clin Nutr. 2004 May;79(5):727-47 – reference: 23530632 - Nutr Cancer. 2013;65(3):329-44 – reference: 24127072 - Inflamm Res. 2014 Jan;63(1):81-90 – reference: 18701490 - Cancer Res. 2008 Aug 15;68(16):6661-8 – reference: 20716925 - Oxid Med Cell Longev. 2010 Jan-Feb;3(1):23-34 – reference: 21706917 - Br J Biomed Sci. 2011;68(2):69-74 – reference: 23253326 - Toxicol Appl Pharmacol. 2013 Feb 15;267(1):30-40 – reference: 13967893 - J Lab Clin Med. 1963 May;61:882-8 – reference: 23219527 - Biochem Pharmacol. 2013 Mar 15;85(6):705-17 – reference: 18484276 - Free Radic Res. 2008 May;42(5):435-41 – reference: 23453554 - Cancer Epidemiol. 2013 Jun;37(3):284-9 – reference: 23108405 - Oncogene. 2013 Oct;32(40):4825-35 – reference: 23710286 - Oxid Med Cell Longev. 2013;2013:412576 – reference: 21351850 - Drug Metab Rev. 2011 May;43(2):179-93 – reference: 23702886 - Cancer Causes Control. 2013 Aug;24(8):1575-81 – reference: 8878849 - Biochem Soc Trans. 1996 Aug;24(3):790-5 – reference: 23546611 - Cancer Causes Control. 2013 Jun;24(6):1265-8 – reference: 23553742 - Biofactors. 2014 Jan-Feb;40(1):103-12 – reference: 14532906 - J Lab Clin Med. 2003 Sep;142(3):178-86 – reference: 23322503 - Mol Nutr Food Res. 2013 May;57(5):916-9 – reference: 23294280 - J Appl Microbiol. 2013 Apr;114(4):982-91 – reference: 4436300 - J Biol Chem. 1974 Nov 25;249(22):7130-9 – reference: 18284912 - Arch Biochem Biophys. 2008 Aug 15;476(2):107-12 – reference: 18852128 - Mol Cancer Ther. 2008 Oct;7(10):3247-55 – reference: 20446769 - Antioxid Redox Signal. 2010 Dec 1;13(11):1763-811 – reference: 21489257 - Mol Cancer. 2011;10:37 – reference: 18794100 - Clin Cancer Res. 2008 Sep 15;14(18):5877-83 – reference: 23311701 - Nutr Metab (Lond). 2013 Jan 12;10(1):7 – reference: 24817946 - Int J Clin Exp Pathol. 2014;7(4):1502-13 – reference: 8340025 - Food Chem Toxicol. 1993 Jul;31(7):475-82 – reference: 24409413 - Adv Pharm Bull. 2014;4(1):75-81 – reference: 19885845 - Mol Nutr Food Res. 2010 Mar;54(3):388-95 – reference: 942051 - Anal Biochem. 1976 May 7;72:248-54 – reference: 23433483 - BMC Gastroenterol. 2013;13:34 – reference: 23247638 - Cancer Causes Control. 2013 Feb;24(2):267-76 – reference: 9125123 - Biochem Biophys Res Commun. 1997 Mar 6;232(1):164-8 – reference: 21308351 - Int J Oncol. 2011 Apr;38(4):893-902 – reference: 24923566 - Biomed J. 2014 May-Jun;37(3):99-105 – reference: 18584244 - J Assoc Res Otolaryngol. 2008 Sep;9(3):290-306 – reference: 18413364 - Carcinogenesis. 2008 Jun;29(6):1235-43 – reference: 22521609 - Toxicol Appl Pharmacol. 2012 Jun 1;261(2):181-8 – reference: 20853826 - J Phys Chem B. 2010 Oct 14;114(40):12972-80 – reference: 16507475 - Crit Rev Food Sci Nutr. 2006;46(2):101-23 – reference: 21864504 - Biochim Biophys Acta. 2011 Dec;1808(12):2973-80 – reference: 17145701 - Drug Metab Rev. 2006;38(4):769-89 – reference: 12814619 - Anal Biochem. 2003 Jul 15;318(2):175-80 – reference: 22627289 - Food Funct. 2012 Sep;3(9):916-22 |
SSID | ssj0000884210 |
Score | 2.2425442 |
Snippet | In recent years, numerous studies have demonstrated the health benefits of polyphenols. A major portion of polyphenols in western diet are derived from coffee,... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 48 |
SubjectTerms | Antioxidants - chemistry Antioxidants - metabolism Caffeic acid Caffeic Acids - chemistry Caffeic Acids - metabolism Catechols - metabolism Cell Line, Tumor Cisplatin Coffee Coffee - chemistry Female Humans Hydrogen Peroxide - pharmacology Intracellular Signaling Peptides and Proteins - biosynthesis Intracellular Signaling Peptides and Proteins - metabolism Kelch-Like ECH-Associated Protein 1 NF-E2-Related Factor 2 - biosynthesis NF-E2-Related Factor 2 - metabolism Nrf2 Ovarian Neoplasms - drug therapy Ovarian Neoplasms - metabolism Ovarian Neoplasms - pathology Oxidative Stress - drug effects Polyphenols Polyphenols - chemistry Polyphenols - metabolism Research Paper Signal Transduction - drug effects |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEC2vQEFG4kho4tiOfSyIqgLRE5V6s_wUQdRZbVto_wK_mhknu9pFCC5cnbFizYw93ziTbwh5ZbVXulG2dtIlSFDAFgDqRc3A3irGCIgW7zs-ncqTM_7hXJxvtPrCmrCJHnhS3KHVXRTBcfCUwIX1TghlleKO9Yyr4PH0hZi3kUyVMxgkWKEiYKztagAx_YpyqBR3IRnnDRZ28TfI4dmyrbBU2Pv_BDl_r5zcCEXH98m9GUPSo2nte-ROzPtkd-oqefuA_ATTU6wapGOigO8oFj3hKTd4anMoQ3P3mwVep3h6MQ4RiVVxgrcpRZT0Q6BDpqfLxA4_RrtoKXYv_mFvKf4LMd3kosD4HdJtm2Hi0g95vLAUPwZQhK-XD8nZ8fvP707queVC7ZFavbZSOuV6qa1uolLR99pC9EpSudT4LnSQPaYuBc-Cdj1eoaZWNU533EYWROwekZ085viE0NgmIXnvk4cIyBqlRZSew3nilHfwqCJspXHjZz5ybIvxzawKz76aYiaDZoJMxYCZKvJ6PWkx0XH8XfwtmnItilzaZQA8zMweZv7lYRV5uXIEA3sPdWhzHK8vTQvgRisNEKgijyfHWL8KE2-lZV-Rfstlttay_SQPXwq_NyhJK66e_o_FPyN3QR9iqjU6IDtXy-v4HGDUlXtRdswv8W0a-w priority: 102 providerName: Directory of Open Access Journals |
Title | The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25498967 https://www.proquest.com/docview/1661989152 https://pubmed.ncbi.nlm.nih.gov/PMC4309848 https://doaj.org/article/a93e5db4196d45acb558a884b27248dc |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkhcEG_CY2UkjqRkEzuxDwgVRFWxag-IFb1ZtmNDUOss2Ra6f4FfzYyTbFm04sA18WiTeXi-cWa_IeSFllbITOjUlMZDgQK2AFDP0xzsLZxzgGjxvOP4pDyasw-n_HSHjFNRBwUut5Z2OE9q3p3tX31fvYGAf33dq4XcmlfYp8X2kZITpw7vQWqqMFKPB7wft2YhGNQ4I_vQdlnkB4aqScg4e_46WUVO_21A9O9-yj8S1OFtcmtAlvSgd4U7ZMeFu-RGP2tydY_8Aoeg2EtIW08B9VFshcLXbyzVoY6Xhpk4CzxksfS8bRzSraKA1d47XGmbmjaBnnQ-fzVzejGlONP4p15R_IdEf76LC9ofUITrAIKdbUJ7ril-IqAIapf3yfzw_ad3R-kwiCG1SLie6rI0wlSl1DJzQjhbSQ05zZfC-MwWdQE1pS98bfNamgoPVv1UZEYWTLu85q54QHZDG9wjQt3U85JV1lvIi3kmJHelZbDLGGEN3EpIPmpc2YGlHIdlnKmxHe2bihZTaDGoXxRYLCEv10KLnqTj38vfoinXS5FhO15ouy9qCFilZeF4bRjsUDXj2hrOhQb3MXmVM1HbhDwfHUFBRKIOdXDt5VJNAfKA9wAwSsjD3jHWPzU6VkKqDZfZeJbNO6H5Glm_QUlSMPH4vyWfkJugBN63HT0luxfdpXsGiOrCTMjewezj59kknkhMYsz8BtwVJNw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+the+catecholic+and+the+electrophilic+moieties+of+caffeic+acid+in+Nrf2%2FKeap1+pathway+activation+in+ovarian+carcinoma+cell+lines&rft.jtitle=Redox+biology&rft.au=Sirota%2C+R.&rft.au=Gibson%2C+D.&rft.au=Kohen%2C+R.&rft.date=2015-04-01&rft.pub=Elsevier&rft.eissn=2213-2317&rft.volume=4&rft.spage=48&rft.epage=59&rft_id=info:doi/10.1016%2Fj.redox.2014.11.012&rft_id=info%3Apmid%2F25498967&rft.externalDocID=PMC4309848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon |