Intestinal function and transit associate with gut microbiota dysbiosis in cystic fibrosis

•Faecal microbiota significantly differs between pwCF and healthy controls.•Known SCFA producers contributed to microbiota dissimilarity between groups.•Pulmonary antibiotic treatment heavily impacted gut microbiota.•Intestinal physiology and transit impacted satellite microbiota composition. Most p...

Full description

Saved in:
Bibliographic Details
Published inJournal of cystic fibrosis Vol. 21; no. 3; pp. 506 - 513
Main Authors Marsh, Ryan, Gavillet, Helen, Hanson, Liam, Ng, Christabella, Mitchell-Whyte, Mandisa, Major, Giles, Smyth, Alan R, Rivett, Damian, van der Gast, Christopher
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2022
Subjects
Online AccessGet full text
ISSN1569-1993
1873-5010
1873-5010
DOI10.1016/j.jcf.2021.11.014

Cover

Loading…
Abstract •Faecal microbiota significantly differs between pwCF and healthy controls.•Known SCFA producers contributed to microbiota dissimilarity between groups.•Pulmonary antibiotic treatment heavily impacted gut microbiota.•Intestinal physiology and transit impacted satellite microbiota composition. Most people with cystic fibrosis (pwCF) suffer from gastrointestinal symptoms and are at risk of gut complications. Gut microbiota dysbiosis is apparent within the CF population across all age groups, with evidence linking dysbiosis to intestinal inflammation and other markers of health. This pilot study aimed to investigate the potential relationships between the gut microbiota and gastrointestinal physiology, transit, and health. Faecal samples from 10 pwCF and matched controls were subject to 16S rRNA sequencing. Results were combined with clinical metadata and MRI metrics of gut function to investigate relationships. pwCF had significantly reduced microbiota diversity compared to controls. Microbiota compositions were significantly different, suggesting remodelling of core and rarer satellite taxa in CF. Dissimilarity between groups was driven by a variety of taxa, including Escherichia coli, Bacteroides spp., Clostridium spp., and Faecalibacterium prausnitzii. The core taxa were explained primarily by CF disease, whilst the satellite taxa were associated with pulmonary antibiotic usage, CF disease, and gut function metrics. Species-specific ordination biplots revealed relationships between taxa and the clinical or MRI-based variables observed. Alterations in gut function and transit resultant of CF disease are associated with the gut microbiota composition, notably the satellite taxa. Delayed transit in the small intestine might allow for the expansion of satellite taxa resulting in potential downstream consequences for core community function in the colon.
AbstractList Most people with cystic fibrosis (pwCF) suffer from gastrointestinal symptoms and are at risk of gut complications. Gut microbiota dysbiosis is apparent within the CF population across all age groups, with evidence linking dysbiosis to intestinal inflammation and other markers of health. This pilot study aimed to investigate the potential relationships between the gut microbiota and gastrointestinal physiology, transit, and health.BACKGROUNDMost people with cystic fibrosis (pwCF) suffer from gastrointestinal symptoms and are at risk of gut complications. Gut microbiota dysbiosis is apparent within the CF population across all age groups, with evidence linking dysbiosis to intestinal inflammation and other markers of health. This pilot study aimed to investigate the potential relationships between the gut microbiota and gastrointestinal physiology, transit, and health.Faecal samples from 10 pwCF and matched controls were subject to 16S rRNA sequencing. Results were combined with clinical metadata and MRI metrics of gut function to investigate relationships.STUDY DESIGNFaecal samples from 10 pwCF and matched controls were subject to 16S rRNA sequencing. Results were combined with clinical metadata and MRI metrics of gut function to investigate relationships.pwCF had significantly reduced microbiota diversity compared to controls. Microbiota compositions were significantly different, suggesting remodelling of core and rarer satellite taxa in CF. Dissimilarity between groups was driven by a variety of taxa, including Escherichia coli, Bacteroides spp., Clostridium spp., and Faecalibacterium prausnitzii. The core taxa were explained primarily by CF disease, whilst the satellite taxa were associated with pulmonary antibiotic usage, CF disease, and gut function metrics. Species-specific ordination biplots revealed relationships between taxa and the clinical or MRI-based variables observed.RESULTSpwCF had significantly reduced microbiota diversity compared to controls. Microbiota compositions were significantly different, suggesting remodelling of core and rarer satellite taxa in CF. Dissimilarity between groups was driven by a variety of taxa, including Escherichia coli, Bacteroides spp., Clostridium spp., and Faecalibacterium prausnitzii. The core taxa were explained primarily by CF disease, whilst the satellite taxa were associated with pulmonary antibiotic usage, CF disease, and gut function metrics. Species-specific ordination biplots revealed relationships between taxa and the clinical or MRI-based variables observed.Alterations in gut function and transit resultant of CF disease are associated with the gut microbiota composition, notably the satellite taxa. Delayed transit in the small intestine might allow for the expansion of satellite taxa resulting in potential downstream consequences for core community function in the colon.CONCLUSIONSAlterations in gut function and transit resultant of CF disease are associated with the gut microbiota composition, notably the satellite taxa. Delayed transit in the small intestine might allow for the expansion of satellite taxa resulting in potential downstream consequences for core community function in the colon.
Most people with cystic fibrosis (pwCF) suffer from gastrointestinal symptoms and are at risk of gut complications. Gut microbiota dysbiosis is apparent within the CF population across all age groups, with evidence linking dysbiosis to intestinal inflammation and other markers of health. This pilot study aimed to investigate the potential relationships between the gut microbiota and gastrointestinal physiology, transit, and health. Faecal samples from 10 pwCF and matched controls were subject to 16S rRNA sequencing. Results were combined with clinical metadata and MRI metrics of gut function to investigate relationships. pwCF had significantly reduced microbiota diversity compared to controls. Microbiota compositions were significantly different, suggesting remodelling of core and rarer satellite taxa in CF. Dissimilarity between groups was driven by a variety of taxa, including Escherichia coli, Bacteroides spp., Clostridium spp., and Faecalibacterium prausnitzii. The core taxa were explained primarily by CF disease, whilst the satellite taxa were associated with pulmonary antibiotic usage, CF disease, and gut function metrics. Species-specific ordination biplots revealed relationships between taxa and the clinical or MRI-based variables observed. Alterations in gut function and transit resultant of CF disease are associated with the gut microbiota composition, notably the satellite taxa. Delayed transit in the small intestine might allow for the expansion of satellite taxa resulting in potential downstream consequences for core community function in the colon.
•Faecal microbiota significantly differs between pwCF and healthy controls.•Known SCFA producers contributed to microbiota dissimilarity between groups.•Pulmonary antibiotic treatment heavily impacted gut microbiota.•Intestinal physiology and transit impacted satellite microbiota composition. Most people with cystic fibrosis (pwCF) suffer from gastrointestinal symptoms and are at risk of gut complications. Gut microbiota dysbiosis is apparent within the CF population across all age groups, with evidence linking dysbiosis to intestinal inflammation and other markers of health. This pilot study aimed to investigate the potential relationships between the gut microbiota and gastrointestinal physiology, transit, and health. Faecal samples from 10 pwCF and matched controls were subject to 16S rRNA sequencing. Results were combined with clinical metadata and MRI metrics of gut function to investigate relationships. pwCF had significantly reduced microbiota diversity compared to controls. Microbiota compositions were significantly different, suggesting remodelling of core and rarer satellite taxa in CF. Dissimilarity between groups was driven by a variety of taxa, including Escherichia coli, Bacteroides spp., Clostridium spp., and Faecalibacterium prausnitzii. The core taxa were explained primarily by CF disease, whilst the satellite taxa were associated with pulmonary antibiotic usage, CF disease, and gut function metrics. Species-specific ordination biplots revealed relationships between taxa and the clinical or MRI-based variables observed. Alterations in gut function and transit resultant of CF disease are associated with the gut microbiota composition, notably the satellite taxa. Delayed transit in the small intestine might allow for the expansion of satellite taxa resulting in potential downstream consequences for core community function in the colon.
Highlights•Faecal microbiota significantly differs between pwCF and healthy controls. •Known SCFA producers contributed to microbiota dissimilarity between groups. •Pulmonary antibiotic treatment heavily impacted gut microbiota. •Intestinal physiology and transit impacted satellite microbiota composition.
Author Gavillet, Helen
Smyth, Alan R
Major, Giles
Mitchell-Whyte, Mandisa
van der Gast, Christopher
Hanson, Liam
Ng, Christabella
Rivett, Damian
Marsh, Ryan
Author_xml – sequence: 1
  givenname: Ryan
  surname: Marsh
  fullname: Marsh, Ryan
  organization: Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
– sequence: 2
  givenname: Helen
  surname: Gavillet
  fullname: Gavillet, Helen
  organization: Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
– sequence: 3
  givenname: Liam
  surname: Hanson
  fullname: Hanson, Liam
  organization: Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
– sequence: 4
  givenname: Christabella
  surname: Ng
  fullname: Ng, Christabella
  organization: School of Medicine, University of Nottingham, Nottingham, United Kingdom
– sequence: 5
  givenname: Mandisa
  surname: Mitchell-Whyte
  fullname: Mitchell-Whyte, Mandisa
  organization: Wolfson CF Unit, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
– sequence: 6
  givenname: Giles
  surname: Major
  fullname: Major, Giles
  organization: School of Medicine, University of Nottingham, Nottingham, United Kingdom
– sequence: 7
  givenname: Alan R
  surname: Smyth
  fullname: Smyth, Alan R
  organization: School of Medicine, University of Nottingham, Nottingham, United Kingdom
– sequence: 8
  givenname: Damian
  surname: Rivett
  fullname: Rivett, Damian
  organization: Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
– sequence: 9
  givenname: Christopher
  surname: van der Gast
  fullname: van der Gast, Christopher
  email: c.vandergast@mmu.ac.uk
  organization: Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34895838$$D View this record in MEDLINE/PubMed
BookMark eNqFks1rFjEQxoNU7If-AV4kRy-7zWQ3-4EgSFFbKHhQQbyEJDurs-6brUm28v73ZnnbS8F6mmF4nifML3PKjvzikbGXIEoQ0JxP5eTGUgoJJUApoH7CTqBrq0IJEEe5V01fQN9Xx-w0xkkIaEXbPWPHVd31qqu6E_b9yieMibyZ-bh6l2jx3PiBp2B8pMRNjIsjk5D_ofST_1gT35ELi6UlGT7sY24iRU6eu30OcnwkG7bRc_Z0NHPEF3f1jH398P7LxWVx_enj1cW768LVSooCHY5Npbpemk6o3rUD1gbM0ICU1lYWa1mrFpUdbSdNDaIBY51zRlroBdjqjL0-5N6E5feal9E7ig7n2Xhc1qhlI_padW0vs_TVnXS1Oxz0TaCdCXt9zyML2oMgbxhjwFE7SmaDknnQrEHojbyedCavN_IaQGfy2QkPnPfhj3neHDyY8dwSBh0doXc4UECX9LDQo-63D9xuJk_OzL9wj3Fa1pB_NWrQUWqhP2_XsB2DhByi1Lcc0P874D-P_wWhc8Ry
CitedBy_id crossref_primary_10_1002_ppul_71024
crossref_primary_10_1128_spectrum_01175_23
crossref_primary_10_1039_D4FO00325J
crossref_primary_10_1080_17476348_2023_2228194
crossref_primary_10_1016_j_clnesp_2023_04_008
crossref_primary_10_1016_j_jcf_2023_03_008
crossref_primary_10_3390_nu14153160
crossref_primary_10_12938_bmfh_2023_100
crossref_primary_10_1038_s41390_023_02944_0
crossref_primary_10_1186_s40168_024_01780_6
crossref_primary_10_1016_j_jcf_2024_01_005
crossref_primary_10_1186_s12866_023_02788_y
crossref_primary_10_3390_nu15173846
crossref_primary_10_1016_j_jcf_2024_05_002
crossref_primary_10_1038_s41390_024_03209_0
crossref_primary_10_1002_ncp_11122
crossref_primary_10_1007_s10620_022_07812_1
Cites_doi 10.1097/MPG.0000000000002864
10.1038/nature12726
10.1371/journal.pone.0208171
10.1038/nrgastro.2015.226
10.1038/s41591-019-0714-x
10.1128/IAI.72.10.6040-6049.2004
10.1371/journal.ppat.1008251
10.1111/nmo.13883
10.1152/ajpgi.00548.2006
10.1016/S0140-6736(16)00576-6
10.1093/cid/cit715
10.1073/pnas.1322269111
10.1186/s40168-020-00810-3
10.1097/MIB.0000000000000972
10.1002/ppul.24766
10.1016/j.jcmgh.2019.07.006
10.1371/journal.pone.0134802
10.3390/jcm8050645
10.1038/nmicrobiol.2017.121
10.1038/nmeth.3869
10.1111/j.1469-0691.2010.03256.x
10.1080/19490976.2018.1534512
10.1371/journal.pone.0198457
10.1186/s13073-020-0710-2
10.1038/s41598-019-55028-7
10.1016/j.jcf.2016.09.004
10.1073/pnas.1714373115
10.1016/j.cmet.2011.02.018
10.1038/srep26985
10.1016/j.jcf.2012.10.003
10.3748/wjg.v22.i40.8929
10.1038/srep22493
10.1038/nmicrobiol.2016.93
10.1186/s12866-017-0968-8
10.1136/gutjnl-2014-308896
10.1093/ecco-jcc/jjv203
10.1128/JB.00274-19
10.1038/ismej.2012.145
10.1371/journal.pone.0116967
10.1101/cshperspect.a009753
10.1371/journal.pone.0174463
10.1038/srep24857
10.1016/j.jcf.2020.04.007
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier B.V.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jcf.2021.11.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5010
EndPage 513
ExternalDocumentID 34895838
10_1016_j_jcf_2021_11_014
S156919932102155X
1_s2_0_S156919932102155X
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
D-I
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OI-
OK1
OU.
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UHS
Z5R
~G-
0SF
6I.
AACTN
AAFTH
ABVKL
AFCTW
AFKWA
AJOXV
AMFUW
NCXOZ
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c4520-ecef635892a8059c7de4a1ad6122bb3be42457e5bfb82a41061abccca2b1901b3
IEDL.DBID .~1
ISSN 1569-1993
1873-5010
IngestDate Fri Sep 05 06:48:48 EDT 2025
Wed Feb 19 02:25:48 EST 2025
Tue Jul 01 04:15:55 EDT 2025
Thu Apr 24 23:06:14 EDT 2025
Fri Feb 23 02:39:49 EST 2024
Tue Feb 25 20:08:12 EST 2025
Tue Aug 26 16:33:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Gut microbiota
Intestinal physiology
Antibiotics
Dysbiosis
MRI
Gut microbiome
Language English
License This is an open access article under the CC BY license.
Copyright © 2021. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4520-ecef635892a8059c7de4a1ad6122bb3be42457e5bfb82a41061abccca2b1901b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S156919932102155X
PMID 34895838
PQID 2609458792
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2609458792
pubmed_primary_34895838
crossref_citationtrail_10_1016_j_jcf_2021_11_014
crossref_primary_10_1016_j_jcf_2021_11_014
elsevier_sciencedirect_doi_10_1016_j_jcf_2021_11_014
elsevier_clinicalkeyesjournals_1_s2_0_S156919932102155X
elsevier_clinicalkey_doi_10_1016_j_jcf_2021_11_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of cystic fibrosis
PublicationTitleAlternate J Cyst Fibros
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Takeshita, Mizuno, Mikami, Sujino, Saigusa, Matsuoka (bib0044) 2016; 22
Kastl, Terry, Wu, Albenberg (bib0033) 2020; 9
Chang, Hao, Offermanns, Medzhitov (bib0013) 2014; 111
Tetard, Mittaine, Bui, Beaufils, Maumus, Fayon (bib0051) 2020; 71
Antosca, Chernikova, Price, Ruoff, Li, Guill (bib0006) 2019; 201
De Freitas, Moreira, Tomio, Moreno, Daltoe, Barbosa (bib0015) 2018; 13
Malagelada, Bendezú, Seguí, Vitrià, Merino, Nieto (bib0019) 2020; 00
Madan, Koestle, Stanton, Davidson, Moulton, Housman, Moore, Guill, Morrison, Sogin, Hampton, Karagas, Palumbo, Foster, Hibberd, O'Toole (bib0030) 2012; 3
Hayden, Eng, Pope, Brittnacher, Vo, Weiss (bib0036) 2020; 26
Smith, Rowbotham, Davies, Gathercole, Collins, Elliott (bib0005) 2020; 7
Flass, Tong, Frank, Wagner, Robertson, Kotter (bib0016) 2015; 10
Al-Momani, Perry, Stewart, Jones, Krishnan, Robertson (bib0031) 2016; 6
Vermeire, Joossens, Verbeke, Wang, Machiels, Sabino (bib0045) 2016; 10
Rainey, Hollen, Small, Genus (bib0039) 2009
Roager, Hansen, Bahl, Frandsen, Carvalho, Gøbel (bib0043) 2016; 1
Enaud, Hooks, Barre, Barnetche, Hubert, Massot (bib0029) 2019; 8
Gorzelak, Gill, Tasnim, Ahmadi-Vand, Jay, Gibson (bib0021) 2015; 10
Li, Wang, Wei, Gao, Zhang, Wang (bib0038) 2016; 22
De Lisle (bib0047) 2007; 293
Nagy, Urbán, Nord (bib0050) 2011; 17
Zaneveld, McMinds, Thurber (bib0028) 2017; 2
Meeker, Mears, Sangwan, Brittnacher, Weiss, Treuting, Tolley, Pope, Hager, Vo, Paik, Frevert, Hayden, Hoffman, Miller, Hajjar (bib0042) 2020; 16
Elborn (bib0041) 2016; 388
Arpaia, Campbell, Fan, Dikiy, van der Veeken, DeRoos (bib0014) 2013; 504
ter Braak, Smilauer (bib0025) 2012
Matamouros, Hayden, Hager, Brittnacher, Lachance, Weiss (bib0049) 2018; 115
Kristensen, Prevaes, Kalkman, Tramper-Stranders, Hasrat, de Winter- de Groot (bib0010) 2020
Duytschaever, Huys, Bekaert, Boulanger, De Boeck, Vandamme (bib0037) 2013; 12
Norkina, Burnett, De Lisle (bib0046) 2004; 72
Burke, Fouhy, Harrison, Rea, Cotter, Sullivan, Stanton, Hill, Shanahan, Plant, Ross (bib0008) 2017; 17
Donohoe, Garge, Zhang, Sun, O'Connell, Bunger, Bultman (bib0012) 2011; 13
Loman, Shrestha, Thompson, Groner, Mejias, Ruoff (bib0007) 2020; 55
Vernocchi, Del Chierico, Russo, Majo, Rossitto, Valerio (bib0011) 2018; 13
Tabori, Arnold, Jaudszus, Mentzel, Renz, Reinsch (bib0003) 2017; 12
Øyvind Hammer, Harper (bib0024) 2001; 4
Dayama, Priya, Niccum, Khoruts, Blekhman (bib0017) 2020; 12
Cuthbertson, Walker, Oliver, Rogers, Rivett, Hampton, Ashare, Elborn, De Soyza, Carroll, Hoffman, Lanyon, Moskowitz, O'Toole, Parkhill, Planet, Teneback, Tunney, Zuckerman, Bruce, van der Gast (bib0026) 2020; 8
Hoffman, Pope, Hayden, Heltshe, Levy, McNamara (bib0035) 2014; 58
Manor, Levy, Pope, Hayden, Brittnacher, Carr (bib0034) 2016; 6
Rogers, Cuthbertson, Hoffman, Wing, Pope, Hooftman, Lilley, Oliver, Carroll, Bruce, van der Gast (bib0022) 2013; 7
Anderson, Miles, Tierney (bib0032) 2017; 16
Wang, Leong, Keating, Kanno, Abell, Mobegi, Choo, Wesselingh, Mason, Burr, Rogers (bib0040) 2019; 10
Hedin, van der Gast, Rogers, Cuthbertson, McCartney, Stagg (bib0027) 2016; 65
Coffey, Nielsen, Wemheuer, Kaakoush, Garg, Needham (bib0018) 2019; 9
Ng, Dellschaft, Hoad, Marciani, Ban, Prayle (bib0020) 2020
Hayee, Watson, Campbell, Simpson, Farrell, Hutchings (bib0004) 2019; 7
Nielsen, Needham, Leach, Day, Jaffe, Thomas (bib0009) 2016; 6
Ooi, Durie (bib0002) 2016; 13
De Lisle, Borowitz (bib0001) 2013; 3
Callahan, McMurdie, Rosen, Han, Johnson, Holmes (bib0023) 2016; 13
Collins (bib0048) 2018; 26
Loman (10.1016/j.jcf.2021.11.014_bib0007) 2020; 55
Meeker (10.1016/j.jcf.2021.11.014_bib0042) 2020; 16
Callahan (10.1016/j.jcf.2021.11.014_bib0023) 2016; 13
Malagelada (10.1016/j.jcf.2021.11.014_bib0019) 2020; 00
Øyvind Hammer (10.1016/j.jcf.2021.11.014_bib0024) 2001; 4
Smith (10.1016/j.jcf.2021.11.014_bib0005) 2020; 7
ter Braak (10.1016/j.jcf.2021.11.014_bib0025) 2012
Roager (10.1016/j.jcf.2021.11.014_bib0043) 2016; 1
Arpaia (10.1016/j.jcf.2021.11.014_bib0014) 2013; 504
Nagy (10.1016/j.jcf.2021.11.014_bib0050) 2011; 17
De Lisle (10.1016/j.jcf.2021.11.014_bib0047) 2007; 293
Burke (10.1016/j.jcf.2021.11.014_bib0008) 2017; 17
Vernocchi (10.1016/j.jcf.2021.11.014_bib0011) 2018; 13
Kastl (10.1016/j.jcf.2021.11.014_bib0033) 2020; 9
Hoffman (10.1016/j.jcf.2021.11.014_bib0035) 2014; 58
Kristensen (10.1016/j.jcf.2021.11.014_bib0010) 2020
Antosca (10.1016/j.jcf.2021.11.014_bib0006) 2019; 201
Tabori (10.1016/j.jcf.2021.11.014_bib0003) 2017; 12
Elborn (10.1016/j.jcf.2021.11.014_bib0041) 2016; 388
Donohoe (10.1016/j.jcf.2021.11.014_bib0012) 2011; 13
Zaneveld (10.1016/j.jcf.2021.11.014_bib0028) 2017; 2
Ooi (10.1016/j.jcf.2021.11.014_bib0002) 2016; 13
Al-Momani (10.1016/j.jcf.2021.11.014_bib0031) 2016; 6
De Freitas (10.1016/j.jcf.2021.11.014_bib0015) 2018; 13
Tetard (10.1016/j.jcf.2021.11.014_bib0051) 2020; 71
Rainey (10.1016/j.jcf.2021.11.014_bib0039) 2009
Madan (10.1016/j.jcf.2021.11.014_bib0030) 2012; 3
Ng (10.1016/j.jcf.2021.11.014_bib0020) 2020
Hedin (10.1016/j.jcf.2021.11.014_bib0027) 2016; 65
Collins (10.1016/j.jcf.2021.11.014_bib0048) 2018; 26
Matamouros (10.1016/j.jcf.2021.11.014_bib0049) 2018; 115
Takeshita (10.1016/j.jcf.2021.11.014_bib0044) 2016; 22
Anderson (10.1016/j.jcf.2021.11.014_bib0032) 2017; 16
Norkina (10.1016/j.jcf.2021.11.014_bib0046) 2004; 72
Gorzelak (10.1016/j.jcf.2021.11.014_bib0021) 2015; 10
Duytschaever (10.1016/j.jcf.2021.11.014_bib0037) 2013; 12
Flass (10.1016/j.jcf.2021.11.014_bib0016) 2015; 10
Rogers (10.1016/j.jcf.2021.11.014_bib0022) 2013; 7
Coffey (10.1016/j.jcf.2021.11.014_bib0018) 2019; 9
Enaud (10.1016/j.jcf.2021.11.014_bib0029) 2019; 8
Nielsen (10.1016/j.jcf.2021.11.014_bib0009) 2016; 6
Dayama (10.1016/j.jcf.2021.11.014_bib0017) 2020; 12
Hayden (10.1016/j.jcf.2021.11.014_bib0036) 2020; 26
Chang (10.1016/j.jcf.2021.11.014_bib0013) 2014; 111
Hayee (10.1016/j.jcf.2021.11.014_bib0004) 2019; 7
Vermeire (10.1016/j.jcf.2021.11.014_bib0045) 2016; 10
Wang (10.1016/j.jcf.2021.11.014_bib0040) 2019; 10
Li (10.1016/j.jcf.2021.11.014_bib0038) 2016; 22
De Lisle (10.1016/j.jcf.2021.11.014_bib0001) 2013; 3
Manor (10.1016/j.jcf.2021.11.014_bib0034) 2016; 6
Cuthbertson (10.1016/j.jcf.2021.11.014_bib0026) 2020; 8
References_xml – volume: 6
  start-page: 22493
  year: 2016
  ident: bib0034
  article-title: Metagenomic evidence for taxonomic dysbiosis and functional imbalance in the gastrointestinal tracts of children with cystic fibrosis
  publication-title: Sci Rep
– volume: 504
  start-page: 451
  year: 2013
  end-page: 455
  ident: bib0014
  article-title: Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation
  publication-title: Nature
– volume: 13
  year: 2018
  ident: bib0011
  article-title: Gut microbiota signatures in cystic fibrosis: Loss of host CFTR function drives the microbiota enterophenotype
  publication-title: PLoS One
– volume: 9
  start-page: 18593
  year: 2019
  ident: bib0018
  article-title: Gut Microbiota in Children With Cystic Fibrosis: A Taxonomic and Functional Dysbiosis
  publication-title: Sci Rep
– volume: 8
  start-page: 645
  year: 2019
  ident: bib0029
  article-title: Intestinal Inflammation in Children with Cystic Fibrosis Is Associated with Crohn’s-Like Microbiota Disturbances
  publication-title: J Clin Med
– volume: 65
  start-page: 944
  year: 2016
  end-page: 953
  ident: bib0027
  article-title: Siblings of patients with Crohn’s disease exhibit a biologically relevant dysbiosis in mucosal microbial metacommunities
  publication-title: Gut
– volume: 13
  year: 2018
  ident: bib0015
  article-title: Altered intestinal microbiota composition, antibiotic therapy and intestinal inflammation in children and adolescents with cystic fibrosis
  publication-title: PLoS One
– year: 2020
  ident: bib0010
  article-title: Development of the gut microbiota in early life: The impact of cystic fibrosis and antibiotic treatment
  publication-title: J Cyst Fibros
– volume: 201
  year: 2019
  ident: bib0006
  article-title: Altered Stool Microbiota of Infants with Cystic Fibrosis Shows a Reduction in Genera Associated with Immune Programming from Birth
  publication-title: J Bacteriol
– volume: 1
  start-page: 16093
  year: 2016
  ident: bib0043
  article-title: Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut
  publication-title: Nat Microbiol
– volume: 13
  start-page: 175
  year: 2016
  end-page: 185
  ident: bib0002
  article-title: Cystic fibrosis from the gastroenterologist’s perspective
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 10
  start-page: 387
  year: 2016
  end-page: 394
  ident: bib0045
  article-title: Donor Species Richness Determines Faecal Microbiota Transplantation Success in Inflammatory Bowel Disease
  publication-title: J Crohn’s Colitis
– year: 2020
  ident: bib0020
  article-title: Postprandial changes in gastrointestinal function and transit in cystic fibrosis assessed by Magnetic Resonance Imaging
  publication-title: J Cyst Fibros
– volume: 58
  start-page: 396
  year: 2014
  end-page: 399
  ident: bib0035
  article-title: Escherichia coli dysbiosis correlates with gastrointestinal dysfunction in children with cystic fibrosis
  publication-title: Clin Infect Dis
– year: 2012
  ident: bib0025
  article-title: CANOCO reference manual and user's guide: software for ordination
– volume: 13
  start-page: 517
  year: 2011
  end-page: 526
  ident: bib0012
  article-title: The Microbiome and Butyrate Regulate Energy Metabolism and Autophagy in the Mammalian Colon
  publication-title: Cell Metab
– volume: 9
  start-page: 33
  year: 2020
  end-page: 45
  ident: bib0033
  article-title: The Structure and Function of the Human Small Intestinal Microbiota: Current Understanding and Future Directions
  publication-title: Cell Mol Gastroenterol Hepatol
– volume: 10
  year: 2015
  ident: bib0016
  article-title: Intestinal lesions are associated with altered intestinal microbiome and are more frequent in children and young adults with cystic fibrosis and cirrhosis
  publication-title: PLoS One
– volume: 7
  start-page: 697
  year: 2013
  end-page: 706
  ident: bib0022
  article-title: Reducing bias in bacterial community analysis of lower respiratory infections
  publication-title: ISME J
– volume: 6
  start-page: 26985
  year: 2016
  ident: bib0031
  article-title: Microbiological profiles of sputum and gastric juice aspirates in Cystic Fibrosis patients
  publication-title: Sci Rep
– year: 2009
  ident: bib0039
  article-title: Clostridium prazmowski 1880, 23AL
– volume: 12
  start-page: 12
  year: 2020
  ident: bib0017
  article-title: Interactions between the gut microbiome and host gene regulation in cystic fibrosis
  publication-title: Genome Med
– volume: 17
  start-page: 58
  year: 2017
  ident: bib0008
  article-title: The altered gut microbiota in adults with cystic fibrosis
  publication-title: BMC Microbiol
– volume: 16
  year: 2020
  ident: bib0042
  article-title: CFTR dysregulation drives active selection of the gut microbiome
  publication-title: PLoS Pathog
– volume: 72
  start-page: 6040
  year: 2004
  end-page: 6049
  ident: bib0046
  article-title: Bacterial overgrowth in the cystic fibrosis transmembrane conductance regulator null mouse small intestine
  publication-title: Infect Immun
– volume: 00
  start-page: e13883
  year: 2020
  ident: bib0019
  article-title: Motor dysfunction of the gut in cystic fibrosis
  publication-title: Neurogastroenterol Motil
– volume: 7
  start-page: 881
  year: 2019
  end-page: 888
  ident: bib0004
  article-title: A high prevalence of chronic gastrointestinal symptoms in adults with cystic fibrosis is detected using tools already validated in other GI disorders, United Eur
  publication-title: Gastroenterol J
– volume: 6
  start-page: 24857
  year: 2016
  ident: bib0009
  article-title: Disrupted progression of the intestinal microbiota with age in children with cystic fibrosis
  publication-title: Sci Rep
– volume: 8
  start-page: 45
  year: 2020
  ident: bib0026
  article-title: Lung function and microbiota diversity in cystic fibrosis
  publication-title: Microbiome
– volume: 10
  year: 2015
  ident: bib0021
  article-title: Methods for improving human gut microbiome data by reducing variability through sample processing and storage of stool
  publication-title: PLoS One
– volume: 16
  start-page: 186
  year: 2017
  end-page: 197
  ident: bib0032
  article-title: Effect of probiotics on respiratory, gastrointestinal and nutritional outcomes in patients with cystic fibrosis: A systematic review
  publication-title: J Cyst Fibros
– volume: 293
  start-page: 104
  year: 2007
  end-page: 111
  ident: bib0047
  article-title: Altered transit and bacterial overgrowth in the cystic fibrosis mouse small intestine
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 12
  start-page: 206
  year: 2013
  end-page: 215
  ident: bib0037
  article-title: Dysbiosis of bifidobacteria and Clostridium cluster XIVa in the cystic fibrosis fecal microbiota
  publication-title: J Cyst Fibros
– volume: 17
  start-page: 371
  year: 2011
  end-page: 379
  ident: bib0050
  article-title: Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience
  publication-title: Clin Microbiol Infect
– volume: 12
  year: 2017
  ident: bib0003
  article-title: Abdominal symptoms in cystic fibrosis and their relation to genotype, history, clinical and laboratory findings
  publication-title: PLoS One
– volume: 26
  start-page: 4
  year: 2018
  end-page: 6
  ident: bib0048
  article-title: Nutritional management of cystic fibrosis – an update for the 21st century
  publication-title: Paediatr Respir Rev
– volume: 115
  start-page: 1605
  year: 2018
  end-page: 1610
  ident: bib0049
  article-title: Adaptation of commensal proliferating Escherichia coli to the intestinal tract of young children with cystic fibrosis
  publication-title: Proc Natl Acad Sci U S A
– volume: 3
  year: 2013
  ident: bib0001
  article-title: The cystic fibrosis intestine
  publication-title: Cold Spring Harb Perspect Med
– volume: 111
  start-page: 2247
  year: 2014
  end-page: 2252
  ident: bib0013
  article-title: The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition
  publication-title: Proc Natl Acad Sci U S A
– volume: 2
  start-page: 17121
  year: 2017
  ident: bib0028
  article-title: Stress and stability: Applying the Anna Karenina principle to animal microbiomes
  publication-title: Nat Microbiol
– volume: 7
  year: 2020
  ident: bib0005
  article-title: How can we relieve gastrointestinal symptoms in people with cystic fibrosis? An international qualitative survey
  publication-title: BMJ Open Respir Res
– volume: 22
  start-page: 8929
  year: 2016
  end-page: 8939
  ident: bib0038
  article-title: Fecal microbiota in pouchitis and ulcerative colitis
  publication-title: World J Gastroenterol
– volume: 55
  start-page: 1661
  year: 2020
  end-page: 1670
  ident: bib0007
  article-title: Age and environmental exposures influence the fecal bacteriome of young children with cystic fibrosis
  publication-title: Pediatr Pulmonol
– volume: 3
  year: 2012
  ident: bib0030
  article-title: Serial analysis of the gut and respiratory microbiome
  publication-title: MBio
– volume: 26
  start-page: 215
  year: 2020
  end-page: 221
  ident: bib0036
  article-title: Fecal dysbiosis in infants with cystic fibrosis is associated with early linear growth failure
  publication-title: Nat Med
– volume: 388
  start-page: 2519
  year: 2016
  end-page: 2531
  ident: bib0041
  article-title: Cystic fibrosis
  publication-title: Lancet
– volume: 4
  start-page: 9
  year: 2001
  ident: bib0024
  article-title: PAST: Paleontological Statistics Software Package for Education and Data Analysis
  publication-title: Palaeontol Electron
– volume: 10
  start-page: 367
  year: 2019
  end-page: 381
  ident: bib0040
  article-title: Opportunistic bacteria confer the ability to ferment prebiotic starch in the adult cystic fibrosis gut
  publication-title: Gut Microbes
– volume: 22
  start-page: 2802
  year: 2016
  end-page: 2810
  ident: bib0044
  article-title: A single species of clostridium Subcluster XIVa decreased in ulcerative colitis patients
  publication-title: Inflamm Bowel Dis
– volume: 71
  start-page: 778
  year: 2020
  end-page: 781
  ident: bib0051
  article-title: Reduced Intestinal Inflammation With Lumacaftor/Ivacaftor in Adolescents With Cystic Fibrosis
  publication-title: J Pediatr Gastroenterol Nutr
– volume: 13
  start-page: 4
  year: 2016
  end-page: 5
  ident: bib0023
  article-title: DADA2: High resolution sample inference from Illumina amplicon data
  publication-title: Nat Methods
– volume: 71
  start-page: 778
  year: 2020
  ident: 10.1016/j.jcf.2021.11.014_bib0051
  article-title: Reduced Intestinal Inflammation With Lumacaftor/Ivacaftor in Adolescents With Cystic Fibrosis
  publication-title: J Pediatr Gastroenterol Nutr
  doi: 10.1097/MPG.0000000000002864
– volume: 504
  start-page: 451
  year: 2013
  ident: 10.1016/j.jcf.2021.11.014_bib0014
  article-title: Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation
  publication-title: Nature
  doi: 10.1038/nature12726
– volume: 13
  year: 2018
  ident: 10.1016/j.jcf.2021.11.014_bib0011
  article-title: Gut microbiota signatures in cystic fibrosis: Loss of host CFTR function drives the microbiota enterophenotype
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0208171
– volume: 13
  start-page: 175
  year: 2016
  ident: 10.1016/j.jcf.2021.11.014_bib0002
  article-title: Cystic fibrosis from the gastroenterologist’s perspective
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/nrgastro.2015.226
– volume: 26
  start-page: 215
  year: 2020
  ident: 10.1016/j.jcf.2021.11.014_bib0036
  article-title: Fecal dysbiosis in infants with cystic fibrosis is associated with early linear growth failure
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0714-x
– volume: 72
  start-page: 6040
  year: 2004
  ident: 10.1016/j.jcf.2021.11.014_bib0046
  article-title: Bacterial overgrowth in the cystic fibrosis transmembrane conductance regulator null mouse small intestine
  publication-title: Infect Immun
  doi: 10.1128/IAI.72.10.6040-6049.2004
– volume: 7
  start-page: 881
  year: 2019
  ident: 10.1016/j.jcf.2021.11.014_bib0004
  article-title: A high prevalence of chronic gastrointestinal symptoms in adults with cystic fibrosis is detected using tools already validated in other GI disorders, United Eur
  publication-title: Gastroenterol J
– volume: 3
  year: 2012
  ident: 10.1016/j.jcf.2021.11.014_bib0030
  article-title: Serial analysis of the gut and respiratory microbiome
  publication-title: MBio
– volume: 16
  year: 2020
  ident: 10.1016/j.jcf.2021.11.014_bib0042
  article-title: CFTR dysregulation drives active selection of the gut microbiome
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1008251
– volume: 00
  start-page: e13883
  year: 2020
  ident: 10.1016/j.jcf.2021.11.014_bib0019
  article-title: Motor dysfunction of the gut in cystic fibrosis
  publication-title: Neurogastroenterol Motil
  doi: 10.1111/nmo.13883
– volume: 293
  start-page: 104
  year: 2007
  ident: 10.1016/j.jcf.2021.11.014_bib0047
  article-title: Altered transit and bacterial overgrowth in the cystic fibrosis mouse small intestine
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.00548.2006
– year: 2009
  ident: 10.1016/j.jcf.2021.11.014_bib0039
– volume: 388
  start-page: 2519
  year: 2016
  ident: 10.1016/j.jcf.2021.11.014_bib0041
  article-title: Cystic fibrosis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)00576-6
– volume: 58
  start-page: 396
  year: 2014
  ident: 10.1016/j.jcf.2021.11.014_bib0035
  article-title: Escherichia coli dysbiosis correlates with gastrointestinal dysfunction in children with cystic fibrosis
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/cit715
– volume: 111
  start-page: 2247
  year: 2014
  ident: 10.1016/j.jcf.2021.11.014_bib0013
  article-title: The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1322269111
– volume: 8
  start-page: 45
  year: 2020
  ident: 10.1016/j.jcf.2021.11.014_bib0026
  article-title: Lung function and microbiota diversity in cystic fibrosis
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00810-3
– year: 2012
  ident: 10.1016/j.jcf.2021.11.014_bib0025
– volume: 22
  start-page: 2802
  year: 2016
  ident: 10.1016/j.jcf.2021.11.014_bib0044
  article-title: A single species of clostridium Subcluster XIVa decreased in ulcerative colitis patients
  publication-title: Inflamm Bowel Dis
  doi: 10.1097/MIB.0000000000000972
– volume: 55
  start-page: 1661
  year: 2020
  ident: 10.1016/j.jcf.2021.11.014_bib0007
  article-title: Age and environmental exposures influence the fecal bacteriome of young children with cystic fibrosis
  publication-title: Pediatr Pulmonol
  doi: 10.1002/ppul.24766
– volume: 9
  start-page: 33
  year: 2020
  ident: 10.1016/j.jcf.2021.11.014_bib0033
  article-title: The Structure and Function of the Human Small Intestinal Microbiota: Current Understanding and Future Directions
  publication-title: Cell Mol Gastroenterol Hepatol
  doi: 10.1016/j.jcmgh.2019.07.006
– volume: 10
  year: 2015
  ident: 10.1016/j.jcf.2021.11.014_bib0021
  article-title: Methods for improving human gut microbiome data by reducing variability through sample processing and storage of stool
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0134802
– volume: 8
  start-page: 645
  year: 2019
  ident: 10.1016/j.jcf.2021.11.014_bib0029
  article-title: Intestinal Inflammation in Children with Cystic Fibrosis Is Associated with Crohn’s-Like Microbiota Disturbances
  publication-title: J Clin Med
  doi: 10.3390/jcm8050645
– volume: 2
  start-page: 17121
  year: 2017
  ident: 10.1016/j.jcf.2021.11.014_bib0028
  article-title: Stress and stability: Applying the Anna Karenina principle to animal microbiomes
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2017.121
– volume: 13
  start-page: 4
  year: 2016
  ident: 10.1016/j.jcf.2021.11.014_bib0023
  article-title: DADA2: High resolution sample inference from Illumina amplicon data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3869
– volume: 17
  start-page: 371
  year: 2011
  ident: 10.1016/j.jcf.2021.11.014_bib0050
  article-title: Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience
  publication-title: Clin Microbiol Infect
  doi: 10.1111/j.1469-0691.2010.03256.x
– volume: 10
  start-page: 367
  year: 2019
  ident: 10.1016/j.jcf.2021.11.014_bib0040
  article-title: Opportunistic bacteria confer the ability to ferment prebiotic starch in the adult cystic fibrosis gut
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2018.1534512
– volume: 13
  year: 2018
  ident: 10.1016/j.jcf.2021.11.014_bib0015
  article-title: Altered intestinal microbiota composition, antibiotic therapy and intestinal inflammation in children and adolescents with cystic fibrosis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0198457
– volume: 12
  start-page: 12
  year: 2020
  ident: 10.1016/j.jcf.2021.11.014_bib0017
  article-title: Interactions between the gut microbiome and host gene regulation in cystic fibrosis
  publication-title: Genome Med
  doi: 10.1186/s13073-020-0710-2
– volume: 9
  start-page: 18593
  year: 2019
  ident: 10.1016/j.jcf.2021.11.014_bib0018
  article-title: Gut Microbiota in Children With Cystic Fibrosis: A Taxonomic and Functional Dysbiosis
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-55028-7
– volume: 16
  start-page: 186
  year: 2017
  ident: 10.1016/j.jcf.2021.11.014_bib0032
  article-title: Effect of probiotics on respiratory, gastrointestinal and nutritional outcomes in patients with cystic fibrosis: A systematic review
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2016.09.004
– volume: 26
  start-page: 4
  year: 2018
  ident: 10.1016/j.jcf.2021.11.014_bib0048
  article-title: Nutritional management of cystic fibrosis – an update for the 21st century
  publication-title: Paediatr Respir Rev
– volume: 115
  start-page: 1605
  year: 2018
  ident: 10.1016/j.jcf.2021.11.014_bib0049
  article-title: Adaptation of commensal proliferating Escherichia coli to the intestinal tract of young children with cystic fibrosis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1714373115
– volume: 13
  start-page: 517
  year: 2011
  ident: 10.1016/j.jcf.2021.11.014_bib0012
  article-title: The Microbiome and Butyrate Regulate Energy Metabolism and Autophagy in the Mammalian Colon
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.02.018
– volume: 6
  start-page: 26985
  year: 2016
  ident: 10.1016/j.jcf.2021.11.014_bib0031
  article-title: Microbiological profiles of sputum and gastric juice aspirates in Cystic Fibrosis patients
  publication-title: Sci Rep
  doi: 10.1038/srep26985
– year: 2020
  ident: 10.1016/j.jcf.2021.11.014_bib0020
  article-title: Postprandial changes in gastrointestinal function and transit in cystic fibrosis assessed by Magnetic Resonance Imaging
  publication-title: J Cyst Fibros
– volume: 12
  start-page: 206
  year: 2013
  ident: 10.1016/j.jcf.2021.11.014_bib0037
  article-title: Dysbiosis of bifidobacteria and Clostridium cluster XIVa in the cystic fibrosis fecal microbiota
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2012.10.003
– volume: 22
  start-page: 8929
  year: 2016
  ident: 10.1016/j.jcf.2021.11.014_bib0038
  article-title: Fecal microbiota in pouchitis and ulcerative colitis
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v22.i40.8929
– volume: 6
  start-page: 22493
  year: 2016
  ident: 10.1016/j.jcf.2021.11.014_bib0034
  article-title: Metagenomic evidence for taxonomic dysbiosis and functional imbalance in the gastrointestinal tracts of children with cystic fibrosis
  publication-title: Sci Rep
  doi: 10.1038/srep22493
– volume: 1
  start-page: 16093
  year: 2016
  ident: 10.1016/j.jcf.2021.11.014_bib0043
  article-title: Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2016.93
– volume: 17
  start-page: 58
  year: 2017
  ident: 10.1016/j.jcf.2021.11.014_bib0008
  article-title: The altered gut microbiota in adults with cystic fibrosis
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-017-0968-8
– volume: 65
  start-page: 944
  year: 2016
  ident: 10.1016/j.jcf.2021.11.014_bib0027
  article-title: Siblings of patients with Crohn’s disease exhibit a biologically relevant dysbiosis in mucosal microbial metacommunities
  publication-title: Gut
  doi: 10.1136/gutjnl-2014-308896
– volume: 10
  start-page: 387
  year: 2016
  ident: 10.1016/j.jcf.2021.11.014_bib0045
  article-title: Donor Species Richness Determines Faecal Microbiota Transplantation Success in Inflammatory Bowel Disease
  publication-title: J Crohn’s Colitis
  doi: 10.1093/ecco-jcc/jjv203
– volume: 7
  year: 2020
  ident: 10.1016/j.jcf.2021.11.014_bib0005
  article-title: How can we relieve gastrointestinal symptoms in people with cystic fibrosis? An international qualitative survey
  publication-title: BMJ Open Respir Res
– volume: 201
  year: 2019
  ident: 10.1016/j.jcf.2021.11.014_bib0006
  article-title: Altered Stool Microbiota of Infants with Cystic Fibrosis Shows a Reduction in Genera Associated with Immune Programming from Birth
  publication-title: J Bacteriol
  doi: 10.1128/JB.00274-19
– volume: 7
  start-page: 697
  year: 2013
  ident: 10.1016/j.jcf.2021.11.014_bib0022
  article-title: Reducing bias in bacterial community analysis of lower respiratory infections
  publication-title: ISME J
  doi: 10.1038/ismej.2012.145
– volume: 10
  year: 2015
  ident: 10.1016/j.jcf.2021.11.014_bib0016
  article-title: Intestinal lesions are associated with altered intestinal microbiome and are more frequent in children and young adults with cystic fibrosis and cirrhosis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0116967
– volume: 3
  year: 2013
  ident: 10.1016/j.jcf.2021.11.014_bib0001
  article-title: The cystic fibrosis intestine
  publication-title: Cold Spring Harb Perspect Med
  doi: 10.1101/cshperspect.a009753
– volume: 4
  start-page: 9
  year: 2001
  ident: 10.1016/j.jcf.2021.11.014_bib0024
  article-title: PAST: Paleontological Statistics Software Package for Education and Data Analysis
  publication-title: Palaeontol Electron
– volume: 12
  year: 2017
  ident: 10.1016/j.jcf.2021.11.014_bib0003
  article-title: Abdominal symptoms in cystic fibrosis and their relation to genotype, history, clinical and laboratory findings
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0174463
– volume: 6
  start-page: 24857
  year: 2016
  ident: 10.1016/j.jcf.2021.11.014_bib0009
  article-title: Disrupted progression of the intestinal microbiota with age in children with cystic fibrosis
  publication-title: Sci Rep
  doi: 10.1038/srep24857
– year: 2020
  ident: 10.1016/j.jcf.2021.11.014_bib0010
  article-title: Development of the gut microbiota in early life: The impact of cystic fibrosis and antibiotic treatment
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2020.04.007
SSID ssj0017078
Score 2.425142
Snippet •Faecal microbiota significantly differs between pwCF and healthy controls.•Known SCFA producers contributed to microbiota dissimilarity between...
Highlights•Faecal microbiota significantly differs between pwCF and healthy controls. •Known SCFA producers contributed to microbiota dissimilarity between...
Most people with cystic fibrosis (pwCF) suffer from gastrointestinal symptoms and are at risk of gut complications. Gut microbiota dysbiosis is apparent within...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 506
SubjectTerms Antibiotics
Dysbiosis
Gut microbiome
Gut microbiota
Intestinal physiology
MRI
Pulmonary/Respiratory
Title Intestinal function and transit associate with gut microbiota dysbiosis in cystic fibrosis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S156919932102155X
https://www.clinicalkey.es/playcontent/1-s2.0-S156919932102155X
https://dx.doi.org/10.1016/j.jcf.2021.11.014
https://www.ncbi.nlm.nih.gov/pubmed/34895838
https://www.proquest.com/docview/2609458792
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CCiWX0kfSbh9BgZ4Km7VleS0d09CwaUgubWDJRUjyuDgkToi9h1z62ztjywulTQq92cJC9kjz-KyZTwAfvVEmQ2mmSWlyAigl6VxpFKGUBCvUJk_6Cu_Ts_niXH1d5ssNOBxrYTitMtr-wab31jq2zKI0Z7d1PftGyMNw-hmDFvKKS65gVwXz5-__XKd5pMxm03Omzg0nVWTjzmaf43UZmMVTpvtM5Jmqh3zTQ7Fn74OOnsOzGDyKg-H9XsAGNi_h6WncHn8FF_x_j3SWH2KHxUIXrilFxx6p7oSLk4GC_7-KH6tOXNcDFVPnRHnf0kVbt6JuRLhnBmdREZzmpm04P_ry_XAxjYcnTIPKCRJiwIqCCW2k0xRChaJE5VJXUkQjvc888pZngbmvvJZOMTJ0PtB8Ss8xgs92YLO5afANiJBQOybeVUjgyUuda3QVaf88FBTuphNIRrHZEJnF-YCLKzumkF1akrRlSRPisCTpCXxad7kdaDUee1iOc2HHelGycJaM_mOdir91wjbqaGtT20qb2D_W0QTUuudvS_FfA-6Ny8SSivK-i2vwZtVagoxG5bowcgKvh_Wz_uhMkT7oTL_9v0HfwZbkeow-A_M9bHZ3K_xAUVLnd3s12IUnB8cnizO6O15-_gX66hFF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXVN5LeRiJE9J2E8fZ2MeqarVAtxdaacXFsp1JlQrSimQPvfDbmUmclRC0SNwiKyMn43l99swY4L03ymQozTQpTU4ApSSdK40ilJJghdrkSV_hvTyZL87Up1W-2oKDsRaG0yqj7R9sem-t48gscnN2VdezL4Q8DKefMWghr7i6A3dVnhUs2ns_N3keKbez6Zumzg1nVWTj0Waf5HURuI2nTPe4k2eqbnJONwWfvRM62oGHMXoU-8MHPoItbB7DvWU8H38CX3mDj5SWX2KPxVwXrilFxy6p7oSLq4GCN2DF-boT3-uhF1PnRHnd0kNbt6JuRLjmFs6iIjzNQ0_h7Ojw9GAxjbcnTIPKCRNiwIqiCW2k0xRDhaJE5VJXUkgjvc888plngbmvvJZOMTR0PtCCSs9Bgs-ewXZz2eALECGhcUy8q5DQk5c61-gqUv95KCjeTSeQjGyzIbYW5xsuvtkxh-zCEqctc5oghyVOT-DDhuRq6Ktx28tyXAs7FoySibNk9W8jKv5GhG1U0tamtpU2sX8I0gTUhvI3WfzXhO9GMbGko3zw4hq8XLeWMKNRuS6MnMDzQX42P50pUgid6Zf_N-lbuL84XR7b448nn3fhgeTijD4d8xVsdz_W-JpCps6_6VXiF8TWEdc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intestinal+function+and+transit+associate+with+gut+microbiota+dysbiosis+in+cystic+fibrosis&rft.jtitle=Journal+of+cystic+fibrosis&rft.au=Marsh%2C+Ryan&rft.au=Gavillet%2C+Helen&rft.au=Hanson%2C+Liam&rft.au=Ng%2C+Christabella&rft.date=2022-05-01&rft.eissn=1873-5010&rft.volume=21&rft.issue=3&rft.spage=506&rft_id=info:doi/10.1016%2Fj.jcf.2021.11.014&rft_id=info%3Apmid%2F34895838&rft.externalDocID=34895838
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F15691993%2FS1569199322X00040%2Fcov150h.gif