The use of mechanistic DM‐PK‐PD modelling to assess the power of pharmacogenetic studies –CYP2C9 and warfarin as an example

What is already known about this subject • Many studies have shown that genetic polymorphisms of the CYP2C9 gene contribute to some of the variability (around 20%) in warfarin dose requirements and therapeutic response to the drug. • It is also clear that this effect must be elicited through differe...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of clinical pharmacology Vol. 64; no. 1; pp. 14 - 26
Main Authors Dickinson, Gemma L., Lennard, Martin S., Tucker, Geoffrey T., Rostami‐Hodjegan, Amin
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.07.2007
Blackwell Science
Blackwell Science Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract What is already known about this subject • Many studies have shown that genetic polymorphisms of the CYP2C9 gene contribute to some of the variability (around 20%) in warfarin dose requirements and therapeutic response to the drug. • It is also clear that this effect must be elicited through differences in the plasma (S)‐warfarin concentration between individuals of different genotypes, although assessing the effects of any single genotype of CYP2C9 on the kinetics of (S)‐warfarin has generally failed. What this study adds • The study aims to simulate the impact of genetic polymorphism in CYP2C9 on both the pharmacokinetics (PK) and pharmacodynamics (PD) of (S)‐warfarin using a mechanistic, population approach to modelling. • The outcomes with respect to the design of studies and their statistical power are compared against those of actual reported studies. • The exercise with warfarin is offered as an example of how prior information on the in vitro PK and PD of new drugs might be used in association with knowledge of relevant genetic polymorphisms and their frequencies to carry out virtual clinical studies as an aid to the design, optimization and powering of subsequent real clinical trials assessing the impact of specific genetic differences. Aim To assess the power of in vivo studies needed to discern the effect of genotype on pharmacokinetics (PK) and pharmacodynamics (PD) using CYP2C9 and (S)‐warfarin as an example. Methods Information on the in vitro metabolism of (S)‐warfarin and genetic variation in CYP2C9 was incorporated into a mechanistic population‐based PK–PD model. The influence of study design on the ability to detect significant differences in PK (AUC0−12 h) and PD (AUEC0−12 h INR) between CYP2C9 genotypes was investigated. Results A study size of 90 (based on the natural abundance of genotypes and uniform dosage) was required to achieve 80% power to discriminate the PK of (S)‐warfarin between wild type (*1/*1) and the combination of all other genotypes. About 250 subjects were needed to detect a difference in anticoagulant response. The power to detect differences between specific genotypes was much lower. Analysis of experimental comparisons of the PK or PD between wild‐type and other individual genotypes indicated that only 21% of cases (20 of 95 comparisons within 11 PD and four PK–PD studies) reported statistically significant differences. This was similar to the percentage expected from our simulations (20%, χ2 test, P = 0.80). Simulations of studies enriched with specific genotypes indicated that only three and five subjects were required to detect differences in PK and PD between wild type and the *3/*3 genotype, respectively. Conclusion The utilization of prior information (including in vivo enzymology) in clinical trial simulations can guide the design of subsequent in vivo studies of the impact of genetic polymorphisms, and may help to avoid costly, inconclusive outcomes.
AbstractList What is already known about this subject • Many studies have shown that genetic polymorphisms of the CYP2C9 gene contribute to some of the variability (around 20%) in warfarin dose requirements and therapeutic response to the drug. • It is also clear that this effect must be elicited through differences in the plasma (S)‐warfarin concentration between individuals of different genotypes, although assessing the effects of any single genotype of CYP2C9 on the kinetics of (S)‐warfarin has generally failed. What this study adds • The study aims to simulate the impact of genetic polymorphism in CYP2C9 on both the pharmacokinetics (PK) and pharmacodynamics (PD) of (S)‐warfarin using a mechanistic, population approach to modelling. • The outcomes with respect to the design of studies and their statistical power are compared against those of actual reported studies. • The exercise with warfarin is offered as an example of how prior information on the in vitro PK and PD of new drugs might be used in association with knowledge of relevant genetic polymorphisms and their frequencies to carry out virtual clinical studies as an aid to the design, optimization and powering of subsequent real clinical trials assessing the impact of specific genetic differences. Aim To assess the power of in vivo studies needed to discern the effect of genotype on pharmacokinetics (PK) and pharmacodynamics (PD) using CYP2C9 and (S)‐warfarin as an example. Methods Information on the in vitro metabolism of (S)‐warfarin and genetic variation in CYP2C9 was incorporated into a mechanistic population‐based PK–PD model. The influence of study design on the ability to detect significant differences in PK (AUC 0−12 h ) and PD (AUEC 0−12 h INR) between CYP2C9 genotypes was investigated. Results A study size of 90 (based on the natural abundance of genotypes and uniform dosage) was required to achieve 80% power to discriminate the PK of (S) ‐ warfarin between wild type (*1/*1) and the combination of all other genotypes. About 250 subjects were needed to detect a difference in anticoagulant response. The power to detect differences between specific genotypes was much lower. Analysis of experimental comparisons of the PK or PD between wild‐type and other individual genotypes indicated that only 21% of cases (20 of 95 comparisons within 11 PD and four PK–PD studies) reported statistically significant differences. This was similar to the percentage expected from our simulations (20%, χ 2 test, P  = 0.80). Simulations of studies enriched with specific genotypes indicated that only three and five subjects were required to detect differences in PK and PD between wild type and the *3/*3 genotype, respectively. Conclusion The utilization of prior information (including in vivo enzymology) in clinical trial simulations can guide the design of subsequent in vivo studies of the impact of genetic polymorphisms, and may help to avoid costly, inconclusive outcomes.
What is already known about this subject • Many studies have shown that genetic polymorphisms of the CYP2C9 gene contribute to some of the variability (around 20%) in warfarin dose requirements and therapeutic response to the drug. • It is also clear that this effect must be elicited through differences in the plasma (S)‐warfarin concentration between individuals of different genotypes, although assessing the effects of any single genotype of CYP2C9 on the kinetics of (S)‐warfarin has generally failed. What this study adds • The study aims to simulate the impact of genetic polymorphism in CYP2C9 on both the pharmacokinetics (PK) and pharmacodynamics (PD) of (S)‐warfarin using a mechanistic, population approach to modelling. • The outcomes with respect to the design of studies and their statistical power are compared against those of actual reported studies. • The exercise with warfarin is offered as an example of how prior information on the in vitro PK and PD of new drugs might be used in association with knowledge of relevant genetic polymorphisms and their frequencies to carry out virtual clinical studies as an aid to the design, optimization and powering of subsequent real clinical trials assessing the impact of specific genetic differences. Aim To assess the power of in vivo studies needed to discern the effect of genotype on pharmacokinetics (PK) and pharmacodynamics (PD) using CYP2C9 and (S)‐warfarin as an example. Methods Information on the in vitro metabolism of (S)‐warfarin and genetic variation in CYP2C9 was incorporated into a mechanistic population‐based PK–PD model. The influence of study design on the ability to detect significant differences in PK (AUC0−12 h) and PD (AUEC0−12 h INR) between CYP2C9 genotypes was investigated. Results A study size of 90 (based on the natural abundance of genotypes and uniform dosage) was required to achieve 80% power to discriminate the PK of (S)‐warfarin between wild type (*1/*1) and the combination of all other genotypes. About 250 subjects were needed to detect a difference in anticoagulant response. The power to detect differences between specific genotypes was much lower. Analysis of experimental comparisons of the PK or PD between wild‐type and other individual genotypes indicated that only 21% of cases (20 of 95 comparisons within 11 PD and four PK–PD studies) reported statistically significant differences. This was similar to the percentage expected from our simulations (20%, χ2 test, P = 0.80). Simulations of studies enriched with specific genotypes indicated that only three and five subjects were required to detect differences in PK and PD between wild type and the *3/*3 genotype, respectively. Conclusion The utilization of prior information (including in vivo enzymology) in clinical trial simulations can guide the design of subsequent in vivo studies of the impact of genetic polymorphisms, and may help to avoid costly, inconclusive outcomes.
To assess the power of in vivo studies needed to discern the effect of genotype on pharmacokinetics (PK) and pharmacodynamics (PD) using CYP2C9 and (S)-warfarin as an example. Information on the in vitro metabolism of (S)-warfarin and genetic variation in CYP2C9 was incorporated into a mechanistic population-based PK-PD model. The influence of study design on the ability to detect significant differences in PK (AUC(0-12 h)) and PD (AUEC(0-12 h) INR) between CYP2C9 genotypes was investigated. A study size of 90 (based on the natural abundance of genotypes and uniform dosage) was required to achieve 80% power to discriminate the PK of (S)-warfarin between wild type (*1/*1) and the combination of all other genotypes. About 250 subjects were needed to detect a difference in anticoagulant response. The power to detect differences between specific genotypes was much lower. Analysis of experimental comparisons of the PK or PD between wild-type and other individual genotypes indicated that only 21% of cases (20 of 95 comparisons within 11 PD and four PK-PD studies) reported statistically significant differences. This was similar to the percentage expected from our simulations (20%, chi(2) test, P = 0.80). Simulations of studies enriched with specific genotypes indicated that only three and five subjects were required to detect differences in PK and PD between wild type and the *3/*3 genotype, respectively. The utilization of prior information (including in vivo enzymology) in clinical trial simulations can guide the design of subsequent in vivo studies of the impact of genetic polymorphisms, and may help to avoid costly, inconclusive outcomes.
To assess the power of in vivo studies needed to discern the effect of genotype on pharmacokinetics (PK) and pharmacodynamics (PD) using CYP2C9 and (S)-warfarin as an example.AIMTo assess the power of in vivo studies needed to discern the effect of genotype on pharmacokinetics (PK) and pharmacodynamics (PD) using CYP2C9 and (S)-warfarin as an example.Information on the in vitro metabolism of (S)-warfarin and genetic variation in CYP2C9 was incorporated into a mechanistic population-based PK-PD model. The influence of study design on the ability to detect significant differences in PK (AUC(0-12 h)) and PD (AUEC(0-12 h) INR) between CYP2C9 genotypes was investigated.METHODSInformation on the in vitro metabolism of (S)-warfarin and genetic variation in CYP2C9 was incorporated into a mechanistic population-based PK-PD model. The influence of study design on the ability to detect significant differences in PK (AUC(0-12 h)) and PD (AUEC(0-12 h) INR) between CYP2C9 genotypes was investigated.A study size of 90 (based on the natural abundance of genotypes and uniform dosage) was required to achieve 80% power to discriminate the PK of (S)-warfarin between wild type (*1/*1) and the combination of all other genotypes. About 250 subjects were needed to detect a difference in anticoagulant response. The power to detect differences between specific genotypes was much lower. Analysis of experimental comparisons of the PK or PD between wild-type and other individual genotypes indicated that only 21% of cases (20 of 95 comparisons within 11 PD and four PK-PD studies) reported statistically significant differences. This was similar to the percentage expected from our simulations (20%, chi(2) test, P = 0.80). Simulations of studies enriched with specific genotypes indicated that only three and five subjects were required to detect differences in PK and PD between wild type and the *3/*3 genotype, respectively.RESULTSA study size of 90 (based on the natural abundance of genotypes and uniform dosage) was required to achieve 80% power to discriminate the PK of (S)-warfarin between wild type (*1/*1) and the combination of all other genotypes. About 250 subjects were needed to detect a difference in anticoagulant response. The power to detect differences between specific genotypes was much lower. Analysis of experimental comparisons of the PK or PD between wild-type and other individual genotypes indicated that only 21% of cases (20 of 95 comparisons within 11 PD and four PK-PD studies) reported statistically significant differences. This was similar to the percentage expected from our simulations (20%, chi(2) test, P = 0.80). Simulations of studies enriched with specific genotypes indicated that only three and five subjects were required to detect differences in PK and PD between wild type and the *3/*3 genotype, respectively.The utilization of prior information (including in vivo enzymology) in clinical trial simulations can guide the design of subsequent in vivo studies of the impact of genetic polymorphisms, and may help to avoid costly, inconclusive outcomes.CONCLUSIONThe utilization of prior information (including in vivo enzymology) in clinical trial simulations can guide the design of subsequent in vivo studies of the impact of genetic polymorphisms, and may help to avoid costly, inconclusive outcomes.
Author Tucker, Geoffrey T.
Lennard, Martin S.
Dickinson, Gemma L.
Rostami‐Hodjegan, Amin
Author_xml – sequence: 1
  givenname: Gemma L.
  surname: Dickinson
  fullname: Dickinson, Gemma L.
– sequence: 2
  givenname: Martin S.
  surname: Lennard
  fullname: Lennard, Martin S.
– sequence: 3
  givenname: Geoffrey T.
  surname: Tucker
  fullname: Tucker, Geoffrey T.
– sequence: 4
  givenname: Amin
  surname: Rostami‐Hodjegan
  fullname: Rostami‐Hodjegan, Amin
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18838864$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17298479$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQtVAR3Rb-AvIFbgl2vnMACVIKiCL2UA6cLHcy3vUqsRc7Ybe39h8g8Q_7S3DosgUu4IM_NO-9Gb-ZI3JgrEFCKGcxD-vZKuZpkUcJT_I4YayMWVLlLN7eI7N94IDMWMqKKE9yfkiOvF8xxlNe5A_IIS-TusrKekauz5dIR4_UKtojLKXRftBATz7cXH2bv5-2E9rbFrtOmwUdLJXeo_d0CLy13aCbmOuldL0Eu0CDE9sPY6vR05ur783nedLUVJqWbqRT0mkTJMKb4lb26w4fkvtKdh4f7c5j8un09XnzNjr7-OZd8_IsgixPWASqrSBXvC3rhGdJxqCArFYFr6CtEXLMWkiLVgFLL1SRKTX9FqBUgLyoMkiPyYtb3fV40WMLaAYnO7F2upfuUlipxZ8Ro5diYb-KYDArOAsCT3cCzn4Z0Q-i1x6CMdKgHb0oAyqrcx6Aj3_PtE_xy_UAeLIDSA-yU04a0P4OV1VpVRXZXcngrPcOlQA9yEHbqUDdCc7ENA5iJaaui6nrU7Wl-DkOYhsEqr8E9jn-TX1-S93oDi__mydeNfPplv4AWrvQpw
CODEN BCPHBM
CitedBy_id crossref_primary_10_1002_prca_201400147
crossref_primary_10_1038_clpt_2009_87
crossref_primary_10_1002_jcph_669
crossref_primary_10_1208_s12248_014_9614_7
crossref_primary_10_1248_bpb_b24_00012
crossref_primary_10_1016_j_xphs_2017_04_035
crossref_primary_10_2217_pgs_14_185
crossref_primary_10_1038_clpt_2010_298
crossref_primary_10_1007_s10928_011_9235_z
crossref_primary_10_1517_14728220903018965
crossref_primary_10_1007_s11095_008_9781_2
crossref_primary_10_1007_s00280_020_04131_y
crossref_primary_10_1007_s11095_021_03024_w
crossref_primary_10_2217_pgs_16_9
crossref_primary_10_1007_s40262_013_0054_9
crossref_primary_10_1007_s00335_018_9738_7
crossref_primary_10_1007_s00228_012_1467_3
crossref_primary_10_1124_dmd_114_061523
crossref_primary_10_1038_clpt_2012_65
crossref_primary_10_1111_j_1365_2125_2008_03101_x
crossref_primary_10_1146_annurev_pharmtox_010510_100540
crossref_primary_10_1007_s40262_013_0031_3
crossref_primary_10_1002_bdd_777
crossref_primary_10_1186_1479_7364_3_2_169
crossref_primary_10_1002_jcph_737
crossref_primary_10_1248_bpb_b17_00150
crossref_primary_10_1007_s00228_009_0703_y
crossref_primary_10_1161_CIRCULATIONAHA_112_123034
crossref_primary_10_2133_dmpk_24_53
crossref_primary_10_1016_j_tiv_2013_03_012
crossref_primary_10_1093_europace_euu009
crossref_primary_10_1124_dmd_113_051755
crossref_primary_10_1517_17425250802691074
crossref_primary_10_1038_nrd2173
crossref_primary_10_1517_17425255_2014_872630
Cites_doi 10.1002/cpt1974162348
10.1016/j.pharmthera.2004.10.014
10.1097/01.fpc.0000114760.08559.dc
10.1097/00008571-200003000-00001
10.1002/lt.20519
10.1002/cpt196910122
10.1016/S0006-2952(98)00133-6
10.1016/j.revmed.2003.11.006
10.1016/S0140-6736(98)04474-2
10.1182/blood.V96.5.1816
10.1182/blood-2005-03-1108
10.1046/j.1365-2125.2003.01881.x
10.1038/clpt.1994.139
10.1016/0006-2952(66)90182-1
10.1016/j.clpt.2006.04.006
10.1046/j.1365-2141.2003.04787.x
10.1002/cpt1975184377
10.1016/j.clpt.2003.10.001
10.1002/cpt1974154424
10.1097/00008571-199412000-00001
10.1016/j.clpt.2003.09.015
10.2165/00003088-198611060-00005
10.1080/00498250310001646353
10.1002/jps.20322
10.1016/j.clpt.2005.11.011
10.1177/0091270006294279
10.1016/S0090-9556(24)14938-0
10.1002/jps.10128
10.1067/mcp.2002.129307
10.1067/mcp.2001.117444
10.1097/00008571-199608000-00007
10.1016/S0090-9556(24)15043-X
10.1159/000180580
10.1016/j.clpt.2005.08.006
10.1097/00008571-200204000-00010
10.1097/00008571-200412000-00004
10.1097/00008571-199810000-00001
10.1160/TH05-06-0446
10.1067/mcp.2003.26a
10.1016/S1072-7515(01)01163-2
10.1080/00498250600683197
10.1097/00001721-200010000-00001
10.1001/jama.287.13.1690
10.1067/mcp.2002.129321
10.1160/TH04-02-0083
10.1055/s-0037-1614114
10.1182/blood-2004-06-2111
ContentType Journal Article
Copyright 2007 INIST-CNRS
2007 The Authors Journal compilation © 2007 Blackwell Publishing Ltd 2007
Copyright_xml – notice: 2007 INIST-CNRS
– notice: 2007 The Authors Journal compilation © 2007 Blackwell Publishing Ltd 2007
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1111/j.1365-2125.2007.02850.x
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1365-2125
EndPage 26
ExternalDocumentID PMC2000610
17298479
18838864
10_1111_j_1365_2125_2007_02850_x
BCP2850
Genre article
Research Support, Non-U.S. Gov't
Meta-Analysis
Journal Article
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HYE
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4520-cfd8c5f1d79214240c6c49f618cd9ec5e4dc36dfc03bf64ff0013cc7fce1684c3
IEDL.DBID DR2
ISSN 0306-5251
IngestDate Thu Aug 21 13:34:31 EDT 2025
Fri Jul 11 07:06:02 EDT 2025
Mon Jul 21 05:51:24 EDT 2025
Mon Jul 21 09:13:18 EDT 2025
Thu Apr 24 23:04:54 EDT 2025
Tue Jul 01 02:29:22 EDT 2025
Wed Aug 20 07:25:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Human
Drug
Pharmacogenetics
Warfarin
Enzyme
Isozyme
Coumarine derivatives
Cytochrome P450
Anticoagulant
Metabolism
Silica
Antivitamin K
Simulation
drug metabolism
Genetics
Clinical trial
modelling and simulation
Pharmacokinetics
in silica
CYP2C9 gene
clinical trial simulation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4520-cfd8c5f1d79214240c6c49f618cd9ec5e4dc36dfc03bf64ff0013cc7fce1684c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17298479
PQID 70614951
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2000610
proquest_miscellaneous_70614951
pubmed_primary_17298479
pascalfrancis_primary_18838864
crossref_citationtrail_10_1111_j_1365_2125_2007_02850_x
crossref_primary_10_1111_j_1365_2125_2007_02850_x
wiley_primary_10_1111_j_1365_2125_2007_02850_x_BCP2850
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2007
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: July 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: London
– name: England
PublicationTitle British journal of clinical pharmacology
PublicationTitleAlternate Br J Clin Pharmacol
PublicationYear 2007
Publisher Blackwell Publishing Ltd
Blackwell Science
Blackwell Science Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Science
– name: Blackwell Science Inc
References 1974; 16
2001; 70
1974; 15
2002; 194
1966; 15
2004; 124
2006; 95
2006; 79
2002; 72
1986; 11
2004; 25
2002; 12
1999; 27
1969; 10
1975; 18
2004
2004; 91
2003; 73
2003; 56
2004; 75
2006; 80
2000; 10
2004; 14
2000; 11
2002; 287
2000; 96
2005; 105
2004; 34
2005; 106
2004; 57
1994; 56
2000; 84
1999; 353
2002; 91
2005; 94
1976; 16
1998; 56
2005; 11
1994; 4
2005; 78
2007; 47
1996; 6
1998; 8
2005; 36
e_1_2_6_30_2
Obach RS. (e_1_2_6_33_2) 1999; 27
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
Joffe HV (e_1_2_6_16_2) 2004; 91
Rowland‐Yeo K (e_1_2_6_29_2) 2004; 57
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_39_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_4_2
Takahashi H (e_1_2_6_6_2) 1999; 27
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
16493479 - Thromb Haemost. 2006 Feb;95(2):205-11
16815313 - Clin Pharmacol Ther. 2006 Jul;80(1):13-22
11977112 - J Pharm Sci. 2002 May;91(5):1358-70
15001972 - Clin Pharmacol Ther. 2004 Mar;75(3):204-12
4605176 - Clin Pharmacol Ther. 1974 Aug;16(2):348-54
11503010 - Clin Pharmacol Ther. 2001 Aug;70(2):159-64
7704034 - Pharmacogenetics. 1994 Dec;4(6):285-99
16769646 - Xenobiotica. 2006 Jun;36(6):473-97
12496751 - Clin Pharmacol Ther. 2002 Dec;72(6):702-10
12968989 - Br J Clin Pharmacol. 2003 Oct;56(4):433-40
15781119 - Pharmacol Ther. 2005 Apr;106(1):1-18
11927841 - Pharmacogenetics. 2002 Apr;12(3):251-63
7924124 - Clin Pharmacol Ther. 1994 Sep;56(3):286-94
9698079 - Biochem Pharmacol. 1998 Jul 15;56(2):243-51
10534321 - Drug Metab Dispos. 1999 Nov;27(11):1350-9
12496742 - Clin Pharmacol Ther. 2002 Dec;72(6):603-14
11085277 - Blood Coagul Fibrinolysis. 2000 Oct;11(7):583-90
15175798 - Thromb Haemost. 2004 Jun;91(6):1123-8
11893129 - J Am Coll Surg. 2002 Mar;194(3):267-73
11926893 - JAMA. 2002 Apr 3;287(13):1690-8
14985145 - Xenobiotica. 2004 Feb;34(2):151-78
15284536 - Pharmacogenetics. 2004 Aug;14(8):539-47
8873220 - Pharmacogenetics. 1996 Aug;6(4):341-9
10497145 - Drug Metab Dispos. 1999 Oct;27(10):1179-86
16321620 - Clin Pharmacol Ther. 2005 Nov;78(5):540-50
1244564 - Nephron. 1976;16(1):31-41
9825828 - Pharmacogenetics. 1998 Oct;8(5):365-73
1164821 - Clin Pharmacol Ther. 1975 Oct;18(4):377-90
10961881 - Blood. 2000 Sep 1;96(5):1816-9
15001971 - Clin Pharmacol Ther. 2004 Mar;75(3):198-203
15050794 - Rev Med Interne. 2004 Apr;25(4):271-4
5765183 - Clin Pharmacol Ther. 1969 Jan-Feb;10(1):22-35
15947090 - Blood. 2005 Oct 1;106(7):2329-33
15608560 - Pharmacogenetics. 2004 Dec;14(12):813-22
17244768 - J Clin Pharmacol. 2007 Feb;47(2):175-86
14717783 - Br J Haematol. 2004 Feb;124(3):348-54
16315293 - Liver Transpl. 2005 Dec;11(12):1481-93
17259955 - Clin Pharmacol Ther. 2007 Feb;81(2):298-304
11127854 - Thromb Haemost. 2000 Nov;84(5):775-8
12621390 - Clin Pharmacol Ther. 2003 Mar;73(3):253-63
10073515 - Lancet. 1999 Feb 27;353(9154):717-9
15858854 - J Pharm Sci. 2005 Jun;94(6):1259-76
10761997 - Pharmacogenetics. 2000 Mar;10(2):95-104
16580898 - Clin Pharmacol Ther. 2006 Apr;79(4):291-302
4821443 - Clin Pharmacol Ther. 1974 Apr;15(4):424-30
3542339 - Clin Pharmacokinet. 1986 Nov-Dec;11(6):483-504
15358623 - Blood. 2005 Jan 15;105(2):645-9
References_xml – volume: 70
  start-page: 159
  year: 2001
  end-page: 64
  article-title: Interindividual variability in sensitivity to warfarin–nature or nurture?
  publication-title: Clin Pharmacol Ther
– volume: 18
  start-page: 377
  year: 1975
  end-page: 90
  article-title: Commentary: a physiological approach to hepatic drug clearance
  publication-title: Clin Pharmacol Ther
– volume: 106
  start-page: 2329
  year: 2005
  end-page: 33
  article-title: The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen
  publication-title: Blood
– volume: 75
  start-page: 198
  year: 2004
  end-page: 203
  article-title: CYP2C9 genotypes and dose requirements during the induction phase of oral anticoagulant therapy
  publication-title: Clin Pharmacol Ther
– volume: 106
  start-page: 1
  year: 2005
  end-page: 18
  article-title: Towards a mechanism‐based analysis of pharmacodynamic drug–drug interactions
  publication-title: Pharmacol Ther
– volume: 15
  start-page: 424
  year: 1974
  end-page: 30
  article-title: Pharmacokinetics and pharmacodynamics of the enantiomers of warfarin in man
  publication-title: Clin Pharmacol Ther
– volume: 80
  start-page: 13
  year: 2006
  end-page: 22
  article-title: VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation
  publication-title: Clin Pharmacol Ther
– volume: 10
  start-page: 95
  year: 2000
  end-page: 104
  article-title: CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates
  publication-title: Pharmacogenetics
– volume: 10
  start-page: 22
  year: 1969
  end-page: 35
  article-title: Kinetics of pharmacologic effects in man: the anticoagulant action of warfarin
  publication-title: Clin Pharmacol Ther
– volume: 57
  start-page: 687
  year: 2004
  end-page: 8
  article-title: Abundance of cytochromes P450 in human liver: a meta‐analysis
  publication-title: Br J Clin Pharmacol
– volume: 287
  start-page: 1690
  year: 2002
  end-page: 8
  article-title: Association between CYP2C9 genetic variants and anticoagulation‐related outcomes during warfarin therapy
  publication-title: JAMA
– volume: 4
  start-page: 285
  year: 1994
  end-page: 99
  article-title: Biochemistry and molecular biology of the human CYP2C subfamily
  publication-title: Pharmacogenetics
– volume: 353
  start-page: 717
  year: 1999
  end-page: 9
  article-title: Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications
  publication-title: Lancet
– volume: 56
  start-page: 243
  year: 1998
  end-page: 51
  article-title: Comparative studies on the catalytic roles of cytochrome P450 2C9 and its Cys‐ and Leu‐variants in the oxidation of warfarin, flurbiprofen, and diclofenac by human liver microsomes
  publication-title: Biochem Pharmacol
– volume: 72
  start-page: 603
  year: 2002
  end-page: 14
  article-title: More efficient clinical trials through use of scientific model‐based statistical tests
  publication-title: Clin Pharmacol Ther
– year: 2004
– volume: 8
  start-page: 365
  year: 1998
  end-page: 73
  article-title: Comparisons between and metabolism of (S)‐warfarin: catalytic activities of cDNA‐expressed CYP2C9, its Leu359 variant and their mixture versus unbound clearance in patients with the corresponding CYP2C9 genotypes
  publication-title: Pharmacogenetics
– volume: 72
  start-page: 702
  year: 2002
  end-page: 10
  article-title: Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance
  publication-title: Clin Pharmacol Ther
– volume: 34
  start-page: 151
  year: 2004
  end-page: 78
  article-title: Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors
  publication-title: Xenobiotica
– volume: 47
  start-page: 1
  year: 2007
  end-page: 12
  article-title: Incorporating information on drug metabolism into clinical trial simulations to assess the effect of CYP2D6 polymorphism on pharmacokinetics and pharmacodynamics: dextromethorpan as a model application
  publication-title: J Clin Pharmacol
– volume: 73
  start-page: 253
  year: 2003
  end-page: 63
  article-title: Population differences in S‐warfarin metabolism between CYP2C9 genotype‐matched Caucasian and Japanese patients
  publication-title: Clin Pharmacol Ther
– volume: 79
  start-page: 291
  year: 2006
  end-page: 302
  article-title: Influence of coagulation factor, vitamin K epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements
  publication-title: Clin Pharmacol Ther
– volume: 124
  start-page: 348
  year: 2004
  end-page: 54
  article-title: Dietary vitamin K influences intra‐individual variability in anticoagulant response to warfarin
  publication-title: Br J Haematol
– volume: 16
  start-page: 348
  year: 1974
  end-page: 54
  article-title: Studies on the optical enantiomorphs of warfarin in man
  publication-title: Clin Pharmacol Ther
– volume: 11
  start-page: 583
  year: 2000
  end-page: 90
  article-title: Enhanced standardization of the International Normalized Ratio through the use of plasma calibrants: a concise review
  publication-title: Blood Coagul Fibrinolysis
– volume: 91
  start-page: 1358
  year: 2002
  end-page: 70
  article-title: Prediction of pharmacokinetics prior to studies. II. Generic physiologically based pharmacokinetic models of drug disposition
  publication-title: J Pharm Sci
– volume: 56
  start-page: 433
  year: 2003
  end-page: 40
  article-title: Inter‐individual variability in levels of human microsomal protein and hepatocellularity per gram of liver
  publication-title: Br J Clin Pharmacol
– volume: 94
  start-page: 1259
  year: 2005
  end-page: 76
  article-title: Physiologically based pharmacokinetic modeling 1. Predicting the tissue distribution of moderate‐to‐strong bases
  publication-title: J Pharm Sci
– volume: 194
  start-page: 267
  year: 2002
  end-page: 73
  article-title: The frequency and effects of cytochrome P450 (CYP) 2C9 polymorphisms in patients receiving warfarin
  publication-title: J Am Coll Surg
– volume: 36
  start-page: 473
  year: 2005
  end-page: 97
  article-title: Prediction of drug clearance from data. I. Impact of inter‐individual variability
  publication-title: Xenobiotica
– volume: 84
  start-page: 775
  year: 2000
  end-page: 8
  article-title: Genetic modulation of oral anticoagulation with warfarin
  publication-title: Thromb Haemost
– volume: 105
  start-page: 645
  year: 2005
  end-page: 9
  article-title: A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose‐anticoagulant effect of warfarin
  publication-title: Blood
– volume: 11
  start-page: 483
  year: 1986
  end-page: 504
  article-title: Clinical pharmacokinetics and pharmacodynamics of warfarin. Understanding the dose–effect relationship
  publication-title: Clin Pharmacokinet
– volume: 78
  start-page: 540
  year: 2005
  end-page: 50
  article-title: Several‐fold increase in risk of overanticoagulation by CYP2C9 mutations
  publication-title: Clin Pharmacol Ther
– volume: 16
  start-page: 31
  year: 1976
  end-page: 41
  article-title: Prediction of creatinine clearance from serum creatinine
  publication-title: Nephron
– volume: 15
  start-page: 1003
  year: 1966
  article-title: A comparison of isomers of warfarin
  publication-title: Biochem Pharmacol
– volume: 96
  start-page: 1816
  year: 2000
  end-page: 9
  article-title: Influence of cytochrome P‐450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over‐anticoagulation in patients on long‐term treatment
  publication-title: Blood
– volume: 14
  start-page: 813
  year: 2004
  end-page: 22
  article-title: Upstream and coding region CYP2C9 polymorphisms: correlation with warfarin dose and metabolism
  publication-title: Pharmacogenetics
– volume: 25
  start-page: 271
  year: 2004
  end-page: 4
  article-title: [Cytochrome P450 2C9 polymorphisms (CYP2C9) and warfarin maintenance dose in elderly patients]
  publication-title: Rev Med Interne
– volume: 91
  start-page: 1123
  year: 2004
  end-page: 8
  article-title: Warfarin dosing and cytochrome P450 2C9 polymorphisms
  publication-title: Thromb Haemost
– volume: 12
  start-page: 251
  year: 2002
  end-page: 63
  article-title: Cytochrome P450 2C9 polymorphisms: a comprehensive review of the and human data
  publication-title: Pharmacogenetics
– volume: 14
  start-page: 539
  year: 2004
  end-page: 47
  article-title: Relative impact of covariates in prescribing warfarin according to CYP2C9 genotype
  publication-title: Pharmacogenetics
– volume: 27
  start-page: 1179
  year: 1999
  end-page: 86
  article-title: Pharmacokinetic interaction between warfarin and a uricosuric agent, bucolome: application of approaches to predicting reduction of (S)‐warfarin clearance
  publication-title: Drug Metab Dispos
– volume: 6
  start-page: 341
  year: 1996
  end-page: 9
  article-title: The role of the CYP2C9‐Leu359 allelic variant in the tolbutamide polymorphism
  publication-title: Pharmacogenetics
– volume: 27
  start-page: 1350
  year: 1999
  end-page: 9
  article-title: Prediction of human clearance of twenty‐nine drugs from hepatic microsomal intrinsic clearance data: an examination of half‐life approach and nonspecific binding to microsomes
  publication-title: Drug Metab Dispos
– volume: 75
  start-page: 204
  year: 2004
  end-page: 12
  article-title: Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin
  publication-title: Clin Pharmacol Ther
– volume: 95
  start-page: 205
  year: 2006
  end-page: 11
  article-title: Combined genetic profiles of components and regulators of the vitamin K‐dependent gamma‐carboxylation system affect individual sensitivity to warfarin
  publication-title: Thromb Haemost
– volume: 11
  start-page: 1481
  year: 2005
  end-page: 93
  article-title: Changes in liver volume from birth to adulthood: a meta‐analysis
  publication-title: Liver Transplantation
– volume: 56
  start-page: 286
  year: 1994
  end-page: 94
  article-title: Stereochemical aspects of warfarin drug interactions: use of a combined pharmacokinetic–pharmacodynamic model
  publication-title: Clin Pharmacol Ther
– ident: e_1_2_6_40_2
  doi: 10.1002/cpt1974162348
– ident: e_1_2_6_27_2
– ident: e_1_2_6_49_2
  doi: 10.1016/j.pharmthera.2004.10.014
– ident: e_1_2_6_21_2
  doi: 10.1097/01.fpc.0000114760.08559.dc
– ident: e_1_2_6_8_2
  doi: 10.1097/00008571-200003000-00001
– ident: e_1_2_6_31_2
  doi: 10.1002/lt.20519
– ident: e_1_2_6_38_2
  doi: 10.1002/cpt196910122
– ident: e_1_2_6_7_2
  doi: 10.1016/S0006-2952(98)00133-6
– ident: e_1_2_6_24_2
  doi: 10.1016/j.revmed.2003.11.006
– ident: e_1_2_6_17_2
  doi: 10.1016/S0140-6736(98)04474-2
– ident: e_1_2_6_20_2
  doi: 10.1182/blood.V96.5.1816
– ident: e_1_2_6_23_2
  doi: 10.1182/blood-2005-03-1108
– ident: e_1_2_6_30_2
  doi: 10.1046/j.1365-2125.2003.01881.x
– ident: e_1_2_6_37_2
  doi: 10.1038/clpt.1994.139
– ident: e_1_2_6_2_2
  doi: 10.1016/0006-2952(66)90182-1
– ident: e_1_2_6_46_2
  doi: 10.1016/j.clpt.2006.04.006
– ident: e_1_2_6_14_2
  doi: 10.1046/j.1365-2141.2003.04787.x
– ident: e_1_2_6_32_2
  doi: 10.1002/cpt1975184377
– ident: e_1_2_6_10_2
  doi: 10.1016/j.clpt.2003.10.001
– ident: e_1_2_6_39_2
  doi: 10.1002/cpt1974154424
– ident: e_1_2_6_3_2
  doi: 10.1097/00008571-199412000-00001
– ident: e_1_2_6_15_2
  doi: 10.1016/j.clpt.2003.09.015
– volume: 57
  start-page: 687
  year: 2004
  ident: e_1_2_6_29_2
  article-title: Abundance of cytochromes P450 in human liver: a meta‐analysis
  publication-title: Br J Clin Pharmacol
– ident: e_1_2_6_42_2
  doi: 10.2165/00003088-198611060-00005
– ident: e_1_2_6_50_2
  doi: 10.1080/00498250310001646353
– ident: e_1_2_6_48_2
  doi: 10.1002/jps.20322
– ident: e_1_2_6_44_2
  doi: 10.1016/j.clpt.2005.11.011
– ident: e_1_2_6_28_2
  doi: 10.1177/0091270006294279
– volume: 27
  start-page: 1350
  year: 1999
  ident: e_1_2_6_33_2
  article-title: Prediction of human clearance of twenty‐nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half‐life approach and nonspecific binding to microsomes
  publication-title: Drug Metab Dispos
  doi: 10.1016/S0090-9556(24)14938-0
– ident: e_1_2_6_47_2
  doi: 10.1002/jps.10128
– ident: e_1_2_6_26_2
  doi: 10.1067/mcp.2002.129307
– ident: e_1_2_6_12_2
  doi: 10.1067/mcp.2001.117444
– ident: e_1_2_6_4_2
  doi: 10.1097/00008571-199608000-00007
– volume: 27
  start-page: 1179
  year: 1999
  ident: e_1_2_6_6_2
  article-title: Pharmacokinetic interaction between warfarin and a uricosuric agent, bucolome: application of in vitro approaches to predicting in vivo reduction of (S)‐warfarin clearance
  publication-title: Drug Metab Dispos
  doi: 10.1016/S0090-9556(24)15043-X
– ident: e_1_2_6_34_2
  doi: 10.1159/000180580
– ident: e_1_2_6_13_2
  doi: 10.1016/j.clpt.2005.08.006
– ident: e_1_2_6_36_2
  doi: 10.1097/00008571-200204000-00010
– ident: e_1_2_6_22_2
  doi: 10.1097/00008571-200412000-00004
– ident: e_1_2_6_5_2
  doi: 10.1097/00008571-199810000-00001
– ident: e_1_2_6_43_2
  doi: 10.1160/TH05-06-0446
– ident: e_1_2_6_11_2
  doi: 10.1067/mcp.2003.26a
– ident: e_1_2_6_25_2
  doi: 10.1016/S1072-7515(01)01163-2
– ident: e_1_2_6_35_2
  doi: 10.1080/00498250600683197
– ident: e_1_2_6_41_2
  doi: 10.1097/00001721-200010000-00001
– ident: e_1_2_6_18_2
  doi: 10.1001/jama.287.13.1690
– ident: e_1_2_6_9_2
  doi: 10.1067/mcp.2002.129321
– volume: 91
  start-page: 1123
  year: 2004
  ident: e_1_2_6_16_2
  article-title: Warfarin dosing and cytochrome P450 2C9 polymorphisms
  publication-title: Thromb Haemost
  doi: 10.1160/TH04-02-0083
– ident: e_1_2_6_19_2
  doi: 10.1055/s-0037-1614114
– ident: e_1_2_6_45_2
  doi: 10.1182/blood-2004-06-2111
– reference: 7704034 - Pharmacogenetics. 1994 Dec;4(6):285-99
– reference: 15781119 - Pharmacol Ther. 2005 Apr;106(1):1-18
– reference: 12496751 - Clin Pharmacol Ther. 2002 Dec;72(6):702-10
– reference: 16493479 - Thromb Haemost. 2006 Feb;95(2):205-11
– reference: 14717783 - Br J Haematol. 2004 Feb;124(3):348-54
– reference: 8873220 - Pharmacogenetics. 1996 Aug;6(4):341-9
– reference: 10961881 - Blood. 2000 Sep 1;96(5):1816-9
– reference: 15175798 - Thromb Haemost. 2004 Jun;91(6):1123-8
– reference: 5765183 - Clin Pharmacol Ther. 1969 Jan-Feb;10(1):22-35
– reference: 1164821 - Clin Pharmacol Ther. 1975 Oct;18(4):377-90
– reference: 16580898 - Clin Pharmacol Ther. 2006 Apr;79(4):291-302
– reference: 3542339 - Clin Pharmacokinet. 1986 Nov-Dec;11(6):483-504
– reference: 16315293 - Liver Transpl. 2005 Dec;11(12):1481-93
– reference: 12496742 - Clin Pharmacol Ther. 2002 Dec;72(6):603-14
– reference: 17259955 - Clin Pharmacol Ther. 2007 Feb;81(2):298-304
– reference: 15050794 - Rev Med Interne. 2004 Apr;25(4):271-4
– reference: 9698079 - Biochem Pharmacol. 1998 Jul 15;56(2):243-51
– reference: 10497145 - Drug Metab Dispos. 1999 Oct;27(10):1179-86
– reference: 11085277 - Blood Coagul Fibrinolysis. 2000 Oct;11(7):583-90
– reference: 12621390 - Clin Pharmacol Ther. 2003 Mar;73(3):253-63
– reference: 11893129 - J Am Coll Surg. 2002 Mar;194(3):267-73
– reference: 11927841 - Pharmacogenetics. 2002 Apr;12(3):251-63
– reference: 4821443 - Clin Pharmacol Ther. 1974 Apr;15(4):424-30
– reference: 15947090 - Blood. 2005 Oct 1;106(7):2329-33
– reference: 15001971 - Clin Pharmacol Ther. 2004 Mar;75(3):198-203
– reference: 14985145 - Xenobiotica. 2004 Feb;34(2):151-78
– reference: 4605176 - Clin Pharmacol Ther. 1974 Aug;16(2):348-54
– reference: 15608560 - Pharmacogenetics. 2004 Dec;14(12):813-22
– reference: 15858854 - J Pharm Sci. 2005 Jun;94(6):1259-76
– reference: 16769646 - Xenobiotica. 2006 Jun;36(6):473-97
– reference: 15001972 - Clin Pharmacol Ther. 2004 Mar;75(3):204-12
– reference: 16321620 - Clin Pharmacol Ther. 2005 Nov;78(5):540-50
– reference: 10761997 - Pharmacogenetics. 2000 Mar;10(2):95-104
– reference: 10073515 - Lancet. 1999 Feb 27;353(9154):717-9
– reference: 1244564 - Nephron. 1976;16(1):31-41
– reference: 9825828 - Pharmacogenetics. 1998 Oct;8(5):365-73
– reference: 10534321 - Drug Metab Dispos. 1999 Nov;27(11):1350-9
– reference: 15284536 - Pharmacogenetics. 2004 Aug;14(8):539-47
– reference: 16815313 - Clin Pharmacol Ther. 2006 Jul;80(1):13-22
– reference: 11127854 - Thromb Haemost. 2000 Nov;84(5):775-8
– reference: 11503010 - Clin Pharmacol Ther. 2001 Aug;70(2):159-64
– reference: 11977112 - J Pharm Sci. 2002 May;91(5):1358-70
– reference: 7924124 - Clin Pharmacol Ther. 1994 Sep;56(3):286-94
– reference: 17244768 - J Clin Pharmacol. 2007 Feb;47(2):175-86
– reference: 11926893 - JAMA. 2002 Apr 3;287(13):1690-8
– reference: 12968989 - Br J Clin Pharmacol. 2003 Oct;56(4):433-40
– reference: 15358623 - Blood. 2005 Jan 15;105(2):645-9
SSID ssj0013165
Score 2.0420728
SecondaryResourceType review_article
Snippet What is already known about this subject • Many studies have shown that genetic polymorphisms of the CYP2C9 gene contribute to some of the variability (around...
What is already known about this subject • Many studies have shown that genetic polymorphisms of the CYP2C9 gene contribute to some of the variability (around...
To assess the power of in vivo studies needed to discern the effect of genotype on pharmacokinetics (PK) and pharmacodynamics (PD) using CYP2C9 and...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14
SubjectTerms Anticoagulants - administration & dosage
Anticoagulants - pharmacokinetics
Aryl Hydrocarbon Hydroxylases - genetics
Biological and medical sciences
Blood Coagulation - genetics
clinical trial simulation
Cytochrome P-450 CYP2C9
cytochrome P450
drug metabolism
Genotype
Humans
in silico
Medical sciences
modelling and simulation
Models, Biological
pharmacogenetics
Pharmacokinetics & Pharmacodynamics
Pharmacology. Drug treatments
Polymorphism, Genetic
Warfarin - administration & dosage
Warfarin - pharmacokinetics
Title The use of mechanistic DM‐PK‐PD modelling to assess the power of pharmacogenetic studies –CYP2C9 and warfarin as an example
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2125.2007.02850.x
https://www.ncbi.nlm.nih.gov/pubmed/17298479
https://www.proquest.com/docview/70614951
https://pubmed.ncbi.nlm.nih.gov/PMC2000610
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp0Lp--E-tjqUnOLF2pVl6dhuGtKGFFMSSE9G1oOGtN5lvUuTntJ_UOg_zC_pjOxdx20OofRibOQRaJixvrFmviHkVeogRk6Ui61UPubaiFhirUypRh4QdGLSQFa9_0HsHvL3R-lRm_-EtTANP8T6hxt6Rvheo4Prsu47ecjQgh26ZSIcyTQZIp7EAcRHH0fdgQILXSURIUPslbJ-Us-VE_V2qlszXYPSfNPt4io4-ndW5WW0G7arnTvkZLXQJkvlZLhclEPz_Q8OyP-jibvkdotq6evGDO-RG666Tzbzhhb7bIsedFVe9RbdpHlHmH32gPyAYbqsHZ16-tVhKXJgj6bb-xfnP_M9vGzT0LIHa-fpYkp1OKqmAF7pDNu8oeSsnRM8Agszad1kSNKL81-TT_looqiuLP2m517PjyuYAp6pO9VIj_yQHO68PZjsxm1riNjwFAJe4600qWc2U8gZxxMjDFdeMGmsciZ13JqxsN4k49IL7j2agDGZN44Jyc34EdmoppV7QijXlknnuCqZ51zZkonSIeGTK3UG8CUi2coMCtPypmP7ji_FpfgJ9F-g_rGrZ1YE_RenEWFryVnDHXINmUHP0jpBKcdSCh6RlyvTK-BLgMc7unLTZV1kGNwDYI7I48YQO1mIoACFKFhKz0TXLyDHeH-kOv4cuMZDJRdLIiKCBV57HcWbSY53T_9V8Bm5ufqNnrDnZGMxX7oXgP8W5QA8-93eIPj3b69dUNM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOYCEeD-WR-sD6qlZxbuOYx9hl2qh3SpCW6mcIsexRUXJrja7ouVU_gES_7C_hBknu2mghwpxiRIlY8mjmfgbe-YbQl5HFmLkUNkgl8oFXBsRSKyVyVTPAYIOTeTJqscHYnTIPxxFR3U7IKyFqfgh1htu6Bn-f40OjhvSbS_3KVqwRNdUhD0ZhV0AlDexwTcS6Q8_9pojBeb7SiJGhugrYu20nitHaq1Vd2a6BLW5qt_FVYD077zKy3jXL1i798jJaqpVnsqX7nKRdc33P1gg_5Mu7pO7NbClbypLfEBu2OIh2U4qZuyzHTppCr3KHbpNk4Yz--wR-QGv6bK0dOroV4vVyJ5Amg7HF-c_kz28DKnv2oPl83QxpdqfVlPAr3SGnd5QclaPCU6BtZm0rJIk6cX5r8GnpDdQVBc5_abnTs-PCxgCnqk91ciQ_Jgc7r6bDEZB3R0iMDyCmNe4XJrIsTxWSBvHQyMMV04waXJlTWR5bvoidybsZ05w59AGjImdsUxIbvpPyEYxLewzQrnOmbSWq4w5zlWeMZFZ5HyymY4BwXRIvLKD1NTU6djB4yS9FEKB_lPUPzb2jFOv__S0Q9haclbRh1xDZrNlao2glH0pBe-QrZXtpfAzwBMeXdjpskxjjO8BM3fI08oSG1kIogCIKJhKy0bXHyDNePtNcfzZ0437Yi4WdojwJnjteaRvBwnePf9XwS1yazQZ76f77w_2XpDbq131kL0kG4v50r4COLjINr2b_waoiVP2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlhVIofT_cR6JDySlerF1Zlo7tbpe0aYIpCaQnY-tBQlqvWe_SpKf0HxT6D_NLOiN7d-M2h1B6MTb2CDTMWN9IM98Q8jq2ECNHyoZGKhfyXItQYq1MofoOEHSkY09Wvbsntg_4h8P4sM1_wlqYhh9iueGGnuH_1-jglXFdJ_cZWrBCt0yEfRlHPcCTN7mIFLZxGH3qr04UmG8riRAZgq-YdbN6rhyps1TdqfIatOaadhdX4dG_0yovw12_Xo3vkZPFTJs0lZPefFb09Pc_SCD_jyruk7strKVvGjt8QG7Y8iHZTBte7LMtur8q86q36CZNV4zZZ4_ID3hN57WlE0e_WqxF9vTRdLR7cf4z3cHLiPqePVg8T2cTmvuzagrolVbY5w0lq3ZMcAmszKR1kyJJL85_DT-n_aGieWnot3zq8ulxCUPAM7WnOfIjPyYH43f7w-2w7Q0Rah5DxKudkTp2zCQKSeN4pIXmygkmtVFWx5YbPRDG6WhQOMGdQxPQOnHaMiG5Hjwha-WktM8I5blh0lquCuY4V6ZgorDI-GSLPAH8EpBkYQaZbonTsX_Hl-xSAAX6z1D_2NYzybz-s9OAsKVk1ZCHXENmvWNpK0EpB1IKHpCNhell8CvA8528tJN5nSUY3QNiDsjTxhBXshBCAQxRMJWOiS4_QJLx7pvy-MiTjftSLhYFRHgLvPY8srfDFO-e_6vgBrmVjsbZx_d7Oy_I7cWWesRekrXZdG5fARacFeveyX8DZTRSpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+mechanistic+DM-PK-PD+modelling+to+assess+the+power+of+pharmacogenetic+studies+-CYP2C9+and+warfarin+as+an+example&rft.jtitle=British+journal+of+clinical+pharmacology&rft.au=Dickinson%2C+Gemma+L&rft.au=Lennard%2C+Martin+S&rft.au=Tucker%2C+Geoffrey+T&rft.au=Rostami-Hodjegan%2C+Amin&rft.date=2007-07-01&rft.issn=0306-5251&rft.volume=64&rft.issue=1&rft.spage=14&rft_id=info:doi/10.1111%2Fj.1365-2125.2007.02850.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-5251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-5251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-5251&client=summon