The use of mechanistic DM‐PK‐PD modelling to assess the power of pharmacogenetic studies –CYP2C9 and warfarin as an example
What is already known about this subject • Many studies have shown that genetic polymorphisms of the CYP2C9 gene contribute to some of the variability (around 20%) in warfarin dose requirements and therapeutic response to the drug. • It is also clear that this effect must be elicited through differe...
Saved in:
Published in | British journal of clinical pharmacology Vol. 64; no. 1; pp. 14 - 26 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.07.2007
Blackwell Science Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | What is already known about this subject
• Many studies have shown that genetic polymorphisms of the CYP2C9 gene contribute to some of the variability (around 20%) in warfarin dose requirements and therapeutic response to the drug.
• It is also clear that this effect must be elicited through differences in the plasma (S)‐warfarin concentration between individuals of different genotypes, although assessing the effects of any single genotype of CYP2C9 on the kinetics of (S)‐warfarin has generally failed.
What this study adds
• The study aims to simulate the impact of genetic polymorphism in CYP2C9 on both the pharmacokinetics (PK) and pharmacodynamics (PD) of (S)‐warfarin using a mechanistic, population approach to modelling.
• The outcomes with respect to the design of studies and their statistical power are compared against those of actual reported studies.
• The exercise with warfarin is offered as an example of how prior information on the in vitro PK and PD of new drugs might be used in association with knowledge of relevant genetic polymorphisms and their frequencies to carry out virtual clinical studies as an aid to the design, optimization and powering of subsequent real clinical trials assessing the impact of specific genetic differences.
Aim To assess the power of in vivo studies needed to discern the effect of genotype on pharmacokinetics (PK) and pharmacodynamics (PD) using CYP2C9 and (S)‐warfarin as an example.
Methods Information on the in vitro metabolism of (S)‐warfarin and genetic variation in CYP2C9 was incorporated into a mechanistic population‐based PK–PD model. The influence of study design on the ability to detect significant differences in PK (AUC0−12 h) and PD (AUEC0−12 h INR) between CYP2C9 genotypes was investigated.
Results A study size of 90 (based on the natural abundance of genotypes and uniform dosage) was required to achieve 80% power to discriminate the PK of (S)‐warfarin between wild type (*1/*1) and the combination of all other genotypes. About 250 subjects were needed to detect a difference in anticoagulant response. The power to detect differences between specific genotypes was much lower. Analysis of experimental comparisons of the PK or PD between wild‐type and other individual genotypes indicated that only 21% of cases (20 of 95 comparisons within 11 PD and four PK–PD studies) reported statistically significant differences. This was similar to the percentage expected from our simulations (20%, χ2 test, P = 0.80). Simulations of studies enriched with specific genotypes indicated that only three and five subjects were required to detect differences in PK and PD between wild type and the *3/*3 genotype, respectively.
Conclusion The utilization of prior information (including in vivo enzymology) in clinical trial simulations can guide the design of subsequent in vivo studies of the impact of genetic polymorphisms, and may help to avoid costly, inconclusive outcomes. |
---|---|
AbstractList | What is already known about this subject
• Many studies have shown that genetic polymorphisms of the
CYP2C9
gene contribute to some of the variability (around 20%) in warfarin dose requirements and therapeutic response to the drug.
• It is also clear that this effect must be elicited through differences in the plasma (S)‐warfarin concentration between individuals of different genotypes, although assessing the effects of any single genotype of
CYP2C9
on the kinetics of (S)‐warfarin has generally failed.
What this study adds
• The study aims to simulate the impact of genetic polymorphism in CYP2C9 on both the pharmacokinetics (PK) and pharmacodynamics (PD) of (S)‐warfarin using a mechanistic, population approach to modelling.
• The outcomes with respect to the design of studies and their statistical power are compared against those of actual reported studies.
• The exercise with warfarin is offered as an example of how prior information on the
in vitro
PK and PD of new drugs might be used in association with knowledge of relevant genetic polymorphisms and their frequencies to carry out virtual clinical studies as an aid to the design, optimization and powering of subsequent real clinical trials assessing the impact of specific genetic differences.
Aim
To assess the power of
in vivo
studies needed to discern the effect of genotype on pharmacokinetics (PK) and pharmacodynamics (PD) using
CYP2C9
and (S)‐warfarin as an example.
Methods
Information on the
in vitro
metabolism of (S)‐warfarin and genetic variation in CYP2C9 was incorporated into a mechanistic population‐based PK–PD model. The influence of study design on the ability to detect significant differences in PK (AUC
0−12 h
) and PD (AUEC
0−12 h
INR) between
CYP2C9
genotypes was investigated.
Results
A study size of 90 (based on the natural abundance of genotypes and uniform dosage) was required to achieve 80% power to discriminate the PK of (S)
‐
warfarin between wild type (*1/*1) and the combination of all other genotypes. About 250 subjects were needed to detect a difference in anticoagulant response. The power to detect differences between specific genotypes was much lower. Analysis of experimental comparisons of the PK or PD between wild‐type and other individual genotypes indicated that only 21% of cases (20 of 95 comparisons within 11 PD and four PK–PD studies) reported statistically significant differences. This was similar to the percentage expected from our simulations (20%, χ
2
test,
P
= 0.80). Simulations of studies enriched with specific genotypes indicated that only three and five subjects were required to detect differences in PK and PD between wild type and the *3/*3 genotype, respectively.
Conclusion
The utilization of prior information (including
in vivo
enzymology) in clinical trial simulations can guide the design of subsequent
in vivo
studies of the impact of genetic polymorphisms, and may help to avoid costly, inconclusive outcomes. What is already known about this subject • Many studies have shown that genetic polymorphisms of the CYP2C9 gene contribute to some of the variability (around 20%) in warfarin dose requirements and therapeutic response to the drug. • It is also clear that this effect must be elicited through differences in the plasma (S)‐warfarin concentration between individuals of different genotypes, although assessing the effects of any single genotype of CYP2C9 on the kinetics of (S)‐warfarin has generally failed. What this study adds • The study aims to simulate the impact of genetic polymorphism in CYP2C9 on both the pharmacokinetics (PK) and pharmacodynamics (PD) of (S)‐warfarin using a mechanistic, population approach to modelling. • The outcomes with respect to the design of studies and their statistical power are compared against those of actual reported studies. • The exercise with warfarin is offered as an example of how prior information on the in vitro PK and PD of new drugs might be used in association with knowledge of relevant genetic polymorphisms and their frequencies to carry out virtual clinical studies as an aid to the design, optimization and powering of subsequent real clinical trials assessing the impact of specific genetic differences. Aim To assess the power of in vivo studies needed to discern the effect of genotype on pharmacokinetics (PK) and pharmacodynamics (PD) using CYP2C9 and (S)‐warfarin as an example. Methods Information on the in vitro metabolism of (S)‐warfarin and genetic variation in CYP2C9 was incorporated into a mechanistic population‐based PK–PD model. The influence of study design on the ability to detect significant differences in PK (AUC0−12 h) and PD (AUEC0−12 h INR) between CYP2C9 genotypes was investigated. Results A study size of 90 (based on the natural abundance of genotypes and uniform dosage) was required to achieve 80% power to discriminate the PK of (S)‐warfarin between wild type (*1/*1) and the combination of all other genotypes. About 250 subjects were needed to detect a difference in anticoagulant response. The power to detect differences between specific genotypes was much lower. Analysis of experimental comparisons of the PK or PD between wild‐type and other individual genotypes indicated that only 21% of cases (20 of 95 comparisons within 11 PD and four PK–PD studies) reported statistically significant differences. This was similar to the percentage expected from our simulations (20%, χ2 test, P = 0.80). Simulations of studies enriched with specific genotypes indicated that only three and five subjects were required to detect differences in PK and PD between wild type and the *3/*3 genotype, respectively. Conclusion The utilization of prior information (including in vivo enzymology) in clinical trial simulations can guide the design of subsequent in vivo studies of the impact of genetic polymorphisms, and may help to avoid costly, inconclusive outcomes. To assess the power of in vivo studies needed to discern the effect of genotype on pharmacokinetics (PK) and pharmacodynamics (PD) using CYP2C9 and (S)-warfarin as an example. Information on the in vitro metabolism of (S)-warfarin and genetic variation in CYP2C9 was incorporated into a mechanistic population-based PK-PD model. The influence of study design on the ability to detect significant differences in PK (AUC(0-12 h)) and PD (AUEC(0-12 h) INR) between CYP2C9 genotypes was investigated. A study size of 90 (based on the natural abundance of genotypes and uniform dosage) was required to achieve 80% power to discriminate the PK of (S)-warfarin between wild type (*1/*1) and the combination of all other genotypes. About 250 subjects were needed to detect a difference in anticoagulant response. The power to detect differences between specific genotypes was much lower. Analysis of experimental comparisons of the PK or PD between wild-type and other individual genotypes indicated that only 21% of cases (20 of 95 comparisons within 11 PD and four PK-PD studies) reported statistically significant differences. This was similar to the percentage expected from our simulations (20%, chi(2) test, P = 0.80). Simulations of studies enriched with specific genotypes indicated that only three and five subjects were required to detect differences in PK and PD between wild type and the *3/*3 genotype, respectively. The utilization of prior information (including in vivo enzymology) in clinical trial simulations can guide the design of subsequent in vivo studies of the impact of genetic polymorphisms, and may help to avoid costly, inconclusive outcomes. To assess the power of in vivo studies needed to discern the effect of genotype on pharmacokinetics (PK) and pharmacodynamics (PD) using CYP2C9 and (S)-warfarin as an example.AIMTo assess the power of in vivo studies needed to discern the effect of genotype on pharmacokinetics (PK) and pharmacodynamics (PD) using CYP2C9 and (S)-warfarin as an example.Information on the in vitro metabolism of (S)-warfarin and genetic variation in CYP2C9 was incorporated into a mechanistic population-based PK-PD model. The influence of study design on the ability to detect significant differences in PK (AUC(0-12 h)) and PD (AUEC(0-12 h) INR) between CYP2C9 genotypes was investigated.METHODSInformation on the in vitro metabolism of (S)-warfarin and genetic variation in CYP2C9 was incorporated into a mechanistic population-based PK-PD model. The influence of study design on the ability to detect significant differences in PK (AUC(0-12 h)) and PD (AUEC(0-12 h) INR) between CYP2C9 genotypes was investigated.A study size of 90 (based on the natural abundance of genotypes and uniform dosage) was required to achieve 80% power to discriminate the PK of (S)-warfarin between wild type (*1/*1) and the combination of all other genotypes. About 250 subjects were needed to detect a difference in anticoagulant response. The power to detect differences between specific genotypes was much lower. Analysis of experimental comparisons of the PK or PD between wild-type and other individual genotypes indicated that only 21% of cases (20 of 95 comparisons within 11 PD and four PK-PD studies) reported statistically significant differences. This was similar to the percentage expected from our simulations (20%, chi(2) test, P = 0.80). Simulations of studies enriched with specific genotypes indicated that only three and five subjects were required to detect differences in PK and PD between wild type and the *3/*3 genotype, respectively.RESULTSA study size of 90 (based on the natural abundance of genotypes and uniform dosage) was required to achieve 80% power to discriminate the PK of (S)-warfarin between wild type (*1/*1) and the combination of all other genotypes. About 250 subjects were needed to detect a difference in anticoagulant response. The power to detect differences between specific genotypes was much lower. Analysis of experimental comparisons of the PK or PD between wild-type and other individual genotypes indicated that only 21% of cases (20 of 95 comparisons within 11 PD and four PK-PD studies) reported statistically significant differences. This was similar to the percentage expected from our simulations (20%, chi(2) test, P = 0.80). Simulations of studies enriched with specific genotypes indicated that only three and five subjects were required to detect differences in PK and PD between wild type and the *3/*3 genotype, respectively.The utilization of prior information (including in vivo enzymology) in clinical trial simulations can guide the design of subsequent in vivo studies of the impact of genetic polymorphisms, and may help to avoid costly, inconclusive outcomes.CONCLUSIONThe utilization of prior information (including in vivo enzymology) in clinical trial simulations can guide the design of subsequent in vivo studies of the impact of genetic polymorphisms, and may help to avoid costly, inconclusive outcomes. |
Author | Tucker, Geoffrey T. Lennard, Martin S. Dickinson, Gemma L. Rostami‐Hodjegan, Amin |
Author_xml | – sequence: 1 givenname: Gemma L. surname: Dickinson fullname: Dickinson, Gemma L. – sequence: 2 givenname: Martin S. surname: Lennard fullname: Lennard, Martin S. – sequence: 3 givenname: Geoffrey T. surname: Tucker fullname: Tucker, Geoffrey T. – sequence: 4 givenname: Amin surname: Rostami‐Hodjegan fullname: Rostami‐Hodjegan, Amin |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18838864$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17298479$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1v1DAQtVAR3Rb-AvIFbgl2vnMACVIKiCL2UA6cLHcy3vUqsRc7Ybe39h8g8Q_7S3DosgUu4IM_NO-9Gb-ZI3JgrEFCKGcxD-vZKuZpkUcJT_I4YayMWVLlLN7eI7N94IDMWMqKKE9yfkiOvF8xxlNe5A_IIS-TusrKekauz5dIR4_UKtojLKXRftBATz7cXH2bv5-2E9rbFrtOmwUdLJXeo_d0CLy13aCbmOuldL0Eu0CDE9sPY6vR05ur783nedLUVJqWbqRT0mkTJMKb4lb26w4fkvtKdh4f7c5j8un09XnzNjr7-OZd8_IsgixPWASqrSBXvC3rhGdJxqCArFYFr6CtEXLMWkiLVgFLL1SRKTX9FqBUgLyoMkiPyYtb3fV40WMLaAYnO7F2upfuUlipxZ8Ro5diYb-KYDArOAsCT3cCzn4Z0Q-i1x6CMdKgHb0oAyqrcx6Aj3_PtE_xy_UAeLIDSA-yU04a0P4OV1VpVRXZXcngrPcOlQA9yEHbqUDdCc7ENA5iJaaui6nrU7Wl-DkOYhsEqr8E9jn-TX1-S93oDi__mydeNfPplv4AWrvQpw |
CODEN | BCPHBM |
CitedBy_id | crossref_primary_10_1002_prca_201400147 crossref_primary_10_1038_clpt_2009_87 crossref_primary_10_1002_jcph_669 crossref_primary_10_1208_s12248_014_9614_7 crossref_primary_10_1248_bpb_b24_00012 crossref_primary_10_1016_j_xphs_2017_04_035 crossref_primary_10_2217_pgs_14_185 crossref_primary_10_1038_clpt_2010_298 crossref_primary_10_1007_s10928_011_9235_z crossref_primary_10_1517_14728220903018965 crossref_primary_10_1007_s11095_008_9781_2 crossref_primary_10_1007_s00280_020_04131_y crossref_primary_10_1007_s11095_021_03024_w crossref_primary_10_2217_pgs_16_9 crossref_primary_10_1007_s40262_013_0054_9 crossref_primary_10_1007_s00335_018_9738_7 crossref_primary_10_1007_s00228_012_1467_3 crossref_primary_10_1124_dmd_114_061523 crossref_primary_10_1038_clpt_2012_65 crossref_primary_10_1111_j_1365_2125_2008_03101_x crossref_primary_10_1146_annurev_pharmtox_010510_100540 crossref_primary_10_1007_s40262_013_0031_3 crossref_primary_10_1002_bdd_777 crossref_primary_10_1186_1479_7364_3_2_169 crossref_primary_10_1002_jcph_737 crossref_primary_10_1248_bpb_b17_00150 crossref_primary_10_1007_s00228_009_0703_y crossref_primary_10_1161_CIRCULATIONAHA_112_123034 crossref_primary_10_2133_dmpk_24_53 crossref_primary_10_1016_j_tiv_2013_03_012 crossref_primary_10_1093_europace_euu009 crossref_primary_10_1124_dmd_113_051755 crossref_primary_10_1517_17425250802691074 crossref_primary_10_1038_nrd2173 crossref_primary_10_1517_17425255_2014_872630 |
Cites_doi | 10.1002/cpt1974162348 10.1016/j.pharmthera.2004.10.014 10.1097/01.fpc.0000114760.08559.dc 10.1097/00008571-200003000-00001 10.1002/lt.20519 10.1002/cpt196910122 10.1016/S0006-2952(98)00133-6 10.1016/j.revmed.2003.11.006 10.1016/S0140-6736(98)04474-2 10.1182/blood.V96.5.1816 10.1182/blood-2005-03-1108 10.1046/j.1365-2125.2003.01881.x 10.1038/clpt.1994.139 10.1016/0006-2952(66)90182-1 10.1016/j.clpt.2006.04.006 10.1046/j.1365-2141.2003.04787.x 10.1002/cpt1975184377 10.1016/j.clpt.2003.10.001 10.1002/cpt1974154424 10.1097/00008571-199412000-00001 10.1016/j.clpt.2003.09.015 10.2165/00003088-198611060-00005 10.1080/00498250310001646353 10.1002/jps.20322 10.1016/j.clpt.2005.11.011 10.1177/0091270006294279 10.1016/S0090-9556(24)14938-0 10.1002/jps.10128 10.1067/mcp.2002.129307 10.1067/mcp.2001.117444 10.1097/00008571-199608000-00007 10.1016/S0090-9556(24)15043-X 10.1159/000180580 10.1016/j.clpt.2005.08.006 10.1097/00008571-200204000-00010 10.1097/00008571-200412000-00004 10.1097/00008571-199810000-00001 10.1160/TH05-06-0446 10.1067/mcp.2003.26a 10.1016/S1072-7515(01)01163-2 10.1080/00498250600683197 10.1097/00001721-200010000-00001 10.1001/jama.287.13.1690 10.1067/mcp.2002.129321 10.1160/TH04-02-0083 10.1055/s-0037-1614114 10.1182/blood-2004-06-2111 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS 2007 The Authors Journal compilation © 2007 Blackwell Publishing Ltd 2007 |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: 2007 The Authors Journal compilation © 2007 Blackwell Publishing Ltd 2007 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1111/j.1365-2125.2007.02850.x |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1365-2125 |
EndPage | 26 |
ExternalDocumentID | PMC2000610 17298479 18838864 10_1111_j_1365_2125_2007_02850_x BCP2850 |
Genre | article Research Support, Non-U.S. Gov't Meta-Analysis Journal Article |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABOCM ABPVW ABQWH ABXGK ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HYE HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LSO LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c4520-cfd8c5f1d79214240c6c49f618cd9ec5e4dc36dfc03bf64ff0013cc7fce1684c3 |
IEDL.DBID | DR2 |
ISSN | 0306-5251 |
IngestDate | Thu Aug 21 13:34:31 EDT 2025 Fri Jul 11 07:06:02 EDT 2025 Mon Jul 21 05:51:24 EDT 2025 Mon Jul 21 09:13:18 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Tue Jul 01 02:29:22 EDT 2025 Wed Aug 20 07:25:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Human Drug Pharmacogenetics Warfarin Enzyme Isozyme Coumarine derivatives Cytochrome P450 Anticoagulant Metabolism Silica Antivitamin K Simulation drug metabolism Genetics Clinical trial modelling and simulation Pharmacokinetics in silica CYP2C9 gene clinical trial simulation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4520-cfd8c5f1d79214240c6c49f618cd9ec5e4dc36dfc03bf64ff0013cc7fce1684c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 17298479 |
PQID | 70614951 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2000610 proquest_miscellaneous_70614951 pubmed_primary_17298479 pascalfrancis_primary_18838864 crossref_citationtrail_10_1111_j_1365_2125_2007_02850_x crossref_primary_10_1111_j_1365_2125_2007_02850_x wiley_primary_10_1111_j_1365_2125_2007_02850_x_BCP2850 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2007 |
PublicationDateYYYYMMDD | 2007-07-01 |
PublicationDate_xml | – month: 07 year: 2007 text: July 2007 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: London – name: England |
PublicationTitle | British journal of clinical pharmacology |
PublicationTitleAlternate | Br J Clin Pharmacol |
PublicationYear | 2007 |
Publisher | Blackwell Publishing Ltd Blackwell Science Blackwell Science Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Science – name: Blackwell Science Inc |
References | 1974; 16 2001; 70 1974; 15 2002; 194 1966; 15 2004; 124 2006; 95 2006; 79 2002; 72 1986; 11 2004; 25 2002; 12 1999; 27 1969; 10 1975; 18 2004 2004; 91 2003; 73 2003; 56 2004; 75 2006; 80 2000; 10 2004; 14 2000; 11 2002; 287 2000; 96 2005; 105 2004; 34 2005; 106 2004; 57 1994; 56 2000; 84 1999; 353 2002; 91 2005; 94 1976; 16 1998; 56 2005; 11 1994; 4 2005; 78 2007; 47 1996; 6 1998; 8 2005; 36 e_1_2_6_30_2 Obach RS. (e_1_2_6_33_2) 1999; 27 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 Joffe HV (e_1_2_6_16_2) 2004; 91 Rowland‐Yeo K (e_1_2_6_29_2) 2004; 57 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_39_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_4_2 Takahashi H (e_1_2_6_6_2) 1999; 27 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 16493479 - Thromb Haemost. 2006 Feb;95(2):205-11 16815313 - Clin Pharmacol Ther. 2006 Jul;80(1):13-22 11977112 - J Pharm Sci. 2002 May;91(5):1358-70 15001972 - Clin Pharmacol Ther. 2004 Mar;75(3):204-12 4605176 - Clin Pharmacol Ther. 1974 Aug;16(2):348-54 11503010 - Clin Pharmacol Ther. 2001 Aug;70(2):159-64 7704034 - Pharmacogenetics. 1994 Dec;4(6):285-99 16769646 - Xenobiotica. 2006 Jun;36(6):473-97 12496751 - Clin Pharmacol Ther. 2002 Dec;72(6):702-10 12968989 - Br J Clin Pharmacol. 2003 Oct;56(4):433-40 15781119 - Pharmacol Ther. 2005 Apr;106(1):1-18 11927841 - Pharmacogenetics. 2002 Apr;12(3):251-63 7924124 - Clin Pharmacol Ther. 1994 Sep;56(3):286-94 9698079 - Biochem Pharmacol. 1998 Jul 15;56(2):243-51 10534321 - Drug Metab Dispos. 1999 Nov;27(11):1350-9 12496742 - Clin Pharmacol Ther. 2002 Dec;72(6):603-14 11085277 - Blood Coagul Fibrinolysis. 2000 Oct;11(7):583-90 15175798 - Thromb Haemost. 2004 Jun;91(6):1123-8 11893129 - J Am Coll Surg. 2002 Mar;194(3):267-73 11926893 - JAMA. 2002 Apr 3;287(13):1690-8 14985145 - Xenobiotica. 2004 Feb;34(2):151-78 15284536 - Pharmacogenetics. 2004 Aug;14(8):539-47 8873220 - Pharmacogenetics. 1996 Aug;6(4):341-9 10497145 - Drug Metab Dispos. 1999 Oct;27(10):1179-86 16321620 - Clin Pharmacol Ther. 2005 Nov;78(5):540-50 1244564 - Nephron. 1976;16(1):31-41 9825828 - Pharmacogenetics. 1998 Oct;8(5):365-73 1164821 - Clin Pharmacol Ther. 1975 Oct;18(4):377-90 10961881 - Blood. 2000 Sep 1;96(5):1816-9 15001971 - Clin Pharmacol Ther. 2004 Mar;75(3):198-203 15050794 - Rev Med Interne. 2004 Apr;25(4):271-4 5765183 - Clin Pharmacol Ther. 1969 Jan-Feb;10(1):22-35 15947090 - Blood. 2005 Oct 1;106(7):2329-33 15608560 - Pharmacogenetics. 2004 Dec;14(12):813-22 17244768 - J Clin Pharmacol. 2007 Feb;47(2):175-86 14717783 - Br J Haematol. 2004 Feb;124(3):348-54 16315293 - Liver Transpl. 2005 Dec;11(12):1481-93 17259955 - Clin Pharmacol Ther. 2007 Feb;81(2):298-304 11127854 - Thromb Haemost. 2000 Nov;84(5):775-8 12621390 - Clin Pharmacol Ther. 2003 Mar;73(3):253-63 10073515 - Lancet. 1999 Feb 27;353(9154):717-9 15858854 - J Pharm Sci. 2005 Jun;94(6):1259-76 10761997 - Pharmacogenetics. 2000 Mar;10(2):95-104 16580898 - Clin Pharmacol Ther. 2006 Apr;79(4):291-302 4821443 - Clin Pharmacol Ther. 1974 Apr;15(4):424-30 3542339 - Clin Pharmacokinet. 1986 Nov-Dec;11(6):483-504 15358623 - Blood. 2005 Jan 15;105(2):645-9 |
References_xml | – volume: 70 start-page: 159 year: 2001 end-page: 64 article-title: Interindividual variability in sensitivity to warfarin–nature or nurture? publication-title: Clin Pharmacol Ther – volume: 18 start-page: 377 year: 1975 end-page: 90 article-title: Commentary: a physiological approach to hepatic drug clearance publication-title: Clin Pharmacol Ther – volume: 106 start-page: 2329 year: 2005 end-page: 33 article-title: The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen publication-title: Blood – volume: 75 start-page: 198 year: 2004 end-page: 203 article-title: CYP2C9 genotypes and dose requirements during the induction phase of oral anticoagulant therapy publication-title: Clin Pharmacol Ther – volume: 106 start-page: 1 year: 2005 end-page: 18 article-title: Towards a mechanism‐based analysis of pharmacodynamic drug–drug interactions publication-title: Pharmacol Ther – volume: 15 start-page: 424 year: 1974 end-page: 30 article-title: Pharmacokinetics and pharmacodynamics of the enantiomers of warfarin in man publication-title: Clin Pharmacol Ther – volume: 80 start-page: 13 year: 2006 end-page: 22 article-title: VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation publication-title: Clin Pharmacol Ther – volume: 10 start-page: 95 year: 2000 end-page: 104 article-title: CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates publication-title: Pharmacogenetics – volume: 10 start-page: 22 year: 1969 end-page: 35 article-title: Kinetics of pharmacologic effects in man: the anticoagulant action of warfarin publication-title: Clin Pharmacol Ther – volume: 57 start-page: 687 year: 2004 end-page: 8 article-title: Abundance of cytochromes P450 in human liver: a meta‐analysis publication-title: Br J Clin Pharmacol – volume: 287 start-page: 1690 year: 2002 end-page: 8 article-title: Association between CYP2C9 genetic variants and anticoagulation‐related outcomes during warfarin therapy publication-title: JAMA – volume: 4 start-page: 285 year: 1994 end-page: 99 article-title: Biochemistry and molecular biology of the human CYP2C subfamily publication-title: Pharmacogenetics – volume: 353 start-page: 717 year: 1999 end-page: 9 article-title: Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications publication-title: Lancet – volume: 56 start-page: 243 year: 1998 end-page: 51 article-title: Comparative studies on the catalytic roles of cytochrome P450 2C9 and its Cys‐ and Leu‐variants in the oxidation of warfarin, flurbiprofen, and diclofenac by human liver microsomes publication-title: Biochem Pharmacol – volume: 72 start-page: 603 year: 2002 end-page: 14 article-title: More efficient clinical trials through use of scientific model‐based statistical tests publication-title: Clin Pharmacol Ther – year: 2004 – volume: 8 start-page: 365 year: 1998 end-page: 73 article-title: Comparisons between and metabolism of (S)‐warfarin: catalytic activities of cDNA‐expressed CYP2C9, its Leu359 variant and their mixture versus unbound clearance in patients with the corresponding CYP2C9 genotypes publication-title: Pharmacogenetics – volume: 72 start-page: 702 year: 2002 end-page: 10 article-title: Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance publication-title: Clin Pharmacol Ther – volume: 34 start-page: 151 year: 2004 end-page: 78 article-title: Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors publication-title: Xenobiotica – volume: 47 start-page: 1 year: 2007 end-page: 12 article-title: Incorporating information on drug metabolism into clinical trial simulations to assess the effect of CYP2D6 polymorphism on pharmacokinetics and pharmacodynamics: dextromethorpan as a model application publication-title: J Clin Pharmacol – volume: 73 start-page: 253 year: 2003 end-page: 63 article-title: Population differences in S‐warfarin metabolism between CYP2C9 genotype‐matched Caucasian and Japanese patients publication-title: Clin Pharmacol Ther – volume: 79 start-page: 291 year: 2006 end-page: 302 article-title: Influence of coagulation factor, vitamin K epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements publication-title: Clin Pharmacol Ther – volume: 124 start-page: 348 year: 2004 end-page: 54 article-title: Dietary vitamin K influences intra‐individual variability in anticoagulant response to warfarin publication-title: Br J Haematol – volume: 16 start-page: 348 year: 1974 end-page: 54 article-title: Studies on the optical enantiomorphs of warfarin in man publication-title: Clin Pharmacol Ther – volume: 11 start-page: 583 year: 2000 end-page: 90 article-title: Enhanced standardization of the International Normalized Ratio through the use of plasma calibrants: a concise review publication-title: Blood Coagul Fibrinolysis – volume: 91 start-page: 1358 year: 2002 end-page: 70 article-title: Prediction of pharmacokinetics prior to studies. II. Generic physiologically based pharmacokinetic models of drug disposition publication-title: J Pharm Sci – volume: 56 start-page: 433 year: 2003 end-page: 40 article-title: Inter‐individual variability in levels of human microsomal protein and hepatocellularity per gram of liver publication-title: Br J Clin Pharmacol – volume: 94 start-page: 1259 year: 2005 end-page: 76 article-title: Physiologically based pharmacokinetic modeling 1. Predicting the tissue distribution of moderate‐to‐strong bases publication-title: J Pharm Sci – volume: 194 start-page: 267 year: 2002 end-page: 73 article-title: The frequency and effects of cytochrome P450 (CYP) 2C9 polymorphisms in patients receiving warfarin publication-title: J Am Coll Surg – volume: 36 start-page: 473 year: 2005 end-page: 97 article-title: Prediction of drug clearance from data. I. Impact of inter‐individual variability publication-title: Xenobiotica – volume: 84 start-page: 775 year: 2000 end-page: 8 article-title: Genetic modulation of oral anticoagulation with warfarin publication-title: Thromb Haemost – volume: 105 start-page: 645 year: 2005 end-page: 9 article-title: A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose‐anticoagulant effect of warfarin publication-title: Blood – volume: 11 start-page: 483 year: 1986 end-page: 504 article-title: Clinical pharmacokinetics and pharmacodynamics of warfarin. Understanding the dose–effect relationship publication-title: Clin Pharmacokinet – volume: 78 start-page: 540 year: 2005 end-page: 50 article-title: Several‐fold increase in risk of overanticoagulation by CYP2C9 mutations publication-title: Clin Pharmacol Ther – volume: 16 start-page: 31 year: 1976 end-page: 41 article-title: Prediction of creatinine clearance from serum creatinine publication-title: Nephron – volume: 15 start-page: 1003 year: 1966 article-title: A comparison of isomers of warfarin publication-title: Biochem Pharmacol – volume: 96 start-page: 1816 year: 2000 end-page: 9 article-title: Influence of cytochrome P‐450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over‐anticoagulation in patients on long‐term treatment publication-title: Blood – volume: 14 start-page: 813 year: 2004 end-page: 22 article-title: Upstream and coding region CYP2C9 polymorphisms: correlation with warfarin dose and metabolism publication-title: Pharmacogenetics – volume: 25 start-page: 271 year: 2004 end-page: 4 article-title: [Cytochrome P450 2C9 polymorphisms (CYP2C9) and warfarin maintenance dose in elderly patients] publication-title: Rev Med Interne – volume: 91 start-page: 1123 year: 2004 end-page: 8 article-title: Warfarin dosing and cytochrome P450 2C9 polymorphisms publication-title: Thromb Haemost – volume: 12 start-page: 251 year: 2002 end-page: 63 article-title: Cytochrome P450 2C9 polymorphisms: a comprehensive review of the and human data publication-title: Pharmacogenetics – volume: 14 start-page: 539 year: 2004 end-page: 47 article-title: Relative impact of covariates in prescribing warfarin according to CYP2C9 genotype publication-title: Pharmacogenetics – volume: 27 start-page: 1179 year: 1999 end-page: 86 article-title: Pharmacokinetic interaction between warfarin and a uricosuric agent, bucolome: application of approaches to predicting reduction of (S)‐warfarin clearance publication-title: Drug Metab Dispos – volume: 6 start-page: 341 year: 1996 end-page: 9 article-title: The role of the CYP2C9‐Leu359 allelic variant in the tolbutamide polymorphism publication-title: Pharmacogenetics – volume: 27 start-page: 1350 year: 1999 end-page: 9 article-title: Prediction of human clearance of twenty‐nine drugs from hepatic microsomal intrinsic clearance data: an examination of half‐life approach and nonspecific binding to microsomes publication-title: Drug Metab Dispos – volume: 75 start-page: 204 year: 2004 end-page: 12 article-title: Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin publication-title: Clin Pharmacol Ther – volume: 95 start-page: 205 year: 2006 end-page: 11 article-title: Combined genetic profiles of components and regulators of the vitamin K‐dependent gamma‐carboxylation system affect individual sensitivity to warfarin publication-title: Thromb Haemost – volume: 11 start-page: 1481 year: 2005 end-page: 93 article-title: Changes in liver volume from birth to adulthood: a meta‐analysis publication-title: Liver Transplantation – volume: 56 start-page: 286 year: 1994 end-page: 94 article-title: Stereochemical aspects of warfarin drug interactions: use of a combined pharmacokinetic–pharmacodynamic model publication-title: Clin Pharmacol Ther – ident: e_1_2_6_40_2 doi: 10.1002/cpt1974162348 – ident: e_1_2_6_27_2 – ident: e_1_2_6_49_2 doi: 10.1016/j.pharmthera.2004.10.014 – ident: e_1_2_6_21_2 doi: 10.1097/01.fpc.0000114760.08559.dc – ident: e_1_2_6_8_2 doi: 10.1097/00008571-200003000-00001 – ident: e_1_2_6_31_2 doi: 10.1002/lt.20519 – ident: e_1_2_6_38_2 doi: 10.1002/cpt196910122 – ident: e_1_2_6_7_2 doi: 10.1016/S0006-2952(98)00133-6 – ident: e_1_2_6_24_2 doi: 10.1016/j.revmed.2003.11.006 – ident: e_1_2_6_17_2 doi: 10.1016/S0140-6736(98)04474-2 – ident: e_1_2_6_20_2 doi: 10.1182/blood.V96.5.1816 – ident: e_1_2_6_23_2 doi: 10.1182/blood-2005-03-1108 – ident: e_1_2_6_30_2 doi: 10.1046/j.1365-2125.2003.01881.x – ident: e_1_2_6_37_2 doi: 10.1038/clpt.1994.139 – ident: e_1_2_6_2_2 doi: 10.1016/0006-2952(66)90182-1 – ident: e_1_2_6_46_2 doi: 10.1016/j.clpt.2006.04.006 – ident: e_1_2_6_14_2 doi: 10.1046/j.1365-2141.2003.04787.x – ident: e_1_2_6_32_2 doi: 10.1002/cpt1975184377 – ident: e_1_2_6_10_2 doi: 10.1016/j.clpt.2003.10.001 – ident: e_1_2_6_39_2 doi: 10.1002/cpt1974154424 – ident: e_1_2_6_3_2 doi: 10.1097/00008571-199412000-00001 – ident: e_1_2_6_15_2 doi: 10.1016/j.clpt.2003.09.015 – volume: 57 start-page: 687 year: 2004 ident: e_1_2_6_29_2 article-title: Abundance of cytochromes P450 in human liver: a meta‐analysis publication-title: Br J Clin Pharmacol – ident: e_1_2_6_42_2 doi: 10.2165/00003088-198611060-00005 – ident: e_1_2_6_50_2 doi: 10.1080/00498250310001646353 – ident: e_1_2_6_48_2 doi: 10.1002/jps.20322 – ident: e_1_2_6_44_2 doi: 10.1016/j.clpt.2005.11.011 – ident: e_1_2_6_28_2 doi: 10.1177/0091270006294279 – volume: 27 start-page: 1350 year: 1999 ident: e_1_2_6_33_2 article-title: Prediction of human clearance of twenty‐nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half‐life approach and nonspecific binding to microsomes publication-title: Drug Metab Dispos doi: 10.1016/S0090-9556(24)14938-0 – ident: e_1_2_6_47_2 doi: 10.1002/jps.10128 – ident: e_1_2_6_26_2 doi: 10.1067/mcp.2002.129307 – ident: e_1_2_6_12_2 doi: 10.1067/mcp.2001.117444 – ident: e_1_2_6_4_2 doi: 10.1097/00008571-199608000-00007 – volume: 27 start-page: 1179 year: 1999 ident: e_1_2_6_6_2 article-title: Pharmacokinetic interaction between warfarin and a uricosuric agent, bucolome: application of in vitro approaches to predicting in vivo reduction of (S)‐warfarin clearance publication-title: Drug Metab Dispos doi: 10.1016/S0090-9556(24)15043-X – ident: e_1_2_6_34_2 doi: 10.1159/000180580 – ident: e_1_2_6_13_2 doi: 10.1016/j.clpt.2005.08.006 – ident: e_1_2_6_36_2 doi: 10.1097/00008571-200204000-00010 – ident: e_1_2_6_22_2 doi: 10.1097/00008571-200412000-00004 – ident: e_1_2_6_5_2 doi: 10.1097/00008571-199810000-00001 – ident: e_1_2_6_43_2 doi: 10.1160/TH05-06-0446 – ident: e_1_2_6_11_2 doi: 10.1067/mcp.2003.26a – ident: e_1_2_6_25_2 doi: 10.1016/S1072-7515(01)01163-2 – ident: e_1_2_6_35_2 doi: 10.1080/00498250600683197 – ident: e_1_2_6_41_2 doi: 10.1097/00001721-200010000-00001 – ident: e_1_2_6_18_2 doi: 10.1001/jama.287.13.1690 – ident: e_1_2_6_9_2 doi: 10.1067/mcp.2002.129321 – volume: 91 start-page: 1123 year: 2004 ident: e_1_2_6_16_2 article-title: Warfarin dosing and cytochrome P450 2C9 polymorphisms publication-title: Thromb Haemost doi: 10.1160/TH04-02-0083 – ident: e_1_2_6_19_2 doi: 10.1055/s-0037-1614114 – ident: e_1_2_6_45_2 doi: 10.1182/blood-2004-06-2111 – reference: 7704034 - Pharmacogenetics. 1994 Dec;4(6):285-99 – reference: 15781119 - Pharmacol Ther. 2005 Apr;106(1):1-18 – reference: 12496751 - Clin Pharmacol Ther. 2002 Dec;72(6):702-10 – reference: 16493479 - Thromb Haemost. 2006 Feb;95(2):205-11 – reference: 14717783 - Br J Haematol. 2004 Feb;124(3):348-54 – reference: 8873220 - Pharmacogenetics. 1996 Aug;6(4):341-9 – reference: 10961881 - Blood. 2000 Sep 1;96(5):1816-9 – reference: 15175798 - Thromb Haemost. 2004 Jun;91(6):1123-8 – reference: 5765183 - Clin Pharmacol Ther. 1969 Jan-Feb;10(1):22-35 – reference: 1164821 - Clin Pharmacol Ther. 1975 Oct;18(4):377-90 – reference: 16580898 - Clin Pharmacol Ther. 2006 Apr;79(4):291-302 – reference: 3542339 - Clin Pharmacokinet. 1986 Nov-Dec;11(6):483-504 – reference: 16315293 - Liver Transpl. 2005 Dec;11(12):1481-93 – reference: 12496742 - Clin Pharmacol Ther. 2002 Dec;72(6):603-14 – reference: 17259955 - Clin Pharmacol Ther. 2007 Feb;81(2):298-304 – reference: 15050794 - Rev Med Interne. 2004 Apr;25(4):271-4 – reference: 9698079 - Biochem Pharmacol. 1998 Jul 15;56(2):243-51 – reference: 10497145 - Drug Metab Dispos. 1999 Oct;27(10):1179-86 – reference: 11085277 - Blood Coagul Fibrinolysis. 2000 Oct;11(7):583-90 – reference: 12621390 - Clin Pharmacol Ther. 2003 Mar;73(3):253-63 – reference: 11893129 - J Am Coll Surg. 2002 Mar;194(3):267-73 – reference: 11927841 - Pharmacogenetics. 2002 Apr;12(3):251-63 – reference: 4821443 - Clin Pharmacol Ther. 1974 Apr;15(4):424-30 – reference: 15947090 - Blood. 2005 Oct 1;106(7):2329-33 – reference: 15001971 - Clin Pharmacol Ther. 2004 Mar;75(3):198-203 – reference: 14985145 - Xenobiotica. 2004 Feb;34(2):151-78 – reference: 4605176 - Clin Pharmacol Ther. 1974 Aug;16(2):348-54 – reference: 15608560 - Pharmacogenetics. 2004 Dec;14(12):813-22 – reference: 15858854 - J Pharm Sci. 2005 Jun;94(6):1259-76 – reference: 16769646 - Xenobiotica. 2006 Jun;36(6):473-97 – reference: 15001972 - Clin Pharmacol Ther. 2004 Mar;75(3):204-12 – reference: 16321620 - Clin Pharmacol Ther. 2005 Nov;78(5):540-50 – reference: 10761997 - Pharmacogenetics. 2000 Mar;10(2):95-104 – reference: 10073515 - Lancet. 1999 Feb 27;353(9154):717-9 – reference: 1244564 - Nephron. 1976;16(1):31-41 – reference: 9825828 - Pharmacogenetics. 1998 Oct;8(5):365-73 – reference: 10534321 - Drug Metab Dispos. 1999 Nov;27(11):1350-9 – reference: 15284536 - Pharmacogenetics. 2004 Aug;14(8):539-47 – reference: 16815313 - Clin Pharmacol Ther. 2006 Jul;80(1):13-22 – reference: 11127854 - Thromb Haemost. 2000 Nov;84(5):775-8 – reference: 11503010 - Clin Pharmacol Ther. 2001 Aug;70(2):159-64 – reference: 11977112 - J Pharm Sci. 2002 May;91(5):1358-70 – reference: 7924124 - Clin Pharmacol Ther. 1994 Sep;56(3):286-94 – reference: 17244768 - J Clin Pharmacol. 2007 Feb;47(2):175-86 – reference: 11926893 - JAMA. 2002 Apr 3;287(13):1690-8 – reference: 12968989 - Br J Clin Pharmacol. 2003 Oct;56(4):433-40 – reference: 15358623 - Blood. 2005 Jan 15;105(2):645-9 |
SSID | ssj0013165 |
Score | 2.0420728 |
SecondaryResourceType | review_article |
Snippet | What is already known about this subject
• Many studies have shown that genetic polymorphisms of the CYP2C9 gene contribute to some of the variability (around... What is already known about this subject • Many studies have shown that genetic polymorphisms of the CYP2C9 gene contribute to some of the variability (around... To assess the power of in vivo studies needed to discern the effect of genotype on pharmacokinetics (PK) and pharmacodynamics (PD) using CYP2C9 and... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14 |
SubjectTerms | Anticoagulants - administration & dosage Anticoagulants - pharmacokinetics Aryl Hydrocarbon Hydroxylases - genetics Biological and medical sciences Blood Coagulation - genetics clinical trial simulation Cytochrome P-450 CYP2C9 cytochrome P450 drug metabolism Genotype Humans in silico Medical sciences modelling and simulation Models, Biological pharmacogenetics Pharmacokinetics & Pharmacodynamics Pharmacology. Drug treatments Polymorphism, Genetic Warfarin - administration & dosage Warfarin - pharmacokinetics |
Title | The use of mechanistic DM‐PK‐PD modelling to assess the power of pharmacogenetic studies –CYP2C9 and warfarin as an example |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2125.2007.02850.x https://www.ncbi.nlm.nih.gov/pubmed/17298479 https://www.proquest.com/docview/70614951 https://pubmed.ncbi.nlm.nih.gov/PMC2000610 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp0Lp--E-tjqUnOLF2pVl6dhuGtKGFFMSSE9G1oOGtN5lvUuTntJ_UOg_zC_pjOxdx20OofRibOQRaJixvrFmviHkVeogRk6Ui61UPubaiFhirUypRh4QdGLSQFa9_0HsHvL3R-lRm_-EtTANP8T6hxt6Rvheo4Prsu47ecjQgh26ZSIcyTQZIp7EAcRHH0fdgQILXSURIUPslbJ-Us-VE_V2qlszXYPSfNPt4io4-ndW5WW0G7arnTvkZLXQJkvlZLhclEPz_Q8OyP-jibvkdotq6evGDO-RG666Tzbzhhb7bIsedFVe9RbdpHlHmH32gPyAYbqsHZ16-tVhKXJgj6bb-xfnP_M9vGzT0LIHa-fpYkp1OKqmAF7pDNu8oeSsnRM8Agszad1kSNKL81-TT_looqiuLP2m517PjyuYAp6pO9VIj_yQHO68PZjsxm1riNjwFAJe4600qWc2U8gZxxMjDFdeMGmsciZ13JqxsN4k49IL7j2agDGZN44Jyc34EdmoppV7QijXlknnuCqZ51zZkonSIeGTK3UG8CUi2coMCtPypmP7ji_FpfgJ9F-g_rGrZ1YE_RenEWFryVnDHXINmUHP0jpBKcdSCh6RlyvTK-BLgMc7unLTZV1kGNwDYI7I48YQO1mIoACFKFhKz0TXLyDHeH-kOv4cuMZDJRdLIiKCBV57HcWbSY53T_9V8Bm5ufqNnrDnZGMxX7oXgP8W5QA8-93eIPj3b69dUNM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOYCEeD-WR-sD6qlZxbuOYx9hl2qh3SpCW6mcIsexRUXJrja7ouVU_gES_7C_hBknu2mghwpxiRIlY8mjmfgbe-YbQl5HFmLkUNkgl8oFXBsRSKyVyVTPAYIOTeTJqscHYnTIPxxFR3U7IKyFqfgh1htu6Bn-f40OjhvSbS_3KVqwRNdUhD0ZhV0AlDexwTcS6Q8_9pojBeb7SiJGhugrYu20nitHaq1Vd2a6BLW5qt_FVYD077zKy3jXL1i798jJaqpVnsqX7nKRdc33P1gg_5Mu7pO7NbClbypLfEBu2OIh2U4qZuyzHTppCr3KHbpNk4Yz--wR-QGv6bK0dOroV4vVyJ5Amg7HF-c_kz28DKnv2oPl83QxpdqfVlPAr3SGnd5QclaPCU6BtZm0rJIk6cX5r8GnpDdQVBc5_abnTs-PCxgCnqk91ciQ_Jgc7r6bDEZB3R0iMDyCmNe4XJrIsTxWSBvHQyMMV04waXJlTWR5bvoidybsZ05w59AGjImdsUxIbvpPyEYxLewzQrnOmbSWq4w5zlWeMZFZ5HyymY4BwXRIvLKD1NTU6djB4yS9FEKB_lPUPzb2jFOv__S0Q9haclbRh1xDZrNlao2glH0pBe-QrZXtpfAzwBMeXdjpskxjjO8BM3fI08oSG1kIogCIKJhKy0bXHyDNePtNcfzZ0437Yi4WdojwJnjteaRvBwnePf9XwS1yazQZ76f77w_2XpDbq131kL0kG4v50r4COLjINr2b_waoiVP2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlhVIofT_cR6JDySlerF1Zlo7tbpe0aYIpCaQnY-tBQlqvWe_SpKf0HxT6D_NLOiN7d-M2h1B6MTb2CDTMWN9IM98Q8jq2ECNHyoZGKhfyXItQYq1MofoOEHSkY09Wvbsntg_4h8P4sM1_wlqYhh9iueGGnuH_1-jglXFdJ_cZWrBCt0yEfRlHPcCTN7mIFLZxGH3qr04UmG8riRAZgq-YdbN6rhyps1TdqfIatOaadhdX4dG_0yovw12_Xo3vkZPFTJs0lZPefFb09Pc_SCD_jyruk7strKVvGjt8QG7Y8iHZTBte7LMtur8q86q36CZNV4zZZ4_ID3hN57WlE0e_WqxF9vTRdLR7cf4z3cHLiPqePVg8T2cTmvuzagrolVbY5w0lq3ZMcAmszKR1kyJJL85_DT-n_aGieWnot3zq8ulxCUPAM7WnOfIjPyYH43f7w-2w7Q0Rah5DxKudkTp2zCQKSeN4pIXmygkmtVFWx5YbPRDG6WhQOMGdQxPQOnHaMiG5Hjwha-WktM8I5blh0lquCuY4V6ZgorDI-GSLPAH8EpBkYQaZbonTsX_Hl-xSAAX6z1D_2NYzybz-s9OAsKVk1ZCHXENmvWNpK0EpB1IKHpCNhell8CvA8528tJN5nSUY3QNiDsjTxhBXshBCAQxRMJWOiS4_QJLx7pvy-MiTjftSLhYFRHgLvPY8srfDFO-e_6vgBrmVjsbZx_d7Oy_I7cWWesRekrXZdG5fARacFeveyX8DZTRSpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+mechanistic+DM-PK-PD+modelling+to+assess+the+power+of+pharmacogenetic+studies+-CYP2C9+and+warfarin+as+an+example&rft.jtitle=British+journal+of+clinical+pharmacology&rft.au=Dickinson%2C+Gemma+L&rft.au=Lennard%2C+Martin+S&rft.au=Tucker%2C+Geoffrey+T&rft.au=Rostami-Hodjegan%2C+Amin&rft.date=2007-07-01&rft.issn=0306-5251&rft.volume=64&rft.issue=1&rft.spage=14&rft_id=info:doi/10.1111%2Fj.1365-2125.2007.02850.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-5251&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-5251&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-5251&client=summon |