Hydraulic redistribution: limitations for plants in saline soils
Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despit...
Saved in:
Published in | Plant, cell and environment Vol. 40; no. 10; pp. 2437 - 2446 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build‐up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non‐saline soils, will experience a dampened magnitude of water potential gradients in the soil–plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance.
Despite significant water potential gradients in saline soils owing to large differences in soil water osmotic potentials within the root‐zone of individual plants, no conclusive evidence exists for hydraulic redistribution (HR) in such conditions. This paper advances the hypothesis that build‐up of ions in root xylem sap and in the leaf apoplast acts to diminish HR‐driving water potential gradients. As a result, plants in spatially heterogeneous saline soils with osmotic‐dominated gradients in water potential appear to have little HR. |
---|---|
AbstractList | Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build‐up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non‐saline soils, will experience a dampened magnitude of water potential gradients in the soil–plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance.
Despite significant water potential gradients in saline soils owing to large differences in soil water osmotic potentials within the root‐zone of individual plants, no conclusive evidence exists for hydraulic redistribution (HR) in such conditions. This paper advances the hypothesis that build‐up of ions in root xylem sap and in the leaf apoplast acts to diminish HR‐driving water potential gradients. As a result, plants in spatially heterogeneous saline soils with osmotic‐dominated gradients in water potential appear to have little HR. Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance. Despite significant water potential gradients in saline soils owing to large differences in soil water osmotic potentials within the root-zone of individual plants, no conclusive evidence exists for hydraulic redistribution (HR) in such conditions. This paper advances the hypothesis that build-up of ions in root xylem sap and in the leaf apoplast acts to diminish HR-driving water potential gradients. As a result, plants in spatially heterogeneous saline soils with osmotic-dominated gradients in water potential appear to have little HR. Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance. Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance.Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance. |
Author | Bazihizina, Nadia Barrett‐Lennard, Edward G. Veneklaas, Erik J. Colmer, Timothy D. |
Author_xml | – sequence: 1 givenname: Nadia orcidid: 0000-0003-4856-0659 surname: Bazihizina fullname: Bazihizina, Nadia email: bazihizinanadia@gmail.com organization: The University of Western Australia – sequence: 2 givenname: Erik J. surname: Veneklaas fullname: Veneklaas, Erik J. organization: The University of Western Australia – sequence: 3 givenname: Edward G. orcidid: 0000-0001-9945-1044 surname: Barrett‐Lennard fullname: Barrett‐Lennard, Edward G. organization: Murdoch University – sequence: 4 givenname: Timothy D. surname: Colmer fullname: Colmer, Timothy D. organization: The University of Western Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28707352$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LwzAYxoNM3Ice_Aek4EUP3ZImbVpPypgfMNCDnkOaJpCRtjNpkf33vnPTw0BNDgnh97553ucZo0HTNhqhc4KnBNZsrfSUUJzgIzQiNEtjihkeoBEmDMecF2SIxiGsMIYHXpygYZJzzGmajNDt46bysndWRV5XNnTeln1n2-Ymcra2ndzeQ2RaH62dbLoQ2SYK0tlGR6G1LpyiYyNd0Gf7c4Le7hev88d4-fzwNL9bxoqlCY6LoqIgUSnKMsxzo8tcl7zKjFE4NSbL01LSgpMypxXsospLIzPGFOUZUIRO0NWu79q3770OnahtUNqBKN32QSQwXcoT-OtflBQJeEVpSgG9PEBXbe8bGAQomucMhDGgLvZUX9a6Emtva-k34ttGAK53gPJtCF6bH4RgsY1IQETiKyJgZwes2tvceWndXxUf1unN763Fy3yxq_gEVAaf0g |
CitedBy_id | crossref_primary_10_1080_00380768_2021_1966834 crossref_primary_10_1016_S2095_3119_19_62608_0 crossref_primary_10_1007_s00271_022_00793_z crossref_primary_10_1016_j_agwat_2022_107786 crossref_primary_10_1016_j_soilbio_2023_109128 crossref_primary_10_1002_hyp_13643 crossref_primary_10_1016_j_postharvbio_2021_111636 crossref_primary_10_1007_s11200_023_0124_0 crossref_primary_10_1016_j_jhydrol_2022_127987 crossref_primary_10_1007_s44307_024_00050_8 crossref_primary_10_3390_su152215980 crossref_primary_10_1016_j_envexpbot_2020_104301 crossref_primary_10_1093_aob_mcac074 |
Cites_doi | 10.1007/s00468-011-0551-0 10.1093/jxb/44.3.653 10.1071/FP12070 10.1007/s00442-010-1615-3 10.1007/BF00021452 10.1023/A:1004729232466 10.1093/treephys/tpp005 10.1104/pp.109.145854 10.1071/FP16057 10.1093/jexbot/49.322.775 10.1093/jexbot/50.suppl_1.1055 10.1007/s00442-004-1621-4 10.1078/0176-1617-00861 10.1071/SR9930073 10.1146/annurev.arplant.59.032607.092734 10.1111/pce.12206 10.1007/s00442-009-1447-1 10.1007/BF00378231 10.1104/pp.114.244871 10.1071/BI9720895 10.1111/j.1469-8137.2012.04088.x 10.1093/jxb/erm102 10.1093/jxb/36.7.1032 10.1093/jexbot/52.362.1873 10.1007/s00442-011-1953-9 10.1093/pcp/pcg168 10.1007/s11104-008-9567-7 10.1111/j.1469-8137.1987.tb00873.x 10.1093/aob/mcu174 10.1073/pnas.1311314110 10.1007/s00442-002-1165-4 10.1071/FP09202 10.1007/s004420050363 10.1890/0012-9658(2003)084[0463:MAMODB]2.0.CO;2 10.1890/0012-9658(2003)084[0757:RSMRTD]2.0.CO;2 10.1104/pp.110.163113 10.1016/j.jplph.2013.01.014 10.1111/j.1469-8137.2008.02531.x 10.1111/j.1469-8137.2008.02489.x 10.1046/j.1365-2435.1999.00315.x 10.1007/s11104-009-9977-1 10.1111/j.0269-8463.2004.00867.x 10.1071/FP10192 10.1023/A:1023023702248 10.1007/s004420050850 10.1007/s11104-010-0638-1 10.1093/pcp/pcr027 10.1111/j.1469-8137.2011.04039.x 10.1093/aob/mcg058 10.1046/j.1365-313X.1999.00480.x 10.2307/2404768 10.1093/treephys/24.8.919 10.1111/j.1365-2435.2008.01452.x 10.3389/fpls.2014.00467 10.1023/A:1026415302759 10.1029/2007WR006149 10.1007/s11104-012-1193-8 10.1104/pp.108.128645 10.1111/pce.12272 10.1046/j.1365-2435.2002.00628.x 10.1007/s004250050653 10.1007/s11104-009-0170-3 10.1006/anbo.1996.0003 10.1093/treephys/22.15-16.1107 10.1016/j.tplants.2016.12.004 10.1016/j.soilbio.2008.04.008 10.1111/j.1469-8137.2006.01963.x 10.1039/c0mb00285b 10.1111/j.1365-3040.2005.01397.x 10.1071/BI9650249 10.1093/jexbot/51.342.61 10.3732/ajb.1300435 10.1111/j.1469-8137.2005.01487.x 10.1007/s00468-004-0391-2 10.1093/treephys/21.9.589 10.1111/pce.12727 10.1104/pp.105.065029 10.1016/B978-012425060-4/50007-3 10.1111/j.1365-3040.2005.01409.x 10.1111/j.1469-8137.2010.03245.x 10.1007/s004420100738 10.1007/s10533-009-9339-3 10.2307/1939320 10.1111/j.1365-3040.2009.01988.x 10.1146/annurev.pp.39.060188.001333 10.1111/j.1365-3040.2004.01207.x 10.1093/jxb/erj016 10.1007/BF00379405 10.1093/treephys/tpp076 10.1093/aob/mcu217 |
ContentType | Journal Article |
Copyright | 2017 John Wiley & Sons Ltd 2017 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2017 John Wiley & Sons Ltd – notice: 2017 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 |
DOI | 10.1111/pce.13020 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Calcium & Calcified Tissue Abstracts CrossRef MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 2446 |
ExternalDocumentID | 28707352 10_1111_pce_13020 PCE13020 |
Genre | miscellaneous Journal Article |
GrantInformation_xml | – fundername: European Union's Horizon 2020 research and innovation programme ‐ Marie Sklodowska‐Curie funderid: 700001 – fundername: Endeavour Scholarships and Fellowships – fundername: Marie Sklodowska‐Curie funderid: 700001 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST AAMMB AEFGJ AGXDD AIDQK AIDYY C1K SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4520-99d3130cc346078feb8eb7d6ffc05ff685ba3971b83d3d39d8bfa644c376d6f13 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 1365-3040 |
IngestDate | Fri Jul 11 18:33:16 EDT 2025 Thu Jul 10 22:14:17 EDT 2025 Fri Jul 25 10:49:28 EDT 2025 Wed Feb 19 02:40:37 EST 2025 Tue Jul 01 04:28:39 EDT 2025 Thu Apr 24 22:53:10 EDT 2025 Wed Jan 22 16:39:32 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | xylem Halophyte hydraulic conductivity osmotic potential water transfer plant predawn disequilibrium hydraulic lift plant water potential roots heterogeneous soil salinity |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4520-99d3130cc346078feb8eb7d6ffc05ff685ba3971b83d3d39d8bfa644c376d6f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4856-0659 0000-0001-9945-1044 |
PMID | 28707352 |
PQID | 1938846854 |
PQPubID | 37957 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000572520 proquest_miscellaneous_1920203353 proquest_journals_1938846854 pubmed_primary_28707352 crossref_primary_10_1111_pce_13020 crossref_citationtrail_10_1111_pce_13020 wiley_primary_10_1111_pce_13020_PCE13020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2017 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: October 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 16 1998; 49 1987; 73 1987; 105 2005; 139 2004; 24 2010; 187 1999; 120 2000; 51 2011; 52 2008; 306 1998; 115 2012a; 193 1998; 113 1965; 18 2011; 155 1999; 207 1996; 33 1996; 77 2014; 5 2009; 95 2003; 91 2007; 173 1978; 20 1999; 18 1993; 31 1993; 74 2016; 43 1999; 13 2006; 29 2003; 160 2010; 152 2016; 40 2012b; 39 2008; 22 2013; 110 1999; 210 2011; 25 1999; 50 2014; 166 1989; 79 2003; 84 1999; 215 2011; 166 2001; 52 2003; 44 2009; 325 2010b; 163 2010; 37 2006; 57 2004; 141 1993; 44 2017; 22 1954 2008; 59 1983; 32 1995 2010; 162 1972; 25 2001; 129 2011; 38 2003; 135 2011; 7 2014; 115 2007; 58 2009; 29 2001; 21 2003; 251 2012; 194 1988; 3 2005; 19 2012; 354 2009; 32 2015; 115 2004; 18 2002; 22 2014; 37 2017 1961 2008; 44 2008; 179 2010a; 329 2013; 170 2008; 40 2011; 341 2014; 101 2009; 149 1985; 36 e_1_2_7_5_1 Slatyer R.O. (e_1_2_7_78_1) 1961 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Hinckley T.M. (e_1_2_7_35_1) 1978; 20 e_1_2_7_90_1 e_1_2_7_73_1 e_1_2_7_94_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 McFarlane D.J. (e_1_2_7_55_1) 2017 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 44 year: 2008 article-title: The ecohydrologic significance of hydraulic redistribution in a semiarid savanna publication-title: Water Resources Research – volume: 162 start-page: 11 year: 2010 end-page: 21 article-title: Hydraulic lift and tolerance to salinity of semiarid species: consequences for species interactions publication-title: Oecologia – volume: 115 start-page: 419 year: 2015 end-page: 431 article-title: Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes publication-title: Annals of Botany – volume: 36 start-page: 1032 year: 1985 end-page: 1042 article-title: Na , K and Cl in xylem sap flowing to shoots of NaCl‐treated barley publication-title: Journal of Experimental Botany – volume: 74 start-page: 612 year: 1993 end-page: 614 article-title: The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics publication-title: Ecology – volume: 37 start-page: 899 year: 2014 end-page: 910 article-title: Modelled hydraulic redistribution by sunflower ( L.) matches observed data only after including night‐time transpiration publication-title: Plant, Cell & Environment – volume: 22 start-page: 236 year: 2017 end-page: 248 article-title: Chloride on the move publication-title: Trends in Plant Science – volume: 32 start-page: 1060 year: 2009 end-page: 1070 article-title: Night‐time transpiration can decrease hydraulic redistribution publication-title: Plant, Cell & Environment – volume: 44 start-page: 653 year: 1993 end-page: 663 article-title: The response of to the interactive effects of salinity and hypoxia publication-title: Journal of Experimental Botany – volume: 166 start-page: 899 year: 2011 end-page: 911 article-title: separation of root hydraulic redistribution of soil water from liquid and vapor transport publication-title: Oecologia – volume: 33 start-page: 1257 year: 1996 end-page: 1266 article-title: Growth of on salt affected soils in Western Australia publication-title: Journal of Applied Ecology – volume: 7 start-page: 1322 year: 2011 end-page: 1335 article-title: Identification and differential induction of the expression of aquaporins by salinity in broccoli plants publication-title: Molecular BioSystems – volume: 38 start-page: 187 year: 2011 end-page: 198 article-title: Plasticity tradeoffs in salt tolerance mechanisms among desert genotypes publication-title: Functional Plant Biology – volume: 95 start-page: 323 year: 2009 end-page: 333 article-title: Hydraulic redistribution may stimulate decomposition publication-title: Biogeochemistry – volume: 59 start-page: 595 year: 2008 end-page: 624 article-title: Plant aquaporins: membrane channels with multiple integrated functions publication-title: Annual Review of Plant Biology – volume: 129 start-page: 328 year: 2001 end-page: 335 article-title: Predawn plant water potential does not necessarily equilibrate with soil water potential under well‐watered conditions publication-title: Oecologia – volume: 52 start-page: 1873 year: 2001 end-page: 1881 article-title: Direct measurement of sodium and potassium in the transpiration stream of salt‐excluding and non‐excluding varieties of wheat publication-title: Journal of Experimental Botany – volume: 210 start-page: 50 year: 1999 end-page: 60 article-title: Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of publication-title: Planta – volume: 44 start-page: 1384 year: 2003 end-page: 1395 article-title: Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins publication-title: Plant and Cell Physiology – volume: 139 start-page: 790 year: 2005 end-page: 805 article-title: Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression publication-title: Plant Physiology – volume: 13 start-page: 256 year: 1999 end-page: 264 article-title: Reverse flow of sap in tree roots and downward siphoning of water by publication-title: Functional Ecology – volume: 194 start-page: 337 year: 2012 end-page: 352 article-title: The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies publication-title: New Phytologist – volume: 73 start-page: 486 year: 1987 end-page: 489 article-title: Hydraulic lift: substantial nocturnal water transport between soil layers by roots publication-title: Oecologia – year: 1961 – volume: 160 start-page: 689 year: 2003 end-page: 697 article-title: Influence of saline stress on root hydraulic conductance and PIP expression in publication-title: Journal of Plant Physiology – volume: 22 start-page: 1107 year: 2002 end-page: 1117 article-title: Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests publication-title: Tree Physiology – volume: 120 start-page: 209 year: 1999 end-page: 217 article-title: Predawn disequilibrium between plant and soil water potentials in two cold‐desert shrubs publication-title: Oecologia – volume: 18 start-page: 509 year: 1999 end-page: 519 article-title: Molecular and functional regulation of two NO uptake systems by N‐ and C‐status of Arabidopsis plants publication-title: The Plant Journal – volume: 5 year: 2014 article-title: Regulation of Na fluxes in plants publication-title: Frontiers in Plant Science – volume: 170 start-page: 906 year: 2013 end-page: 914 article-title: Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na loading and stomatal density publication-title: Journal of Plant Physiology – volume: 163 start-page: 855 year: 2010b end-page: 865 article-title: Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems, patterns and control mechanisms publication-title: Oecologia – volume: 115 start-page: 385 year: 2014 end-page: 395 article-title: Regulation of water balance in mangroves publication-title: Annals of Botany – volume: 16 start-page: 367 year: 2002 end-page: 378 article-title: Desert shrub water relations with respect to soil characteristics and plant functional type publication-title: Functional Ecology – volume: 79 start-page: 1 year: 1989 end-page: 5 article-title: Hydraulic lift: water efflux from upper roots improves effectiveness of water‐uptake by deep roots publication-title: Oecologia – volume: 50 start-page: 1055 year: 1999 end-page: 1071 article-title: Plant aquaporins: their molecular biology, biophysics and significance for plant water relations publication-title: Journal of Experimental Botany – volume: 193 start-page: 830 year: 2012a end-page: 841 article-title: Water release through plant roots: new insights into its consequences at the plant and ecosystem level publication-title: New Phytologist – volume: 166 start-page: 551 year: 2014 end-page: 559 article-title: Beyond the barrier: communication in the root through the endodermis publication-title: Plant Physiology – volume: 354 start-page: 1 year: 2012 end-page: 19 article-title: Plant growth and physiology under heterogeneous salinity publication-title: Plant and Soil – volume: 110 start-page: 18988 year: 2013 end-page: 18993 article-title: Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 18 start-page: 249 year: 1965 end-page: 268 article-title: Plant response to saline substrates. IV. Chloride uptake by as affected by inhibitors, transpiration, and nutrients in the medium publication-title: Australian Journal of Biological Sciences – volume: 179 start-page: 857 year: 2008 end-page: 866 article-title: Root foraging in response to heterogeneous soil moisture in two grapevines that differ in potential growth rate publication-title: New Phytologist – volume: 31 start-page: 73 year: 1993 end-page: 81 article-title: Estimating the electrical conductivity of saturated paste extracts from 1:5 soil:water suspensions and texture publication-title: Australian Journal of Soil Research – volume: 325 start-page: 263 year: 2009 end-page: 275 article-title: The role of hydraulic lift and subsoil P placement in P uptake of cotton ( L.) publication-title: Plant and Soil – volume: 21 start-page: 589 year: 2001 end-page: 598 article-title: An improved heat pulse method to measure low and reverse rates of sap flow in woody plants publication-title: Tree Physiology – volume: 57 start-page: 139 year: 2006 end-page: 147 article-title: High apoplastic solute concentrations in leaves alter water relations of the halophytic shrub, publication-title: Journal of Experimental Botany – volume: 29 start-page: 138 year: 2006 end-page: 150 article-title: Hydraulic redistribution in a Douglas‐fir forest: lessons from system manipulations publication-title: Plant, Cell & Environment – volume: 51 start-page: 61 year: 2000 end-page: 70 article-title: Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress publication-title: Journal of Experimental Botany – volume: 40 start-page: 1009 year: 2016 end-page: 1020 article-title: Physiological and molecular mechanisms mediating xylem Na loading in barley in the context of salinity stress tolerance publication-title: Plant, Cell & Environment – volume: 37 start-page: 621 year: 2010 end-page: 633 article-title: The response of barley to salinity stress differs between hydroponics and soil systems publication-title: Functional Plant Biology – volume: 58 start-page: 2169 year: 2007 end-page: 2180 article-title: tolerates the interactive effects of salinity and waterlogging by ‘excluding’ Na and Cl from the xylem publication-title: Journal of Experimental Botany – volume: 173 start-page: 753 year: 2007 end-page: 765 article-title: Hydraulic redistribution of soil water in two old‐growth coniferous forests: quantifying patterns and controls publication-title: New Phytologist – volume: 141 start-page: 7 year: 2004 end-page: 16 article-title: Native root xylem embolism and stomatal closure in stands of Douglas‐fir and ponderosa pine: mitigation by hydraulic redistribution publication-title: Oecologia – volume: 37 start-page: 1656 year: 2014 end-page: 1671 article-title: Role of root hydrophobic barriers in salt exclusion of a mangrove plant publication-title: Plant, Cell & Environment – volume: 84 start-page: 757 year: 2003 end-page: 764 article-title: Rapid soil moisture recharge to depth by roots in a stand of publication-title: Ecology – volume: 207 start-page: 155 year: 1999 end-page: 167 article-title: Significance and limits in the use of predawn leaf water potential for tree irrigation publication-title: Plant and Soil – volume: 155 start-page: 1264 year: 2011 end-page: 1276 article-title: Natural variation of root hydraulics in Arabidopsis grown in normal and salt‐stressed conditions publication-title: Plant Physiology – volume: 215 start-page: 93 year: 1999 end-page: 102 article-title: Hydraulic lift among native plant species in the Mojave Desert publication-title: Plant and Soil – volume: 29 start-page: 697 year: 2009 end-page: 705 article-title: Hydraulic redistribution in dwarf trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange publication-title: Tree Physiology – volume: 22 start-page: 773 year: 2008 end-page: 786 article-title: Biophysical and life‐history determinants of hydraulic lift in neotropical savanna trees publication-title: Functional Ecology – volume: 77 start-page: 17 year: 1996 end-page: 24 article-title: Pressure‐flow relationships, xylem solutes and root hydraulic conductance in flooded tomato plants publication-title: Annals of Botany – volume: 152 start-page: 245 year: 2010 end-page: 254 article-title: The role of tobacco Aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress publication-title: Plant Physiology – volume: 149 start-page: 445 year: 2009 end-page: 460 article-title: The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine publication-title: Plant Physiology – volume: 29 start-page: 1407 year: 2009 end-page: 1418 article-title: Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth publication-title: Tree Physiology – volume: 3 start-page: 245 year: 1988 end-page: 265 article-title: Water transport in and to roots publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – year: 1954 – volume: 32 start-page: 431 year: 1983 end-page: 438 article-title: Should selection for yield in saline regions bemade on saline or non‐saline soils? publication-title: Euphytica – volume: 40 start-page: 2206 year: 2008 end-page: 2216 article-title: Shrub‐interspace dynamics alter relationships between microbial community composition and belowground ecosystem characteristics publication-title: Soil Biology and Biochemistry – volume: 25 start-page: 735 year: 2011 end-page: 744 article-title: Hydraulic redistribution in subsp. with variable access to fresh groundwater publication-title: Trees – volume: 39 start-page: 804 year: 2012b end-page: 812 article-title: Hydraulic lift promotes selective root foraging in nutrient‐rich soil patches publication-title: Functional Plant Biology – volume: 49 start-page: 775 year: 1998 end-page: 788 article-title: How does water get through roots? publication-title: Journal of Experimental Botany – volume: 18 start-page: 530 year: 2004 end-page: 538 article-title: Hydraulic redistribution by a dominant, warm‐desert phreatophyte: seasonal patterns and response to precipitation pulses publication-title: Functional Ecology – volume: 20 start-page: a0001 year: 1978 end-page: z0001 article-title: Temporal and spatial variations in the water status of forest trees publication-title: Forest Science – volume: 91 start-page: 503 year: 2003 end-page: 527 article-title: Na tolerance and Na transport in higher plants publication-title: Annals of Botany – volume: 24 start-page: 919 year: 2004 end-page: 928 article-title: Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types publication-title: Tree Physiology – volume: 101 start-page: 1013 year: 2014 end-page: 1022 article-title: Dynamic control of osmolality and ionic composition of the xylem sap in two mangrove species publication-title: American Journal of Botany – volume: 115 start-page: 306 year: 1998 end-page: 311 article-title: The redistribution of soil water by tree root systems publication-title: Oecologia – volume: 25 start-page: 895 year: 1972 end-page: 904 article-title: Effect of sodium chloride salinity on the water balance of publication-title: Australian Journal of Biological Sciences – start-page: 521 year: 2017 end-page: 547 – volume: 52 start-page: 663 year: 2011 end-page: 675 article-title: Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots publication-title: Plant and Cell Physiology – volume: 59 start-page: 651 year: 2008 end-page: 681 article-title: Mechanisms of salinity tolerance publication-title: Annual Review of Plant Biology – volume: 84 start-page: 463 year: 2003 end-page: 470 article-title: Magnitude and mechanisms of disequilibrium between predawn plant and soil water potentials publication-title: Ecology – year: 1995 – volume: 113 start-page: 151 year: 1998 end-page: 161 article-title: Hydraulic lift: consequences of water efflux from the roots of plants publication-title: Oecologia – volume: 43 start-page: 620 year: 2016 end-page: 631 article-title: Insights into root structure and function of Bassia indica: water redistribution and element dispersion publication-title: Functional Plant Biology – volume: 306 start-page: 159 year: 2008 end-page: 166 article-title: Does hydraulic lift or nighttime transpiration facilitate nitrogen acquisition? publication-title: Plant and Soil – volume: 105 start-page: 359 year: 1987 end-page: 366 article-title: Salt tolerance of the halophyte (L.) Dum. The effect of salinity on the concentration of sodium in the xylem publication-title: New Phytologist – volume: 187 start-page: 171 year: 2010 end-page: 183 article-title: Hydraulic redistribution of soil water by roots affects whole‐stand evapotranspiration and net ecosystem carbon exchange publication-title: New Phytologist – volume: 29 start-page: 26 year: 2006 end-page: 35 article-title: Diurnal and seasonal changes in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status publication-title: Plant, Cell & Environment – volume: 19 start-page: 296 year: 2005 end-page: 304 article-title: Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in neotropical savanna trees publication-title: Trees‐Structure and Function – volume: 329 start-page: 447 year: 2010a end-page: 456 article-title: Hydraulic lift: soil processes and transpiration in the Mediterranean leguminous shrub (L.) Boiss publication-title: Plant and Soil – volume: 135 start-page: 167 year: 2003 end-page: 175 article-title: Contrasting patterns of hydraulic redistribution in three desert phreatophytes publication-title: Oecologia – volume: 341 start-page: 25 year: 2011 end-page: 29 article-title: Can hydraulic redistribution put bread on our table? publication-title: Plant and Soil – volume: 251 start-page: 237 year: 2003 end-page: 245 article-title: The effects of re‐vegetation on cryptogam species diversity in Teng‐ger Desert, Northern China publication-title: Plant and Soil – volume: 179 start-page: 945 year: 2008 end-page: 963 article-title: Salinity tolerance in halophytes publication-title: New Phytologist – ident: e_1_2_7_11_1 doi: 10.1007/s00468-011-0551-0 – ident: e_1_2_7_31_1 doi: 10.1093/jxb/44.3.653 – ident: e_1_2_7_64_1 doi: 10.1071/FP12070 – ident: e_1_2_7_66_1 doi: 10.1007/s00442-010-1615-3 – ident: e_1_2_7_69_1 doi: 10.1007/BF00021452 – ident: e_1_2_7_94_1 doi: 10.1023/A:1004729232466 – ident: e_1_2_7_33_1 doi: 10.1093/treephys/tpp005 – ident: e_1_2_7_73_1 doi: 10.1104/pp.109.145854 – ident: e_1_2_7_77_1 doi: 10.1071/FP16057 – ident: e_1_2_7_83_1 doi: 10.1093/jexbot/49.322.775 – ident: e_1_2_7_88_1 doi: 10.1093/jexbot/50.suppl_1.1055 – ident: e_1_2_7_25_1 doi: 10.1007/s00442-004-1621-4 – ident: e_1_2_7_53_1 doi: 10.1078/0176-1617-00861 – ident: e_1_2_7_79_1 doi: 10.1071/SR9930073 – ident: e_1_2_7_54_1 doi: 10.1146/annurev.arplant.59.032607.092734 – ident: e_1_2_7_61_1 doi: 10.1111/pce.12206 – ident: e_1_2_7_5_1 doi: 10.1007/s00442-009-1447-1 – ident: e_1_2_7_17_1 doi: 10.1007/BF00378231 – ident: e_1_2_7_71_1 doi: 10.1104/pp.114.244871 – ident: e_1_2_7_43_1 doi: 10.1071/BI9720895 – ident: e_1_2_7_60_1 doi: 10.1111/j.1469-8137.2012.04088.x – ident: e_1_2_7_86_1 doi: 10.1093/jxb/erm102 – ident: e_1_2_7_57_1 doi: 10.1093/jxb/36.7.1032 – ident: e_1_2_7_93_1 doi: 10.1093/jexbot/52.362.1873 – ident: e_1_2_7_91_1 doi: 10.1007/s00442-011-1953-9 – ident: e_1_2_7_50_1 doi: 10.1093/pcp/pcg168 – ident: e_1_2_7_81_1 doi: 10.1007/s11104-008-9567-7 – volume: 20 start-page: a0001 year: 1978 ident: e_1_2_7_35_1 article-title: Temporal and spatial variations in the water status of forest trees publication-title: Forest Science – ident: e_1_2_7_21_1 doi: 10.1111/j.1469-8137.1987.tb00873.x – ident: e_1_2_7_67_1 doi: 10.1093/aob/mcu174 – ident: e_1_2_7_18_1 doi: 10.1073/pnas.1311314110 – ident: e_1_2_7_39_1 doi: 10.1007/s00442-002-1165-4 – ident: e_1_2_7_85_1 doi: 10.1071/FP09202 – ident: e_1_2_7_16_1 doi: 10.1007/s004420050363 – ident: e_1_2_7_28_1 doi: 10.1890/0012-9658(2003)084[0463:MAMODB]2.0.CO;2 – ident: e_1_2_7_72_1 doi: 10.1890/0012-9658(2003)084[0757:RSMRTD]2.0.CO;2 – ident: e_1_2_7_84_1 doi: 10.1104/pp.110.163113 – ident: e_1_2_7_76_1 doi: 10.1016/j.jplph.2013.01.014 – ident: e_1_2_7_29_1 doi: 10.1111/j.1469-8137.2008.02531.x – ident: e_1_2_7_6_1 doi: 10.1111/j.1469-8137.2008.02489.x – ident: e_1_2_7_80_1 doi: 10.1046/j.1365-2435.1999.00315.x – ident: e_1_2_7_90_1 doi: 10.1007/s11104-009-9977-1 – ident: e_1_2_7_38_1 doi: 10.1111/j.0269-8463.2004.00867.x – ident: e_1_2_7_46_1 doi: 10.1071/FP10192 – ident: e_1_2_7_49_1 doi: 10.1023/A:1023023702248 – ident: e_1_2_7_26_1 doi: 10.1007/s004420050850 – ident: e_1_2_7_13_1 doi: 10.1007/s11104-010-0638-1 – ident: e_1_2_7_36_1 doi: 10.1093/pcp/pcr027 – ident: e_1_2_7_63_1 doi: 10.1111/j.1469-8137.2011.04039.x – ident: e_1_2_7_68_1 – ident: e_1_2_7_87_1 doi: 10.1093/aob/mcg058 – ident: e_1_2_7_47_1 doi: 10.1046/j.1365-313X.1999.00480.x – ident: e_1_2_7_22_1 doi: 10.2307/2404768 – ident: e_1_2_7_56_1 doi: 10.1093/treephys/24.8.919 – ident: e_1_2_7_74_1 doi: 10.1111/j.1365-2435.2008.01452.x – ident: e_1_2_7_52_1 doi: 10.3389/fpls.2014.00467 – ident: e_1_2_7_4_1 doi: 10.1023/A:1026415302759 – ident: e_1_2_7_75_1 doi: 10.1029/2007WR006149 – ident: e_1_2_7_7_1 doi: 10.1007/s11104-012-1193-8 – ident: e_1_2_7_89_1 doi: 10.1104/pp.108.128645 – ident: e_1_2_7_45_1 doi: 10.1111/pce.12272 – ident: e_1_2_7_82_1 doi: 10.1046/j.1365-2435.2002.00628.x – ident: e_1_2_7_34_1 doi: 10.1007/s004250050653 – ident: e_1_2_7_65_1 doi: 10.1007/s11104-009-0170-3 – ident: e_1_2_7_41_1 doi: 10.1006/anbo.1996.0003 – ident: e_1_2_7_9_1 doi: 10.1093/treephys/22.15-16.1107 – ident: e_1_2_7_48_1 doi: 10.1016/j.tplants.2016.12.004 – ident: e_1_2_7_3_1 doi: 10.1016/j.soilbio.2008.04.008 – ident: e_1_2_7_92_1 doi: 10.1111/j.1469-8137.2006.01963.x – ident: e_1_2_7_59_1 doi: 10.1039/c0mb00285b – ident: e_1_2_7_24_1 doi: 10.1111/j.1365-3040.2005.01397.x – ident: e_1_2_7_32_1 doi: 10.1071/BI9650249 – ident: e_1_2_7_20_1 doi: 10.1093/jexbot/51.342.61 – ident: e_1_2_7_51_1 doi: 10.3732/ajb.1300435 – ident: e_1_2_7_58_1 doi: 10.1111/j.1469-8137.2005.01487.x – ident: e_1_2_7_12_1 doi: 10.1007/s00468-004-0391-2 – ident: e_1_2_7_14_1 doi: 10.1093/treephys/21.9.589 – ident: e_1_2_7_95_1 doi: 10.1111/pce.12727 – ident: e_1_2_7_8_1 doi: 10.1104/pp.105.065029 – ident: e_1_2_7_44_1 doi: 10.1016/B978-012425060-4/50007-3 – ident: e_1_2_7_10_1 doi: 10.1111/j.1365-3040.2005.01409.x – ident: e_1_2_7_23_1 doi: 10.1111/j.1469-8137.2010.03245.x – ident: e_1_2_7_27_1 doi: 10.1007/s004420100738 – ident: e_1_2_7_2_1 doi: 10.1007/s10533-009-9339-3 – volume-title: Practical Microclimatology: with Special Reference to the Water Factor in Soil‐Plant‐Atmosphere Relationships year: 1961 ident: e_1_2_7_78_1 – ident: e_1_2_7_40_1 doi: 10.2307/1939320 – ident: e_1_2_7_37_1 doi: 10.1111/j.1365-3040.2009.01988.x – ident: e_1_2_7_62_1 doi: 10.1146/annurev.pp.39.060188.001333 – ident: e_1_2_7_15_1 doi: 10.1111/j.1365-3040.2004.01207.x – ident: e_1_2_7_42_1 doi: 10.1093/jxb/erj016 – start-page: 521 volume-title: Innovations in Dryland Agriculture year: 2017 ident: e_1_2_7_55_1 – ident: e_1_2_7_70_1 doi: 10.1007/BF00379405 – ident: e_1_2_7_19_1 doi: 10.1093/treephys/tpp076 – ident: e_1_2_7_30_1 doi: 10.1093/aob/mcu217 |
SSID | ssj0001479 |
Score | 2.3287995 |
Snippet | Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2437 |
SubjectTerms | Accumulation Apoplast Ecosystems Halophyte heterogeneous soil salinity hydraulic conductivity hydraulic lift Hydraulics Ions Leaves Moisture content Osmosis osmotic potential plant predawn disequilibrium Plant Shoots - physiology Plant species plant water potential Plants - metabolism Potential gradient root systems Roots Saline environments Saline soils Saline water Salinity Salinity effects Salinity tolerance salt tolerance sap Shoots Soil - chemistry Soil water Soil water movement Soil water potential Solutions Water - metabolism Water potential water transfer Xylem Xylem - physiology |
Title | Hydraulic redistribution: limitations for plants in saline soils |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13020 https://www.ncbi.nlm.nih.gov/pubmed/28707352 https://www.proquest.com/docview/1938846854 https://www.proquest.com/docview/1920203353 https://www.proquest.com/docview/2000572520 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB6KKPjifdSLVXzwJaW5E33xwFIERUShD0LIXlAMaWnah_rrncmlVQsieQlklszu7Ox-szsHwKkSTshj2zPCdqAMx_ekwdsyNkweO4qCRQNJ5x33D173xbnrub0GXFSxMEV-iPrAjTQjX69JwWOefVHyoVBUytgie518tQgQPX2mjjKdIs8euS_6fmiWWYXIi6duObsX_QCYs3g133A6q_BasVr4mby1JmPeEu_fsjj-sy9rsFICUXZVzJx1aKh0A5aK0pTTDVi8HiBsnG7CZXcqR_Ek6Qs2ohjeukLWOUsoOKo48WOIfdkwIaca1k9ZFhNPLBv0k2wLXjq3zzddoyy7YAjHRWMyDKWNzAhhOx4CCK14oLgvPa1F29XaC1wUbuibPLAlPqEMuI4RVglcq5DKtLdhIR2kaheYRrip2yFqNpeIyyQXnGtcZCxOhovnNeGsEkAkSo6pNEYSVbYJjkyUj0wTTmrSYZGI4zeig0qKUamLWYQQNUCUFbhOE47rz6hFdDUSp2owIRqLrmRt155PQ0FNrm-59JudYobUnNB1sY9YFjuUy3k-i9HjzW3-svd30n1YtghN5D6EB7AwHk3UIWKhMT_KJ_0Hr_gCdQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1HS8RQEB4WC3qxl7U-xYOXyKYn4sGCsuoqIgpeJOQ1WAzZZcth_fXOpNlBJJdAJmTemzcv38ybArCnhBPy2PaMsBEow_E9afCGjA2Tx46iZNFAkr_j5tZrPjpXT-5TDY7KXJi8PkTlcCPNyPZrUnBySH_Q8q5Q1MvYQoN9nDp6ZwbV_XvxKNPJK-1RAKPvh2ZRV4jieKpXP_-NvkHMz4g1--VczMJzyWweafJyMBzwA_H6pY7jf0czBzMFFmUn-eKZh5pKF2Ay7045WoCJ0w4ix9EiHDdHshcPk7ZgPUrjrZpkHbKE8qNypx9D-Mu6CcXVsHbK-jExxfqddtJfgseL84ezplF0XjCE46I9GYbSRmaEsB0PMYRWPFDcl57WouFq7QUuyjf0TR7YEq9QBlzHiKwEbldIZdrLMJZ2UrUKTCPi1I0QlZtLhGaSC8417jMWJ9vF8-qwX0ogEgXH1B0jiUrzBGcmymamDrsVaTevxfET0UYpxqhQx36EKDVAoBW4Th12qseoSHQ6EqeqMyQai05lbdf-nYbymlzfcukzK_kSqTihE2Mf4SwOKBP07yxGd2fn2c3a30m3Yar5cNOKWpe31-swbRG4yEIKN2Bs0BuqTYRGA76VacAb08QGkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB8OW6UvtZ5aT61uxQdfIvnOpr5o1eNsVUQUfBBC9gsOQ-64j4fzr-9MvqxaoUheApmQ2Z2ZzW925wNgV0s_FqkXWrHNteVHobKErVLLEamvKVmUK9rvuLgMe7f-r7vgrgUHdS5MWR-i2XAjyyjWazLwoTJ_GflQampl7KK__sEPbU4qfXL9VDvK8ctCexS_GEWxU5UVojCe5tXnP6NXCPM5YC3-ON1FuK95LQNNHvanE7EvH1-UcXznYL7A5wqJsqNSdZagpfM2zJe9KWdt-PhzgLhxtgyHvZkapdOsL9mIknibFlk_WEbZUeWWH0Pwy4YZRdWwfs7GKfHExoN-Nl6B2-7pzXHPqvouWNIP0JuMY-UhM1J6OK8RN1pwLSIVGiPtwJiQByjdOHIE9xReseLCpIirJC5WSOV4qzCXD3K9Bswg3jR2jKYtFAIzJaQQBlcZV5DnEoYd2KsFkMiKY-qNkSW1c4IzkxQz04GdhnRYVuL4F9FmLcWkMsZxghiVI8zigd-B781jNCM6G0lzPZgSjUtnsl7gvU1DWU1B5Ab0ma-lhjSc0HlxhGAWB1TI-W0Wk6vj0-Jm_f9Jt2Hh6qSbnJ9d_t6ATy4hiyKecBPmJqOp_oa4aCK2Cv3_A9RrBUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydraulic+redistribution%3A+limitations+for+plants+in+saline+soils&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Bazihizina%2C+Nadia&rft.au=Veneklaas%2C+Erik+J&rft.au=Barrett-Lennard%2C+Edward+G&rft.au=Colmer%2C+Timothy+D&rft.date=2017-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=40&rft.issue=10&rft.spage=2437&rft_id=info:doi/10.1111%2Fpce.13020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |