Hydraulic redistribution: limitations for plants in saline soils

Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despit...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 40; no. 10; pp. 2437 - 2446
Main Authors Bazihizina, Nadia, Veneklaas, Erik J., Barrett‐Lennard, Edward G., Colmer, Timothy D.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build‐up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non‐saline soils, will experience a dampened magnitude of water potential gradients in the soil–plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance. Despite significant water potential gradients in saline soils owing to large differences in soil water osmotic potentials within the root‐zone of individual plants, no conclusive evidence exists for hydraulic redistribution (HR) in such conditions. This paper advances the hypothesis that build‐up of ions in root xylem sap and in the leaf apoplast acts to diminish HR‐driving water potential gradients. As a result, plants in spatially heterogeneous saline soils with osmotic‐dominated gradients in water potential appear to have little HR.
AbstractList Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build‐up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non‐saline soils, will experience a dampened magnitude of water potential gradients in the soil–plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance. Despite significant water potential gradients in saline soils owing to large differences in soil water osmotic potentials within the root‐zone of individual plants, no conclusive evidence exists for hydraulic redistribution (HR) in such conditions. This paper advances the hypothesis that build‐up of ions in root xylem sap and in the leaf apoplast acts to diminish HR‐driving water potential gradients. As a result, plants in spatially heterogeneous saline soils with osmotic‐dominated gradients in water potential appear to have little HR.
Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance. Despite significant water potential gradients in saline soils owing to large differences in soil water osmotic potentials within the root-zone of individual plants, no conclusive evidence exists for hydraulic redistribution (HR) in such conditions. This paper advances the hypothesis that build-up of ions in root xylem sap and in the leaf apoplast acts to diminish HR-driving water potential gradients. As a result, plants in spatially heterogeneous saline soils with osmotic-dominated gradients in water potential appear to have little HR.
Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance.
Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance.Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance.
Author Bazihizina, Nadia
Barrett‐Lennard, Edward G.
Veneklaas, Erik J.
Colmer, Timothy D.
Author_xml – sequence: 1
  givenname: Nadia
  orcidid: 0000-0003-4856-0659
  surname: Bazihizina
  fullname: Bazihizina, Nadia
  email: bazihizinanadia@gmail.com
  organization: The University of Western Australia
– sequence: 2
  givenname: Erik J.
  surname: Veneklaas
  fullname: Veneklaas, Erik J.
  organization: The University of Western Australia
– sequence: 3
  givenname: Edward G.
  orcidid: 0000-0001-9945-1044
  surname: Barrett‐Lennard
  fullname: Barrett‐Lennard, Edward G.
  organization: Murdoch University
– sequence: 4
  givenname: Timothy D.
  surname: Colmer
  fullname: Colmer, Timothy D.
  organization: The University of Western Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28707352$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LwzAYxoNM3Ice_Aek4EUP3ZImbVpPypgfMNCDnkOaJpCRtjNpkf33vnPTw0BNDgnh97553ucZo0HTNhqhc4KnBNZsrfSUUJzgIzQiNEtjihkeoBEmDMecF2SIxiGsMIYHXpygYZJzzGmajNDt46bysndWRV5XNnTeln1n2-Ymcra2ndzeQ2RaH62dbLoQ2SYK0tlGR6G1LpyiYyNd0Gf7c4Le7hev88d4-fzwNL9bxoqlCY6LoqIgUSnKMsxzo8tcl7zKjFE4NSbL01LSgpMypxXsospLIzPGFOUZUIRO0NWu79q3770OnahtUNqBKN32QSQwXcoT-OtflBQJeEVpSgG9PEBXbe8bGAQomucMhDGgLvZUX9a6Emtva-k34ttGAK53gPJtCF6bH4RgsY1IQETiKyJgZwes2tvceWndXxUf1unN763Fy3yxq_gEVAaf0g
CitedBy_id crossref_primary_10_1080_00380768_2021_1966834
crossref_primary_10_1016_S2095_3119_19_62608_0
crossref_primary_10_1007_s00271_022_00793_z
crossref_primary_10_1016_j_agwat_2022_107786
crossref_primary_10_1016_j_soilbio_2023_109128
crossref_primary_10_1002_hyp_13643
crossref_primary_10_1016_j_postharvbio_2021_111636
crossref_primary_10_1007_s11200_023_0124_0
crossref_primary_10_1016_j_jhydrol_2022_127987
crossref_primary_10_1007_s44307_024_00050_8
crossref_primary_10_3390_su152215980
crossref_primary_10_1016_j_envexpbot_2020_104301
crossref_primary_10_1093_aob_mcac074
Cites_doi 10.1007/s00468-011-0551-0
10.1093/jxb/44.3.653
10.1071/FP12070
10.1007/s00442-010-1615-3
10.1007/BF00021452
10.1023/A:1004729232466
10.1093/treephys/tpp005
10.1104/pp.109.145854
10.1071/FP16057
10.1093/jexbot/49.322.775
10.1093/jexbot/50.suppl_1.1055
10.1007/s00442-004-1621-4
10.1078/0176-1617-00861
10.1071/SR9930073
10.1146/annurev.arplant.59.032607.092734
10.1111/pce.12206
10.1007/s00442-009-1447-1
10.1007/BF00378231
10.1104/pp.114.244871
10.1071/BI9720895
10.1111/j.1469-8137.2012.04088.x
10.1093/jxb/erm102
10.1093/jxb/36.7.1032
10.1093/jexbot/52.362.1873
10.1007/s00442-011-1953-9
10.1093/pcp/pcg168
10.1007/s11104-008-9567-7
10.1111/j.1469-8137.1987.tb00873.x
10.1093/aob/mcu174
10.1073/pnas.1311314110
10.1007/s00442-002-1165-4
10.1071/FP09202
10.1007/s004420050363
10.1890/0012-9658(2003)084[0463:MAMODB]2.0.CO;2
10.1890/0012-9658(2003)084[0757:RSMRTD]2.0.CO;2
10.1104/pp.110.163113
10.1016/j.jplph.2013.01.014
10.1111/j.1469-8137.2008.02531.x
10.1111/j.1469-8137.2008.02489.x
10.1046/j.1365-2435.1999.00315.x
10.1007/s11104-009-9977-1
10.1111/j.0269-8463.2004.00867.x
10.1071/FP10192
10.1023/A:1023023702248
10.1007/s004420050850
10.1007/s11104-010-0638-1
10.1093/pcp/pcr027
10.1111/j.1469-8137.2011.04039.x
10.1093/aob/mcg058
10.1046/j.1365-313X.1999.00480.x
10.2307/2404768
10.1093/treephys/24.8.919
10.1111/j.1365-2435.2008.01452.x
10.3389/fpls.2014.00467
10.1023/A:1026415302759
10.1029/2007WR006149
10.1007/s11104-012-1193-8
10.1104/pp.108.128645
10.1111/pce.12272
10.1046/j.1365-2435.2002.00628.x
10.1007/s004250050653
10.1007/s11104-009-0170-3
10.1006/anbo.1996.0003
10.1093/treephys/22.15-16.1107
10.1016/j.tplants.2016.12.004
10.1016/j.soilbio.2008.04.008
10.1111/j.1469-8137.2006.01963.x
10.1039/c0mb00285b
10.1111/j.1365-3040.2005.01397.x
10.1071/BI9650249
10.1093/jexbot/51.342.61
10.3732/ajb.1300435
10.1111/j.1469-8137.2005.01487.x
10.1007/s00468-004-0391-2
10.1093/treephys/21.9.589
10.1111/pce.12727
10.1104/pp.105.065029
10.1016/B978-012425060-4/50007-3
10.1111/j.1365-3040.2005.01409.x
10.1111/j.1469-8137.2010.03245.x
10.1007/s004420100738
10.1007/s10533-009-9339-3
10.2307/1939320
10.1111/j.1365-3040.2009.01988.x
10.1146/annurev.pp.39.060188.001333
10.1111/j.1365-3040.2004.01207.x
10.1093/jxb/erj016
10.1007/BF00379405
10.1093/treephys/tpp076
10.1093/aob/mcu217
ContentType Journal Article
Copyright 2017 John Wiley & Sons Ltd
2017 John Wiley & Sons Ltd.
Copyright_xml – notice: 2017 John Wiley & Sons Ltd
– notice: 2017 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
DOI 10.1111/pce.13020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Calcium & Calcified Tissue Abstracts
CrossRef
MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 2446
ExternalDocumentID 28707352
10_1111_pce_13020
PCE13020
Genre miscellaneous
Journal Article
GrantInformation_xml – fundername: European Union's Horizon 2020 research and innovation programme ‐ Marie Sklodowska‐Curie
  funderid: 700001
– fundername: Endeavour Scholarships and Fellowships
– fundername: Marie Sklodowska‐Curie
  funderid: 700001
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4520-99d3130cc346078feb8eb7d6ffc05ff685ba3971b83d3d39d8bfa644c376d6f13
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Fri Jul 11 18:33:16 EDT 2025
Thu Jul 10 22:14:17 EDT 2025
Fri Jul 25 10:49:28 EDT 2025
Wed Feb 19 02:40:37 EST 2025
Tue Jul 01 04:28:39 EDT 2025
Thu Apr 24 22:53:10 EDT 2025
Wed Jan 22 16:39:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords xylem
Halophyte
hydraulic conductivity
osmotic potential
water transfer
plant predawn disequilibrium
hydraulic lift
plant water potential
roots
heterogeneous soil salinity
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4520-99d3130cc346078feb8eb7d6ffc05ff685ba3971b83d3d39d8bfa644c376d6f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4856-0659
0000-0001-9945-1044
PMID 28707352
PQID 1938846854
PQPubID 37957
PageCount 10
ParticipantIDs proquest_miscellaneous_2000572520
proquest_miscellaneous_1920203353
proquest_journals_1938846854
pubmed_primary_28707352
crossref_primary_10_1111_pce_13020
crossref_citationtrail_10_1111_pce_13020
wiley_primary_10_1111_pce_13020_PCE13020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2017
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 16
1998; 49
1987; 73
1987; 105
2005; 139
2004; 24
2010; 187
1999; 120
2000; 51
2011; 52
2008; 306
1998; 115
2012a; 193
1998; 113
1965; 18
2011; 155
1999; 207
1996; 33
1996; 77
2014; 5
2009; 95
2003; 91
2007; 173
1978; 20
1999; 18
1993; 31
1993; 74
2016; 43
1999; 13
2006; 29
2003; 160
2010; 152
2016; 40
2012b; 39
2008; 22
2013; 110
1999; 210
2011; 25
1999; 50
2014; 166
1989; 79
2003; 84
1999; 215
2011; 166
2001; 52
2003; 44
2009; 325
2010b; 163
2010; 37
2006; 57
2004; 141
1993; 44
2017; 22
1954
2008; 59
1983; 32
1995
2010; 162
1972; 25
2001; 129
2011; 38
2003; 135
2011; 7
2014; 115
2007; 58
2009; 29
2001; 21
2003; 251
2012; 194
1988; 3
2005; 19
2012; 354
2009; 32
2015; 115
2004; 18
2002; 22
2014; 37
2017
1961
2008; 44
2008; 179
2010a; 329
2013; 170
2008; 40
2011; 341
2014; 101
2009; 149
1985; 36
e_1_2_7_5_1
Slatyer R.O. (e_1_2_7_78_1) 1961
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Hinckley T.M. (e_1_2_7_35_1) 1978; 20
e_1_2_7_90_1
e_1_2_7_73_1
e_1_2_7_94_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
McFarlane D.J. (e_1_2_7_55_1) 2017
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 44
  year: 2008
  article-title: The ecohydrologic significance of hydraulic redistribution in a semiarid savanna
  publication-title: Water Resources Research
– volume: 162
  start-page: 11
  year: 2010
  end-page: 21
  article-title: Hydraulic lift and tolerance to salinity of semiarid species: consequences for species interactions
  publication-title: Oecologia
– volume: 115
  start-page: 419
  year: 2015
  end-page: 431
  article-title: Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes
  publication-title: Annals of Botany
– volume: 36
  start-page: 1032
  year: 1985
  end-page: 1042
  article-title: Na , K and Cl in xylem sap flowing to shoots of NaCl‐treated barley
  publication-title: Journal of Experimental Botany
– volume: 74
  start-page: 612
  year: 1993
  end-page: 614
  article-title: The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics
  publication-title: Ecology
– volume: 37
  start-page: 899
  year: 2014
  end-page: 910
  article-title: Modelled hydraulic redistribution by sunflower ( L.) matches observed data only after including night‐time transpiration
  publication-title: Plant, Cell & Environment
– volume: 22
  start-page: 236
  year: 2017
  end-page: 248
  article-title: Chloride on the move
  publication-title: Trends in Plant Science
– volume: 32
  start-page: 1060
  year: 2009
  end-page: 1070
  article-title: Night‐time transpiration can decrease hydraulic redistribution
  publication-title: Plant, Cell & Environment
– volume: 44
  start-page: 653
  year: 1993
  end-page: 663
  article-title: The response of to the interactive effects of salinity and hypoxia
  publication-title: Journal of Experimental Botany
– volume: 166
  start-page: 899
  year: 2011
  end-page: 911
  article-title: separation of root hydraulic redistribution of soil water from liquid and vapor transport
  publication-title: Oecologia
– volume: 33
  start-page: 1257
  year: 1996
  end-page: 1266
  article-title: Growth of on salt affected soils in Western Australia
  publication-title: Journal of Applied Ecology
– volume: 7
  start-page: 1322
  year: 2011
  end-page: 1335
  article-title: Identification and differential induction of the expression of aquaporins by salinity in broccoli plants
  publication-title: Molecular BioSystems
– volume: 38
  start-page: 187
  year: 2011
  end-page: 198
  article-title: Plasticity tradeoffs in salt tolerance mechanisms among desert genotypes
  publication-title: Functional Plant Biology
– volume: 95
  start-page: 323
  year: 2009
  end-page: 333
  article-title: Hydraulic redistribution may stimulate decomposition
  publication-title: Biogeochemistry
– volume: 59
  start-page: 595
  year: 2008
  end-page: 624
  article-title: Plant aquaporins: membrane channels with multiple integrated functions
  publication-title: Annual Review of Plant Biology
– volume: 129
  start-page: 328
  year: 2001
  end-page: 335
  article-title: Predawn plant water potential does not necessarily equilibrate with soil water potential under well‐watered conditions
  publication-title: Oecologia
– volume: 52
  start-page: 1873
  year: 2001
  end-page: 1881
  article-title: Direct measurement of sodium and potassium in the transpiration stream of salt‐excluding and non‐excluding varieties of wheat
  publication-title: Journal of Experimental Botany
– volume: 210
  start-page: 50
  year: 1999
  end-page: 60
  article-title: Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of
  publication-title: Planta
– volume: 44
  start-page: 1384
  year: 2003
  end-page: 1395
  article-title: Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins
  publication-title: Plant and Cell Physiology
– volume: 139
  start-page: 790
  year: 2005
  end-page: 805
  article-title: Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression
  publication-title: Plant Physiology
– volume: 13
  start-page: 256
  year: 1999
  end-page: 264
  article-title: Reverse flow of sap in tree roots and downward siphoning of water by
  publication-title: Functional Ecology
– volume: 194
  start-page: 337
  year: 2012
  end-page: 352
  article-title: The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies
  publication-title: New Phytologist
– volume: 73
  start-page: 486
  year: 1987
  end-page: 489
  article-title: Hydraulic lift: substantial nocturnal water transport between soil layers by roots
  publication-title: Oecologia
– year: 1961
– volume: 160
  start-page: 689
  year: 2003
  end-page: 697
  article-title: Influence of saline stress on root hydraulic conductance and PIP expression in
  publication-title: Journal of Plant Physiology
– volume: 22
  start-page: 1107
  year: 2002
  end-page: 1117
  article-title: Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests
  publication-title: Tree Physiology
– volume: 120
  start-page: 209
  year: 1999
  end-page: 217
  article-title: Predawn disequilibrium between plant and soil water potentials in two cold‐desert shrubs
  publication-title: Oecologia
– volume: 18
  start-page: 509
  year: 1999
  end-page: 519
  article-title: Molecular and functional regulation of two NO uptake systems by N‐ and C‐status of Arabidopsis plants
  publication-title: The Plant Journal
– volume: 5
  year: 2014
  article-title: Regulation of Na fluxes in plants
  publication-title: Frontiers in Plant Science
– volume: 170
  start-page: 906
  year: 2013
  end-page: 914
  article-title: Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na loading and stomatal density
  publication-title: Journal of Plant Physiology
– volume: 163
  start-page: 855
  year: 2010b
  end-page: 865
  article-title: Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems, patterns and control mechanisms
  publication-title: Oecologia
– volume: 115
  start-page: 385
  year: 2014
  end-page: 395
  article-title: Regulation of water balance in mangroves
  publication-title: Annals of Botany
– volume: 16
  start-page: 367
  year: 2002
  end-page: 378
  article-title: Desert shrub water relations with respect to soil characteristics and plant functional type
  publication-title: Functional Ecology
– volume: 79
  start-page: 1
  year: 1989
  end-page: 5
  article-title: Hydraulic lift: water efflux from upper roots improves effectiveness of water‐uptake by deep roots
  publication-title: Oecologia
– volume: 50
  start-page: 1055
  year: 1999
  end-page: 1071
  article-title: Plant aquaporins: their molecular biology, biophysics and significance for plant water relations
  publication-title: Journal of Experimental Botany
– volume: 193
  start-page: 830
  year: 2012a
  end-page: 841
  article-title: Water release through plant roots: new insights into its consequences at the plant and ecosystem level
  publication-title: New Phytologist
– volume: 166
  start-page: 551
  year: 2014
  end-page: 559
  article-title: Beyond the barrier: communication in the root through the endodermis
  publication-title: Plant Physiology
– volume: 354
  start-page: 1
  year: 2012
  end-page: 19
  article-title: Plant growth and physiology under heterogeneous salinity
  publication-title: Plant and Soil
– volume: 110
  start-page: 18988
  year: 2013
  end-page: 18993
  article-title: Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 18
  start-page: 249
  year: 1965
  end-page: 268
  article-title: Plant response to saline substrates. IV. Chloride uptake by as affected by inhibitors, transpiration, and nutrients in the medium
  publication-title: Australian Journal of Biological Sciences
– volume: 179
  start-page: 857
  year: 2008
  end-page: 866
  article-title: Root foraging in response to heterogeneous soil moisture in two grapevines that differ in potential growth rate
  publication-title: New Phytologist
– volume: 31
  start-page: 73
  year: 1993
  end-page: 81
  article-title: Estimating the electrical conductivity of saturated paste extracts from 1:5 soil:water suspensions and texture
  publication-title: Australian Journal of Soil Research
– volume: 325
  start-page: 263
  year: 2009
  end-page: 275
  article-title: The role of hydraulic lift and subsoil P placement in P uptake of cotton ( L.)
  publication-title: Plant and Soil
– volume: 21
  start-page: 589
  year: 2001
  end-page: 598
  article-title: An improved heat pulse method to measure low and reverse rates of sap flow in woody plants
  publication-title: Tree Physiology
– volume: 57
  start-page: 139
  year: 2006
  end-page: 147
  article-title: High apoplastic solute concentrations in leaves alter water relations of the halophytic shrub,
  publication-title: Journal of Experimental Botany
– volume: 29
  start-page: 138
  year: 2006
  end-page: 150
  article-title: Hydraulic redistribution in a Douglas‐fir forest: lessons from system manipulations
  publication-title: Plant, Cell & Environment
– volume: 51
  start-page: 61
  year: 2000
  end-page: 70
  article-title: Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress
  publication-title: Journal of Experimental Botany
– volume: 40
  start-page: 1009
  year: 2016
  end-page: 1020
  article-title: Physiological and molecular mechanisms mediating xylem Na loading in barley in the context of salinity stress tolerance
  publication-title: Plant, Cell & Environment
– volume: 37
  start-page: 621
  year: 2010
  end-page: 633
  article-title: The response of barley to salinity stress differs between hydroponics and soil systems
  publication-title: Functional Plant Biology
– volume: 58
  start-page: 2169
  year: 2007
  end-page: 2180
  article-title: tolerates the interactive effects of salinity and waterlogging by ‘excluding’ Na and Cl from the xylem
  publication-title: Journal of Experimental Botany
– volume: 173
  start-page: 753
  year: 2007
  end-page: 765
  article-title: Hydraulic redistribution of soil water in two old‐growth coniferous forests: quantifying patterns and controls
  publication-title: New Phytologist
– volume: 141
  start-page: 7
  year: 2004
  end-page: 16
  article-title: Native root xylem embolism and stomatal closure in stands of Douglas‐fir and ponderosa pine: mitigation by hydraulic redistribution
  publication-title: Oecologia
– volume: 37
  start-page: 1656
  year: 2014
  end-page: 1671
  article-title: Role of root hydrophobic barriers in salt exclusion of a mangrove plant
  publication-title: Plant, Cell & Environment
– volume: 84
  start-page: 757
  year: 2003
  end-page: 764
  article-title: Rapid soil moisture recharge to depth by roots in a stand of
  publication-title: Ecology
– volume: 207
  start-page: 155
  year: 1999
  end-page: 167
  article-title: Significance and limits in the use of predawn leaf water potential for tree irrigation
  publication-title: Plant and Soil
– volume: 155
  start-page: 1264
  year: 2011
  end-page: 1276
  article-title: Natural variation of root hydraulics in Arabidopsis grown in normal and salt‐stressed conditions
  publication-title: Plant Physiology
– volume: 215
  start-page: 93
  year: 1999
  end-page: 102
  article-title: Hydraulic lift among native plant species in the Mojave Desert
  publication-title: Plant and Soil
– volume: 29
  start-page: 697
  year: 2009
  end-page: 705
  article-title: Hydraulic redistribution in dwarf trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange
  publication-title: Tree Physiology
– volume: 22
  start-page: 773
  year: 2008
  end-page: 786
  article-title: Biophysical and life‐history determinants of hydraulic lift in neotropical savanna trees
  publication-title: Functional Ecology
– volume: 77
  start-page: 17
  year: 1996
  end-page: 24
  article-title: Pressure‐flow relationships, xylem solutes and root hydraulic conductance in flooded tomato plants
  publication-title: Annals of Botany
– volume: 152
  start-page: 245
  year: 2010
  end-page: 254
  article-title: The role of tobacco Aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress
  publication-title: Plant Physiology
– volume: 149
  start-page: 445
  year: 2009
  end-page: 460
  article-title: The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine
  publication-title: Plant Physiology
– volume: 29
  start-page: 1407
  year: 2009
  end-page: 1418
  article-title: Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth
  publication-title: Tree Physiology
– volume: 3
  start-page: 245
  year: 1988
  end-page: 265
  article-title: Water transport in and to roots
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– year: 1954
– volume: 32
  start-page: 431
  year: 1983
  end-page: 438
  article-title: Should selection for yield in saline regions bemade on saline or non‐saline soils?
  publication-title: Euphytica
– volume: 40
  start-page: 2206
  year: 2008
  end-page: 2216
  article-title: Shrub‐interspace dynamics alter relationships between microbial community composition and belowground ecosystem characteristics
  publication-title: Soil Biology and Biochemistry
– volume: 25
  start-page: 735
  year: 2011
  end-page: 744
  article-title: Hydraulic redistribution in subsp. with variable access to fresh groundwater
  publication-title: Trees
– volume: 39
  start-page: 804
  year: 2012b
  end-page: 812
  article-title: Hydraulic lift promotes selective root foraging in nutrient‐rich soil patches
  publication-title: Functional Plant Biology
– volume: 49
  start-page: 775
  year: 1998
  end-page: 788
  article-title: How does water get through roots?
  publication-title: Journal of Experimental Botany
– volume: 18
  start-page: 530
  year: 2004
  end-page: 538
  article-title: Hydraulic redistribution by a dominant, warm‐desert phreatophyte: seasonal patterns and response to precipitation pulses
  publication-title: Functional Ecology
– volume: 20
  start-page: a0001
  year: 1978
  end-page: z0001
  article-title: Temporal and spatial variations in the water status of forest trees
  publication-title: Forest Science
– volume: 91
  start-page: 503
  year: 2003
  end-page: 527
  article-title: Na tolerance and Na transport in higher plants
  publication-title: Annals of Botany
– volume: 24
  start-page: 919
  year: 2004
  end-page: 928
  article-title: Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types
  publication-title: Tree Physiology
– volume: 101
  start-page: 1013
  year: 2014
  end-page: 1022
  article-title: Dynamic control of osmolality and ionic composition of the xylem sap in two mangrove species
  publication-title: American Journal of Botany
– volume: 115
  start-page: 306
  year: 1998
  end-page: 311
  article-title: The redistribution of soil water by tree root systems
  publication-title: Oecologia
– volume: 25
  start-page: 895
  year: 1972
  end-page: 904
  article-title: Effect of sodium chloride salinity on the water balance of
  publication-title: Australian Journal of Biological Sciences
– start-page: 521
  year: 2017
  end-page: 547
– volume: 52
  start-page: 663
  year: 2011
  end-page: 675
  article-title: Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots
  publication-title: Plant and Cell Physiology
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  article-title: Mechanisms of salinity tolerance
  publication-title: Annual Review of Plant Biology
– volume: 84
  start-page: 463
  year: 2003
  end-page: 470
  article-title: Magnitude and mechanisms of disequilibrium between predawn plant and soil water potentials
  publication-title: Ecology
– year: 1995
– volume: 113
  start-page: 151
  year: 1998
  end-page: 161
  article-title: Hydraulic lift: consequences of water efflux from the roots of plants
  publication-title: Oecologia
– volume: 43
  start-page: 620
  year: 2016
  end-page: 631
  article-title: Insights into root structure and function of Bassia indica: water redistribution and element dispersion
  publication-title: Functional Plant Biology
– volume: 306
  start-page: 159
  year: 2008
  end-page: 166
  article-title: Does hydraulic lift or nighttime transpiration facilitate nitrogen acquisition?
  publication-title: Plant and Soil
– volume: 105
  start-page: 359
  year: 1987
  end-page: 366
  article-title: Salt tolerance of the halophyte (L.) Dum. The effect of salinity on the concentration of sodium in the xylem
  publication-title: New Phytologist
– volume: 187
  start-page: 171
  year: 2010
  end-page: 183
  article-title: Hydraulic redistribution of soil water by roots affects whole‐stand evapotranspiration and net ecosystem carbon exchange
  publication-title: New Phytologist
– volume: 29
  start-page: 26
  year: 2006
  end-page: 35
  article-title: Diurnal and seasonal changes in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status
  publication-title: Plant, Cell & Environment
– volume: 19
  start-page: 296
  year: 2005
  end-page: 304
  article-title: Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in neotropical savanna trees
  publication-title: Trees‐Structure and Function
– volume: 329
  start-page: 447
  year: 2010a
  end-page: 456
  article-title: Hydraulic lift: soil processes and transpiration in the Mediterranean leguminous shrub (L.) Boiss
  publication-title: Plant and Soil
– volume: 135
  start-page: 167
  year: 2003
  end-page: 175
  article-title: Contrasting patterns of hydraulic redistribution in three desert phreatophytes
  publication-title: Oecologia
– volume: 341
  start-page: 25
  year: 2011
  end-page: 29
  article-title: Can hydraulic redistribution put bread on our table?
  publication-title: Plant and Soil
– volume: 251
  start-page: 237
  year: 2003
  end-page: 245
  article-title: The effects of re‐vegetation on cryptogam species diversity in Teng‐ger Desert, Northern China
  publication-title: Plant and Soil
– volume: 179
  start-page: 945
  year: 2008
  end-page: 963
  article-title: Salinity tolerance in halophytes
  publication-title: New Phytologist
– ident: e_1_2_7_11_1
  doi: 10.1007/s00468-011-0551-0
– ident: e_1_2_7_31_1
  doi: 10.1093/jxb/44.3.653
– ident: e_1_2_7_64_1
  doi: 10.1071/FP12070
– ident: e_1_2_7_66_1
  doi: 10.1007/s00442-010-1615-3
– ident: e_1_2_7_69_1
  doi: 10.1007/BF00021452
– ident: e_1_2_7_94_1
  doi: 10.1023/A:1004729232466
– ident: e_1_2_7_33_1
  doi: 10.1093/treephys/tpp005
– ident: e_1_2_7_73_1
  doi: 10.1104/pp.109.145854
– ident: e_1_2_7_77_1
  doi: 10.1071/FP16057
– ident: e_1_2_7_83_1
  doi: 10.1093/jexbot/49.322.775
– ident: e_1_2_7_88_1
  doi: 10.1093/jexbot/50.suppl_1.1055
– ident: e_1_2_7_25_1
  doi: 10.1007/s00442-004-1621-4
– ident: e_1_2_7_53_1
  doi: 10.1078/0176-1617-00861
– ident: e_1_2_7_79_1
  doi: 10.1071/SR9930073
– ident: e_1_2_7_54_1
  doi: 10.1146/annurev.arplant.59.032607.092734
– ident: e_1_2_7_61_1
  doi: 10.1111/pce.12206
– ident: e_1_2_7_5_1
  doi: 10.1007/s00442-009-1447-1
– ident: e_1_2_7_17_1
  doi: 10.1007/BF00378231
– ident: e_1_2_7_71_1
  doi: 10.1104/pp.114.244871
– ident: e_1_2_7_43_1
  doi: 10.1071/BI9720895
– ident: e_1_2_7_60_1
  doi: 10.1111/j.1469-8137.2012.04088.x
– ident: e_1_2_7_86_1
  doi: 10.1093/jxb/erm102
– ident: e_1_2_7_57_1
  doi: 10.1093/jxb/36.7.1032
– ident: e_1_2_7_93_1
  doi: 10.1093/jexbot/52.362.1873
– ident: e_1_2_7_91_1
  doi: 10.1007/s00442-011-1953-9
– ident: e_1_2_7_50_1
  doi: 10.1093/pcp/pcg168
– ident: e_1_2_7_81_1
  doi: 10.1007/s11104-008-9567-7
– volume: 20
  start-page: a0001
  year: 1978
  ident: e_1_2_7_35_1
  article-title: Temporal and spatial variations in the water status of forest trees
  publication-title: Forest Science
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1469-8137.1987.tb00873.x
– ident: e_1_2_7_67_1
  doi: 10.1093/aob/mcu174
– ident: e_1_2_7_18_1
  doi: 10.1073/pnas.1311314110
– ident: e_1_2_7_39_1
  doi: 10.1007/s00442-002-1165-4
– ident: e_1_2_7_85_1
  doi: 10.1071/FP09202
– ident: e_1_2_7_16_1
  doi: 10.1007/s004420050363
– ident: e_1_2_7_28_1
  doi: 10.1890/0012-9658(2003)084[0463:MAMODB]2.0.CO;2
– ident: e_1_2_7_72_1
  doi: 10.1890/0012-9658(2003)084[0757:RSMRTD]2.0.CO;2
– ident: e_1_2_7_84_1
  doi: 10.1104/pp.110.163113
– ident: e_1_2_7_76_1
  doi: 10.1016/j.jplph.2013.01.014
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1469-8137.2008.02531.x
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1469-8137.2008.02489.x
– ident: e_1_2_7_80_1
  doi: 10.1046/j.1365-2435.1999.00315.x
– ident: e_1_2_7_90_1
  doi: 10.1007/s11104-009-9977-1
– ident: e_1_2_7_38_1
  doi: 10.1111/j.0269-8463.2004.00867.x
– ident: e_1_2_7_46_1
  doi: 10.1071/FP10192
– ident: e_1_2_7_49_1
  doi: 10.1023/A:1023023702248
– ident: e_1_2_7_26_1
  doi: 10.1007/s004420050850
– ident: e_1_2_7_13_1
  doi: 10.1007/s11104-010-0638-1
– ident: e_1_2_7_36_1
  doi: 10.1093/pcp/pcr027
– ident: e_1_2_7_63_1
  doi: 10.1111/j.1469-8137.2011.04039.x
– ident: e_1_2_7_68_1
– ident: e_1_2_7_87_1
  doi: 10.1093/aob/mcg058
– ident: e_1_2_7_47_1
  doi: 10.1046/j.1365-313X.1999.00480.x
– ident: e_1_2_7_22_1
  doi: 10.2307/2404768
– ident: e_1_2_7_56_1
  doi: 10.1093/treephys/24.8.919
– ident: e_1_2_7_74_1
  doi: 10.1111/j.1365-2435.2008.01452.x
– ident: e_1_2_7_52_1
  doi: 10.3389/fpls.2014.00467
– ident: e_1_2_7_4_1
  doi: 10.1023/A:1026415302759
– ident: e_1_2_7_75_1
  doi: 10.1029/2007WR006149
– ident: e_1_2_7_7_1
  doi: 10.1007/s11104-012-1193-8
– ident: e_1_2_7_89_1
  doi: 10.1104/pp.108.128645
– ident: e_1_2_7_45_1
  doi: 10.1111/pce.12272
– ident: e_1_2_7_82_1
  doi: 10.1046/j.1365-2435.2002.00628.x
– ident: e_1_2_7_34_1
  doi: 10.1007/s004250050653
– ident: e_1_2_7_65_1
  doi: 10.1007/s11104-009-0170-3
– ident: e_1_2_7_41_1
  doi: 10.1006/anbo.1996.0003
– ident: e_1_2_7_9_1
  doi: 10.1093/treephys/22.15-16.1107
– ident: e_1_2_7_48_1
  doi: 10.1016/j.tplants.2016.12.004
– ident: e_1_2_7_3_1
  doi: 10.1016/j.soilbio.2008.04.008
– ident: e_1_2_7_92_1
  doi: 10.1111/j.1469-8137.2006.01963.x
– ident: e_1_2_7_59_1
  doi: 10.1039/c0mb00285b
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1365-3040.2005.01397.x
– ident: e_1_2_7_32_1
  doi: 10.1071/BI9650249
– ident: e_1_2_7_20_1
  doi: 10.1093/jexbot/51.342.61
– ident: e_1_2_7_51_1
  doi: 10.3732/ajb.1300435
– ident: e_1_2_7_58_1
  doi: 10.1111/j.1469-8137.2005.01487.x
– ident: e_1_2_7_12_1
  doi: 10.1007/s00468-004-0391-2
– ident: e_1_2_7_14_1
  doi: 10.1093/treephys/21.9.589
– ident: e_1_2_7_95_1
  doi: 10.1111/pce.12727
– ident: e_1_2_7_8_1
  doi: 10.1104/pp.105.065029
– ident: e_1_2_7_44_1
  doi: 10.1016/B978-012425060-4/50007-3
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1365-3040.2005.01409.x
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1469-8137.2010.03245.x
– ident: e_1_2_7_27_1
  doi: 10.1007/s004420100738
– ident: e_1_2_7_2_1
  doi: 10.1007/s10533-009-9339-3
– volume-title: Practical Microclimatology: with Special Reference to the Water Factor in Soil‐Plant‐Atmosphere Relationships
  year: 1961
  ident: e_1_2_7_78_1
– ident: e_1_2_7_40_1
  doi: 10.2307/1939320
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1365-3040.2009.01988.x
– ident: e_1_2_7_62_1
  doi: 10.1146/annurev.pp.39.060188.001333
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1365-3040.2004.01207.x
– ident: e_1_2_7_42_1
  doi: 10.1093/jxb/erj016
– start-page: 521
  volume-title: Innovations in Dryland Agriculture
  year: 2017
  ident: e_1_2_7_55_1
– ident: e_1_2_7_70_1
  doi: 10.1007/BF00379405
– ident: e_1_2_7_19_1
  doi: 10.1093/treephys/tpp076
– ident: e_1_2_7_30_1
  doi: 10.1093/aob/mcu217
SSID ssj0001479
Score 2.3287995
Snippet Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2437
SubjectTerms Accumulation
Apoplast
Ecosystems
Halophyte
heterogeneous soil salinity
hydraulic conductivity
hydraulic lift
Hydraulics
Ions
Leaves
Moisture content
Osmosis
osmotic potential
plant predawn disequilibrium
Plant Shoots - physiology
Plant species
plant water potential
Plants - metabolism
Potential gradient
root systems
Roots
Saline environments
Saline soils
Saline water
Salinity
Salinity effects
Salinity tolerance
salt tolerance
sap
Shoots
Soil - chemistry
Soil water
Soil water movement
Soil water potential
Solutions
Water - metabolism
Water potential
water transfer
Xylem
Xylem - physiology
Title Hydraulic redistribution: limitations for plants in saline soils
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13020
https://www.ncbi.nlm.nih.gov/pubmed/28707352
https://www.proquest.com/docview/1938846854
https://www.proquest.com/docview/1920203353
https://www.proquest.com/docview/2000572520
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB6KKPjifdSLVXzwJaW5E33xwFIERUShD0LIXlAMaWnah_rrncmlVQsieQlklszu7Ox-szsHwKkSTshj2zPCdqAMx_ekwdsyNkweO4qCRQNJ5x33D173xbnrub0GXFSxMEV-iPrAjTQjX69JwWOefVHyoVBUytgie518tQgQPX2mjjKdIs8euS_6fmiWWYXIi6duObsX_QCYs3g133A6q_BasVr4mby1JmPeEu_fsjj-sy9rsFICUXZVzJx1aKh0A5aK0pTTDVi8HiBsnG7CZXcqR_Ek6Qs2ohjeukLWOUsoOKo48WOIfdkwIaca1k9ZFhNPLBv0k2wLXjq3zzddoyy7YAjHRWMyDKWNzAhhOx4CCK14oLgvPa1F29XaC1wUbuibPLAlPqEMuI4RVglcq5DKtLdhIR2kaheYRrip2yFqNpeIyyQXnGtcZCxOhovnNeGsEkAkSo6pNEYSVbYJjkyUj0wTTmrSYZGI4zeig0qKUamLWYQQNUCUFbhOE47rz6hFdDUSp2owIRqLrmRt155PQ0FNrm-59JudYobUnNB1sY9YFjuUy3k-i9HjzW3-svd30n1YtghN5D6EB7AwHk3UIWKhMT_KJ_0Hr_gCdQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1HS8RQEB4WC3qxl7U-xYOXyKYn4sGCsuoqIgpeJOQ1WAzZZcth_fXOpNlBJJdAJmTemzcv38ybArCnhBPy2PaMsBEow_E9afCGjA2Tx46iZNFAkr_j5tZrPjpXT-5TDY7KXJi8PkTlcCPNyPZrUnBySH_Q8q5Q1MvYQoN9nDp6ZwbV_XvxKNPJK-1RAKPvh2ZRV4jieKpXP_-NvkHMz4g1--VczMJzyWweafJyMBzwA_H6pY7jf0czBzMFFmUn-eKZh5pKF2Ay7045WoCJ0w4ix9EiHDdHshcPk7ZgPUrjrZpkHbKE8qNypx9D-Mu6CcXVsHbK-jExxfqddtJfgseL84ezplF0XjCE46I9GYbSRmaEsB0PMYRWPFDcl57WouFq7QUuyjf0TR7YEq9QBlzHiKwEbldIZdrLMJZ2UrUKTCPi1I0QlZtLhGaSC8417jMWJ9vF8-qwX0ogEgXH1B0jiUrzBGcmymamDrsVaTevxfET0UYpxqhQx36EKDVAoBW4Th12qseoSHQ6EqeqMyQai05lbdf-nYbymlzfcukzK_kSqTihE2Mf4SwOKBP07yxGd2fn2c3a30m3Yar5cNOKWpe31-swbRG4yEIKN2Bs0BuqTYRGA76VacAb08QGkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB8OW6UvtZ5aT61uxQdfIvnOpr5o1eNsVUQUfBBC9gsOQ-64j4fzr-9MvqxaoUheApmQ2Z2ZzW925wNgV0s_FqkXWrHNteVHobKErVLLEamvKVmUK9rvuLgMe7f-r7vgrgUHdS5MWR-i2XAjyyjWazLwoTJ_GflQampl7KK__sEPbU4qfXL9VDvK8ctCexS_GEWxU5UVojCe5tXnP6NXCPM5YC3-ON1FuK95LQNNHvanE7EvH1-UcXznYL7A5wqJsqNSdZagpfM2zJe9KWdt-PhzgLhxtgyHvZkapdOsL9mIknibFlk_WEbZUeWWH0Pwy4YZRdWwfs7GKfHExoN-Nl6B2-7pzXHPqvouWNIP0JuMY-UhM1J6OK8RN1pwLSIVGiPtwJiQByjdOHIE9xReseLCpIirJC5WSOV4qzCXD3K9Bswg3jR2jKYtFAIzJaQQBlcZV5DnEoYd2KsFkMiKY-qNkSW1c4IzkxQz04GdhnRYVuL4F9FmLcWkMsZxghiVI8zigd-B781jNCM6G0lzPZgSjUtnsl7gvU1DWU1B5Ab0ma-lhjSc0HlxhGAWB1TI-W0Wk6vj0-Jm_f9Jt2Hh6qSbnJ9d_t6ATy4hiyKecBPmJqOp_oa4aCK2Cv3_A9RrBUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydraulic+redistribution%3A+limitations+for+plants+in+saline+soils&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Bazihizina%2C+Nadia&rft.au=Veneklaas%2C+Erik+J&rft.au=Barrett-Lennard%2C+Edward+G&rft.au=Colmer%2C+Timothy+D&rft.date=2017-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=40&rft.issue=10&rft.spage=2437&rft_id=info:doi/10.1111%2Fpce.13020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon