De novo main-chain modeling with MAINMAST in 2015/2016 EM Model Challenge
Protein tertiary structure modeling is a critical step for the interpretation of three dimensional (3D) election microscopy density. Our group participated the 2015/2016 EM Model Challenge using the MAINMAST software for a de novo main chain modeling. The software generates local dense points using...
Saved in:
Published in | Journal of structural biology Vol. 204; no. 2; pp. 351 - 359 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1047-8477 1095-8657 1095-8657 |
DOI | 10.1016/j.jsb.2018.07.013 |
Cover
Loading…
Abstract | Protein tertiary structure modeling is a critical step for the interpretation of three dimensional (3D) election microscopy density. Our group participated the 2015/2016 EM Model Challenge using the MAINMAST software for a de novo main chain modeling. The software generates local dense points using the mean shifting algorithm, and connects them into Cα models by calculating the minimum spanning tree and the longest path. Subsequently, full atom structure models are generated, which are subject to structural refinement. Here, we summarize the qualities of our submitted models and examine successful and unsuccessful models, including 3D models we did not submit to the Challenge. Our protocol using the MAINMAST software was sometimes able to build correct conformations with 3.4–5.1 Å RMSD. Unsuccessful models had failure of chain traces, however, their Cα positions and some local structures were quite correctly built. For evaluate the quality of the models, the MAINMAST software provides a confidence score for each Cα position from the consensus of top 100 scoring models. |
---|---|
AbstractList | Protein tertiary structure modeling is a critical step for the interpretation of three dimensional (3D) election microscopy density. Our group participated the 2015/2016 EM Model Challenge using the MAINMAST software for a de novo main chain modeling. The software generates local dense points using the mean shifting algorithm, and connects them into Cα models by calculating the minimum spanning tree and the longest path. Subsequently, full atom structure models are generated, which are subject to structural refinement. Here, we summarize the qualities of our submitted models and examine successful and unsuccessful models, including 3D models we did not submit to the Challenge. Our protocol using the MAINMAST software was sometimes able to build correct conformations with 3.4-5.1 Å RMSD. Unsuccessful models had failure of chain traces, however, their Cα positions and some local structures were quite correctly built. For evaluate the quality of the models, the MAINMAST software provides a confidence score for each Cα position from the consensus of top 100 scoring models. Protein tertiary structure modeling is a critical step for the interpretation of three dimensional (3D) election microscopy density. Our group participated the 2015/2016 EM Model Challenge using the MAINMAST software for a de novo main chain modeling. The software generates local dense points using the mean shifting algorithm, and connects them into Cα models by calculating the minimum spanning tree and the longest path. Subsequently, full atom structure models are generated, which are subject to structural refinement. Here, we summarize the qualities of our submitted models and examine successful and unsuccessful models, including 3D models we did not submit to the Challenge. Our protocol using the MAINMAST software was sometimes able to build correct conformations with 3.4-5.1 Å RMSD. Unsuccessful models had failure of chain traces, however, their Cα positions and some local structures were quite correctly built. For evaluate the quality of the models, the MAINMAST software provides a confidence score for each Cα position from the consensus of top 100 scoring models.Protein tertiary structure modeling is a critical step for the interpretation of three dimensional (3D) election microscopy density. Our group participated the 2015/2016 EM Model Challenge using the MAINMAST software for a de novo main chain modeling. The software generates local dense points using the mean shifting algorithm, and connects them into Cα models by calculating the minimum spanning tree and the longest path. Subsequently, full atom structure models are generated, which are subject to structural refinement. Here, we summarize the qualities of our submitted models and examine successful and unsuccessful models, including 3D models we did not submit to the Challenge. Our protocol using the MAINMAST software was sometimes able to build correct conformations with 3.4-5.1 Å RMSD. Unsuccessful models had failure of chain traces, however, their Cα positions and some local structures were quite correctly built. For evaluate the quality of the models, the MAINMAST software provides a confidence score for each Cα position from the consensus of top 100 scoring models. |
Author | Terashi, Genki Kihara, Daisuke |
AuthorAffiliation | a Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA b Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA |
AuthorAffiliation_xml | – name: a Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA – name: b Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA |
Author_xml | – sequence: 1 givenname: Genki orcidid: 0000-0002-5339-909X surname: Terashi fullname: Terashi, Genki organization: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA – sequence: 2 givenname: Daisuke orcidid: 0000-0003-4091-6614 surname: Kihara fullname: Kihara, Daisuke email: dkihara@purdue.edu organization: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30075190$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtv1DAQtlARfcAP4IJy5JJ0Jg87ERLSaimwUrc9UM6WY092vUrsEmcX9d_X0ZYKOPQyM9J8j9F85-zEeUeMvUfIEJBf7rJdaLMcsM5AZIDFK3aG0FRpzStxMs-lSOtSiFN2HsIOAErM8Q07LQBEhQ2csdUXSpw_-GRQ1qV6G2syeEO9dZvkt522yXqxulkvftwlcROtqstYeHK1TtYzLFluVd-T29Bb9rpTfaB3T_2C_fx6dbf8nl7fflstF9epLiuc0q42DWpe6EpjJ3SpuTZF3nFTY0lAiovKNK0AQ1p1VLS8Fl0teA4tVGSwKS7Y56Pu_b4dyGhy06h6eT_aQY0P0isr_904u5Ubf5AcRVOWIgp8fBIY_a89hUkONmjqe-XI74PMoS4EoiggQj_87fVs8ud_EYBHgB59CCN1zxAEOWckdzJmJOeMJAgZM4oc8R9H20lN1s_n2v5F5qcjk-J_D5ZGGbQlp8nYkfQkjbcvsB8BLkSpOQ |
CitedBy_id | crossref_primary_10_1017_S1431927619001466 crossref_primary_10_3389_fphar_2022_939555 crossref_primary_10_2139_ssrn_3866834 crossref_primary_10_1038_s41592_019_0500_1 crossref_primary_10_3390_molecules25010082 crossref_primary_10_1063_5_0026025 crossref_primary_10_1002_cpz1_494 crossref_primary_10_1093_bioinformatics_btad494 crossref_primary_10_1038_s41467_021_22401_y crossref_primary_10_1016_j_jsb_2018_10_004 crossref_primary_10_1107_S2059798320005513 crossref_primary_10_1042_BST20210485 crossref_primary_10_1021_acs_jcim_9b01110 crossref_primary_10_1016_j_matt_2021_09_004 |
Cites_doi | 10.1002/jcc.20906 10.1038/nprot.2017.004 10.1107/S2059798317004181 10.1016/j.jsb.2006.07.003 10.1038/nmeth.4340 10.1107/S090744490705024X 10.1016/j.str.2012.01.008 10.1038/nmeth.3287 10.1016/j.jmb.2009.07.008 10.1016/j.jsb.2013.06.008 10.1016/j.jsb.2016.06.004 10.1016/j.jsb.2013.08.010 10.1002/1097-0134(20010215)42:3<319::AID-PROT30>3.0.CO;2-A 10.1002/(SICI)1097-0134(1999)37:3+<22::AID-PROT5>3.0.CO;2-W 10.1016/j.ymeth.2016.01.009 10.1016/j.jsb.2006.05.009 10.1016/0305-0548(86)90048-1 10.1006/jmbi.2001.4633 10.7554/eLife.16105 10.1016/j.jsb.2011.04.016 10.1021/jp212612t 10.1016/j.str.2008.03.005 10.1109/TIT.1975.1055330 10.1016/j.jsb.2012.09.006 10.1016/j.str.2006.11.008 10.1016/bs.mie.2015.02.011 10.1002/bip.22081 10.1002/jcc.24785 10.1002/bip.360221211 10.1006/jsbi.2000.4350 10.1093/nar/gkv1047 10.1107/S1399004714013856 10.1038/nmeth.4169 10.1038/s41467-018-04053-7 10.1002/prot.22885 10.1002/bip.22065 10.1038/nmeth.3286 |
ContentType | Journal Article |
Copyright | 2018 The Author(s) Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 The Author(s) – notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jsb.2018.07.013 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1095-8657 |
EndPage | 359 |
ExternalDocumentID | PMC6179447 30075190 10_1016_j_jsb_2018_07_013 S1047847718301710 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM097528 – fundername: NIGMS NIH HHS grantid: R01 GM123055 |
GroupedDBID | --- --K --M -DZ -~X .55 .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29L 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 85S 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AETEA AFFNX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPSJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ H~9 IH2 IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SSU SSZ T5K TWZ UKR UNMZH VH1 WH7 WUQ X7M XJT XOL XPP Y6R ZA5 ZGI ZKB ZMT ZU3 ZXP ~02 ~G- ~KM AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c451t-f8d91c63c5c1f7c4c6cd32f6d814e0ea675d9b70decafe3b687f87620b05ed193 |
IEDL.DBID | .~1 |
ISSN | 1047-8477 1095-8657 |
IngestDate | Thu Aug 21 13:59:21 EDT 2025 Mon Jul 21 11:49:53 EDT 2025 Thu Apr 03 07:08:51 EDT 2025 Tue Jul 01 03:07:33 EDT 2025 Thu Apr 24 22:52:37 EDT 2025 Fri Feb 23 02:28:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Protein structure modeling Main-chain trace Mean shifting algorithm confidence score Cryo-EM Map interpretation Minimum spanning tree Electron microscopy CryoEM Model Challenge MAINMAST Rosetta |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license(http://creativecommons.org/licenses/BY/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-f8d91c63c5c1f7c4c6cd32f6d814e0ea675d9b70decafe3b687f87620b05ed193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4091-6614 0000-0002-5339-909X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1047847718301710 |
PMID | 30075190 |
PQID | 2083711730 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6179447 proquest_miscellaneous_2083711730 pubmed_primary_30075190 crossref_primary_10_1016_j_jsb_2018_07_013 crossref_citationtrail_10_1016_j_jsb_2018_07_013 elsevier_sciencedirect_doi_10_1016_j_jsb_2018_07_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of structural biology |
PublicationTitleAlternate | J Struct Biol |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Baker, Baker, Hryc, Ju, Chiu (b0015) 2012; 97 DiMaio, Song, Li, Brunner, Xu, Conticello, Egelman, Marlovits, Cheng, Baker (b0040) 2015; 12 Terwilliger, Grosse-Kunstleve, Afonine, Moriarty, Zwart, Hung, Read, Adams (b0165) 2008; 64 McGreevy, Teo, Singharoy, Schulten (b0105) 2016; 100 Punjani, Rubinstein, Fleet, Brubaker (b0130) 2017; 14 Tang, Peng, Baldwin, Mann, Jiang, Rees, Ludtke (b0155) 2007; 157 Glover (b0070) 1986; 13 Scheres (b0140) 2012; 180 Baker, Rees, Ludtke, Chiu, Baker (b0020) 2012; 20 Baker, Ju, Chiu (b0010) 2007; 15 DiMaio, Tyka, Baker, Chiu, Baker (b0035) 2009; 392 Patwardhan (b0125) 2017; 73 Fukunaga, Hostetler (b0065) 1975; 21 McGreevy, Singharoy, Li, Zhang, Xu, Perozo, Schulten (b0110) 2014; 70 Monroe, Terashi, Kihara (b0120) 2017; 25 Skolnick, Kihara (b0150) 2001; 42 Frank (b0055) 2017; 12 Ludtke, Lawson, Kleywegt, Berman, Chiu (b0100) 2012; 97 Esquivel-Rodriguez, Kihara (b0050) 2013; 184 Woetzel, Lindert, Stewart, Meiler (b0185) 2011; 175 Frenz, Walls, Egelman, Veesler, DiMaio (b0060) 2017; 14 Velankar, van Ginkel, Alhroub, Battle, Berrisford, Conroy, Dana, Gore, Gutmanas, Haslam, Hendrickx, Lagerstedt, Mir, Fernandez Montecelo, Mukhopadhyay, Oldfield, Patwardhan, Sanz-Garcia, Sen, Slowley, Wainwright, Deshpande, Iudin, Sahni, Salavert Torres, Hirshberg, Mak, Nadzirin, Armstrong, Clark, Smart, Korir, Kleywegt (b0175) 2016; 44 Wriggers, Birmanns (b0190) 2001; 133 Zemla, Venclovas, Moult, Fidelis (b0195) 1999 Rotkiewicz, Skolnick (b0135) 2008; 29 Jiang, Baker, Ludtke, Chiu (b0080) 2001; 308 Kabsch, Sander (b0085) 1983; 22 Lopez-Blanco, Chacon (b0095) 2013; 184 Wang, Kudryashev, Li, Egelman, Basler, Cheng, Baker, DiMaio (b0180) 2015; 12 Terashi, Kihara (b0160) 2018; 9 Miyashita, Kobayashi, Mori, Sugita, Tama (b0115) 2017; 38 Hohn, Tang, Goodyear, Baldwin, Huang, Penczek, Yang, Glaeser, Adams, Ludtke (b0075) 2007; 157 Afonine, Poon, Read, Sobolev, Terwilliger, Urzhumtsev, Adams (b0005) 2018 Chen, Kihara (b0025) 2011; 79 Chen, Baldwin, Ludtke, Baker (b0030) 2016; 196 Esquivel-Rodriguez, Kihara (b0045) 2012; 116 Trabuco, Villa, Mitra, Frank, Schulten (b0170) 2008; 16 Kirmizialtin, Loerke, Behrmann, Spahn, Sanbonmatsu (b0090) 2015; 558 Singharoy, Teo, McGreevy, Stone, Zhao, Schulten (b0145) 2016; 5 Frenz (10.1016/j.jsb.2018.07.013_b0060) 2017; 14 Rotkiewicz (10.1016/j.jsb.2018.07.013_b0135) 2008; 29 Hohn (10.1016/j.jsb.2018.07.013_b0075) 2007; 157 Lopez-Blanco (10.1016/j.jsb.2018.07.013_b0095) 2013; 184 Wang (10.1016/j.jsb.2018.07.013_b0180) 2015; 12 Kabsch (10.1016/j.jsb.2018.07.013_b0085) 1983; 22 Frank (10.1016/j.jsb.2018.07.013_b0055) 2017; 12 Glover (10.1016/j.jsb.2018.07.013_b0070) 1986; 13 DiMaio (10.1016/j.jsb.2018.07.013_b0035) 2009; 392 Monroe (10.1016/j.jsb.2018.07.013_b0120) 2017; 25 Patwardhan (10.1016/j.jsb.2018.07.013_b0125) 2017; 73 Chen (10.1016/j.jsb.2018.07.013_b0025) 2011; 79 Trabuco (10.1016/j.jsb.2018.07.013_b0170) 2008; 16 Punjani (10.1016/j.jsb.2018.07.013_b0130) 2017; 14 Woetzel (10.1016/j.jsb.2018.07.013_b0185) 2011; 175 Scheres (10.1016/j.jsb.2018.07.013_b0140) 2012; 180 DiMaio (10.1016/j.jsb.2018.07.013_b0040) 2015; 12 Baker (10.1016/j.jsb.2018.07.013_b0015) 2012; 97 Esquivel-Rodriguez (10.1016/j.jsb.2018.07.013_b0045) 2012; 116 Skolnick (10.1016/j.jsb.2018.07.013_b0150) 2001; 42 Terwilliger (10.1016/j.jsb.2018.07.013_b0165) 2008; 64 Velankar (10.1016/j.jsb.2018.07.013_b0175) 2016; 44 Baker (10.1016/j.jsb.2018.07.013_b0020) 2012; 20 Wriggers (10.1016/j.jsb.2018.07.013_b0190) 2001; 133 Miyashita (10.1016/j.jsb.2018.07.013_b0115) 2017; 38 McGreevy (10.1016/j.jsb.2018.07.013_b0110) 2014; 70 Baker (10.1016/j.jsb.2018.07.013_b0010) 2007; 15 Singharoy (10.1016/j.jsb.2018.07.013_b0145) 2016; 5 Tang (10.1016/j.jsb.2018.07.013_b0155) 2007; 157 Zemla (10.1016/j.jsb.2018.07.013_b0195) 1999 Terashi (10.1016/j.jsb.2018.07.013_b0160) 2018; 9 McGreevy (10.1016/j.jsb.2018.07.013_b0105) 2016; 100 Kirmizialtin (10.1016/j.jsb.2018.07.013_b0090) 2015; 558 Jiang (10.1016/j.jsb.2018.07.013_b0080) 2001; 308 Chen (10.1016/j.jsb.2018.07.013_b0030) 2016; 196 Esquivel-Rodriguez (10.1016/j.jsb.2018.07.013_b0050) 2013; 184 Afonine (10.1016/j.jsb.2018.07.013_b0005) 2018 Fukunaga (10.1016/j.jsb.2018.07.013_b0065) 1975; 21 Ludtke (10.1016/j.jsb.2018.07.013_b0100) 2012; 97 |
References_xml | – volume: 20 start-page: 450 year: 2012 end-page: 463 ident: b0020 article-title: Constructing and validating initial Calpha models from subnanometer resolution density maps with pathwalking publication-title: Structure – volume: 12 start-page: 209 year: 2017 end-page: 212 ident: b0055 article-title: Advances in the field of single-particle cryo-electron microscopy over the last decade publication-title: Nat Protoc. – volume: 14 start-page: 290 year: 2017 end-page: 296 ident: b0130 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods – volume: 22 start-page: 2577 year: 1983 ident: b0085 article-title: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features publication-title: Biopolymers – volume: 70 start-page: 2344 year: 2014 end-page: 2355 ident: b0110 article-title: xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 184 start-page: 93 year: 2013 end-page: 102 ident: b0050 article-title: Computational methods for constructing protein structure models from 3D electron microscopy maps publication-title: J. Struct. Biol. – volume: 14 start-page: 797 year: 2017 end-page: 800 ident: b0060 article-title: RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps publication-title: Nat. Methods – volume: 308 start-page: 1033 year: 2001 end-page: 1044 ident: b0080 article-title: Bridging the information gap: computational tools for intermediate resolution structure interpretation publication-title: J. Mol. Biol. – volume: 16 start-page: 673 year: 2008 end-page: 683 ident: b0170 article-title: Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics publication-title: Structure – volume: 12 start-page: 335 year: 2015 end-page: 338 ident: b0180 article-title: De novo protein structure determination from near-atomic-resolution cryo-EM maps publication-title: Nat. Methods – volume: 392 start-page: 181 year: 2009 end-page: 190 ident: b0035 article-title: Refinement of protein structures into low-resolution density maps using rosetta publication-title: J. Mol. Biol. – volume: 12 start-page: 361 year: 2015 end-page: 365 ident: b0040 article-title: Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement publication-title: Nat. Methods – volume: 5 year: 2016 ident: b0145 article-title: Molecular dynamics-based refinement and validation for sub-5 A cryo-electron microscopy maps publication-title: eLife – volume: 184 start-page: 261 year: 2013 end-page: 270 ident: b0095 article-title: iMODFIT: efficient and robust flexible fitting based on vibrational analysis in internal coordinates publication-title: J. Struct. Biol. – volume: 116 start-page: 6854 year: 2012 end-page: 6861 ident: b0045 article-title: Fitting multimeric protein complexes into electron microscopy maps using 3D zernike descriptors publication-title: J. Phys. Chem. B – volume: 97 start-page: 655 year: 2012 end-page: 668 ident: b0015 article-title: Gorgon and pathwalking: macromolecular modeling tools for subnanometer resolution density maps publication-title: Biopolymers – volume: 25 year: 2017 ident: b0120 article-title: Variability of protein structure models from electron microscopy publication-title: Structure – volume: 180 start-page: 519 year: 2012 end-page: 530 ident: b0140 article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. – volume: 15 start-page: 7 year: 2007 end-page: 19 ident: b0010 article-title: Identification of secondary structure elements in intermediate-resolution density maps publication-title: Structure – volume: 9 start-page: 1618 year: 2018 ident: b0160 article-title: De novo main-chain modeling for EM maps using MAINMAST publication-title: Nat. Commun. – start-page: 22 year: 1999 end-page: 29 ident: b0195 article-title: Processing and analysis of CASP3 protein structure predictions publication-title: Proteins – volume: 196 start-page: 289 year: 2016 end-page: 298 ident: b0030 article-title: De Novo modeling in cryo-EM density maps with Pathwalking publication-title: J. Struct. Biol. – volume: 133 start-page: 193 year: 2001 end-page: 202 ident: b0190 article-title: Using situs for flexible and rigid-body fitting of multiresolution single-molecule data publication-title: J. Struct. Biol. – volume: 64 start-page: 61 year: 2008 end-page: 69 ident: b0165 article-title: Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 100 start-page: 50 year: 2016 end-page: 60 ident: b0105 article-title: Advances in the molecular dynamics flexible fitting method for cryo-EM modeling publication-title: Methods – volume: 29 start-page: 1460 year: 2008 end-page: 1465 ident: b0135 article-title: Fast procedure for reconstruction of full-atom protein models from reduced representations publication-title: J. Comput. Chem. – volume: 73 start-page: 503 year: 2017 end-page: 508 ident: b0125 article-title: Trends in the electron microscopy data bank (EMDB) publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 21 start-page: 32 year: 1975 end-page: 40 ident: b0065 article-title: Estimation of gradient of a density-function, with applications in pattern-recognition publication-title: IEEE Trans. Inf. Theory – volume: 42 start-page: 319 year: 2001 end-page: 331 ident: b0150 article-title: Defrosting the frozen approximation: PROSPECTOR–a new approach to threading publication-title: Proteins – volume: 13 start-page: 533 year: 1986 end-page: 549 ident: b0070 article-title: Future paths for integer programming and links to artificial-intelligence publication-title: Comput. Oper. Res. – volume: 38 start-page: 1447 year: 2017 end-page: 1461 ident: b0115 article-title: Flexible fitting to cryo-EM density map using ensemble molecular dynamics simulations publication-title: J. Comput. Chem. – volume: 175 start-page: 264 year: 2011 end-page: 276 ident: b0185 article-title: BCL::EM-Fit: rigid body fitting of atomic structures into density maps using geometric hashing and real space refinement publication-title: J. Struct. Biol. – volume: 79 start-page: 315 year: 2011 end-page: 334 ident: b0025 article-title: Effect of using suboptimal alignments in template-based protein structure prediction publication-title: Proteins – volume: 157 start-page: 38 year: 2007 end-page: 46 ident: b0155 article-title: EMAN2: an extensible image processing suite for electron microscopy publication-title: J. Struct. Biol. – volume: 558 start-page: 497 year: 2015 end-page: 514 ident: b0090 article-title: Using molecular simulation to model high-resolution cryo-EM reconstructions publication-title: Methods Enzym. – volume: 157 start-page: 47 year: 2007 end-page: 55 ident: b0075 article-title: SPARX, a new environment for Cryo-EM image processing publication-title: J. Struct. Biol. – volume: 97 start-page: 651 year: 2012 end-page: 654 ident: b0100 article-title: The 2010 cryo-EM modeling challenge publication-title: Biopolymers – volume: 44 start-page: D385 year: 2016 end-page: 395 ident: b0175 article-title: PDBe: improved accessibility of macromolecular structure data from PDB and EMDB publication-title: Nucl. Acids Res. – year: 2018 ident: b0005 article-title: Real-Space Refinement in Phenix for Cryo-EM and Crystallography – volume: 25 issue: 592–602 year: 2017 ident: 10.1016/j.jsb.2018.07.013_b0120 article-title: Variability of protein structure models from electron microscopy publication-title: Structure – volume: 29 start-page: 1460 year: 2008 ident: 10.1016/j.jsb.2018.07.013_b0135 article-title: Fast procedure for reconstruction of full-atom protein models from reduced representations publication-title: J. Comput. Chem. doi: 10.1002/jcc.20906 – volume: 12 start-page: 209 year: 2017 ident: 10.1016/j.jsb.2018.07.013_b0055 article-title: Advances in the field of single-particle cryo-electron microscopy over the last decade publication-title: Nat Protoc. doi: 10.1038/nprot.2017.004 – volume: 73 start-page: 503 year: 2017 ident: 10.1016/j.jsb.2018.07.013_b0125 article-title: Trends in the electron microscopy data bank (EMDB) publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S2059798317004181 – year: 2018 ident: 10.1016/j.jsb.2018.07.013_b0005 – volume: 157 start-page: 47 year: 2007 ident: 10.1016/j.jsb.2018.07.013_b0075 article-title: SPARX, a new environment for Cryo-EM image processing publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2006.07.003 – volume: 14 start-page: 797 year: 2017 ident: 10.1016/j.jsb.2018.07.013_b0060 article-title: RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps publication-title: Nat. Methods doi: 10.1038/nmeth.4340 – volume: 64 start-page: 61 year: 2008 ident: 10.1016/j.jsb.2018.07.013_b0165 article-title: Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S090744490705024X – volume: 20 start-page: 450 year: 2012 ident: 10.1016/j.jsb.2018.07.013_b0020 article-title: Constructing and validating initial Calpha models from subnanometer resolution density maps with pathwalking publication-title: Structure doi: 10.1016/j.str.2012.01.008 – volume: 12 start-page: 335 year: 2015 ident: 10.1016/j.jsb.2018.07.013_b0180 article-title: De novo protein structure determination from near-atomic-resolution cryo-EM maps publication-title: Nat. Methods doi: 10.1038/nmeth.3287 – volume: 392 start-page: 181 year: 2009 ident: 10.1016/j.jsb.2018.07.013_b0035 article-title: Refinement of protein structures into low-resolution density maps using rosetta publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.07.008 – volume: 184 start-page: 93 year: 2013 ident: 10.1016/j.jsb.2018.07.013_b0050 article-title: Computational methods for constructing protein structure models from 3D electron microscopy maps publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2013.06.008 – volume: 196 start-page: 289 year: 2016 ident: 10.1016/j.jsb.2018.07.013_b0030 article-title: De Novo modeling in cryo-EM density maps with Pathwalking publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2016.06.004 – volume: 184 start-page: 261 year: 2013 ident: 10.1016/j.jsb.2018.07.013_b0095 article-title: iMODFIT: efficient and robust flexible fitting based on vibrational analysis in internal coordinates publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2013.08.010 – volume: 42 start-page: 319 year: 2001 ident: 10.1016/j.jsb.2018.07.013_b0150 article-title: Defrosting the frozen approximation: PROSPECTOR–a new approach to threading publication-title: Proteins doi: 10.1002/1097-0134(20010215)42:3<319::AID-PROT30>3.0.CO;2-A – start-page: 22 issue: Suppl. 3 year: 1999 ident: 10.1016/j.jsb.2018.07.013_b0195 article-title: Processing and analysis of CASP3 protein structure predictions publication-title: Proteins doi: 10.1002/(SICI)1097-0134(1999)37:3+<22::AID-PROT5>3.0.CO;2-W – volume: 100 start-page: 50 year: 2016 ident: 10.1016/j.jsb.2018.07.013_b0105 article-title: Advances in the molecular dynamics flexible fitting method for cryo-EM modeling publication-title: Methods doi: 10.1016/j.ymeth.2016.01.009 – volume: 157 start-page: 38 year: 2007 ident: 10.1016/j.jsb.2018.07.013_b0155 article-title: EMAN2: an extensible image processing suite for electron microscopy publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2006.05.009 – volume: 13 start-page: 533 year: 1986 ident: 10.1016/j.jsb.2018.07.013_b0070 article-title: Future paths for integer programming and links to artificial-intelligence publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(86)90048-1 – volume: 308 start-page: 1033 year: 2001 ident: 10.1016/j.jsb.2018.07.013_b0080 article-title: Bridging the information gap: computational tools for intermediate resolution structure interpretation publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2001.4633 – volume: 5 year: 2016 ident: 10.1016/j.jsb.2018.07.013_b0145 article-title: Molecular dynamics-based refinement and validation for sub-5 A cryo-electron microscopy maps publication-title: eLife doi: 10.7554/eLife.16105 – volume: 175 start-page: 264 year: 2011 ident: 10.1016/j.jsb.2018.07.013_b0185 article-title: BCL::EM-Fit: rigid body fitting of atomic structures into density maps using geometric hashing and real space refinement publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2011.04.016 – volume: 116 start-page: 6854 year: 2012 ident: 10.1016/j.jsb.2018.07.013_b0045 article-title: Fitting multimeric protein complexes into electron microscopy maps using 3D zernike descriptors publication-title: J. Phys. Chem. B doi: 10.1021/jp212612t – volume: 16 start-page: 673 year: 2008 ident: 10.1016/j.jsb.2018.07.013_b0170 article-title: Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics publication-title: Structure doi: 10.1016/j.str.2008.03.005 – volume: 21 start-page: 32 year: 1975 ident: 10.1016/j.jsb.2018.07.013_b0065 article-title: Estimation of gradient of a density-function, with applications in pattern-recognition publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1975.1055330 – volume: 180 start-page: 519 year: 2012 ident: 10.1016/j.jsb.2018.07.013_b0140 article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.09.006 – volume: 15 start-page: 7 year: 2007 ident: 10.1016/j.jsb.2018.07.013_b0010 article-title: Identification of secondary structure elements in intermediate-resolution density maps publication-title: Structure doi: 10.1016/j.str.2006.11.008 – volume: 558 start-page: 497 year: 2015 ident: 10.1016/j.jsb.2018.07.013_b0090 article-title: Using molecular simulation to model high-resolution cryo-EM reconstructions publication-title: Methods Enzym. doi: 10.1016/bs.mie.2015.02.011 – volume: 97 start-page: 651 year: 2012 ident: 10.1016/j.jsb.2018.07.013_b0100 article-title: The 2010 cryo-EM modeling challenge publication-title: Biopolymers doi: 10.1002/bip.22081 – volume: 38 start-page: 1447 year: 2017 ident: 10.1016/j.jsb.2018.07.013_b0115 article-title: Flexible fitting to cryo-EM density map using ensemble molecular dynamics simulations publication-title: J. Comput. Chem. doi: 10.1002/jcc.24785 – volume: 22 start-page: 2577 year: 1983 ident: 10.1016/j.jsb.2018.07.013_b0085 article-title: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features publication-title: Biopolymers doi: 10.1002/bip.360221211 – volume: 133 start-page: 193 year: 2001 ident: 10.1016/j.jsb.2018.07.013_b0190 article-title: Using situs for flexible and rigid-body fitting of multiresolution single-molecule data publication-title: J. Struct. Biol. doi: 10.1006/jsbi.2000.4350 – volume: 44 start-page: D385 year: 2016 ident: 10.1016/j.jsb.2018.07.013_b0175 article-title: PDBe: improved accessibility of macromolecular structure data from PDB and EMDB publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkv1047 – volume: 70 start-page: 2344 year: 2014 ident: 10.1016/j.jsb.2018.07.013_b0110 article-title: xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S1399004714013856 – volume: 14 start-page: 290 year: 2017 ident: 10.1016/j.jsb.2018.07.013_b0130 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 9 start-page: 1618 year: 2018 ident: 10.1016/j.jsb.2018.07.013_b0160 article-title: De novo main-chain modeling for EM maps using MAINMAST publication-title: Nat. Commun. doi: 10.1038/s41467-018-04053-7 – volume: 79 start-page: 315 year: 2011 ident: 10.1016/j.jsb.2018.07.013_b0025 article-title: Effect of using suboptimal alignments in template-based protein structure prediction publication-title: Proteins doi: 10.1002/prot.22885 – volume: 97 start-page: 655 year: 2012 ident: 10.1016/j.jsb.2018.07.013_b0015 article-title: Gorgon and pathwalking: macromolecular modeling tools for subnanometer resolution density maps publication-title: Biopolymers doi: 10.1002/bip.22065 – volume: 12 start-page: 361 year: 2015 ident: 10.1016/j.jsb.2018.07.013_b0040 article-title: Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement publication-title: Nat. Methods doi: 10.1038/nmeth.3286 |
SSID | ssj0004121 |
Score | 2.3317287 |
Snippet | Protein tertiary structure modeling is a critical step for the interpretation of three dimensional (3D) election microscopy density. Our group participated the... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 351 |
SubjectTerms | confidence score Cryo-EM Cryoelectron Microscopy - methods CryoEM Model Challenge Electron microscopy Main-chain trace MAINMAST Map interpretation Mean shifting algorithm Minimum spanning tree Protein Conformation Protein structure modeling Proteins - chemistry Rosetta Software |
Title | De novo main-chain modeling with MAINMAST in 2015/2016 EM Model Challenge |
URI | https://dx.doi.org/10.1016/j.jsb.2018.07.013 https://www.ncbi.nlm.nih.gov/pubmed/30075190 https://www.proquest.com/docview/2083711730 https://pubmed.ncbi.nlm.nih.gov/PMC6179447 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTuMwcIRASFzQwvLowiKvxAkpNMGOnRyrLqilag88BDfLdhxRxKZoKUhc-HZm8iiU1XLgkijxOBrN2POI5wGwH-eZRTWUB6ly6KAobwOTGtxXLuRGKJsYTtnIw5HsXYrT6_h6AbpNLgyFVdayv5LppbSu37Rrarbvx-P2eVlYRigUrpyKvpDfLoSiVX748hbmIaIq94oqEhB0c7JZxnjdPliK7krK-p0R_59u-tf2_BhC-U4nnXyD1dqYZJ0K3zVY8MU6LFftJZ-_Q_-3Z8XkacL-oPsfuBu8srLzDaorRj9g2bDTHw075xcMRxDDuI0XyY6HjFqk3bFu02llAy5Pji-6vaBunRA4EUfTIE-yNHKSu9hFuXLCSZfxo1xmSSR86A26CVlqVZh5Z3LPrUxUTnIxtGHsMzTqNmGxmBR-G1iCJgh-IvXcUDq_SKVDl9EcGctlnoauBWFDNO3quuLU3uJONwFktxrprInOOlQa6dyCg9mU-6qoxmfAouGEnlsZGoX-Z9N-NVzTuGPoGMQUfvL4gEDolEcRirYWbFVcnGHByYRCG6kFao6_MwCqxj0_UoxvyqrckkSbUD--hu4OrNBTleW4C4vTv4_-J5o7U7tXruc9WOr0B70R3QdnV4NXiG_9rQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-homm8TGNsUMY2I_E0KWqCHTt5rAqoHaQvFIk3y3Yc0QpSNAoS_z13-SgraDzwkofYjk539n3Ed78DOIiL3KIZKoJUOQxQlLeBSQ2eKxdyI5RNDKdq5Gwshxfiz2V8uQaDthaG0iob3V_r9EpbN296DTd7t9Np77wClhEKlSsn0BeM29cJnSruwHp_dDocP5dHRnX5FYES0IL2crNK85rdWUrwSioIz4j_zzy9dj9fZlH-Y5ZOPsOnxp9k_ZrkTVjz5Rf4UHeYfNyC0ZFn5fxhzm7MtAzcFT5Z1fwGLRajf7As64_GWf98wnAEKYx7-JDsOGPUJe2aDdpmK1_h4uR4MhgGTfeEwIk4WgRFkqeRk9zFLiqUE066nB8WMk8i4UNvMFLIU6vC3DtTeG5logpSjaENY5-jX_cNOuW89DvAEvRC8BOp54Yq-kUqHUaN5tBYLos0dF0IW6Zp10CLU4eLa93mkM008lkTn3WoNPK5C7-XS25rXI23JotWEnplc2jU-28t22-lpvHQ0E2IKf38_g4nYVweRajdurBdS3FJBScvCt2kLqgV-S4nECD36kg5vaqAuSVpN6F230fuL_g4nGRn-mw0Pv0OGzRSFz3uQWfx997_QO9nYX82u_sJSlf-uw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+main-chain+modeling+with+MAINMAST+in+2015%2F2016+EM+Model+Challenge&rft.jtitle=Journal+of+structural+biology&rft.au=Terashi%2C+Genki&rft.au=Kihara%2C+Daisuke&rft.date=2018-11-01&rft.issn=1047-8477&rft.eissn=1095-8657&rft.volume=204&rft.issue=2&rft.spage=351&rft.epage=359&rft_id=info:doi/10.1016%2Fj.jsb.2018.07.013&rft_id=info%3Apmid%2F30075190&rft.externalDocID=PMC6179447 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-8477&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-8477&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-8477&client=summon |