De novo main-chain modeling with MAINMAST in 2015/2016 EM Model Challenge

Protein tertiary structure modeling is a critical step for the interpretation of three dimensional (3D) election microscopy density. Our group participated the 2015/2016 EM Model Challenge using the MAINMAST software for a de novo main chain modeling. The software generates local dense points using...

Full description

Saved in:
Bibliographic Details
Published inJournal of structural biology Vol. 204; no. 2; pp. 351 - 359
Main Authors Terashi, Genki, Kihara, Daisuke
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2018
Subjects
Online AccessGet full text
ISSN1047-8477
1095-8657
1095-8657
DOI10.1016/j.jsb.2018.07.013

Cover

Loading…
Abstract Protein tertiary structure modeling is a critical step for the interpretation of three dimensional (3D) election microscopy density. Our group participated the 2015/2016 EM Model Challenge using the MAINMAST software for a de novo main chain modeling. The software generates local dense points using the mean shifting algorithm, and connects them into Cα models by calculating the minimum spanning tree and the longest path. Subsequently, full atom structure models are generated, which are subject to structural refinement. Here, we summarize the qualities of our submitted models and examine successful and unsuccessful models, including 3D models we did not submit to the Challenge. Our protocol using the MAINMAST software was sometimes able to build correct conformations with 3.4–5.1 Å RMSD. Unsuccessful models had failure of chain traces, however, their Cα positions and some local structures were quite correctly built. For evaluate the quality of the models, the MAINMAST software provides a confidence score for each Cα position from the consensus of top 100 scoring models.
AbstractList Protein tertiary structure modeling is a critical step for the interpretation of three dimensional (3D) election microscopy density. Our group participated the 2015/2016 EM Model Challenge using the MAINMAST software for a de novo main chain modeling. The software generates local dense points using the mean shifting algorithm, and connects them into Cα models by calculating the minimum spanning tree and the longest path. Subsequently, full atom structure models are generated, which are subject to structural refinement. Here, we summarize the qualities of our submitted models and examine successful and unsuccessful models, including 3D models we did not submit to the Challenge. Our protocol using the MAINMAST software was sometimes able to build correct conformations with 3.4-5.1 Å RMSD. Unsuccessful models had failure of chain traces, however, their Cα positions and some local structures were quite correctly built. For evaluate the quality of the models, the MAINMAST software provides a confidence score for each Cα position from the consensus of top 100 scoring models.
Protein tertiary structure modeling is a critical step for the interpretation of three dimensional (3D) election microscopy density. Our group participated the 2015/2016 EM Model Challenge using the MAINMAST software for a de novo main chain modeling. The software generates local dense points using the mean shifting algorithm, and connects them into Cα models by calculating the minimum spanning tree and the longest path. Subsequently, full atom structure models are generated, which are subject to structural refinement. Here, we summarize the qualities of our submitted models and examine successful and unsuccessful models, including 3D models we did not submit to the Challenge. Our protocol using the MAINMAST software was sometimes able to build correct conformations with 3.4-5.1 Å RMSD. Unsuccessful models had failure of chain traces, however, their Cα positions and some local structures were quite correctly built. For evaluate the quality of the models, the MAINMAST software provides a confidence score for each Cα position from the consensus of top 100 scoring models.Protein tertiary structure modeling is a critical step for the interpretation of three dimensional (3D) election microscopy density. Our group participated the 2015/2016 EM Model Challenge using the MAINMAST software for a de novo main chain modeling. The software generates local dense points using the mean shifting algorithm, and connects them into Cα models by calculating the minimum spanning tree and the longest path. Subsequently, full atom structure models are generated, which are subject to structural refinement. Here, we summarize the qualities of our submitted models and examine successful and unsuccessful models, including 3D models we did not submit to the Challenge. Our protocol using the MAINMAST software was sometimes able to build correct conformations with 3.4-5.1 Å RMSD. Unsuccessful models had failure of chain traces, however, their Cα positions and some local structures were quite correctly built. For evaluate the quality of the models, the MAINMAST software provides a confidence score for each Cα position from the consensus of top 100 scoring models.
Author Terashi, Genki
Kihara, Daisuke
AuthorAffiliation a Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
b Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
AuthorAffiliation_xml – name: a Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
– name: b Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
Author_xml – sequence: 1
  givenname: Genki
  orcidid: 0000-0002-5339-909X
  surname: Terashi
  fullname: Terashi, Genki
  organization: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
– sequence: 2
  givenname: Daisuke
  orcidid: 0000-0003-4091-6614
  surname: Kihara
  fullname: Kihara, Daisuke
  email: dkihara@purdue.edu
  organization: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30075190$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtv1DAQtlARfcAP4IJy5JJ0Jg87ERLSaimwUrc9UM6WY092vUrsEmcX9d_X0ZYKOPQyM9J8j9F85-zEeUeMvUfIEJBf7rJdaLMcsM5AZIDFK3aG0FRpzStxMs-lSOtSiFN2HsIOAErM8Q07LQBEhQ2csdUXSpw_-GRQ1qV6G2syeEO9dZvkt522yXqxulkvftwlcROtqstYeHK1TtYzLFluVd-T29Bb9rpTfaB3T_2C_fx6dbf8nl7fflstF9epLiuc0q42DWpe6EpjJ3SpuTZF3nFTY0lAiovKNK0AQ1p1VLS8Fl0teA4tVGSwKS7Y56Pu_b4dyGhy06h6eT_aQY0P0isr_904u5Ubf5AcRVOWIgp8fBIY_a89hUkONmjqe-XI74PMoS4EoiggQj_87fVs8ud_EYBHgB59CCN1zxAEOWckdzJmJOeMJAgZM4oc8R9H20lN1s_n2v5F5qcjk-J_D5ZGGbQlp8nYkfQkjbcvsB8BLkSpOQ
CitedBy_id crossref_primary_10_1017_S1431927619001466
crossref_primary_10_3389_fphar_2022_939555
crossref_primary_10_2139_ssrn_3866834
crossref_primary_10_1038_s41592_019_0500_1
crossref_primary_10_3390_molecules25010082
crossref_primary_10_1063_5_0026025
crossref_primary_10_1002_cpz1_494
crossref_primary_10_1093_bioinformatics_btad494
crossref_primary_10_1038_s41467_021_22401_y
crossref_primary_10_1016_j_jsb_2018_10_004
crossref_primary_10_1107_S2059798320005513
crossref_primary_10_1042_BST20210485
crossref_primary_10_1021_acs_jcim_9b01110
crossref_primary_10_1016_j_matt_2021_09_004
Cites_doi 10.1002/jcc.20906
10.1038/nprot.2017.004
10.1107/S2059798317004181
10.1016/j.jsb.2006.07.003
10.1038/nmeth.4340
10.1107/S090744490705024X
10.1016/j.str.2012.01.008
10.1038/nmeth.3287
10.1016/j.jmb.2009.07.008
10.1016/j.jsb.2013.06.008
10.1016/j.jsb.2016.06.004
10.1016/j.jsb.2013.08.010
10.1002/1097-0134(20010215)42:3<319::AID-PROT30>3.0.CO;2-A
10.1002/(SICI)1097-0134(1999)37:3+<22::AID-PROT5>3.0.CO;2-W
10.1016/j.ymeth.2016.01.009
10.1016/j.jsb.2006.05.009
10.1016/0305-0548(86)90048-1
10.1006/jmbi.2001.4633
10.7554/eLife.16105
10.1016/j.jsb.2011.04.016
10.1021/jp212612t
10.1016/j.str.2008.03.005
10.1109/TIT.1975.1055330
10.1016/j.jsb.2012.09.006
10.1016/j.str.2006.11.008
10.1016/bs.mie.2015.02.011
10.1002/bip.22081
10.1002/jcc.24785
10.1002/bip.360221211
10.1006/jsbi.2000.4350
10.1093/nar/gkv1047
10.1107/S1399004714013856
10.1038/nmeth.4169
10.1038/s41467-018-04053-7
10.1002/prot.22885
10.1002/bip.22065
10.1038/nmeth.3286
ContentType Journal Article
Copyright 2018 The Author(s)
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 The Author(s)
– notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jsb.2018.07.013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1095-8657
EndPage 359
ExternalDocumentID PMC6179447
30075190
10_1016_j_jsb_2018_07_013
S1047847718301710
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM097528
– fundername: NIGMS NIH HHS
  grantid: R01 GM123055
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29L
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
85S
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AETEA
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
H~9
IH2
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TWZ
UKR
UNMZH
VH1
WH7
WUQ
X7M
XJT
XOL
XPP
Y6R
ZA5
ZGI
ZKB
ZMT
ZU3
ZXP
~02
~G-
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c451t-f8d91c63c5c1f7c4c6cd32f6d814e0ea675d9b70decafe3b687f87620b05ed193
IEDL.DBID .~1
ISSN 1047-8477
1095-8657
IngestDate Thu Aug 21 13:59:21 EDT 2025
Mon Jul 21 11:49:53 EDT 2025
Thu Apr 03 07:08:51 EDT 2025
Tue Jul 01 03:07:33 EDT 2025
Thu Apr 24 22:52:37 EDT 2025
Fri Feb 23 02:28:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Protein structure modeling
Main-chain trace
Mean shifting algorithm
confidence score
Cryo-EM
Map interpretation
Minimum spanning tree
Electron microscopy
CryoEM Model Challenge
MAINMAST
Rosetta
Language English
License This is an open access article under the CC BY license.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license(http://creativecommons.org/licenses/BY/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-f8d91c63c5c1f7c4c6cd32f6d814e0ea675d9b70decafe3b687f87620b05ed193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4091-6614
0000-0002-5339-909X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1047847718301710
PMID 30075190
PQID 2083711730
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6179447
proquest_miscellaneous_2083711730
pubmed_primary_30075190
crossref_primary_10_1016_j_jsb_2018_07_013
crossref_citationtrail_10_1016_j_jsb_2018_07_013
elsevier_sciencedirect_doi_10_1016_j_jsb_2018_07_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of structural biology
PublicationTitleAlternate J Struct Biol
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Baker, Baker, Hryc, Ju, Chiu (b0015) 2012; 97
DiMaio, Song, Li, Brunner, Xu, Conticello, Egelman, Marlovits, Cheng, Baker (b0040) 2015; 12
Terwilliger, Grosse-Kunstleve, Afonine, Moriarty, Zwart, Hung, Read, Adams (b0165) 2008; 64
McGreevy, Teo, Singharoy, Schulten (b0105) 2016; 100
Punjani, Rubinstein, Fleet, Brubaker (b0130) 2017; 14
Tang, Peng, Baldwin, Mann, Jiang, Rees, Ludtke (b0155) 2007; 157
Glover (b0070) 1986; 13
Scheres (b0140) 2012; 180
Baker, Rees, Ludtke, Chiu, Baker (b0020) 2012; 20
Baker, Ju, Chiu (b0010) 2007; 15
DiMaio, Tyka, Baker, Chiu, Baker (b0035) 2009; 392
Patwardhan (b0125) 2017; 73
Fukunaga, Hostetler (b0065) 1975; 21
McGreevy, Singharoy, Li, Zhang, Xu, Perozo, Schulten (b0110) 2014; 70
Monroe, Terashi, Kihara (b0120) 2017; 25
Skolnick, Kihara (b0150) 2001; 42
Frank (b0055) 2017; 12
Ludtke, Lawson, Kleywegt, Berman, Chiu (b0100) 2012; 97
Esquivel-Rodriguez, Kihara (b0050) 2013; 184
Woetzel, Lindert, Stewart, Meiler (b0185) 2011; 175
Frenz, Walls, Egelman, Veesler, DiMaio (b0060) 2017; 14
Velankar, van Ginkel, Alhroub, Battle, Berrisford, Conroy, Dana, Gore, Gutmanas, Haslam, Hendrickx, Lagerstedt, Mir, Fernandez Montecelo, Mukhopadhyay, Oldfield, Patwardhan, Sanz-Garcia, Sen, Slowley, Wainwright, Deshpande, Iudin, Sahni, Salavert Torres, Hirshberg, Mak, Nadzirin, Armstrong, Clark, Smart, Korir, Kleywegt (b0175) 2016; 44
Wriggers, Birmanns (b0190) 2001; 133
Zemla, Venclovas, Moult, Fidelis (b0195) 1999
Rotkiewicz, Skolnick (b0135) 2008; 29
Jiang, Baker, Ludtke, Chiu (b0080) 2001; 308
Kabsch, Sander (b0085) 1983; 22
Lopez-Blanco, Chacon (b0095) 2013; 184
Wang, Kudryashev, Li, Egelman, Basler, Cheng, Baker, DiMaio (b0180) 2015; 12
Terashi, Kihara (b0160) 2018; 9
Miyashita, Kobayashi, Mori, Sugita, Tama (b0115) 2017; 38
Hohn, Tang, Goodyear, Baldwin, Huang, Penczek, Yang, Glaeser, Adams, Ludtke (b0075) 2007; 157
Afonine, Poon, Read, Sobolev, Terwilliger, Urzhumtsev, Adams (b0005) 2018
Chen, Kihara (b0025) 2011; 79
Chen, Baldwin, Ludtke, Baker (b0030) 2016; 196
Esquivel-Rodriguez, Kihara (b0045) 2012; 116
Trabuco, Villa, Mitra, Frank, Schulten (b0170) 2008; 16
Kirmizialtin, Loerke, Behrmann, Spahn, Sanbonmatsu (b0090) 2015; 558
Singharoy, Teo, McGreevy, Stone, Zhao, Schulten (b0145) 2016; 5
Frenz (10.1016/j.jsb.2018.07.013_b0060) 2017; 14
Rotkiewicz (10.1016/j.jsb.2018.07.013_b0135) 2008; 29
Hohn (10.1016/j.jsb.2018.07.013_b0075) 2007; 157
Lopez-Blanco (10.1016/j.jsb.2018.07.013_b0095) 2013; 184
Wang (10.1016/j.jsb.2018.07.013_b0180) 2015; 12
Kabsch (10.1016/j.jsb.2018.07.013_b0085) 1983; 22
Frank (10.1016/j.jsb.2018.07.013_b0055) 2017; 12
Glover (10.1016/j.jsb.2018.07.013_b0070) 1986; 13
DiMaio (10.1016/j.jsb.2018.07.013_b0035) 2009; 392
Monroe (10.1016/j.jsb.2018.07.013_b0120) 2017; 25
Patwardhan (10.1016/j.jsb.2018.07.013_b0125) 2017; 73
Chen (10.1016/j.jsb.2018.07.013_b0025) 2011; 79
Trabuco (10.1016/j.jsb.2018.07.013_b0170) 2008; 16
Punjani (10.1016/j.jsb.2018.07.013_b0130) 2017; 14
Woetzel (10.1016/j.jsb.2018.07.013_b0185) 2011; 175
Scheres (10.1016/j.jsb.2018.07.013_b0140) 2012; 180
DiMaio (10.1016/j.jsb.2018.07.013_b0040) 2015; 12
Baker (10.1016/j.jsb.2018.07.013_b0015) 2012; 97
Esquivel-Rodriguez (10.1016/j.jsb.2018.07.013_b0045) 2012; 116
Skolnick (10.1016/j.jsb.2018.07.013_b0150) 2001; 42
Terwilliger (10.1016/j.jsb.2018.07.013_b0165) 2008; 64
Velankar (10.1016/j.jsb.2018.07.013_b0175) 2016; 44
Baker (10.1016/j.jsb.2018.07.013_b0020) 2012; 20
Wriggers (10.1016/j.jsb.2018.07.013_b0190) 2001; 133
Miyashita (10.1016/j.jsb.2018.07.013_b0115) 2017; 38
McGreevy (10.1016/j.jsb.2018.07.013_b0110) 2014; 70
Baker (10.1016/j.jsb.2018.07.013_b0010) 2007; 15
Singharoy (10.1016/j.jsb.2018.07.013_b0145) 2016; 5
Tang (10.1016/j.jsb.2018.07.013_b0155) 2007; 157
Zemla (10.1016/j.jsb.2018.07.013_b0195) 1999
Terashi (10.1016/j.jsb.2018.07.013_b0160) 2018; 9
McGreevy (10.1016/j.jsb.2018.07.013_b0105) 2016; 100
Kirmizialtin (10.1016/j.jsb.2018.07.013_b0090) 2015; 558
Jiang (10.1016/j.jsb.2018.07.013_b0080) 2001; 308
Chen (10.1016/j.jsb.2018.07.013_b0030) 2016; 196
Esquivel-Rodriguez (10.1016/j.jsb.2018.07.013_b0050) 2013; 184
Afonine (10.1016/j.jsb.2018.07.013_b0005) 2018
Fukunaga (10.1016/j.jsb.2018.07.013_b0065) 1975; 21
Ludtke (10.1016/j.jsb.2018.07.013_b0100) 2012; 97
References_xml – volume: 20
  start-page: 450
  year: 2012
  end-page: 463
  ident: b0020
  article-title: Constructing and validating initial Calpha models from subnanometer resolution density maps with pathwalking
  publication-title: Structure
– volume: 12
  start-page: 209
  year: 2017
  end-page: 212
  ident: b0055
  article-title: Advances in the field of single-particle cryo-electron microscopy over the last decade
  publication-title: Nat Protoc.
– volume: 14
  start-page: 290
  year: 2017
  end-page: 296
  ident: b0130
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
– volume: 22
  start-page: 2577
  year: 1983
  ident: b0085
  article-title: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features
  publication-title: Biopolymers
– volume: 70
  start-page: 2344
  year: 2014
  end-page: 2355
  ident: b0110
  article-title: xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 184
  start-page: 93
  year: 2013
  end-page: 102
  ident: b0050
  article-title: Computational methods for constructing protein structure models from 3D electron microscopy maps
  publication-title: J. Struct. Biol.
– volume: 14
  start-page: 797
  year: 2017
  end-page: 800
  ident: b0060
  article-title: RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps
  publication-title: Nat. Methods
– volume: 308
  start-page: 1033
  year: 2001
  end-page: 1044
  ident: b0080
  article-title: Bridging the information gap: computational tools for intermediate resolution structure interpretation
  publication-title: J. Mol. Biol.
– volume: 16
  start-page: 673
  year: 2008
  end-page: 683
  ident: b0170
  article-title: Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics
  publication-title: Structure
– volume: 12
  start-page: 335
  year: 2015
  end-page: 338
  ident: b0180
  article-title: De novo protein structure determination from near-atomic-resolution cryo-EM maps
  publication-title: Nat. Methods
– volume: 392
  start-page: 181
  year: 2009
  end-page: 190
  ident: b0035
  article-title: Refinement of protein structures into low-resolution density maps using rosetta
  publication-title: J. Mol. Biol.
– volume: 12
  start-page: 361
  year: 2015
  end-page: 365
  ident: b0040
  article-title: Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement
  publication-title: Nat. Methods
– volume: 5
  year: 2016
  ident: b0145
  article-title: Molecular dynamics-based refinement and validation for sub-5 A cryo-electron microscopy maps
  publication-title: eLife
– volume: 184
  start-page: 261
  year: 2013
  end-page: 270
  ident: b0095
  article-title: iMODFIT: efficient and robust flexible fitting based on vibrational analysis in internal coordinates
  publication-title: J. Struct. Biol.
– volume: 116
  start-page: 6854
  year: 2012
  end-page: 6861
  ident: b0045
  article-title: Fitting multimeric protein complexes into electron microscopy maps using 3D zernike descriptors
  publication-title: J. Phys. Chem. B
– volume: 97
  start-page: 655
  year: 2012
  end-page: 668
  ident: b0015
  article-title: Gorgon and pathwalking: macromolecular modeling tools for subnanometer resolution density maps
  publication-title: Biopolymers
– volume: 25
  year: 2017
  ident: b0120
  article-title: Variability of protein structure models from electron microscopy
  publication-title: Structure
– volume: 180
  start-page: 519
  year: 2012
  end-page: 530
  ident: b0140
  article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination
  publication-title: J. Struct. Biol.
– volume: 15
  start-page: 7
  year: 2007
  end-page: 19
  ident: b0010
  article-title: Identification of secondary structure elements in intermediate-resolution density maps
  publication-title: Structure
– volume: 9
  start-page: 1618
  year: 2018
  ident: b0160
  article-title: De novo main-chain modeling for EM maps using MAINMAST
  publication-title: Nat. Commun.
– start-page: 22
  year: 1999
  end-page: 29
  ident: b0195
  article-title: Processing and analysis of CASP3 protein structure predictions
  publication-title: Proteins
– volume: 196
  start-page: 289
  year: 2016
  end-page: 298
  ident: b0030
  article-title: De Novo modeling in cryo-EM density maps with Pathwalking
  publication-title: J. Struct. Biol.
– volume: 133
  start-page: 193
  year: 2001
  end-page: 202
  ident: b0190
  article-title: Using situs for flexible and rigid-body fitting of multiresolution single-molecule data
  publication-title: J. Struct. Biol.
– volume: 64
  start-page: 61
  year: 2008
  end-page: 69
  ident: b0165
  article-title: Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 100
  start-page: 50
  year: 2016
  end-page: 60
  ident: b0105
  article-title: Advances in the molecular dynamics flexible fitting method for cryo-EM modeling
  publication-title: Methods
– volume: 29
  start-page: 1460
  year: 2008
  end-page: 1465
  ident: b0135
  article-title: Fast procedure for reconstruction of full-atom protein models from reduced representations
  publication-title: J. Comput. Chem.
– volume: 73
  start-page: 503
  year: 2017
  end-page: 508
  ident: b0125
  article-title: Trends in the electron microscopy data bank (EMDB)
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 21
  start-page: 32
  year: 1975
  end-page: 40
  ident: b0065
  article-title: Estimation of gradient of a density-function, with applications in pattern-recognition
  publication-title: IEEE Trans. Inf. Theory
– volume: 42
  start-page: 319
  year: 2001
  end-page: 331
  ident: b0150
  article-title: Defrosting the frozen approximation: PROSPECTOR–a new approach to threading
  publication-title: Proteins
– volume: 13
  start-page: 533
  year: 1986
  end-page: 549
  ident: b0070
  article-title: Future paths for integer programming and links to artificial-intelligence
  publication-title: Comput. Oper. Res.
– volume: 38
  start-page: 1447
  year: 2017
  end-page: 1461
  ident: b0115
  article-title: Flexible fitting to cryo-EM density map using ensemble molecular dynamics simulations
  publication-title: J. Comput. Chem.
– volume: 175
  start-page: 264
  year: 2011
  end-page: 276
  ident: b0185
  article-title: BCL::EM-Fit: rigid body fitting of atomic structures into density maps using geometric hashing and real space refinement
  publication-title: J. Struct. Biol.
– volume: 79
  start-page: 315
  year: 2011
  end-page: 334
  ident: b0025
  article-title: Effect of using suboptimal alignments in template-based protein structure prediction
  publication-title: Proteins
– volume: 157
  start-page: 38
  year: 2007
  end-page: 46
  ident: b0155
  article-title: EMAN2: an extensible image processing suite for electron microscopy
  publication-title: J. Struct. Biol.
– volume: 558
  start-page: 497
  year: 2015
  end-page: 514
  ident: b0090
  article-title: Using molecular simulation to model high-resolution cryo-EM reconstructions
  publication-title: Methods Enzym.
– volume: 157
  start-page: 47
  year: 2007
  end-page: 55
  ident: b0075
  article-title: SPARX, a new environment for Cryo-EM image processing
  publication-title: J. Struct. Biol.
– volume: 97
  start-page: 651
  year: 2012
  end-page: 654
  ident: b0100
  article-title: The 2010 cryo-EM modeling challenge
  publication-title: Biopolymers
– volume: 44
  start-page: D385
  year: 2016
  end-page: 395
  ident: b0175
  article-title: PDBe: improved accessibility of macromolecular structure data from PDB and EMDB
  publication-title: Nucl. Acids Res.
– year: 2018
  ident: b0005
  article-title: Real-Space Refinement in Phenix for Cryo-EM and Crystallography
– volume: 25
  issue: 592–602
  year: 2017
  ident: 10.1016/j.jsb.2018.07.013_b0120
  article-title: Variability of protein structure models from electron microscopy
  publication-title: Structure
– volume: 29
  start-page: 1460
  year: 2008
  ident: 10.1016/j.jsb.2018.07.013_b0135
  article-title: Fast procedure for reconstruction of full-atom protein models from reduced representations
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20906
– volume: 12
  start-page: 209
  year: 2017
  ident: 10.1016/j.jsb.2018.07.013_b0055
  article-title: Advances in the field of single-particle cryo-electron microscopy over the last decade
  publication-title: Nat Protoc.
  doi: 10.1038/nprot.2017.004
– volume: 73
  start-page: 503
  year: 2017
  ident: 10.1016/j.jsb.2018.07.013_b0125
  article-title: Trends in the electron microscopy data bank (EMDB)
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S2059798317004181
– year: 2018
  ident: 10.1016/j.jsb.2018.07.013_b0005
– volume: 157
  start-page: 47
  year: 2007
  ident: 10.1016/j.jsb.2018.07.013_b0075
  article-title: SPARX, a new environment for Cryo-EM image processing
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2006.07.003
– volume: 14
  start-page: 797
  year: 2017
  ident: 10.1016/j.jsb.2018.07.013_b0060
  article-title: RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4340
– volume: 64
  start-page: 61
  year: 2008
  ident: 10.1016/j.jsb.2018.07.013_b0165
  article-title: Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S090744490705024X
– volume: 20
  start-page: 450
  year: 2012
  ident: 10.1016/j.jsb.2018.07.013_b0020
  article-title: Constructing and validating initial Calpha models from subnanometer resolution density maps with pathwalking
  publication-title: Structure
  doi: 10.1016/j.str.2012.01.008
– volume: 12
  start-page: 335
  year: 2015
  ident: 10.1016/j.jsb.2018.07.013_b0180
  article-title: De novo protein structure determination from near-atomic-resolution cryo-EM maps
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3287
– volume: 392
  start-page: 181
  year: 2009
  ident: 10.1016/j.jsb.2018.07.013_b0035
  article-title: Refinement of protein structures into low-resolution density maps using rosetta
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.07.008
– volume: 184
  start-page: 93
  year: 2013
  ident: 10.1016/j.jsb.2018.07.013_b0050
  article-title: Computational methods for constructing protein structure models from 3D electron microscopy maps
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2013.06.008
– volume: 196
  start-page: 289
  year: 2016
  ident: 10.1016/j.jsb.2018.07.013_b0030
  article-title: De Novo modeling in cryo-EM density maps with Pathwalking
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2016.06.004
– volume: 184
  start-page: 261
  year: 2013
  ident: 10.1016/j.jsb.2018.07.013_b0095
  article-title: iMODFIT: efficient and robust flexible fitting based on vibrational analysis in internal coordinates
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2013.08.010
– volume: 42
  start-page: 319
  year: 2001
  ident: 10.1016/j.jsb.2018.07.013_b0150
  article-title: Defrosting the frozen approximation: PROSPECTOR–a new approach to threading
  publication-title: Proteins
  doi: 10.1002/1097-0134(20010215)42:3<319::AID-PROT30>3.0.CO;2-A
– start-page: 22
  issue: Suppl. 3
  year: 1999
  ident: 10.1016/j.jsb.2018.07.013_b0195
  article-title: Processing and analysis of CASP3 protein structure predictions
  publication-title: Proteins
  doi: 10.1002/(SICI)1097-0134(1999)37:3+<22::AID-PROT5>3.0.CO;2-W
– volume: 100
  start-page: 50
  year: 2016
  ident: 10.1016/j.jsb.2018.07.013_b0105
  article-title: Advances in the molecular dynamics flexible fitting method for cryo-EM modeling
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.01.009
– volume: 157
  start-page: 38
  year: 2007
  ident: 10.1016/j.jsb.2018.07.013_b0155
  article-title: EMAN2: an extensible image processing suite for electron microscopy
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2006.05.009
– volume: 13
  start-page: 533
  year: 1986
  ident: 10.1016/j.jsb.2018.07.013_b0070
  article-title: Future paths for integer programming and links to artificial-intelligence
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(86)90048-1
– volume: 308
  start-page: 1033
  year: 2001
  ident: 10.1016/j.jsb.2018.07.013_b0080
  article-title: Bridging the information gap: computational tools for intermediate resolution structure interpretation
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.4633
– volume: 5
  year: 2016
  ident: 10.1016/j.jsb.2018.07.013_b0145
  article-title: Molecular dynamics-based refinement and validation for sub-5 A cryo-electron microscopy maps
  publication-title: eLife
  doi: 10.7554/eLife.16105
– volume: 175
  start-page: 264
  year: 2011
  ident: 10.1016/j.jsb.2018.07.013_b0185
  article-title: BCL::EM-Fit: rigid body fitting of atomic structures into density maps using geometric hashing and real space refinement
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2011.04.016
– volume: 116
  start-page: 6854
  year: 2012
  ident: 10.1016/j.jsb.2018.07.013_b0045
  article-title: Fitting multimeric protein complexes into electron microscopy maps using 3D zernike descriptors
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp212612t
– volume: 16
  start-page: 673
  year: 2008
  ident: 10.1016/j.jsb.2018.07.013_b0170
  article-title: Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics
  publication-title: Structure
  doi: 10.1016/j.str.2008.03.005
– volume: 21
  start-page: 32
  year: 1975
  ident: 10.1016/j.jsb.2018.07.013_b0065
  article-title: Estimation of gradient of a density-function, with applications in pattern-recognition
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1975.1055330
– volume: 180
  start-page: 519
  year: 2012
  ident: 10.1016/j.jsb.2018.07.013_b0140
  article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2012.09.006
– volume: 15
  start-page: 7
  year: 2007
  ident: 10.1016/j.jsb.2018.07.013_b0010
  article-title: Identification of secondary structure elements in intermediate-resolution density maps
  publication-title: Structure
  doi: 10.1016/j.str.2006.11.008
– volume: 558
  start-page: 497
  year: 2015
  ident: 10.1016/j.jsb.2018.07.013_b0090
  article-title: Using molecular simulation to model high-resolution cryo-EM reconstructions
  publication-title: Methods Enzym.
  doi: 10.1016/bs.mie.2015.02.011
– volume: 97
  start-page: 651
  year: 2012
  ident: 10.1016/j.jsb.2018.07.013_b0100
  article-title: The 2010 cryo-EM modeling challenge
  publication-title: Biopolymers
  doi: 10.1002/bip.22081
– volume: 38
  start-page: 1447
  year: 2017
  ident: 10.1016/j.jsb.2018.07.013_b0115
  article-title: Flexible fitting to cryo-EM density map using ensemble molecular dynamics simulations
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24785
– volume: 22
  start-page: 2577
  year: 1983
  ident: 10.1016/j.jsb.2018.07.013_b0085
  article-title: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features
  publication-title: Biopolymers
  doi: 10.1002/bip.360221211
– volume: 133
  start-page: 193
  year: 2001
  ident: 10.1016/j.jsb.2018.07.013_b0190
  article-title: Using situs for flexible and rigid-body fitting of multiresolution single-molecule data
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.2000.4350
– volume: 44
  start-page: D385
  year: 2016
  ident: 10.1016/j.jsb.2018.07.013_b0175
  article-title: PDBe: improved accessibility of macromolecular structure data from PDB and EMDB
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gkv1047
– volume: 70
  start-page: 2344
  year: 2014
  ident: 10.1016/j.jsb.2018.07.013_b0110
  article-title: xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S1399004714013856
– volume: 14
  start-page: 290
  year: 2017
  ident: 10.1016/j.jsb.2018.07.013_b0130
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4169
– volume: 9
  start-page: 1618
  year: 2018
  ident: 10.1016/j.jsb.2018.07.013_b0160
  article-title: De novo main-chain modeling for EM maps using MAINMAST
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04053-7
– volume: 79
  start-page: 315
  year: 2011
  ident: 10.1016/j.jsb.2018.07.013_b0025
  article-title: Effect of using suboptimal alignments in template-based protein structure prediction
  publication-title: Proteins
  doi: 10.1002/prot.22885
– volume: 97
  start-page: 655
  year: 2012
  ident: 10.1016/j.jsb.2018.07.013_b0015
  article-title: Gorgon and pathwalking: macromolecular modeling tools for subnanometer resolution density maps
  publication-title: Biopolymers
  doi: 10.1002/bip.22065
– volume: 12
  start-page: 361
  year: 2015
  ident: 10.1016/j.jsb.2018.07.013_b0040
  article-title: Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3286
SSID ssj0004121
Score 2.3317287
Snippet Protein tertiary structure modeling is a critical step for the interpretation of three dimensional (3D) election microscopy density. Our group participated the...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 351
SubjectTerms confidence score
Cryo-EM
Cryoelectron Microscopy - methods
CryoEM Model Challenge
Electron microscopy
Main-chain trace
MAINMAST
Map interpretation
Mean shifting algorithm
Minimum spanning tree
Protein Conformation
Protein structure modeling
Proteins - chemistry
Rosetta
Software
Title De novo main-chain modeling with MAINMAST in 2015/2016 EM Model Challenge
URI https://dx.doi.org/10.1016/j.jsb.2018.07.013
https://www.ncbi.nlm.nih.gov/pubmed/30075190
https://www.proquest.com/docview/2083711730
https://pubmed.ncbi.nlm.nih.gov/PMC6179447
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTuMwcIRASFzQwvLowiKvxAkpNMGOnRyrLqilag88BDfLdhxRxKZoKUhc-HZm8iiU1XLgkijxOBrN2POI5wGwH-eZRTWUB6ly6KAobwOTGtxXLuRGKJsYTtnIw5HsXYrT6_h6AbpNLgyFVdayv5LppbSu37Rrarbvx-P2eVlYRigUrpyKvpDfLoSiVX748hbmIaIq94oqEhB0c7JZxnjdPliK7krK-p0R_59u-tf2_BhC-U4nnXyD1dqYZJ0K3zVY8MU6LFftJZ-_Q_-3Z8XkacL-oPsfuBu8srLzDaorRj9g2bDTHw075xcMRxDDuI0XyY6HjFqk3bFu02llAy5Pji-6vaBunRA4EUfTIE-yNHKSu9hFuXLCSZfxo1xmSSR86A26CVlqVZh5Z3LPrUxUTnIxtGHsMzTqNmGxmBR-G1iCJgh-IvXcUDq_SKVDl9EcGctlnoauBWFDNO3quuLU3uJONwFktxrprInOOlQa6dyCg9mU-6qoxmfAouGEnlsZGoX-Z9N-NVzTuGPoGMQUfvL4gEDolEcRirYWbFVcnGHByYRCG6kFao6_MwCqxj0_UoxvyqrckkSbUD--hu4OrNBTleW4C4vTv4_-J5o7U7tXruc9WOr0B70R3QdnV4NXiG_9rQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-homm8TGNsUMY2I_E0KWqCHTt5rAqoHaQvFIk3y3Yc0QpSNAoS_z13-SgraDzwkofYjk539n3Ed78DOIiL3KIZKoJUOQxQlLeBSQ2eKxdyI5RNDKdq5Gwshxfiz2V8uQaDthaG0iob3V_r9EpbN296DTd7t9Np77wClhEKlSsn0BeM29cJnSruwHp_dDocP5dHRnX5FYES0IL2crNK85rdWUrwSioIz4j_zzy9dj9fZlH-Y5ZOPsOnxp9k_ZrkTVjz5Rf4UHeYfNyC0ZFn5fxhzm7MtAzcFT5Z1fwGLRajf7As64_GWf98wnAEKYx7-JDsOGPUJe2aDdpmK1_h4uR4MhgGTfeEwIk4WgRFkqeRk9zFLiqUE066nB8WMk8i4UNvMFLIU6vC3DtTeG5logpSjaENY5-jX_cNOuW89DvAEvRC8BOp54Yq-kUqHUaN5tBYLos0dF0IW6Zp10CLU4eLa93mkM008lkTn3WoNPK5C7-XS25rXI23JotWEnplc2jU-28t22-lpvHQ0E2IKf38_g4nYVweRajdurBdS3FJBScvCt2kLqgV-S4nECD36kg5vaqAuSVpN6F230fuL_g4nGRn-mw0Pv0OGzRSFz3uQWfx997_QO9nYX82u_sJSlf-uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+main-chain+modeling+with+MAINMAST+in+2015%2F2016+EM+Model+Challenge&rft.jtitle=Journal+of+structural+biology&rft.au=Terashi%2C+Genki&rft.au=Kihara%2C+Daisuke&rft.date=2018-11-01&rft.issn=1047-8477&rft.eissn=1095-8657&rft.volume=204&rft.issue=2&rft.spage=351&rft.epage=359&rft_id=info:doi/10.1016%2Fj.jsb.2018.07.013&rft_id=info%3Apmid%2F30075190&rft.externalDocID=PMC6179447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-8477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-8477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-8477&client=summon