Belun Ring (Belun Sleep System BLS-100): Deep learning-facilitated wearable enables obstructive sleep apnea detection, apnea severity categorization, and sleep stage classification in patients suspected of obstructive sleep apnea

Our objective was to evaluate the performance of Belun Ring with second-generation deep learning algorithms in obstructive sleep apnea (OSA) detection, OSA severity categorization, and sleep stage classification. Belun Ring with second-generation deep learning algorithms In-lab polysomnography (PSG)...

Full description

Saved in:
Bibliographic Details
Published inSleep health Vol. 9; no. 4; pp. 430 - 440
Main Authors Strumpf, Zachary, Gu, Wenbo, Tsai, Chih-Wei, Chen, Pai-Lien, Yeh, Eric, Leung, Lydia, Cheung, Cynthia, Wu, I-Chen, Strohl, Kingman P., Tsai, Tiffany, Folz, Rodney J., Chiang, Ambrose A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2023
Subjects
Online AccessGet full text
ISSN2352-7218
2352-7226
2352-7226
DOI10.1016/j.sleh.2023.05.001

Cover

Loading…
Abstract Our objective was to evaluate the performance of Belun Ring with second-generation deep learning algorithms in obstructive sleep apnea (OSA) detection, OSA severity categorization, and sleep stage classification. Belun Ring with second-generation deep learning algorithms In-lab polysomnography (PSG) Eighty-four subjects (M: F = 1:1) referred for an overnight sleep study were eligible. Of these, 26% had PSG-AHI<5; 24% had PSG-AHI 5–15; 23% had PSG-AHI 15–30; 27% had PSG-AHI ≥ 30. Rigorous performance evaluation by comparing Belun Ring to concurrent in-lab PSG using the 4% rule. Pearson’s correlation coefficient, Student’s paired t-test, diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, Cohen’s kappa coefficient (kappa), Bland-Altman plots with bias and limits of agreement, receiver operating characteristics curves with area under the curve, and confusion matrix. The accuracy, sensitivity, specificity, and kappa in categorizing AHI ≥ 5 were 0.85, 0.92, 0.64, and 0.58, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 15 were 0.89, 0.91, 0.88, and 0.79, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 30 were 0.91, 0.83, 0.93, and 0.76, respectively. BSP2 also achieved an accuracy of 0.88 in detecting wake, 0.82 in detecting NREM, and 0.90 in detecting REM sleep. Belun Ring with second-generation algorithms detected OSA with good accuracy and demonstrated a moderate-to-substantial agreement in categorizing OSA severity and classifying sleep stages.
AbstractList Our objective was to evaluate the performance of Belun Ring with second-generation deep learning algorithms in obstructive sleep apnea (OSA) detection, OSA severity categorization, and sleep stage classification.GOAL AND AIMSOur objective was to evaluate the performance of Belun Ring with second-generation deep learning algorithms in obstructive sleep apnea (OSA) detection, OSA severity categorization, and sleep stage classification.Belun Ring with second-generation deep learning algorithms REFERENCE TECHNOLOGY: In-lab polysomnography (PSG) SAMPLE: Eighty-four subjects (M: F = 1:1) referred for an overnight sleep study were eligible. Of these, 26% had PSG-AHI<5; 24% had PSG-AHI 5-15; 23% had PSG-AHI 15-30; 27% had PSG-AHI ≥ 30.FOCUS TECHNOLOGYBelun Ring with second-generation deep learning algorithms REFERENCE TECHNOLOGY: In-lab polysomnography (PSG) SAMPLE: Eighty-four subjects (M: F = 1:1) referred for an overnight sleep study were eligible. Of these, 26% had PSG-AHI<5; 24% had PSG-AHI 5-15; 23% had PSG-AHI 15-30; 27% had PSG-AHI ≥ 30.Rigorous performance evaluation by comparing Belun Ring to concurrent in-lab PSG using the 4% rule.DESIGNRigorous performance evaluation by comparing Belun Ring to concurrent in-lab PSG using the 4% rule.Pearson's correlation coefficient, Student's paired t-test, diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, Cohen's kappa coefficient (kappa), Bland-Altman plots with bias and limits of agreement, receiver operating characteristics curves with area under the curve, and confusion matrix.CORE ANALYTICSPearson's correlation coefficient, Student's paired t-test, diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, Cohen's kappa coefficient (kappa), Bland-Altman plots with bias and limits of agreement, receiver operating characteristics curves with area under the curve, and confusion matrix.The accuracy, sensitivity, specificity, and kappa in categorizing AHI ≥ 5 were 0.85, 0.92, 0.64, and 0.58, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 15 were 0.89, 0.91, 0.88, and 0.79, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 30 were 0.91, 0.83, 0.93, and 0.76, respectively. BSP2 also achieved an accuracy of 0.88 in detecting wake, 0.82 in detecting NREM, and 0.90 in detecting REM sleep.CORE OUTCOMESThe accuracy, sensitivity, specificity, and kappa in categorizing AHI ≥ 5 were 0.85, 0.92, 0.64, and 0.58, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 15 were 0.89, 0.91, 0.88, and 0.79, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 30 were 0.91, 0.83, 0.93, and 0.76, respectively. BSP2 also achieved an accuracy of 0.88 in detecting wake, 0.82 in detecting NREM, and 0.90 in detecting REM sleep.Belun Ring with second-generation algorithms detected OSA with good accuracy and demonstrated a moderate-to-substantial agreement in categorizing OSA severity and classifying sleep stages.CORE CONCLUSIONBelun Ring with second-generation algorithms detected OSA with good accuracy and demonstrated a moderate-to-substantial agreement in categorizing OSA severity and classifying sleep stages.
Our objective was to evaluate the performance of Belun Ring with second-generation deep learning algorithms in obstructive sleep apnea (OSA) detection, OSA severity categorization, and sleep stage classification. Belun Ring with second-generation deep learning algorithms REFERENCE TECHNOLOGY: In-lab polysomnography (PSG) SAMPLE: Eighty-four subjects (M: F = 1:1) referred for an overnight sleep study were eligible. Of these, 26% had PSG-AHI<5; 24% had PSG-AHI 5-15; 23% had PSG-AHI 15-30; 27% had PSG-AHI ≥ 30. Rigorous performance evaluation by comparing Belun Ring to concurrent in-lab PSG using the 4% rule. Pearson's correlation coefficient, Student's paired t-test, diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, Cohen's kappa coefficient (kappa), Bland-Altman plots with bias and limits of agreement, receiver operating characteristics curves with area under the curve, and confusion matrix. The accuracy, sensitivity, specificity, and kappa in categorizing AHI ≥ 5 were 0.85, 0.92, 0.64, and 0.58, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 15 were 0.89, 0.91, 0.88, and 0.79, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 30 were 0.91, 0.83, 0.93, and 0.76, respectively. BSP2 also achieved an accuracy of 0.88 in detecting wake, 0.82 in detecting NREM, and 0.90 in detecting REM sleep. Belun Ring with second-generation algorithms detected OSA with good accuracy and demonstrated a moderate-to-substantial agreement in categorizing OSA severity and classifying sleep stages.
Our objective was to evaluate the performance of Belun Ring with second-generation deep learning algorithms in obstructive sleep apnea (OSA) detection, OSA severity categorization, and sleep stage classification. Belun Ring with second-generation deep learning algorithms In-lab polysomnography (PSG) Eighty-four subjects (M: F = 1:1) referred for an overnight sleep study were eligible. Of these, 26% had PSG-AHI<5; 24% had PSG-AHI 5–15; 23% had PSG-AHI 15–30; 27% had PSG-AHI ≥ 30. Rigorous performance evaluation by comparing Belun Ring to concurrent in-lab PSG using the 4% rule. Pearson’s correlation coefficient, Student’s paired t-test, diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, Cohen’s kappa coefficient (kappa), Bland-Altman plots with bias and limits of agreement, receiver operating characteristics curves with area under the curve, and confusion matrix. The accuracy, sensitivity, specificity, and kappa in categorizing AHI ≥ 5 were 0.85, 0.92, 0.64, and 0.58, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 15 were 0.89, 0.91, 0.88, and 0.79, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 30 were 0.91, 0.83, 0.93, and 0.76, respectively. BSP2 also achieved an accuracy of 0.88 in detecting wake, 0.82 in detecting NREM, and 0.90 in detecting REM sleep. Belun Ring with second-generation algorithms detected OSA with good accuracy and demonstrated a moderate-to-substantial agreement in categorizing OSA severity and classifying sleep stages.
Author Gu, Wenbo
Folz, Rodney J.
Cheung, Cynthia
Tsai, Chih-Wei
Yeh, Eric
Wu, I-Chen
Chiang, Ambrose A.
Chen, Pai-Lien
Leung, Lydia
Tsai, Tiffany
Strumpf, Zachary
Strohl, Kingman P.
Author_xml – sequence: 1
  givenname: Zachary
  orcidid: 0000-0002-8178-3240
  surname: Strumpf
  fullname: Strumpf, Zachary
  organization: Division of Pulmonary, Critical Care, and Sleep Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
– sequence: 2
  givenname: Wenbo
  surname: Gu
  fullname: Gu, Wenbo
  organization: Belun Technology Company Limited, Hong Kong
– sequence: 3
  givenname: Chih-Wei
  orcidid: 0000-0002-2175-478X
  surname: Tsai
  fullname: Tsai, Chih-Wei
  organization: Belun Technology Company Limited, Hong Kong
– sequence: 4
  givenname: Pai-Lien
  surname: Chen
  fullname: Chen, Pai-Lien
  organization: FHI360, Durham, NC, USA
– sequence: 5
  givenname: Eric
  orcidid: 0000-0001-8752-4429
  surname: Yeh
  fullname: Yeh, Eric
  organization: Division of Pulmonary, Critical Care, and Sleep Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
– sequence: 6
  givenname: Lydia
  surname: Leung
  fullname: Leung, Lydia
  organization: Belun Technology Company Limited, Hong Kong
– sequence: 7
  givenname: Cynthia
  surname: Cheung
  fullname: Cheung, Cynthia
  organization: Belun Technology Company Limited, Hong Kong
– sequence: 8
  givenname: I-Chen
  surname: Wu
  fullname: Wu, I-Chen
  organization: Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
– sequence: 9
  givenname: Kingman P.
  surname: Strohl
  fullname: Strohl, Kingman P.
  organization: Division of Pulmonary, Critical Care, and Sleep Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
– sequence: 10
  givenname: Tiffany
  surname: Tsai
  fullname: Tsai, Tiffany
  organization: Case Western Reserve University, Cleveland, OH, USA
– sequence: 11
  givenname: Rodney J.
  surname: Folz
  fullname: Folz, Rodney J.
  organization: Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Hospital, Houston, TX, USA
– sequence: 12
  givenname: Ambrose A.
  surname: Chiang
  fullname: Chiang, Ambrose A.
  email: Ambrose.chiang@va.gov
  organization: Division of Pulmonary, Critical Care, and Sleep Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37380590$$D View this record in MEDLINE/PubMed
BookMark eNqFUttu1DAQjVARvdAf4AH5sUgk2M5lk4oXWq7SSkgsPFuOM168eJ3gcRZt_5f_wOmGPlSiPM3ozDnH1pw5TY5c7yBJnjGaMcqqV5sMLXzPOOV5RsuMUvYoOeF5ydMF59XRXc_q4-QccUMjo2h4QesnyXG-yGtaNvQk-X0FdnTki3FrcnHoVxZgIKs9BtiSq-UqZZS-uCRvJ9SC9C5yUy2VsSbIAB35FUHZWiDgpoKkbzH4UQWzA4K3bnJwIEkHASLau5czgLADb8KeqGi07r25kfPYdbMSg1wDUVYiGm3U7ZwYR4bYgQtIcMQhusZ_9PpfLz9NHmtpEc7nepZ8e__u6_XHdPn5w6frN8tUFSULqa4aULopdb1Y1LpjFWOskRUtWK7LpuAa2ILTPOe66lTFZUt5l7cATVfVqoIiP0suDr6D73-OgEFsDSqwVjroRxS8zhlvyrJpIvX5TB3bLXRi8GYr_V78jSYS-IGgfI_oQd9RGBXTCYiNmE5ATCcgaCliwFFU3xOpKaS4s-ClsQ9LXx-kEBe0M-AFqrhhBZ3xcb-i683D8st7cmWNi4HZH7D_n_gPxivkMw
CitedBy_id crossref_primary_10_1007_s41782_024_00275_6
crossref_primary_10_2196_58187
crossref_primary_10_1093_sleep_zsae317
crossref_primary_10_5664_jcsm_11464
crossref_primary_10_1111_jopr_14003
crossref_primary_10_1016_j_smrv_2024_101897
crossref_primary_10_5664_jcsm_11290
crossref_primary_10_1111_resp_70012
crossref_primary_10_5664_jcsm_11348
Cites_doi 10.3390/s22166317
10.1088/0967-3334/28/2/002
10.1371/journal.pone.0258040
10.1161/CIR.0000000000000988
10.5664/jcsm.6576
10.2147/NSS.S348795
10.1183/13993003.02616-2017
10.1093/jamia/ocy064
10.1183/16000617.0256-2021
10.1093/sleep/28.9.1151
10.1016/S2213-2600(19)30198-5
10.1056/NEJMc2104626
10.1371/journal.pone.0210569
10.5664/jcsm.8592
10.1111/resp.13838
10.1109/CVPR.2018.00745
10.1093/sleep/zsac028
10.1093/sleep/zsac152
10.5664/jcsm.6540
10.1093/sleep/zsaa098
10.1080/15402002.2017.1300587
10.5664/jcsm.8620
10.5664/jcsm.8032
10.7326/M19-3575
10.1038/s41746-020-0244-4
10.5664/jcsm.6774
10.5664/jcsm.9808
10.1016/S0140-6736(86)90837-8
10.5664/jcsm.7398
10.1513/AnnalsATS.202005-510OC
10.5664/JCSM.1328
10.5664/jcsm.6034
10.1093/sleep/zsaa291
10.5664/jcsm.6506
10.1093/sleep/zsx196
10.1093/sleep/zsab071
10.1016/S2213-2600(19)30407-2
10.5664/JCSM.1078
10.1080/07420528.2017.1413578
10.1016/j.isci.2021.102461
10.1109/CVPR.2017.634
10.1016/j.sleh.2022.02.006
10.1093/sleep/zsaa045
ContentType Journal Article
Copyright 2023
Published by Elsevier Inc.
Copyright_xml – notice: 2023
– notice: Published by Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.sleh.2023.05.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2352-7226
EndPage 440
ExternalDocumentID 37380590
10_1016_j_sleh_2023_05_001
S2352721823000906
Genre Journal Article
GroupedDBID --M
.1-
.FO
0R~
1P~
4.4
457
53G
7-5
8P~
AADFP
AAEDT
AAEDW
AAGJA
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABJNI
ABMAC
ABMZM
ABOYX
ABXDB
ACDAQ
ACGFS
ACIEU
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
C45
EBS
EFJIC
EFKBS
EJD
FDB
FEDTE
FIRID
FYGXN
GBLVA
HVGLF
KOM
M41
O9-
OAUVE
OJ-
OV.
OVD
ROL
SNG
SPCBC
SSB
SSH
SSN
SSY
SSZ
T5K
TEORI
Z5R
~G-
6I.
AACTN
AAFTH
AFCTW
AFKWA
AJOXV
AMFUW
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c451t-f69ecf95f8778fd161119a60413f5942fe1720332f6dc62ab02d3bee9d68c6e43
IEDL.DBID AIKHN
ISSN 2352-7218
2352-7226
IngestDate Fri Jul 11 03:56:32 EDT 2025
Wed Feb 19 02:22:56 EST 2025
Tue Jul 01 03:08:22 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Tue Dec 03 03:44:58 EST 2024
Tue Aug 26 20:11:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Validation
Sleep technology
Apnea-hypopnea index
Photoplethysmography
Digital health
Home sleep apnea testing
Obstructive sleep apnea
Artificial intelligence
Peripheral arterial tonometry
Language English
License This is an open access article under the CC BY-NC-ND license.
Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-f69ecf95f8778fd161119a60413f5942fe1720332f6dc62ab02d3bee9d68c6e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8178-3240
0000-0001-8752-4429
0000-0002-2175-478X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2352721823000906
PMID 37380590
PQID 2831295599
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2831295599
pubmed_primary_37380590
crossref_primary_10_1016_j_sleh_2023_05_001
crossref_citationtrail_10_1016_j_sleh_2023_05_001
elsevier_sciencedirect_doi_10_1016_j_sleh_2023_05_001
elsevier_clinicalkey_doi_10_1016_j_sleh_2023_05_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Sleep health
PublicationTitleAlternate Sleep Health
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hedner, White, Malhotra (bib38) 2011; 07
Zhang, Cui, Mueller (bib27) 2018; 25
Hu J., Shen L., Sun G. Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE; 2018: 7132-7141. doi
Yeh, Wong, Tsai (bib21) 2022; 16
Yeghiazarians, Jneid, Tietjens (bib1) 2021; 144
de Zambotti, Menghini, Grandner (bib32) 2022; 8
Tan, Cook, Cedernaes, Benedict (bib16) 2019; 7
Roberts, Schade, Mathew, Gartenberg, Buxton (bib40) 2020; 43
Gleeson, McNicholas (bib2) 2022; 31
Al Ashry, Hilmisson, Ni (bib36) 2021; 18
Schnall, Shlitner, Sheffy, Kedar, Lavie (bib17) 1999; 22
de Zambotti, Rosas, Colrain, Baker (bib41) 2019; 17
Herscovici, Pe’er, Papyan, Lavie (bib42) 2007; 28
Rosen, Kirsch, Chervin (bib11) 2017; 13
Moreno-Pino, Porras-Segovia, López-Esteban, Artés, Baca-García (bib44) 2019; 15
.
Watson (bib3) 2016; 12
Benjafield, Ayas, Eastwood (bib4) 2019; 7
Miller, Sargent, Roach (bib48) 2022; 22
Berry, Brooks, Gamaldo (bib29) 2017; 13
Gu, Leung, Kwok, Wu, Folz, Chiang (bib22) 2020; 16
Bianchi, Goparaju (bib8) 2017; 13
Vaswani A., Shazeer N., Parmar N., et al. Attention is all you need. In
Massie, Mendes de Almeida, Dreesen, Thijs, Vranken, Klerkx (bib37) 2018; 14
Finlayson, Subbaswamy, Singh (bib45) 2021; 385
de Zambotti, Goldstone, Claudatos, Colrain, Baker (bib39) 2018; 35
Randerath, Bassetti, Bonsignore (bib6) 2018; 52
Van Pee, Massie, Vits (bib18) 2022; 45
Thomas, Mietus, Peng, Goldberger (bib19) 2005; 28
Chinoy, Cuellar, Jameson, Markwald (bib47) 2022; 14
R Core Team. R: a language and environment for statistical computing. R Found Stat Comput. Published online 2021.
Korkalainen, Aakko, Duce (bib33) 2020; 43
Collop, Tracy, Kapur (bib9) 2011; 07
Vol 30. Curran Associates, Inc.; 2017: 11.
Bland, Altman (bib31) 1986; 327
Perez-Pozuelo, Zhai, Palotti (bib13) 2020; 3
Chinoy, Cuellar, Huwa (bib14) 2021; 44
Gruwez, Bruyneel, Bruyneel (bib43) 2019; 14
Kwon, Kim, Yeo (bib12) 2021; 24
Thomas, Wood, Bianchi (bib20) 2018; 41
Xie S., Girshick R., Dollar P., Tu Z., He K. Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2017: 5987-5995. doi
Quan, Howard, Iber (bib26) 1997; 20
Iftikhar, Finch, Shah, Augunstein, Ioachimescu (bib35) 2022; 18
Kapur, Auckley, Chowdhuri (bib7) 2017; 13
Grandner, Bromberg, Hadley (bib49) 2023; 46
Grandner, Lujan, Ghani (bib15) 2021; 44
Ioachimescu, Allam, Samarghandi (bib34) 2020; 16
Lyons, Bhatt, Pack, Magalang (bib5) 2020; 25
Ganin, Ustinova, Ajakan (bib25) 2017; 17
Subbaswamy A., Adams R., Saria S. Evaluating model robustness and stability to dataset shift. In: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics, 2021. doi: 10.48550/arXiv.2010.15100.
Mysliwiec, Martin, Ulmer (bib10) 2020; 172
Berry (10.1016/j.sleh.2023.05.001_bib29) 2017; 13
Lyons (10.1016/j.sleh.2023.05.001_bib5) 2020; 25
10.1016/j.sleh.2023.05.001_bib30
Benjafield (10.1016/j.sleh.2023.05.001_bib4) 2019; 7
Gruwez (10.1016/j.sleh.2023.05.001_bib43) 2019; 14
Iftikhar (10.1016/j.sleh.2023.05.001_bib35) 2022; 18
10.1016/j.sleh.2023.05.001_bib28
Korkalainen (10.1016/j.sleh.2023.05.001_bib33) 2020; 43
Bianchi (10.1016/j.sleh.2023.05.001_bib8) 2017; 13
Ganin (10.1016/j.sleh.2023.05.001_bib25) 2017; 17
Finlayson (10.1016/j.sleh.2023.05.001_bib45) 2021; 385
10.1016/j.sleh.2023.05.001_bib24
10.1016/j.sleh.2023.05.001_bib23
Miller (10.1016/j.sleh.2023.05.001_bib48) 2022; 22
de Zambotti (10.1016/j.sleh.2023.05.001_bib32) 2022; 8
Gleeson (10.1016/j.sleh.2023.05.001_bib2) 2022; 31
Tan (10.1016/j.sleh.2023.05.001_bib16) 2019; 7
Kwon (10.1016/j.sleh.2023.05.001_bib12) 2021; 24
Randerath (10.1016/j.sleh.2023.05.001_bib6) 2018; 52
Watson (10.1016/j.sleh.2023.05.001_bib3) 2016; 12
Yeghiazarians (10.1016/j.sleh.2023.05.001_bib1) 2021; 144
Chinoy (10.1016/j.sleh.2023.05.001_bib47) 2022; 14
Herscovici (10.1016/j.sleh.2023.05.001_bib42) 2007; 28
Mysliwiec (10.1016/j.sleh.2023.05.001_bib10) 2020; 172
Gu (10.1016/j.sleh.2023.05.001_bib22) 2020; 16
Bland (10.1016/j.sleh.2023.05.001_bib31) 1986; 327
Chinoy (10.1016/j.sleh.2023.05.001_bib14) 2021; 44
Grandner (10.1016/j.sleh.2023.05.001_bib49) 2023; 46
Collop (10.1016/j.sleh.2023.05.001_bib9) 2011; 07
Al Ashry (10.1016/j.sleh.2023.05.001_bib36) 2021; 18
Moreno-Pino (10.1016/j.sleh.2023.05.001_bib44) 2019; 15
de Zambotti (10.1016/j.sleh.2023.05.001_bib39) 2018; 35
de Zambotti (10.1016/j.sleh.2023.05.001_bib41) 2019; 17
10.1016/j.sleh.2023.05.001_bib46
Yeh (10.1016/j.sleh.2023.05.001_bib21) 2022; 16
Massie (10.1016/j.sleh.2023.05.001_bib37) 2018; 14
Perez-Pozuelo (10.1016/j.sleh.2023.05.001_bib13) 2020; 3
Schnall (10.1016/j.sleh.2023.05.001_bib17) 1999; 22
Van Pee (10.1016/j.sleh.2023.05.001_bib18) 2022; 45
Thomas (10.1016/j.sleh.2023.05.001_bib19) 2005; 28
Ioachimescu (10.1016/j.sleh.2023.05.001_bib34) 2020; 16
Thomas (10.1016/j.sleh.2023.05.001_bib20) 2018; 41
Zhang (10.1016/j.sleh.2023.05.001_bib27) 2018; 25
Kapur (10.1016/j.sleh.2023.05.001_bib7) 2017; 13
Grandner (10.1016/j.sleh.2023.05.001_bib15) 2021; 44
Rosen (10.1016/j.sleh.2023.05.001_bib11) 2017; 13
Roberts (10.1016/j.sleh.2023.05.001_bib40) 2020; 43
Hedner (10.1016/j.sleh.2023.05.001_bib38) 2011; 07
Quan (10.1016/j.sleh.2023.05.001_bib26) 1997; 20
References_xml – volume: 18
  start-page: 876
  year: 2021
  end-page: 883
  ident: bib36
  article-title: Automated apnea–hypopnea index from oximetry and spectral analysis of cardiopulmonary coupling
  publication-title: Ann Am Thorac Soc
– volume: 35
  start-page: 465
  year: 2018
  end-page: 476
  ident: bib39
  article-title: A validation study of Fitbit Charge 2™ compared with polysomnography in adults
  publication-title: Chronobiol Int
– volume: 16
  start-page: 1663
  year: 2020
  end-page: 1674
  ident: bib34
  article-title: Performance of peripheral arterial tonometry–based testing for the diagnosis of obstructive sleep apnea in a large sleep clinic cohort
  publication-title: J Clin Sleep Med
– volume: 172
  start-page: 325
  year: 2020
  end-page: 336
  ident: bib10
  article-title: The management of chronic insomnia disorder and obstructive sleep apnea: synopsis of the 2019 U.S. Department of Veterans Affairs and U.S. Department of Defense Clinical Practice Guidelines
  publication-title: Ann Intern Med
– volume: 14
  start-page: 1791
  year: 2018
  end-page: 1796
  ident: bib37
  article-title: An evaluation of the NightOwl home sleep apnea testing system
  publication-title: J Clin Sleep Med
– volume: 327
  start-page: 307
  year: 1986
  end-page: 310
  ident: bib31
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
– volume: 8
  start-page: 263
  year: 2022
  end-page: 269
  ident: bib32
  article-title: Rigorous performance evaluation (previously, “validation”) for informed use of new technologies for sleep health measurement
  publication-title: Sleep Health
– volume: 12
  start-page: 1075
  year: 2016
  end-page: 1077
  ident: bib3
  article-title: Health care savings: the economic value of diagnostic and therapeutic care for obstructive sleep apnea
  publication-title: J Clin Sleep Med
– volume: 25
  start-page: 690
  year: 2020
  end-page: 702
  ident: bib5
  article-title: Global burden of sleep-disordered breathing and its implications
  publication-title: Respirology
– reference: R Core Team. R: a language and environment for statistical computing. R Found Stat Comput. Published online 2021.
– volume: 16
  year: 2022
  ident: bib21
  article-title: Detection of obstructive sleep apnea using Belun Sleep Platform wearable with neural network-based algorithm and its combined use with STOP-Bang questionnaire
  publication-title: PLoS One
– volume: 25
  start-page: 1351
  year: 2018
  end-page: 1358
  ident: bib27
  article-title: The National Sleep Research Resource: towards a sleep data commons
  publication-title: J Am Med Inform Assoc
– volume: 52
  year: 2018
  ident: bib6
  article-title: Challenges and perspectives in obstructive sleep apnoea: report by an ad hoc working group of the Sleep Disordered Breathing Group of the European Respiratory Society and the European Sleep Research Society
  publication-title: Eur Respir J
– volume: 7
  start-page: 1012
  year: 2019
  ident: bib16
  article-title: Consumer sleep trackers: a new tool to fight the hidden epidemic of obstructive sleep apnoea?
  publication-title: Lancet Respir Med
– volume: 17
  start-page: 189
  year: 2017
  end-page: 209
  ident: bib25
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– volume: 44
  start-page: ):zsab071
  year: 2021
  ident: bib15
  article-title: Sleep-tracking technology in scientific research: looking to the future
  publication-title: Sleep
– volume: 385
  start-page: 283
  year: 2021
  end-page: 286
  ident: bib45
  article-title: The clinician and dataset shift in artificial intelligence
  publication-title: N Engl J Med
– volume: 16
  start-page: 1611
  year: 2020
  end-page: 1617
  ident: bib22
  article-title: Belun Ring Platform: a novel home sleep apnea testing system for assessment of obstructive sleep apnea
  publication-title: J Clin Sleep Med
– volume: 17
  start-page: 124
  year: 2019
  end-page: 136
  ident: bib41
  article-title: The sleep of the ring: comparison of the ŌURA sleep tracker against polysomnography
  publication-title: Behav Sleep Med
– volume: 22
  start-page: 939
  year: 1999
  end-page: 946
  ident: bib17
  article-title: Periodic, profound peripheral vasoconstriction—a new marker of obstructive sleep apnea
  publication-title: Sleep
– reference: . Vol 30. Curran Associates, Inc.; 2017: 11.
– volume: 14
  start-page: 493
  year: 2022
  end-page: 516
  ident: bib47
  article-title: Performance of four commercial wearable sleep-tracking devices tested under unrestricted conditions at home in healthy young adults
  publication-title: Nat Sci Sleep
– reference: Xie S., Girshick R., Dollar P., Tu Z., He K. Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2017: 5987-5995. doi:
– volume: 13
  start-page: 479
  year: 2017
  end-page: 504
  ident: bib7
  article-title: Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline
  publication-title: J Clin Sleep Med
– volume: 7
  start-page: 687
  year: 2019
  end-page: 698
  ident: bib4
  article-title: Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis
  publication-title: Lancet Respir Med
– volume: 13
  start-page: 1205
  year: 2017
  end-page: 1207
  ident: bib11
  article-title: Clinical use of a home sleep apnea test: an American Academy of Sleep Medicine position statement
  publication-title: J Clin Sleep Med
– reference: Hu J., Shen L., Sun G. Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE; 2018: 7132-7141. doi:
– volume: 20
  start-page: 1077
  year: 1997
  end-page: 1085
  ident: bib26
  article-title: The sleep heart health study: design, rationale, and methods
  publication-title: Sleep.
– volume: 41
  year: 2018
  ident: bib20
  article-title: Cardiopulmonary coupling spectrogram as an ambulatory clinical biomarker of sleep stability and quality in health, sleep apnea, and insomnia
  publication-title: Sleep
– volume: 45
  start-page: zsac028
  year: 2022
  ident: bib18
  article-title: A multicentric validation study of a novel home sleep apnea test based on peripheral arterial tonometry
  publication-title: Sleep
– reference: Vaswani A., Shazeer N., Parmar N., et al. Attention is all you need. In:
– volume: 24
  year: 2021
  ident: bib12
  article-title: Recent advances in wearable sensors and portable electronics for sleep monitoring
  publication-title: iScience
– volume: 15
  start-page: 1645
  year: 2019
  end-page: 1653
  ident: bib44
  article-title: Validation of Fitbit Charge 2 and Fitbit Alta HR against polysomnography for assessing sleep in adults with obstructive sleep apnea
  publication-title: J Clin Sleep Med
– volume: 43
  year: 2020
  ident: bib33
  article-title: Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea
  publication-title: Sleep
– volume: 13
  start-page: 551
  year: 2017
  end-page: 555
  ident: bib8
  article-title: Potential underestimation of sleep apnea severity by at-home kits: rescoring in-laboratory polysomnography without sleep staging
  publication-title: J Clin Sleep Med
– volume: 07
  start-page: 301
  year: 2011
  end-page: 306
  ident: bib38
  article-title: Sleep staging based on autonomic signals: a multi-center validation study
  publication-title: J Clin Sleep Med
– volume: 43
  year: 2020
  ident: bib40
  article-title: Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography
  publication-title: Sleep
– volume: 14
  year: 2019
  ident: bib43
  article-title: The validity of two commercially-available sleep trackers and actigraphy for assessment of sleep parameters in obstructive sleep apnea patients
  publication-title: PLoS One
– volume: 3
  start-page: 42
  year: 2020
  ident: bib13
  article-title: The future of sleep health: a data-driven revolution in sleep science and medicine
  publication-title: npj Digit Med
– volume: 07
  start-page: 531
  year: 2011
  end-page: 548
  ident: bib9
  article-title: Obstructive sleep apnea devices for out-of-center (OOC) testing: technology evaluation
  publication-title: J Clin Sleep Med
– volume: 28
  start-page: 1151
  year: 2005
  end-page: 1161
  ident: bib19
  article-title: An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep
  publication-title: Sleep
– volume: 46
  year: 2023
  ident: bib49
  article-title: Performance of a multisensor smart ring to evaluate sleep: in-lab and home-based evaluation of generalized and personalized algorithms
  publication-title: Sleep
– reference: .
– volume: 44
  start-page: zsaa291
  year: 2021
  ident: bib14
  article-title: Performance of seven consumer sleep-tracking devices compared with polysomnography
  publication-title: Sleep
– reference: Subbaswamy A., Adams R., Saria S. Evaluating model robustness and stability to dataset shift. In: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics, 2021. doi: 10.48550/arXiv.2010.15100.
– volume: 144
  year: 2021
  ident: bib1
  article-title: Obstructive sleep apnea and cardiovascular disease: a scientific statement from the American Heart Association
  publication-title: Circulation
– volume: 31
  year: 2022
  ident: bib2
  article-title: Bidirectional relationships of comorbidity with obstructive sleep apnoea
  publication-title: Eur Respir Rev
– volume: 13
  start-page: 665
  year: 2017
  end-page: 666
  ident: bib29
  article-title: AASM scoring manual updates for 2017 (version 2.4)
  publication-title: J Clin Sleep Med
– volume: 22
  start-page: 6317
  year: 2022
  ident: bib48
  article-title: A validation of six wearable devices for estimating sleep, heart rate and heart rate variability in healthy adults
  publication-title: Sensors
– volume: 28
  start-page: 129
  year: 2007
  end-page: 140
  ident: bib42
  article-title: Detecting REM sleep from the finger: an automatic REM sleep algorithm based on peripheral arterial tone (PAT) and actigraphy
  publication-title: Physiol Meas
– volume: 18
  start-page: 1093
  year: 2022
  end-page: 1102
  ident: bib35
  article-title: A meta-analysis of diagnostic test performance of peripheral arterial tonometry studies
  publication-title: J Clin Sleep Med
– volume: 22
  start-page: 6317
  issue: 16
  year: 2022
  ident: 10.1016/j.sleh.2023.05.001_bib48
  article-title: A validation of six wearable devices for estimating sleep, heart rate and heart rate variability in healthy adults
  publication-title: Sensors
  doi: 10.3390/s22166317
– volume: 20
  start-page: 1077
  issue: 12
  year: 1997
  ident: 10.1016/j.sleh.2023.05.001_bib26
  article-title: The sleep heart health study: design, rationale, and methods
  publication-title: Sleep.
– volume: 28
  start-page: 129
  issue: 2
  year: 2007
  ident: 10.1016/j.sleh.2023.05.001_bib42
  article-title: Detecting REM sleep from the finger: an automatic REM sleep algorithm based on peripheral arterial tone (PAT) and actigraphy
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/28/2/002
– volume: 16
  issue: 10
  year: 2022
  ident: 10.1016/j.sleh.2023.05.001_bib21
  article-title: Detection of obstructive sleep apnea using Belun Sleep Platform wearable with neural network-based algorithm and its combined use with STOP-Bang questionnaire
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0258040
– volume: 144
  issue: 3
  year: 2021
  ident: 10.1016/j.sleh.2023.05.001_bib1
  article-title: Obstructive sleep apnea and cardiovascular disease: a scientific statement from the American Heart Association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000988
– volume: 13
  start-page: 665
  issue: 05
  year: 2017
  ident: 10.1016/j.sleh.2023.05.001_bib29
  article-title: AASM scoring manual updates for 2017 (version 2.4)
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.6576
– volume: 14
  start-page: 493
  year: 2022
  ident: 10.1016/j.sleh.2023.05.001_bib47
  article-title: Performance of four commercial wearable sleep-tracking devices tested under unrestricted conditions at home in healthy young adults
  publication-title: Nat Sci Sleep
  doi: 10.2147/NSS.S348795
– volume: 52
  issue: 3
  year: 2018
  ident: 10.1016/j.sleh.2023.05.001_bib6
  article-title: Challenges and perspectives in obstructive sleep apnoea: report by an ad hoc working group of the Sleep Disordered Breathing Group of the European Respiratory Society and the European Sleep Research Society
  publication-title: Eur Respir J
  doi: 10.1183/13993003.02616-2017
– volume: 25
  start-page: 1351
  issue: 10
  year: 2018
  ident: 10.1016/j.sleh.2023.05.001_bib27
  article-title: The National Sleep Research Resource: towards a sleep data commons
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocy064
– volume: 31
  issue: 164
  year: 2022
  ident: 10.1016/j.sleh.2023.05.001_bib2
  article-title: Bidirectional relationships of comorbidity with obstructive sleep apnoea
  publication-title: Eur Respir Rev
  doi: 10.1183/16000617.0256-2021
– volume: 28
  start-page: 1151
  issue: 9
  year: 2005
  ident: 10.1016/j.sleh.2023.05.001_bib19
  article-title: An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep
  publication-title: Sleep
  doi: 10.1093/sleep/28.9.1151
– volume: 7
  start-page: 687
  issue: 8
  year: 2019
  ident: 10.1016/j.sleh.2023.05.001_bib4
  article-title: Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(19)30198-5
– volume: 385
  start-page: 283
  issue: 3
  year: 2021
  ident: 10.1016/j.sleh.2023.05.001_bib45
  article-title: The clinician and dataset shift in artificial intelligence
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2104626
– volume: 14
  issue: 1
  year: 2019
  ident: 10.1016/j.sleh.2023.05.001_bib43
  article-title: The validity of two commercially-available sleep trackers and actigraphy for assessment of sleep parameters in obstructive sleep apnea patients
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0210569
– volume: 22
  start-page: 939
  issue: 7
  year: 1999
  ident: 10.1016/j.sleh.2023.05.001_bib17
  article-title: Periodic, profound peripheral vasoconstriction—a new marker of obstructive sleep apnea
  publication-title: Sleep
– ident: 10.1016/j.sleh.2023.05.001_bib46
– volume: 16
  start-page: 1611
  issue: 9
  year: 2020
  ident: 10.1016/j.sleh.2023.05.001_bib22
  article-title: Belun Ring Platform: a novel home sleep apnea testing system for assessment of obstructive sleep apnea
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.8592
– volume: 25
  start-page: 690
  issue: 7
  year: 2020
  ident: 10.1016/j.sleh.2023.05.001_bib5
  article-title: Global burden of sleep-disordered breathing and its implications
  publication-title: Respirology
  doi: 10.1111/resp.13838
– ident: 10.1016/j.sleh.2023.05.001_bib24
  doi: 10.1109/CVPR.2018.00745
– volume: 45
  start-page: zsac028
  issue: 5
  year: 2022
  ident: 10.1016/j.sleh.2023.05.001_bib18
  article-title: A multicentric validation study of a novel home sleep apnea test based on peripheral arterial tonometry
  publication-title: Sleep
  doi: 10.1093/sleep/zsac028
– volume: 46
  issue: 1
  year: 2023
  ident: 10.1016/j.sleh.2023.05.001_bib49
  article-title: Performance of a multisensor smart ring to evaluate sleep: in-lab and home-based evaluation of generalized and personalized algorithms
  publication-title: Sleep
  doi: 10.1093/sleep/zsac152
– volume: 13
  start-page: 551
  issue: 04
  year: 2017
  ident: 10.1016/j.sleh.2023.05.001_bib8
  article-title: Potential underestimation of sleep apnea severity by at-home kits: rescoring in-laboratory polysomnography without sleep staging
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.6540
– volume: 43
  issue: 11
  year: 2020
  ident: 10.1016/j.sleh.2023.05.001_bib33
  article-title: Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea
  publication-title: Sleep
  doi: 10.1093/sleep/zsaa098
– volume: 17
  start-page: 124
  issue: 2
  year: 2019
  ident: 10.1016/j.sleh.2023.05.001_bib41
  article-title: The sleep of the ring: comparison of the ŌURA sleep tracker against polysomnography
  publication-title: Behav Sleep Med
  doi: 10.1080/15402002.2017.1300587
– volume: 16
  start-page: 1663
  issue: 10
  year: 2020
  ident: 10.1016/j.sleh.2023.05.001_bib34
  article-title: Performance of peripheral arterial tonometry–based testing for the diagnosis of obstructive sleep apnea in a large sleep clinic cohort
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.8620
– volume: 15
  start-page: 1645
  issue: 11
  year: 2019
  ident: 10.1016/j.sleh.2023.05.001_bib44
  article-title: Validation of Fitbit Charge 2 and Fitbit Alta HR against polysomnography for assessing sleep in adults with obstructive sleep apnea
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.8032
– volume: 172
  start-page: 325
  issue: 5
  year: 2020
  ident: 10.1016/j.sleh.2023.05.001_bib10
  article-title: The management of chronic insomnia disorder and obstructive sleep apnea: synopsis of the 2019 U.S. Department of Veterans Affairs and U.S. Department of Defense Clinical Practice Guidelines
  publication-title: Ann Intern Med
  doi: 10.7326/M19-3575
– volume: 3
  start-page: 42
  issue: 1
  year: 2020
  ident: 10.1016/j.sleh.2023.05.001_bib13
  article-title: The future of sleep health: a data-driven revolution in sleep science and medicine
  publication-title: npj Digit Med
  doi: 10.1038/s41746-020-0244-4
– volume: 13
  start-page: 1205
  issue: 10
  year: 2017
  ident: 10.1016/j.sleh.2023.05.001_bib11
  article-title: Clinical use of a home sleep apnea test: an American Academy of Sleep Medicine position statement
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.6774
– volume: 18
  start-page: 1093
  issue: 4
  year: 2022
  ident: 10.1016/j.sleh.2023.05.001_bib35
  article-title: A meta-analysis of diagnostic test performance of peripheral arterial tonometry studies
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.9808
– volume: 327
  start-page: 307
  issue: 8476
  year: 1986
  ident: 10.1016/j.sleh.2023.05.001_bib31
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
  doi: 10.1016/S0140-6736(86)90837-8
– volume: 14
  start-page: 1791
  issue: 10
  year: 2018
  ident: 10.1016/j.sleh.2023.05.001_bib37
  article-title: An evaluation of the NightOwl home sleep apnea testing system
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.7398
– volume: 18
  start-page: 876
  issue: 5
  year: 2021
  ident: 10.1016/j.sleh.2023.05.001_bib36
  article-title: Automated apnea–hypopnea index from oximetry and spectral analysis of cardiopulmonary coupling
  publication-title: Ann Am Thorac Soc
  doi: 10.1513/AnnalsATS.202005-510OC
– ident: 10.1016/j.sleh.2023.05.001_bib28
– volume: 07
  start-page: 531
  issue: 05
  year: 2011
  ident: 10.1016/j.sleh.2023.05.001_bib9
  article-title: Obstructive sleep apnea devices for out-of-center (OOC) testing: technology evaluation
  publication-title: J Clin Sleep Med
  doi: 10.5664/JCSM.1328
– volume: 12
  start-page: 1075
  issue: 08
  year: 2016
  ident: 10.1016/j.sleh.2023.05.001_bib3
  article-title: Health care savings: the economic value of diagnostic and therapeutic care for obstructive sleep apnea
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.6034
– volume: 44
  start-page: zsaa291
  issue: 5
  year: 2021
  ident: 10.1016/j.sleh.2023.05.001_bib14
  article-title: Performance of seven consumer sleep-tracking devices compared with polysomnography
  publication-title: Sleep
  doi: 10.1093/sleep/zsaa291
– volume: 17
  start-page: 189
  year: 2017
  ident: 10.1016/j.sleh.2023.05.001_bib25
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– ident: 10.1016/j.sleh.2023.05.001_bib30
– volume: 13
  start-page: 479
  issue: 03
  year: 2017
  ident: 10.1016/j.sleh.2023.05.001_bib7
  article-title: Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.6506
– volume: 41
  issue: 2
  year: 2018
  ident: 10.1016/j.sleh.2023.05.001_bib20
  article-title: Cardiopulmonary coupling spectrogram as an ambulatory clinical biomarker of sleep stability and quality in health, sleep apnea, and insomnia
  publication-title: Sleep
  doi: 10.1093/sleep/zsx196
– volume: 44
  start-page: ):zsab071
  issue: 5
  year: 2021
  ident: 10.1016/j.sleh.2023.05.001_bib15
  article-title: Sleep-tracking technology in scientific research: looking to the future
  publication-title: Sleep
  doi: 10.1093/sleep/zsab071
– volume: 7
  start-page: 1012
  issue: 12
  year: 2019
  ident: 10.1016/j.sleh.2023.05.001_bib16
  article-title: Consumer sleep trackers: a new tool to fight the hidden epidemic of obstructive sleep apnoea?
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(19)30407-2
– volume: 07
  start-page: 301
  issue: 03
  year: 2011
  ident: 10.1016/j.sleh.2023.05.001_bib38
  article-title: Sleep staging based on autonomic signals: a multi-center validation study
  publication-title: J Clin Sleep Med
  doi: 10.5664/JCSM.1078
– volume: 35
  start-page: 465
  issue: 4
  year: 2018
  ident: 10.1016/j.sleh.2023.05.001_bib39
  article-title: A validation study of Fitbit Charge 2™ compared with polysomnography in adults
  publication-title: Chronobiol Int
  doi: 10.1080/07420528.2017.1413578
– volume: 24
  issue: 5
  year: 2021
  ident: 10.1016/j.sleh.2023.05.001_bib12
  article-title: Recent advances in wearable sensors and portable electronics for sleep monitoring
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102461
– ident: 10.1016/j.sleh.2023.05.001_bib23
  doi: 10.1109/CVPR.2017.634
– volume: 8
  start-page: 263
  issue: 3
  year: 2022
  ident: 10.1016/j.sleh.2023.05.001_bib32
  article-title: Rigorous performance evaluation (previously, “validation”) for informed use of new technologies for sleep health measurement
  publication-title: Sleep Health
  doi: 10.1016/j.sleh.2022.02.006
– volume: 43
  issue: 7
  year: 2020
  ident: 10.1016/j.sleh.2023.05.001_bib40
  article-title: Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography
  publication-title: Sleep
  doi: 10.1093/sleep/zsaa045
SSID ssj0001492408
Score 2.354305
Snippet Our objective was to evaluate the performance of Belun Ring with second-generation deep learning algorithms in obstructive sleep apnea (OSA) detection, OSA...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 430
SubjectTerms Apnea-hypopnea index
Artificial intelligence
Digital health
Home sleep apnea testing
Obstructive sleep apnea
Peripheral arterial tonometry
Photoplethysmography
Sleep technology
Validation
Title Belun Ring (Belun Sleep System BLS-100): Deep learning-facilitated wearable enables obstructive sleep apnea detection, apnea severity categorization, and sleep stage classification in patients suspected of obstructive sleep apnea
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2352721823000906
https://dx.doi.org/10.1016/j.sleh.2023.05.001
https://www.ncbi.nlm.nih.gov/pubmed/37380590
https://www.proquest.com/docview/2831295599
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7QUJIRhf5WMyEg8giJo4iZvwtg2m8rUHyqS9RY59rjpVTkVa-Iv5P7iznU5I25B4a51e49TXu1_i-_2OsZe0V2RNOklkocqkyKo2aTFtJbJSujKizawX0_l6Kqdnxafz8nyHHQ9cGCqrjLE_xHQfrePIOP6a49ViMZ4JxA4TEiDPCSiQ7PaeyGuJrr13-PHz9PTyUUtRk5CXbzNXIp5Em0ifCZVe_RJoW0LkXsMztoe5IkVdB0F9Kjq5y-5EDMkPwzTvsR1w--x2eADHA6_oPvt9BMuN498wNfFX4fVsCbDiQaOcH32ZYXBMX7_j72k0do-YJ1bpINwNhv_CQaJWcfAMq553bdSb_Qm899-mVg4UN7D2JV3ubRzAiwFqi8ep4Gre_YhsTzzsTLREWDoHrgm9U7mSP84Xjkel1573G08DxXl09rozP2BnJx--H0-T2NMh0UWZrRMra9C2Lm01mVTWIN7MslrJFHOpLetCWMhoYzgXVhothWpTYfIWoDay0hKK_CHbdZ2Dx4xTwzS8P9UGdImwEvOqrIVEeITuJVUuRiwblrHRUfCc-m4sm6Gy7aKhpW9o6Zu0pPK-EXuztVkFuY8bP50P3tEMRFYMvQ1moxutyq3VX67-T7sXgwM2GANoY0c56DZ9gxARYRtpx43Yo-CZ29mTchURjJ_851mfslv0LtQ8PmO7uNbwHHHYuj2I_7M_KMgyag
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaq9AASQrwJTyNxAMEq-7Kzy60tVClNcyCt1Ju1a4-joGg3YhP4xfwPZmxvEBItErfIzmSdeDLz7Xq-bxh7TWdF1sTjSOaViPKkqKMa01Yki0oXJq0T68R0zmZycpF_vhSXe-yo58JQWWWI_T6mu2gdRkbh1xytl8vRPEXsMCYB8oyAAslu75M6lRiw_YOT08ns96OWvCQhL9dmTiCeRJtAn_GVXt0K6FgizZyGZ2gP85cUdRUEdano-A67HTAkP_DLvMv2oLnHbvkHcNzziu6zn4ew2jb8C6Ym_sa_nq8A1txrlPPD6RyDY_z2A_9Io6F7xCKylfbC3WD4DxwkahUHx7DqeFsHvdnvwDv3adW6gYob2LiSruZ9GMAvA9QWj1PB1aL9FtieON2YYImwdAFcE3qnciU3z5cND0qvHe-2jgaK62jtVVd-wC6OP50fTaLQ0yHSuUg2kZUlaFsKW4zHhTWIN5OkrGSMudSKMk8tJHQwnKVWGi3Tqo5Tk9UApZGFlpBnD9mgaRt4zDg1TMP7U21AC4SVmFdlmUqER-hessrSIUv6bVQ6CJ5T342V6ivbviraekVbr2JB5X1D9m5ns_ZyH9e-O-u9Q_VEVgy9CrPRtVZiZ_WHq__T7lXvgApjAB3sVA20204hRETYRtpxQ_bIe-Zu9aRcRQTjJ_951ZfsxuT8bKqmJ7PTp-wmzfj6x2dsgPsOzxGTbeoX4T_3C5fJNVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Belun+Ring+%28Belun+Sleep+System+BLS-100%29%3A+Deep+learning-facilitated+wearable+enables+obstructive+sleep+apnea+detection%2C+apnea+severity+categorization%2C+and+sleep+stage+classification+in+patients+suspected+of+obstructive+sleep+apnea&rft.jtitle=Sleep+health&rft.au=Strumpf%2C+Zachary&rft.au=Gu%2C+Wenbo&rft.au=Tsai%2C+Chih-Wei&rft.au=Chen%2C+Pai-Lien&rft.date=2023-08-01&rft.pub=Elsevier+Inc&rft.issn=2352-7218&rft.volume=9&rft.issue=4&rft.spage=430&rft.epage=440&rft_id=info:doi/10.1016%2Fj.sleh.2023.05.001&rft.externalDocID=S2352721823000906
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7218&client=summon