Belun Ring (Belun Sleep System BLS-100): Deep learning-facilitated wearable enables obstructive sleep apnea detection, apnea severity categorization, and sleep stage classification in patients suspected of obstructive sleep apnea
Our objective was to evaluate the performance of Belun Ring with second-generation deep learning algorithms in obstructive sleep apnea (OSA) detection, OSA severity categorization, and sleep stage classification. Belun Ring with second-generation deep learning algorithms In-lab polysomnography (PSG)...
Saved in:
Published in | Sleep health Vol. 9; no. 4; pp. 430 - 440 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-7218 2352-7226 2352-7226 |
DOI | 10.1016/j.sleh.2023.05.001 |
Cover
Loading…
Abstract | Our objective was to evaluate the performance of Belun Ring with second-generation deep learning algorithms in obstructive sleep apnea (OSA) detection, OSA severity categorization, and sleep stage classification.
Belun Ring with second-generation deep learning algorithms
In-lab polysomnography (PSG)
Eighty-four subjects (M: F = 1:1) referred for an overnight sleep study were eligible. Of these, 26% had PSG-AHI<5; 24% had PSG-AHI 5–15; 23% had PSG-AHI 15–30; 27% had PSG-AHI ≥ 30.
Rigorous performance evaluation by comparing Belun Ring to concurrent in-lab PSG using the 4% rule.
Pearson’s correlation coefficient, Student’s paired t-test, diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, Cohen’s kappa coefficient (kappa), Bland-Altman plots with bias and limits of agreement, receiver operating characteristics curves with area under the curve, and confusion matrix.
The accuracy, sensitivity, specificity, and kappa in categorizing AHI ≥ 5 were 0.85, 0.92, 0.64, and 0.58, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 15 were 0.89, 0.91, 0.88, and 0.79, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 30 were 0.91, 0.83, 0.93, and 0.76, respectively. BSP2 also achieved an accuracy of 0.88 in detecting wake, 0.82 in detecting NREM, and 0.90 in detecting REM sleep.
Belun Ring with second-generation algorithms detected OSA with good accuracy and demonstrated a moderate-to-substantial agreement in categorizing OSA severity and classifying sleep stages. |
---|---|
AbstractList | Our objective was to evaluate the performance of Belun Ring with second-generation deep learning algorithms in obstructive sleep apnea (OSA) detection, OSA severity categorization, and sleep stage classification.GOAL AND AIMSOur objective was to evaluate the performance of Belun Ring with second-generation deep learning algorithms in obstructive sleep apnea (OSA) detection, OSA severity categorization, and sleep stage classification.Belun Ring with second-generation deep learning algorithms REFERENCE TECHNOLOGY: In-lab polysomnography (PSG) SAMPLE: Eighty-four subjects (M: F = 1:1) referred for an overnight sleep study were eligible. Of these, 26% had PSG-AHI<5; 24% had PSG-AHI 5-15; 23% had PSG-AHI 15-30; 27% had PSG-AHI ≥ 30.FOCUS TECHNOLOGYBelun Ring with second-generation deep learning algorithms REFERENCE TECHNOLOGY: In-lab polysomnography (PSG) SAMPLE: Eighty-four subjects (M: F = 1:1) referred for an overnight sleep study were eligible. Of these, 26% had PSG-AHI<5; 24% had PSG-AHI 5-15; 23% had PSG-AHI 15-30; 27% had PSG-AHI ≥ 30.Rigorous performance evaluation by comparing Belun Ring to concurrent in-lab PSG using the 4% rule.DESIGNRigorous performance evaluation by comparing Belun Ring to concurrent in-lab PSG using the 4% rule.Pearson's correlation coefficient, Student's paired t-test, diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, Cohen's kappa coefficient (kappa), Bland-Altman plots with bias and limits of agreement, receiver operating characteristics curves with area under the curve, and confusion matrix.CORE ANALYTICSPearson's correlation coefficient, Student's paired t-test, diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, Cohen's kappa coefficient (kappa), Bland-Altman plots with bias and limits of agreement, receiver operating characteristics curves with area under the curve, and confusion matrix.The accuracy, sensitivity, specificity, and kappa in categorizing AHI ≥ 5 were 0.85, 0.92, 0.64, and 0.58, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 15 were 0.89, 0.91, 0.88, and 0.79, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 30 were 0.91, 0.83, 0.93, and 0.76, respectively. BSP2 also achieved an accuracy of 0.88 in detecting wake, 0.82 in detecting NREM, and 0.90 in detecting REM sleep.CORE OUTCOMESThe accuracy, sensitivity, specificity, and kappa in categorizing AHI ≥ 5 were 0.85, 0.92, 0.64, and 0.58, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 15 were 0.89, 0.91, 0.88, and 0.79, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 30 were 0.91, 0.83, 0.93, and 0.76, respectively. BSP2 also achieved an accuracy of 0.88 in detecting wake, 0.82 in detecting NREM, and 0.90 in detecting REM sleep.Belun Ring with second-generation algorithms detected OSA with good accuracy and demonstrated a moderate-to-substantial agreement in categorizing OSA severity and classifying sleep stages.CORE CONCLUSIONBelun Ring with second-generation algorithms detected OSA with good accuracy and demonstrated a moderate-to-substantial agreement in categorizing OSA severity and classifying sleep stages. Our objective was to evaluate the performance of Belun Ring with second-generation deep learning algorithms in obstructive sleep apnea (OSA) detection, OSA severity categorization, and sleep stage classification. Belun Ring with second-generation deep learning algorithms REFERENCE TECHNOLOGY: In-lab polysomnography (PSG) SAMPLE: Eighty-four subjects (M: F = 1:1) referred for an overnight sleep study were eligible. Of these, 26% had PSG-AHI<5; 24% had PSG-AHI 5-15; 23% had PSG-AHI 15-30; 27% had PSG-AHI ≥ 30. Rigorous performance evaluation by comparing Belun Ring to concurrent in-lab PSG using the 4% rule. Pearson's correlation coefficient, Student's paired t-test, diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, Cohen's kappa coefficient (kappa), Bland-Altman plots with bias and limits of agreement, receiver operating characteristics curves with area under the curve, and confusion matrix. The accuracy, sensitivity, specificity, and kappa in categorizing AHI ≥ 5 were 0.85, 0.92, 0.64, and 0.58, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 15 were 0.89, 0.91, 0.88, and 0.79, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 30 were 0.91, 0.83, 0.93, and 0.76, respectively. BSP2 also achieved an accuracy of 0.88 in detecting wake, 0.82 in detecting NREM, and 0.90 in detecting REM sleep. Belun Ring with second-generation algorithms detected OSA with good accuracy and demonstrated a moderate-to-substantial agreement in categorizing OSA severity and classifying sleep stages. Our objective was to evaluate the performance of Belun Ring with second-generation deep learning algorithms in obstructive sleep apnea (OSA) detection, OSA severity categorization, and sleep stage classification. Belun Ring with second-generation deep learning algorithms In-lab polysomnography (PSG) Eighty-four subjects (M: F = 1:1) referred for an overnight sleep study were eligible. Of these, 26% had PSG-AHI<5; 24% had PSG-AHI 5–15; 23% had PSG-AHI 15–30; 27% had PSG-AHI ≥ 30. Rigorous performance evaluation by comparing Belun Ring to concurrent in-lab PSG using the 4% rule. Pearson’s correlation coefficient, Student’s paired t-test, diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, Cohen’s kappa coefficient (kappa), Bland-Altman plots with bias and limits of agreement, receiver operating characteristics curves with area under the curve, and confusion matrix. The accuracy, sensitivity, specificity, and kappa in categorizing AHI ≥ 5 were 0.85, 0.92, 0.64, and 0.58, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 15 were 0.89, 0.91, 0.88, and 0.79, respectively. The accuracy, sensitivity, specificity, and Kappa in categorizing AHI ≥ 30 were 0.91, 0.83, 0.93, and 0.76, respectively. BSP2 also achieved an accuracy of 0.88 in detecting wake, 0.82 in detecting NREM, and 0.90 in detecting REM sleep. Belun Ring with second-generation algorithms detected OSA with good accuracy and demonstrated a moderate-to-substantial agreement in categorizing OSA severity and classifying sleep stages. |
Author | Gu, Wenbo Folz, Rodney J. Cheung, Cynthia Tsai, Chih-Wei Yeh, Eric Wu, I-Chen Chiang, Ambrose A. Chen, Pai-Lien Leung, Lydia Tsai, Tiffany Strumpf, Zachary Strohl, Kingman P. |
Author_xml | – sequence: 1 givenname: Zachary orcidid: 0000-0002-8178-3240 surname: Strumpf fullname: Strumpf, Zachary organization: Division of Pulmonary, Critical Care, and Sleep Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA – sequence: 2 givenname: Wenbo surname: Gu fullname: Gu, Wenbo organization: Belun Technology Company Limited, Hong Kong – sequence: 3 givenname: Chih-Wei orcidid: 0000-0002-2175-478X surname: Tsai fullname: Tsai, Chih-Wei organization: Belun Technology Company Limited, Hong Kong – sequence: 4 givenname: Pai-Lien surname: Chen fullname: Chen, Pai-Lien organization: FHI360, Durham, NC, USA – sequence: 5 givenname: Eric orcidid: 0000-0001-8752-4429 surname: Yeh fullname: Yeh, Eric organization: Division of Pulmonary, Critical Care, and Sleep Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA – sequence: 6 givenname: Lydia surname: Leung fullname: Leung, Lydia organization: Belun Technology Company Limited, Hong Kong – sequence: 7 givenname: Cynthia surname: Cheung fullname: Cheung, Cynthia organization: Belun Technology Company Limited, Hong Kong – sequence: 8 givenname: I-Chen surname: Wu fullname: Wu, I-Chen organization: Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan – sequence: 9 givenname: Kingman P. surname: Strohl fullname: Strohl, Kingman P. organization: Division of Pulmonary, Critical Care, and Sleep Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA – sequence: 10 givenname: Tiffany surname: Tsai fullname: Tsai, Tiffany organization: Case Western Reserve University, Cleveland, OH, USA – sequence: 11 givenname: Rodney J. surname: Folz fullname: Folz, Rodney J. organization: Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Hospital, Houston, TX, USA – sequence: 12 givenname: Ambrose A. surname: Chiang fullname: Chiang, Ambrose A. email: Ambrose.chiang@va.gov organization: Division of Pulmonary, Critical Care, and Sleep Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37380590$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUttu1DAQjVARvdAf4AH5sUgk2M5lk4oXWq7SSkgsPFuOM168eJ3gcRZt_5f_wOmGPlSiPM3ozDnH1pw5TY5c7yBJnjGaMcqqV5sMLXzPOOV5RsuMUvYoOeF5ydMF59XRXc_q4-QccUMjo2h4QesnyXG-yGtaNvQk-X0FdnTki3FrcnHoVxZgIKs9BtiSq-UqZZS-uCRvJ9SC9C5yUy2VsSbIAB35FUHZWiDgpoKkbzH4UQWzA4K3bnJwIEkHASLau5czgLADb8KeqGi07r25kfPYdbMSg1wDUVYiGm3U7ZwYR4bYgQtIcMQhusZ_9PpfLz9NHmtpEc7nepZ8e__u6_XHdPn5w6frN8tUFSULqa4aULopdb1Y1LpjFWOskRUtWK7LpuAa2ILTPOe66lTFZUt5l7cATVfVqoIiP0suDr6D73-OgEFsDSqwVjroRxS8zhlvyrJpIvX5TB3bLXRi8GYr_V78jSYS-IGgfI_oQd9RGBXTCYiNmE5ATCcgaCliwFFU3xOpKaS4s-ClsQ9LXx-kEBe0M-AFqrhhBZ3xcb-i683D8st7cmWNi4HZH7D_n_gPxivkMw |
CitedBy_id | crossref_primary_10_1007_s41782_024_00275_6 crossref_primary_10_2196_58187 crossref_primary_10_1093_sleep_zsae317 crossref_primary_10_5664_jcsm_11464 crossref_primary_10_1111_jopr_14003 crossref_primary_10_1016_j_smrv_2024_101897 crossref_primary_10_5664_jcsm_11290 crossref_primary_10_1111_resp_70012 crossref_primary_10_5664_jcsm_11348 |
Cites_doi | 10.3390/s22166317 10.1088/0967-3334/28/2/002 10.1371/journal.pone.0258040 10.1161/CIR.0000000000000988 10.5664/jcsm.6576 10.2147/NSS.S348795 10.1183/13993003.02616-2017 10.1093/jamia/ocy064 10.1183/16000617.0256-2021 10.1093/sleep/28.9.1151 10.1016/S2213-2600(19)30198-5 10.1056/NEJMc2104626 10.1371/journal.pone.0210569 10.5664/jcsm.8592 10.1111/resp.13838 10.1109/CVPR.2018.00745 10.1093/sleep/zsac028 10.1093/sleep/zsac152 10.5664/jcsm.6540 10.1093/sleep/zsaa098 10.1080/15402002.2017.1300587 10.5664/jcsm.8620 10.5664/jcsm.8032 10.7326/M19-3575 10.1038/s41746-020-0244-4 10.5664/jcsm.6774 10.5664/jcsm.9808 10.1016/S0140-6736(86)90837-8 10.5664/jcsm.7398 10.1513/AnnalsATS.202005-510OC 10.5664/JCSM.1328 10.5664/jcsm.6034 10.1093/sleep/zsaa291 10.5664/jcsm.6506 10.1093/sleep/zsx196 10.1093/sleep/zsab071 10.1016/S2213-2600(19)30407-2 10.5664/JCSM.1078 10.1080/07420528.2017.1413578 10.1016/j.isci.2021.102461 10.1109/CVPR.2017.634 10.1016/j.sleh.2022.02.006 10.1093/sleep/zsaa045 |
ContentType | Journal Article |
Copyright | 2023 Published by Elsevier Inc. |
Copyright_xml | – notice: 2023 – notice: Published by Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.sleh.2023.05.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 2352-7226 |
EndPage | 440 |
ExternalDocumentID | 37380590 10_1016_j_sleh_2023_05_001 S2352721823000906 |
Genre | Journal Article |
GroupedDBID | --M .1- .FO 0R~ 1P~ 4.4 457 53G 7-5 8P~ AADFP AAEDT AAEDW AAGJA AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABJNI ABMAC ABMZM ABOYX ABXDB ACDAQ ACGFS ACIEU ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV C45 EBS EFJIC EFKBS EJD FDB FEDTE FIRID FYGXN GBLVA HVGLF KOM M41 O9- OAUVE OJ- OV. OVD ROL SNG SPCBC SSB SSH SSN SSY SSZ T5K TEORI Z5R ~G- 6I. AACTN AAFTH AFCTW AFKWA AJOXV AMFUW AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c451t-f69ecf95f8778fd161119a60413f5942fe1720332f6dc62ab02d3bee9d68c6e43 |
IEDL.DBID | AIKHN |
ISSN | 2352-7218 2352-7226 |
IngestDate | Fri Jul 11 03:56:32 EDT 2025 Wed Feb 19 02:22:56 EST 2025 Tue Jul 01 03:08:22 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Tue Dec 03 03:44:58 EST 2024 Tue Aug 26 20:11:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Validation Sleep technology Apnea-hypopnea index Photoplethysmography Digital health Home sleep apnea testing Obstructive sleep apnea Artificial intelligence Peripheral arterial tonometry |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-f69ecf95f8778fd161119a60413f5942fe1720332f6dc62ab02d3bee9d68c6e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8178-3240 0000-0001-8752-4429 0000-0002-2175-478X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2352721823000906 |
PMID | 37380590 |
PQID | 2831295599 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2831295599 pubmed_primary_37380590 crossref_primary_10_1016_j_sleh_2023_05_001 crossref_citationtrail_10_1016_j_sleh_2023_05_001 elsevier_sciencedirect_doi_10_1016_j_sleh_2023_05_001 elsevier_clinicalkey_doi_10_1016_j_sleh_2023_05_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Sleep health |
PublicationTitleAlternate | Sleep Health |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Hedner, White, Malhotra (bib38) 2011; 07 Zhang, Cui, Mueller (bib27) 2018; 25 Hu J., Shen L., Sun G. Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE; 2018: 7132-7141. doi Yeh, Wong, Tsai (bib21) 2022; 16 Yeghiazarians, Jneid, Tietjens (bib1) 2021; 144 de Zambotti, Menghini, Grandner (bib32) 2022; 8 Tan, Cook, Cedernaes, Benedict (bib16) 2019; 7 Roberts, Schade, Mathew, Gartenberg, Buxton (bib40) 2020; 43 Gleeson, McNicholas (bib2) 2022; 31 Al Ashry, Hilmisson, Ni (bib36) 2021; 18 Schnall, Shlitner, Sheffy, Kedar, Lavie (bib17) 1999; 22 de Zambotti, Rosas, Colrain, Baker (bib41) 2019; 17 Herscovici, Pe’er, Papyan, Lavie (bib42) 2007; 28 Rosen, Kirsch, Chervin (bib11) 2017; 13 Moreno-Pino, Porras-Segovia, López-Esteban, Artés, Baca-García (bib44) 2019; 15 . Watson (bib3) 2016; 12 Benjafield, Ayas, Eastwood (bib4) 2019; 7 Miller, Sargent, Roach (bib48) 2022; 22 Berry, Brooks, Gamaldo (bib29) 2017; 13 Gu, Leung, Kwok, Wu, Folz, Chiang (bib22) 2020; 16 Bianchi, Goparaju (bib8) 2017; 13 Vaswani A., Shazeer N., Parmar N., et al. Attention is all you need. In Massie, Mendes de Almeida, Dreesen, Thijs, Vranken, Klerkx (bib37) 2018; 14 Finlayson, Subbaswamy, Singh (bib45) 2021; 385 de Zambotti, Goldstone, Claudatos, Colrain, Baker (bib39) 2018; 35 Randerath, Bassetti, Bonsignore (bib6) 2018; 52 Van Pee, Massie, Vits (bib18) 2022; 45 Thomas, Mietus, Peng, Goldberger (bib19) 2005; 28 Chinoy, Cuellar, Jameson, Markwald (bib47) 2022; 14 R Core Team. R: a language and environment for statistical computing. R Found Stat Comput. Published online 2021. Korkalainen, Aakko, Duce (bib33) 2020; 43 Collop, Tracy, Kapur (bib9) 2011; 07 Vol 30. Curran Associates, Inc.; 2017: 11. Bland, Altman (bib31) 1986; 327 Perez-Pozuelo, Zhai, Palotti (bib13) 2020; 3 Chinoy, Cuellar, Huwa (bib14) 2021; 44 Gruwez, Bruyneel, Bruyneel (bib43) 2019; 14 Kwon, Kim, Yeo (bib12) 2021; 24 Thomas, Wood, Bianchi (bib20) 2018; 41 Xie S., Girshick R., Dollar P., Tu Z., He K. Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2017: 5987-5995. doi Quan, Howard, Iber (bib26) 1997; 20 Iftikhar, Finch, Shah, Augunstein, Ioachimescu (bib35) 2022; 18 Kapur, Auckley, Chowdhuri (bib7) 2017; 13 Grandner, Bromberg, Hadley (bib49) 2023; 46 Grandner, Lujan, Ghani (bib15) 2021; 44 Ioachimescu, Allam, Samarghandi (bib34) 2020; 16 Lyons, Bhatt, Pack, Magalang (bib5) 2020; 25 Ganin, Ustinova, Ajakan (bib25) 2017; 17 Subbaswamy A., Adams R., Saria S. Evaluating model robustness and stability to dataset shift. In: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics, 2021. doi: 10.48550/arXiv.2010.15100. Mysliwiec, Martin, Ulmer (bib10) 2020; 172 Berry (10.1016/j.sleh.2023.05.001_bib29) 2017; 13 Lyons (10.1016/j.sleh.2023.05.001_bib5) 2020; 25 10.1016/j.sleh.2023.05.001_bib30 Benjafield (10.1016/j.sleh.2023.05.001_bib4) 2019; 7 Gruwez (10.1016/j.sleh.2023.05.001_bib43) 2019; 14 Iftikhar (10.1016/j.sleh.2023.05.001_bib35) 2022; 18 10.1016/j.sleh.2023.05.001_bib28 Korkalainen (10.1016/j.sleh.2023.05.001_bib33) 2020; 43 Bianchi (10.1016/j.sleh.2023.05.001_bib8) 2017; 13 Ganin (10.1016/j.sleh.2023.05.001_bib25) 2017; 17 Finlayson (10.1016/j.sleh.2023.05.001_bib45) 2021; 385 10.1016/j.sleh.2023.05.001_bib24 10.1016/j.sleh.2023.05.001_bib23 Miller (10.1016/j.sleh.2023.05.001_bib48) 2022; 22 de Zambotti (10.1016/j.sleh.2023.05.001_bib32) 2022; 8 Gleeson (10.1016/j.sleh.2023.05.001_bib2) 2022; 31 Tan (10.1016/j.sleh.2023.05.001_bib16) 2019; 7 Kwon (10.1016/j.sleh.2023.05.001_bib12) 2021; 24 Randerath (10.1016/j.sleh.2023.05.001_bib6) 2018; 52 Watson (10.1016/j.sleh.2023.05.001_bib3) 2016; 12 Yeghiazarians (10.1016/j.sleh.2023.05.001_bib1) 2021; 144 Chinoy (10.1016/j.sleh.2023.05.001_bib47) 2022; 14 Herscovici (10.1016/j.sleh.2023.05.001_bib42) 2007; 28 Mysliwiec (10.1016/j.sleh.2023.05.001_bib10) 2020; 172 Gu (10.1016/j.sleh.2023.05.001_bib22) 2020; 16 Bland (10.1016/j.sleh.2023.05.001_bib31) 1986; 327 Chinoy (10.1016/j.sleh.2023.05.001_bib14) 2021; 44 Grandner (10.1016/j.sleh.2023.05.001_bib49) 2023; 46 Collop (10.1016/j.sleh.2023.05.001_bib9) 2011; 07 Al Ashry (10.1016/j.sleh.2023.05.001_bib36) 2021; 18 Moreno-Pino (10.1016/j.sleh.2023.05.001_bib44) 2019; 15 de Zambotti (10.1016/j.sleh.2023.05.001_bib39) 2018; 35 de Zambotti (10.1016/j.sleh.2023.05.001_bib41) 2019; 17 10.1016/j.sleh.2023.05.001_bib46 Yeh (10.1016/j.sleh.2023.05.001_bib21) 2022; 16 Massie (10.1016/j.sleh.2023.05.001_bib37) 2018; 14 Perez-Pozuelo (10.1016/j.sleh.2023.05.001_bib13) 2020; 3 Schnall (10.1016/j.sleh.2023.05.001_bib17) 1999; 22 Van Pee (10.1016/j.sleh.2023.05.001_bib18) 2022; 45 Thomas (10.1016/j.sleh.2023.05.001_bib19) 2005; 28 Ioachimescu (10.1016/j.sleh.2023.05.001_bib34) 2020; 16 Thomas (10.1016/j.sleh.2023.05.001_bib20) 2018; 41 Zhang (10.1016/j.sleh.2023.05.001_bib27) 2018; 25 Kapur (10.1016/j.sleh.2023.05.001_bib7) 2017; 13 Grandner (10.1016/j.sleh.2023.05.001_bib15) 2021; 44 Rosen (10.1016/j.sleh.2023.05.001_bib11) 2017; 13 Roberts (10.1016/j.sleh.2023.05.001_bib40) 2020; 43 Hedner (10.1016/j.sleh.2023.05.001_bib38) 2011; 07 Quan (10.1016/j.sleh.2023.05.001_bib26) 1997; 20 |
References_xml | – volume: 18 start-page: 876 year: 2021 end-page: 883 ident: bib36 article-title: Automated apnea–hypopnea index from oximetry and spectral analysis of cardiopulmonary coupling publication-title: Ann Am Thorac Soc – volume: 35 start-page: 465 year: 2018 end-page: 476 ident: bib39 article-title: A validation study of Fitbit Charge 2™ compared with polysomnography in adults publication-title: Chronobiol Int – volume: 16 start-page: 1663 year: 2020 end-page: 1674 ident: bib34 article-title: Performance of peripheral arterial tonometry–based testing for the diagnosis of obstructive sleep apnea in a large sleep clinic cohort publication-title: J Clin Sleep Med – volume: 172 start-page: 325 year: 2020 end-page: 336 ident: bib10 article-title: The management of chronic insomnia disorder and obstructive sleep apnea: synopsis of the 2019 U.S. Department of Veterans Affairs and U.S. Department of Defense Clinical Practice Guidelines publication-title: Ann Intern Med – volume: 14 start-page: 1791 year: 2018 end-page: 1796 ident: bib37 article-title: An evaluation of the NightOwl home sleep apnea testing system publication-title: J Clin Sleep Med – volume: 327 start-page: 307 year: 1986 end-page: 310 ident: bib31 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Lancet – volume: 8 start-page: 263 year: 2022 end-page: 269 ident: bib32 article-title: Rigorous performance evaluation (previously, “validation”) for informed use of new technologies for sleep health measurement publication-title: Sleep Health – volume: 12 start-page: 1075 year: 2016 end-page: 1077 ident: bib3 article-title: Health care savings: the economic value of diagnostic and therapeutic care for obstructive sleep apnea publication-title: J Clin Sleep Med – volume: 25 start-page: 690 year: 2020 end-page: 702 ident: bib5 article-title: Global burden of sleep-disordered breathing and its implications publication-title: Respirology – reference: R Core Team. R: a language and environment for statistical computing. R Found Stat Comput. Published online 2021. – volume: 16 year: 2022 ident: bib21 article-title: Detection of obstructive sleep apnea using Belun Sleep Platform wearable with neural network-based algorithm and its combined use with STOP-Bang questionnaire publication-title: PLoS One – volume: 25 start-page: 1351 year: 2018 end-page: 1358 ident: bib27 article-title: The National Sleep Research Resource: towards a sleep data commons publication-title: J Am Med Inform Assoc – volume: 52 year: 2018 ident: bib6 article-title: Challenges and perspectives in obstructive sleep apnoea: report by an ad hoc working group of the Sleep Disordered Breathing Group of the European Respiratory Society and the European Sleep Research Society publication-title: Eur Respir J – volume: 7 start-page: 1012 year: 2019 ident: bib16 article-title: Consumer sleep trackers: a new tool to fight the hidden epidemic of obstructive sleep apnoea? publication-title: Lancet Respir Med – volume: 17 start-page: 189 year: 2017 end-page: 209 ident: bib25 article-title: Domain-adversarial training of neural networks publication-title: J Mach Learn Res – volume: 44 start-page: ):zsab071 year: 2021 ident: bib15 article-title: Sleep-tracking technology in scientific research: looking to the future publication-title: Sleep – volume: 385 start-page: 283 year: 2021 end-page: 286 ident: bib45 article-title: The clinician and dataset shift in artificial intelligence publication-title: N Engl J Med – volume: 16 start-page: 1611 year: 2020 end-page: 1617 ident: bib22 article-title: Belun Ring Platform: a novel home sleep apnea testing system for assessment of obstructive sleep apnea publication-title: J Clin Sleep Med – volume: 17 start-page: 124 year: 2019 end-page: 136 ident: bib41 article-title: The sleep of the ring: comparison of the ŌURA sleep tracker against polysomnography publication-title: Behav Sleep Med – volume: 22 start-page: 939 year: 1999 end-page: 946 ident: bib17 article-title: Periodic, profound peripheral vasoconstriction—a new marker of obstructive sleep apnea publication-title: Sleep – reference: . Vol 30. Curran Associates, Inc.; 2017: 11. – volume: 14 start-page: 493 year: 2022 end-page: 516 ident: bib47 article-title: Performance of four commercial wearable sleep-tracking devices tested under unrestricted conditions at home in healthy young adults publication-title: Nat Sci Sleep – reference: Xie S., Girshick R., Dollar P., Tu Z., He K. Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2017: 5987-5995. doi: – volume: 13 start-page: 479 year: 2017 end-page: 504 ident: bib7 article-title: Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline publication-title: J Clin Sleep Med – volume: 7 start-page: 687 year: 2019 end-page: 698 ident: bib4 article-title: Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis publication-title: Lancet Respir Med – volume: 13 start-page: 1205 year: 2017 end-page: 1207 ident: bib11 article-title: Clinical use of a home sleep apnea test: an American Academy of Sleep Medicine position statement publication-title: J Clin Sleep Med – reference: Hu J., Shen L., Sun G. Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE; 2018: 7132-7141. doi: – volume: 20 start-page: 1077 year: 1997 end-page: 1085 ident: bib26 article-title: The sleep heart health study: design, rationale, and methods publication-title: Sleep. – volume: 41 year: 2018 ident: bib20 article-title: Cardiopulmonary coupling spectrogram as an ambulatory clinical biomarker of sleep stability and quality in health, sleep apnea, and insomnia publication-title: Sleep – volume: 45 start-page: zsac028 year: 2022 ident: bib18 article-title: A multicentric validation study of a novel home sleep apnea test based on peripheral arterial tonometry publication-title: Sleep – reference: Vaswani A., Shazeer N., Parmar N., et al. Attention is all you need. In: – volume: 24 year: 2021 ident: bib12 article-title: Recent advances in wearable sensors and portable electronics for sleep monitoring publication-title: iScience – volume: 15 start-page: 1645 year: 2019 end-page: 1653 ident: bib44 article-title: Validation of Fitbit Charge 2 and Fitbit Alta HR against polysomnography for assessing sleep in adults with obstructive sleep apnea publication-title: J Clin Sleep Med – volume: 43 year: 2020 ident: bib33 article-title: Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea publication-title: Sleep – volume: 13 start-page: 551 year: 2017 end-page: 555 ident: bib8 article-title: Potential underestimation of sleep apnea severity by at-home kits: rescoring in-laboratory polysomnography without sleep staging publication-title: J Clin Sleep Med – volume: 07 start-page: 301 year: 2011 end-page: 306 ident: bib38 article-title: Sleep staging based on autonomic signals: a multi-center validation study publication-title: J Clin Sleep Med – volume: 43 year: 2020 ident: bib40 article-title: Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography publication-title: Sleep – volume: 14 year: 2019 ident: bib43 article-title: The validity of two commercially-available sleep trackers and actigraphy for assessment of sleep parameters in obstructive sleep apnea patients publication-title: PLoS One – volume: 3 start-page: 42 year: 2020 ident: bib13 article-title: The future of sleep health: a data-driven revolution in sleep science and medicine publication-title: npj Digit Med – volume: 07 start-page: 531 year: 2011 end-page: 548 ident: bib9 article-title: Obstructive sleep apnea devices for out-of-center (OOC) testing: technology evaluation publication-title: J Clin Sleep Med – volume: 28 start-page: 1151 year: 2005 end-page: 1161 ident: bib19 article-title: An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep publication-title: Sleep – volume: 46 year: 2023 ident: bib49 article-title: Performance of a multisensor smart ring to evaluate sleep: in-lab and home-based evaluation of generalized and personalized algorithms publication-title: Sleep – reference: . – volume: 44 start-page: zsaa291 year: 2021 ident: bib14 article-title: Performance of seven consumer sleep-tracking devices compared with polysomnography publication-title: Sleep – reference: Subbaswamy A., Adams R., Saria S. Evaluating model robustness and stability to dataset shift. In: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics, 2021. doi: 10.48550/arXiv.2010.15100. – volume: 144 year: 2021 ident: bib1 article-title: Obstructive sleep apnea and cardiovascular disease: a scientific statement from the American Heart Association publication-title: Circulation – volume: 31 year: 2022 ident: bib2 article-title: Bidirectional relationships of comorbidity with obstructive sleep apnoea publication-title: Eur Respir Rev – volume: 13 start-page: 665 year: 2017 end-page: 666 ident: bib29 article-title: AASM scoring manual updates for 2017 (version 2.4) publication-title: J Clin Sleep Med – volume: 22 start-page: 6317 year: 2022 ident: bib48 article-title: A validation of six wearable devices for estimating sleep, heart rate and heart rate variability in healthy adults publication-title: Sensors – volume: 28 start-page: 129 year: 2007 end-page: 140 ident: bib42 article-title: Detecting REM sleep from the finger: an automatic REM sleep algorithm based on peripheral arterial tone (PAT) and actigraphy publication-title: Physiol Meas – volume: 18 start-page: 1093 year: 2022 end-page: 1102 ident: bib35 article-title: A meta-analysis of diagnostic test performance of peripheral arterial tonometry studies publication-title: J Clin Sleep Med – volume: 22 start-page: 6317 issue: 16 year: 2022 ident: 10.1016/j.sleh.2023.05.001_bib48 article-title: A validation of six wearable devices for estimating sleep, heart rate and heart rate variability in healthy adults publication-title: Sensors doi: 10.3390/s22166317 – volume: 20 start-page: 1077 issue: 12 year: 1997 ident: 10.1016/j.sleh.2023.05.001_bib26 article-title: The sleep heart health study: design, rationale, and methods publication-title: Sleep. – volume: 28 start-page: 129 issue: 2 year: 2007 ident: 10.1016/j.sleh.2023.05.001_bib42 article-title: Detecting REM sleep from the finger: an automatic REM sleep algorithm based on peripheral arterial tone (PAT) and actigraphy publication-title: Physiol Meas doi: 10.1088/0967-3334/28/2/002 – volume: 16 issue: 10 year: 2022 ident: 10.1016/j.sleh.2023.05.001_bib21 article-title: Detection of obstructive sleep apnea using Belun Sleep Platform wearable with neural network-based algorithm and its combined use with STOP-Bang questionnaire publication-title: PLoS One doi: 10.1371/journal.pone.0258040 – volume: 144 issue: 3 year: 2021 ident: 10.1016/j.sleh.2023.05.001_bib1 article-title: Obstructive sleep apnea and cardiovascular disease: a scientific statement from the American Heart Association publication-title: Circulation doi: 10.1161/CIR.0000000000000988 – volume: 13 start-page: 665 issue: 05 year: 2017 ident: 10.1016/j.sleh.2023.05.001_bib29 article-title: AASM scoring manual updates for 2017 (version 2.4) publication-title: J Clin Sleep Med doi: 10.5664/jcsm.6576 – volume: 14 start-page: 493 year: 2022 ident: 10.1016/j.sleh.2023.05.001_bib47 article-title: Performance of four commercial wearable sleep-tracking devices tested under unrestricted conditions at home in healthy young adults publication-title: Nat Sci Sleep doi: 10.2147/NSS.S348795 – volume: 52 issue: 3 year: 2018 ident: 10.1016/j.sleh.2023.05.001_bib6 article-title: Challenges and perspectives in obstructive sleep apnoea: report by an ad hoc working group of the Sleep Disordered Breathing Group of the European Respiratory Society and the European Sleep Research Society publication-title: Eur Respir J doi: 10.1183/13993003.02616-2017 – volume: 25 start-page: 1351 issue: 10 year: 2018 ident: 10.1016/j.sleh.2023.05.001_bib27 article-title: The National Sleep Research Resource: towards a sleep data commons publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocy064 – volume: 31 issue: 164 year: 2022 ident: 10.1016/j.sleh.2023.05.001_bib2 article-title: Bidirectional relationships of comorbidity with obstructive sleep apnoea publication-title: Eur Respir Rev doi: 10.1183/16000617.0256-2021 – volume: 28 start-page: 1151 issue: 9 year: 2005 ident: 10.1016/j.sleh.2023.05.001_bib19 article-title: An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep publication-title: Sleep doi: 10.1093/sleep/28.9.1151 – volume: 7 start-page: 687 issue: 8 year: 2019 ident: 10.1016/j.sleh.2023.05.001_bib4 article-title: Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis publication-title: Lancet Respir Med doi: 10.1016/S2213-2600(19)30198-5 – volume: 385 start-page: 283 issue: 3 year: 2021 ident: 10.1016/j.sleh.2023.05.001_bib45 article-title: The clinician and dataset shift in artificial intelligence publication-title: N Engl J Med doi: 10.1056/NEJMc2104626 – volume: 14 issue: 1 year: 2019 ident: 10.1016/j.sleh.2023.05.001_bib43 article-title: The validity of two commercially-available sleep trackers and actigraphy for assessment of sleep parameters in obstructive sleep apnea patients publication-title: PLoS One doi: 10.1371/journal.pone.0210569 – volume: 22 start-page: 939 issue: 7 year: 1999 ident: 10.1016/j.sleh.2023.05.001_bib17 article-title: Periodic, profound peripheral vasoconstriction—a new marker of obstructive sleep apnea publication-title: Sleep – ident: 10.1016/j.sleh.2023.05.001_bib46 – volume: 16 start-page: 1611 issue: 9 year: 2020 ident: 10.1016/j.sleh.2023.05.001_bib22 article-title: Belun Ring Platform: a novel home sleep apnea testing system for assessment of obstructive sleep apnea publication-title: J Clin Sleep Med doi: 10.5664/jcsm.8592 – volume: 25 start-page: 690 issue: 7 year: 2020 ident: 10.1016/j.sleh.2023.05.001_bib5 article-title: Global burden of sleep-disordered breathing and its implications publication-title: Respirology doi: 10.1111/resp.13838 – ident: 10.1016/j.sleh.2023.05.001_bib24 doi: 10.1109/CVPR.2018.00745 – volume: 45 start-page: zsac028 issue: 5 year: 2022 ident: 10.1016/j.sleh.2023.05.001_bib18 article-title: A multicentric validation study of a novel home sleep apnea test based on peripheral arterial tonometry publication-title: Sleep doi: 10.1093/sleep/zsac028 – volume: 46 issue: 1 year: 2023 ident: 10.1016/j.sleh.2023.05.001_bib49 article-title: Performance of a multisensor smart ring to evaluate sleep: in-lab and home-based evaluation of generalized and personalized algorithms publication-title: Sleep doi: 10.1093/sleep/zsac152 – volume: 13 start-page: 551 issue: 04 year: 2017 ident: 10.1016/j.sleh.2023.05.001_bib8 article-title: Potential underestimation of sleep apnea severity by at-home kits: rescoring in-laboratory polysomnography without sleep staging publication-title: J Clin Sleep Med doi: 10.5664/jcsm.6540 – volume: 43 issue: 11 year: 2020 ident: 10.1016/j.sleh.2023.05.001_bib33 article-title: Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea publication-title: Sleep doi: 10.1093/sleep/zsaa098 – volume: 17 start-page: 124 issue: 2 year: 2019 ident: 10.1016/j.sleh.2023.05.001_bib41 article-title: The sleep of the ring: comparison of the ŌURA sleep tracker against polysomnography publication-title: Behav Sleep Med doi: 10.1080/15402002.2017.1300587 – volume: 16 start-page: 1663 issue: 10 year: 2020 ident: 10.1016/j.sleh.2023.05.001_bib34 article-title: Performance of peripheral arterial tonometry–based testing for the diagnosis of obstructive sleep apnea in a large sleep clinic cohort publication-title: J Clin Sleep Med doi: 10.5664/jcsm.8620 – volume: 15 start-page: 1645 issue: 11 year: 2019 ident: 10.1016/j.sleh.2023.05.001_bib44 article-title: Validation of Fitbit Charge 2 and Fitbit Alta HR against polysomnography for assessing sleep in adults with obstructive sleep apnea publication-title: J Clin Sleep Med doi: 10.5664/jcsm.8032 – volume: 172 start-page: 325 issue: 5 year: 2020 ident: 10.1016/j.sleh.2023.05.001_bib10 article-title: The management of chronic insomnia disorder and obstructive sleep apnea: synopsis of the 2019 U.S. Department of Veterans Affairs and U.S. Department of Defense Clinical Practice Guidelines publication-title: Ann Intern Med doi: 10.7326/M19-3575 – volume: 3 start-page: 42 issue: 1 year: 2020 ident: 10.1016/j.sleh.2023.05.001_bib13 article-title: The future of sleep health: a data-driven revolution in sleep science and medicine publication-title: npj Digit Med doi: 10.1038/s41746-020-0244-4 – volume: 13 start-page: 1205 issue: 10 year: 2017 ident: 10.1016/j.sleh.2023.05.001_bib11 article-title: Clinical use of a home sleep apnea test: an American Academy of Sleep Medicine position statement publication-title: J Clin Sleep Med doi: 10.5664/jcsm.6774 – volume: 18 start-page: 1093 issue: 4 year: 2022 ident: 10.1016/j.sleh.2023.05.001_bib35 article-title: A meta-analysis of diagnostic test performance of peripheral arterial tonometry studies publication-title: J Clin Sleep Med doi: 10.5664/jcsm.9808 – volume: 327 start-page: 307 issue: 8476 year: 1986 ident: 10.1016/j.sleh.2023.05.001_bib31 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Lancet doi: 10.1016/S0140-6736(86)90837-8 – volume: 14 start-page: 1791 issue: 10 year: 2018 ident: 10.1016/j.sleh.2023.05.001_bib37 article-title: An evaluation of the NightOwl home sleep apnea testing system publication-title: J Clin Sleep Med doi: 10.5664/jcsm.7398 – volume: 18 start-page: 876 issue: 5 year: 2021 ident: 10.1016/j.sleh.2023.05.001_bib36 article-title: Automated apnea–hypopnea index from oximetry and spectral analysis of cardiopulmonary coupling publication-title: Ann Am Thorac Soc doi: 10.1513/AnnalsATS.202005-510OC – ident: 10.1016/j.sleh.2023.05.001_bib28 – volume: 07 start-page: 531 issue: 05 year: 2011 ident: 10.1016/j.sleh.2023.05.001_bib9 article-title: Obstructive sleep apnea devices for out-of-center (OOC) testing: technology evaluation publication-title: J Clin Sleep Med doi: 10.5664/JCSM.1328 – volume: 12 start-page: 1075 issue: 08 year: 2016 ident: 10.1016/j.sleh.2023.05.001_bib3 article-title: Health care savings: the economic value of diagnostic and therapeutic care for obstructive sleep apnea publication-title: J Clin Sleep Med doi: 10.5664/jcsm.6034 – volume: 44 start-page: zsaa291 issue: 5 year: 2021 ident: 10.1016/j.sleh.2023.05.001_bib14 article-title: Performance of seven consumer sleep-tracking devices compared with polysomnography publication-title: Sleep doi: 10.1093/sleep/zsaa291 – volume: 17 start-page: 189 year: 2017 ident: 10.1016/j.sleh.2023.05.001_bib25 article-title: Domain-adversarial training of neural networks publication-title: J Mach Learn Res – ident: 10.1016/j.sleh.2023.05.001_bib30 – volume: 13 start-page: 479 issue: 03 year: 2017 ident: 10.1016/j.sleh.2023.05.001_bib7 article-title: Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline publication-title: J Clin Sleep Med doi: 10.5664/jcsm.6506 – volume: 41 issue: 2 year: 2018 ident: 10.1016/j.sleh.2023.05.001_bib20 article-title: Cardiopulmonary coupling spectrogram as an ambulatory clinical biomarker of sleep stability and quality in health, sleep apnea, and insomnia publication-title: Sleep doi: 10.1093/sleep/zsx196 – volume: 44 start-page: ):zsab071 issue: 5 year: 2021 ident: 10.1016/j.sleh.2023.05.001_bib15 article-title: Sleep-tracking technology in scientific research: looking to the future publication-title: Sleep doi: 10.1093/sleep/zsab071 – volume: 7 start-page: 1012 issue: 12 year: 2019 ident: 10.1016/j.sleh.2023.05.001_bib16 article-title: Consumer sleep trackers: a new tool to fight the hidden epidemic of obstructive sleep apnoea? publication-title: Lancet Respir Med doi: 10.1016/S2213-2600(19)30407-2 – volume: 07 start-page: 301 issue: 03 year: 2011 ident: 10.1016/j.sleh.2023.05.001_bib38 article-title: Sleep staging based on autonomic signals: a multi-center validation study publication-title: J Clin Sleep Med doi: 10.5664/JCSM.1078 – volume: 35 start-page: 465 issue: 4 year: 2018 ident: 10.1016/j.sleh.2023.05.001_bib39 article-title: A validation study of Fitbit Charge 2™ compared with polysomnography in adults publication-title: Chronobiol Int doi: 10.1080/07420528.2017.1413578 – volume: 24 issue: 5 year: 2021 ident: 10.1016/j.sleh.2023.05.001_bib12 article-title: Recent advances in wearable sensors and portable electronics for sleep monitoring publication-title: iScience doi: 10.1016/j.isci.2021.102461 – ident: 10.1016/j.sleh.2023.05.001_bib23 doi: 10.1109/CVPR.2017.634 – volume: 8 start-page: 263 issue: 3 year: 2022 ident: 10.1016/j.sleh.2023.05.001_bib32 article-title: Rigorous performance evaluation (previously, “validation”) for informed use of new technologies for sleep health measurement publication-title: Sleep Health doi: 10.1016/j.sleh.2022.02.006 – volume: 43 issue: 7 year: 2020 ident: 10.1016/j.sleh.2023.05.001_bib40 article-title: Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography publication-title: Sleep doi: 10.1093/sleep/zsaa045 |
SSID | ssj0001492408 |
Score | 2.354305 |
Snippet | Our objective was to evaluate the performance of Belun Ring with second-generation deep learning algorithms in obstructive sleep apnea (OSA) detection, OSA... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 430 |
SubjectTerms | Apnea-hypopnea index Artificial intelligence Digital health Home sleep apnea testing Obstructive sleep apnea Peripheral arterial tonometry Photoplethysmography Sleep technology Validation |
Title | Belun Ring (Belun Sleep System BLS-100): Deep learning-facilitated wearable enables obstructive sleep apnea detection, apnea severity categorization, and sleep stage classification in patients suspected of obstructive sleep apnea |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2352721823000906 https://dx.doi.org/10.1016/j.sleh.2023.05.001 https://www.ncbi.nlm.nih.gov/pubmed/37380590 https://www.proquest.com/docview/2831295599 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7QUJIRhf5WMyEg8giJo4iZvwtg2m8rUHyqS9RY59rjpVTkVa-Iv5P7iznU5I25B4a51e49TXu1_i-_2OsZe0V2RNOklkocqkyKo2aTFtJbJSujKizawX0_l6Kqdnxafz8nyHHQ9cGCqrjLE_xHQfrePIOP6a49ViMZ4JxA4TEiDPCSiQ7PaeyGuJrr13-PHz9PTyUUtRk5CXbzNXIp5Em0ifCZVe_RJoW0LkXsMztoe5IkVdB0F9Kjq5y-5EDMkPwzTvsR1w--x2eADHA6_oPvt9BMuN498wNfFX4fVsCbDiQaOcH32ZYXBMX7_j72k0do-YJ1bpINwNhv_CQaJWcfAMq553bdSb_Qm899-mVg4UN7D2JV3ubRzAiwFqi8ep4Gre_YhsTzzsTLREWDoHrgm9U7mSP84Xjkel1573G08DxXl09rozP2BnJx--H0-T2NMh0UWZrRMra9C2Lm01mVTWIN7MslrJFHOpLetCWMhoYzgXVhothWpTYfIWoDay0hKK_CHbdZ2Dx4xTwzS8P9UGdImwEvOqrIVEeITuJVUuRiwblrHRUfCc-m4sm6Gy7aKhpW9o6Zu0pPK-EXuztVkFuY8bP50P3tEMRFYMvQ1moxutyq3VX67-T7sXgwM2GANoY0c56DZ9gxARYRtpx43Yo-CZ29mTchURjJ_851mfslv0LtQ8PmO7uNbwHHHYuj2I_7M_KMgyag |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaq9AASQrwJTyNxAMEq-7Kzy60tVClNcyCt1Ju1a4-joGg3YhP4xfwPZmxvEBItErfIzmSdeDLz7Xq-bxh7TWdF1sTjSOaViPKkqKMa01Yki0oXJq0T68R0zmZycpF_vhSXe-yo58JQWWWI_T6mu2gdRkbh1xytl8vRPEXsMCYB8oyAAslu75M6lRiw_YOT08ns96OWvCQhL9dmTiCeRJtAn_GVXt0K6FgizZyGZ2gP85cUdRUEdano-A67HTAkP_DLvMv2oLnHbvkHcNzziu6zn4ew2jb8C6Ym_sa_nq8A1txrlPPD6RyDY_z2A_9Io6F7xCKylfbC3WD4DxwkahUHx7DqeFsHvdnvwDv3adW6gYob2LiSruZ9GMAvA9QWj1PB1aL9FtieON2YYImwdAFcE3qnciU3z5cND0qvHe-2jgaK62jtVVd-wC6OP50fTaLQ0yHSuUg2kZUlaFsKW4zHhTWIN5OkrGSMudSKMk8tJHQwnKVWGi3Tqo5Tk9UApZGFlpBnD9mgaRt4zDg1TMP7U21AC4SVmFdlmUqER-hessrSIUv6bVQ6CJ5T342V6ivbviraekVbr2JB5X1D9m5ns_ZyH9e-O-u9Q_VEVgy9CrPRtVZiZ_WHq__T7lXvgApjAB3sVA20204hRETYRtpxQ_bIe-Zu9aRcRQTjJ_951ZfsxuT8bKqmJ7PTp-wmzfj6x2dsgPsOzxGTbeoX4T_3C5fJNVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Belun+Ring+%28Belun+Sleep+System+BLS-100%29%3A+Deep+learning-facilitated+wearable+enables+obstructive+sleep+apnea+detection%2C+apnea+severity+categorization%2C+and+sleep+stage+classification+in+patients+suspected+of+obstructive+sleep+apnea&rft.jtitle=Sleep+health&rft.au=Strumpf%2C+Zachary&rft.au=Gu%2C+Wenbo&rft.au=Tsai%2C+Chih-Wei&rft.au=Chen%2C+Pai-Lien&rft.date=2023-08-01&rft.pub=Elsevier+Inc&rft.issn=2352-7218&rft.volume=9&rft.issue=4&rft.spage=430&rft.epage=440&rft_id=info:doi/10.1016%2Fj.sleh.2023.05.001&rft.externalDocID=S2352721823000906 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7218&client=summon |