Immunometabolic control of trained immunity
Innate immune cells can adopt long-term inflammatory phenotypes following brief encounters with exogenous (microbial) or endogenous stimuli. This phenomenon is named trained immunity and can improve host defense against (recurrent) infections. In contrast, trained immunity can also be maladaptive in...
Saved in:
Published in | Molecular aspects of medicine Vol. 77; p. 100897 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2021
The Authors. Published by Elsevier Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Innate immune cells can adopt long-term inflammatory phenotypes following brief encounters with exogenous (microbial) or endogenous stimuli. This phenomenon is named trained immunity and can improve host defense against (recurrent) infections. In contrast, trained immunity can also be maladaptive in the context of chronic inflammatory disorders, such as atherosclerosis. Key to future therapeutic exploitation of this mechanism is thorough knowledge of the mechanisms driving trained immunity, which can be used as pharmacological targets. These mechanisms include profound changes in intracellular metabolism, which are closely intertwined with epigenetic reprogramming at the level of histone modifications. Glycolysis, glutamine replenishment of the tricarboxylic acid cycle with accumulation of fumarate, and the mevalonate pathway have all been identified as critical pathways for trained immunity in monocytes and macrophages. In this review, we provide a state-of-the-art overview of how these metabolic pathways interact with epigenetic programs to develop trained immunity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 0098-2997 1872-9452 1872-9452 |
DOI: | 10.1016/j.mam.2020.100897 |