Complementary protective effects of autophagy and oxidative response against graphene oxide toxicity in Caenorhabditis elegans
Graphene oxide (GO) exposure may cause damage to C. elegans. However, the role of autophagy and its interactive effect with oxidative response in GO toxicity still remain largely unclear. In the present study, we investigated the protective role of autophagy against GO and its association with oxida...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 248; p. 114289 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.12.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene oxide (GO) exposure may cause damage to C. elegans. However, the role of autophagy and its interactive effect with oxidative response in GO toxicity still remain largely unclear. In the present study, we investigated the protective role of autophagy against GO and its association with oxidative response using C. elegans as an in vivo system. Results indicated that GO exposure induced autophagy in a dose dependent manner in C. elegans. Autophagy inhibitor 3-methyladenine (3-MA) and silencing autophagy genes lgg-1, bec-1 and unc-51 exacerbated the toxicity of GO whereas autophagy activator rapamycin alleviated it. In addition, the antioxidant N-Acetyl-L-cysteine (NAC) effectively suppressed the toxicity of GO with increased resistance to oxidative stress. Worms with RNAi-induced antioxidative genes sod-1, sod-2, sod-3 and sod-4 knockdown were more sensitive to GO. 3-MA increased the expression of superoxide dismutase SOD-3 under GO exposure conditions and exacerbated the toxicity of GO under the anti-oxidation inaction condition by sod-3 RNAi. In contrast, NAC reduced autophagy levels in GO exposed nematodes and increased tolerance to GO in autophagy-defective worms. These results suggested that autophagy and antioxidative response provide complementary protection against GO in C. elegans.
[Display omitted]
•Autophagy exerts a protective response to cope with the toxicity of GO in C. elegans.•Oxidative response plays a protective role in response to GO in C. elegans.•Autophagy and oxidative act in a complementation way in the protective response. |
---|---|
AbstractList | Graphene oxide (GO) exposure may cause damage to C. elegans. However, the role of autophagy and its interactive effect with oxidative response in GO toxicity still remain largely unclear. In the present study, we investigated the protective role of autophagy against GO and its association with oxidative response using C. elegans as an in vivo system. Results indicated that GO exposure induced autophagy in a dose dependent manner in C. elegans. Autophagy inhibitor 3-methyladenine (3-MA) and silencing autophagy genes lgg-1, bec-1 and unc-51 exacerbated the toxicity of GO whereas autophagy activator rapamycin alleviated it. In addition, the antioxidant N-Acetyl-L-cysteine (NAC) effectively suppressed the toxicity of GO with increased resistance to oxidative stress. Worms with RNAi-induced antioxidative genes sod-1, sod-2, sod-3 and sod-4 knockdown were more sensitive to GO. 3-MA increased the expression of superoxide dismutase SOD-3 under GO exposure conditions and exacerbated the toxicity of GO under the anti-oxidation inaction condition by sod-3 RNAi. In contrast, NAC reduced autophagy levels in GO exposed nematodes and increased tolerance to GO in autophagy-defective worms. These results suggested that autophagy and antioxidative response provide complementary protection against GO in C. elegans. Graphene oxide (GO) exposure may cause damage to C. elegans. However, the role of autophagy and its interactive effect with oxidative response in GO toxicity still remain largely unclear. In the present study, we investigated the protective role of autophagy against GO and its association with oxidative response using C. elegans as an in vivo system. Results indicated that GO exposure induced autophagy in a dose dependent manner in C. elegans. Autophagy inhibitor 3-methyladenine (3-MA) and silencing autophagy genes lgg-1, bec-1 and unc-51 exacerbated the toxicity of GO whereas autophagy activator rapamycin alleviated it. In addition, the antioxidant N-Acetyl-L-cysteine (NAC) effectively suppressed the toxicity of GO with increased resistance to oxidative stress. Worms with RNAi-induced antioxidative genes sod-1, sod-2, sod-3 and sod-4 knockdown were more sensitive to GO. 3-MA increased the expression of superoxide dismutase SOD-3 under GO exposure conditions and exacerbated the toxicity of GO under the anti-oxidation inaction condition by sod-3 RNAi. In contrast, NAC reduced autophagy levels in GO exposed nematodes and increased tolerance to GO in autophagy-defective worms. These results suggested that autophagy and antioxidative response provide complementary protection against GO in C. elegans. [Display omitted] •Autophagy exerts a protective response to cope with the toxicity of GO in C. elegans.•Oxidative response plays a protective role in response to GO in C. elegans.•Autophagy and oxidative act in a complementation way in the protective response. Graphene oxide (GO) exposure may cause damage to C. elegans. However, the role of autophagy and its interactive effect with oxidative response in GO toxicity still remain largely unclear. In the present study, we investigated the protective role of autophagy against GO and its association with oxidative response using C. elegans as an in vivo system. Results indicated that GO exposure induced autophagy in a dose dependent manner in C. elegans. Autophagy inhibitor 3-methyladenine (3-MA) and silencing autophagy genes lgg-1, bec-1 and unc-51 exacerbated the toxicity of GO whereas autophagy activator rapamycin alleviated it. In addition, the antioxidant N-Acetyl-L-cysteine (NAC) effectively suppressed the toxicity of GO with increased resistance to oxidative stress. Worms with RNAi-induced antioxidative genes sod-1, sod-2, sod-3 and sod-4 knockdown were more sensitive to GO. 3-MA increased the expression of superoxide dismutase SOD-3 under GO exposure conditions and exacerbated the toxicity of GO under the anti-oxidation inaction condition by sod-3 RNAi. In contrast, NAC reduced autophagy levels in GO exposed nematodes and increased tolerance to GO in autophagy-defective worms. These results suggested that autophagy and antioxidative response provide complementary protection against GO in C. elegans.Graphene oxide (GO) exposure may cause damage to C. elegans. However, the role of autophagy and its interactive effect with oxidative response in GO toxicity still remain largely unclear. In the present study, we investigated the protective role of autophagy against GO and its association with oxidative response using C. elegans as an in vivo system. Results indicated that GO exposure induced autophagy in a dose dependent manner in C. elegans. Autophagy inhibitor 3-methyladenine (3-MA) and silencing autophagy genes lgg-1, bec-1 and unc-51 exacerbated the toxicity of GO whereas autophagy activator rapamycin alleviated it. In addition, the antioxidant N-Acetyl-L-cysteine (NAC) effectively suppressed the toxicity of GO with increased resistance to oxidative stress. Worms with RNAi-induced antioxidative genes sod-1, sod-2, sod-3 and sod-4 knockdown were more sensitive to GO. 3-MA increased the expression of superoxide dismutase SOD-3 under GO exposure conditions and exacerbated the toxicity of GO under the anti-oxidation inaction condition by sod-3 RNAi. In contrast, NAC reduced autophagy levels in GO exposed nematodes and increased tolerance to GO in autophagy-defective worms. These results suggested that autophagy and antioxidative response provide complementary protection against GO in C. elegans. |
ArticleNumber | 114289 |
Author | Zhao, Yunli Pu, Xiaoxiao Dou, Tingting Chen, Jingya Wu, Huazhang Wang, Rui |
Author_xml | – sequence: 1 givenname: Tingting surname: Dou fullname: Dou, Tingting organization: School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China – sequence: 2 givenname: Jingya surname: Chen fullname: Chen, Jingya organization: School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China – sequence: 3 givenname: Rui surname: Wang fullname: Wang, Rui organization: School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China – sequence: 4 givenname: Xiaoxiao surname: Pu fullname: Pu, Xiaoxiao organization: School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China – sequence: 5 givenname: Huazhang surname: Wu fullname: Wu, Huazhang email: wuhuazhang@bbmc.edu.cn organization: School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, People's Republic of China – sequence: 6 givenname: Yunli orcidid: 0000-0002-8713-3767 surname: Zhao fullname: Zhao, Yunli email: yunli201@126.com organization: School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China |
BookMark | eNqFUbGOEzEUXKFDInfwBxQuaRJsr3ftpUBCEQcnnUQDtfVsv00cbezFdiLS8O34soiCAqr39DQzTzNz29yEGLBpXjO6YZT1bw8btBHDecMp5xvGBFfDs2bF6EDXXDBx06woE3Ldd6x90dzmfKCUtrTrVs3PbTzOEx4xFEgXMqdY0BZ_RoLjWLdM4kjgVOK8h92FQHAk_vAOrpCEeY4hI4Ed-JAL2SWY9xjwikFS6rC-XIgPZAsYYtqDcb74THDCHYT8snk-wpTx1e9513y7__h1-3n9-OXTw_bD49qKjpX1SNEYML0SnaVcDMb0phNWKSNH6agBykYm1TDIYZTSuY6DM2ZgtO-6atW2d83DousiHPSc_LG61RG8vh5i2mlIxdsJtVCuF0oNEpQSoOgAo-WI3LUg-Cihar1ZtGpY30-Yiz76bHGaIGA8Zc1lKxkbOsUqVCxQm2LOCcc_rxnVT9Xpg16q00_V6aW6Snv3F62mWCOPoSTw0__I7xcy1jzPHpPO1mOw6HyqhVbD_t8CvwAOOLxj |
CitedBy_id | crossref_primary_10_3390_toxics11030239 crossref_primary_10_3762_bjnano_15_105 crossref_primary_10_1016_j_cbpc_2024_109924 crossref_primary_10_1016_j_pestbp_2023_105511 crossref_primary_10_1016_j_pestbp_2025_106298 crossref_primary_10_3390_ijms24010290 |
Cites_doi | 10.18632/aging.103975 10.1016/j.biomaterials.2015.07.060 10.1016/j.lfs.2017.08.029 10.1016/j.bbrc.2008.01.150 10.1021/tx400385x 10.3390/ijms19113564 10.1007/s10008-014-2494-z 10.1073/pnas.1405032111 10.3892/etm.2021.9893 10.1007/s10661-020-08561-2 10.1126/science.1087782 10.1038/cdd.2014.150 10.1038/aps.2012.190 10.1002/anie.201101351 10.1039/c4nr00699b 10.1016/j.toxlet.2019.01.007 10.1016/j.jfda.2014.01.009 10.1016/j.molcel.2010.09.023 10.1039/C8NR04950E 10.1016/j.cbi.2018.09.015 10.1146/annurev-pharmtox-011112-140210 10.3390/ijms16010040 10.1016/S1534-5807(04)00099-1 10.1016/j.scitotenv.2019.134492 10.1016/j.biomaterials.2013.01.001 10.3390/ijms17121995 10.1186/s12989-017-0194-4 10.1186/s12951-020-00605-6 10.1016/j.ecoenv.2021.113064 10.1155/2012/546915 10.1096/fj.201800565RR 10.1139/cjc-2013-0285 10.7554/eLife.18459 10.1016/j.chemosphere.2020.127172 10.2147/IJN.S140526 10.2147/IJN.S159388 10.1080/17435390.2016.1235738 10.1016/j.toxlet.2013.08.015 10.1089/ars.2013.5371 10.1242/jcs.03401 10.1002/jat.1787 10.1038/s41598-020-78316-z 10.1039/c3nr03917j 10.1002/adhm.201300591 10.1038/s41419-019-1366-y 10.1155/2018/3862070 10.1074/jbc.M117.817510 10.1016/j.cbi.2020.109126 10.1007/978-981-15-0602-4_5 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 DOA |
DOI | 10.1016/j.ecoenv.2022.114289 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
ExternalDocumentID | oai_doaj_org_article_48d648897a884a809afc2ee2d3a42f7a 10_1016_j_ecoenv_2022_114289 S0147651322011290 |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSJ SSZ T5K ZU3 ~G- 29G 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ H~9 R2- RIG SEN SEW SSH VH1 WUQ XPP ZMT ZXP ~KM 7X8 EFKBS |
ID | FETCH-LOGICAL-c451t-f0ebbab6845c0249bb6b54c88b7f7d0ba01f1789979f77dd52adbb910655000c3 |
IEDL.DBID | .~1 |
ISSN | 0147-6513 1090-2414 |
IngestDate | Wed Aug 27 01:22:51 EDT 2025 Fri Jul 11 16:51:13 EDT 2025 Tue Jul 01 04:00:39 EDT 2025 Thu Apr 24 23:01:02 EDT 2025 Fri Feb 23 02:39:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Caenorhabditis elegans (C. elegans) Protective effect Oxidative response Autophagy |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-f0ebbab6845c0249bb6b54c88b7f7d0ba01f1789979f77dd52adbb910655000c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8713-3767 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0147651322011290 |
PQID | 2737119581 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_48d648897a884a809afc2ee2d3a42f7a proquest_miscellaneous_2737119581 crossref_primary_10_1016_j_ecoenv_2022_114289 crossref_citationtrail_10_1016_j_ecoenv_2022_114289 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2022_114289 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-15 |
PublicationDateYYYYMMDD | 2022-12-15 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Zhang, Chang, Guo, Hansen, Jia, Kovacs, Kumsta, Lapierre, Legouis, Lin, Lu, Melendez, O'Rourke, Sato, Sato, Wang, Wu (bib53) 2015; 11 Zhao, Zhi, Wu, Yu, Sun, Wang (bib56) 2016; 10 Ou, Lin, Song, Liu, Lai, Shao (bib30) 2017; 12 Parzych, Klionsky (bib33) 2014; 20 Qiu, Liu, Li, Li, Wang (bib36) 2020; 256 Adachi, Koizumi, Ohsumi (bib1) 2017; 292 Liu, Zhao, Na, Meng, Wang, Bai (bib23) 2018; 41 Kroemer, Marino, Levine (bib16) 2010; 40 Tang, Zhao, Yang, Liu, Gu, Bai, Liu, Xu, Yang (bib39) 2018; 13 Kosztelnik, Kurucz, Papp, Jones, Sigmond, Barna, Traka, Lorincz, Szarka, Banhegyi, Vellai, Korcsmaros, Kapuy (bib15) 2019; 33 Zhang, Feng, He, Zhang, Shao (bib51) 2020; 18 Li, Huang, Le (bib19) 2013; 34 Pelin, Sosa, Prato, Tubaro (bib34) 2018; 10 Zou, Ma, Dai, Zhang (bib58) 2014; 111 Wang (bib42) 2018 Xu, Qin (bib49) 2019; 1206 Park, Lee, Lee, Park, Park, Jeong, Koh (bib32) 2013; 223 Dai, Liu, Wang, Nie, Sun, Wang, Wang, Yang, Cheng, Wang, Weng, Wang, Wang, Wu, Zhao, Xu (bib7) 2018; 5 Wu, Li, Li, Zhao, Ge, Wang, Wang (bib47) 2013; 5 Yang, Gong, Shi, Wan, Zhang, Liu (bib50) 2013; 34 Wu, Zhao, Fang, Wang (bib48) 2014; 6 Li, Lu, Yao, Xu, Zhou, Zheng (bib18) 2020; 12 Ravanan, Srikumar, Talwar (bib37) 2017; 188 Pesonen, Vahakangas (bib35) 2019; 305 Li, Li, Chu, Huang, Yang (bib20) 2020; 325 Wang, Zhang, Chu, Chen, Ge, Yu (bib44) 2011; 50 Levine, Klionsky (bib17) 2004; 6 Moriwaki, Yamasaki, Zhang-Akiyama (bib28) 2018; 2018 Wang, Zhang, Xu, Gan, Huang, Liu (bib46) 2014; 18 Melendez, Talloczy, Seaman, Eskelinen, Hall, Levine (bib26) 2003; 301 Zhang, Zhang, Liu, Chu, Yang, Li, Shao, Yue, Xu (bib52) 2015; 68 Jin, Dou, Chen, Duan, Zhen, Wu, Zhao (bib12) 2022; 229 Liao, Li, Tjong (bib21) 2018; 19 Bolt, Klimecki (bib4) 2012; 32 Filomeni, De, Zio, Cecconi (bib9) 2015; 22 Wang, Ou, Huang, Wen, Wang, Liu (bib45) 2013; 91 Lin, Lin, Hsu, Yu-Chen, Chao, Tuan, Chiang, Hu (bib22) 2018; 8 Zhang, Xu, Yao, Dong, Mao, Hang, Han, Lin, Bian, Li, Xia (bib55) 2018; 296 Zhao, Chen, Yang, Wu, Wang (bib57) 2020; 700 Babczynska, Nowak, Kafel, Lozowski, Rost-Roszkowska, Tarnawska, Augustyniak, Sawadro, Molenda (bib2) 2020; 10 Guo, Mei (bib10) 2014; 22 Seabra, Paula, de Lima, Alves, Duran (bib38) 2014; 27 Baysal, Saygin, Ustabasi (bib3) 2020; 192 Chen, Chen, Tuan, Yuan, Li, Yang, Hu (bib6) 2014; 3 Johnston, Ebert (bib13) 2012; 2012 Mittal, Sharma, Tiwari, Rayavarapu, Shankar, Chauhan, Pandey (bib27) 2017; 14 Palmisano, Melendez (bib31) 2016; 2016 Di Cristo, Grimaldi, Catelani, Vázquez, Pompa, Sabella (bib8) 2020; 6 Liu, Zhang, Wang, Liu, Zhang, Ji, Qiao (bib24) 2021; 286 Chang, Kumsta, Hellman, Adams, Hansen (bib5) 2017; 6 Zhang, Ouyang, Zhang, Qiu, Dai, Wang, Wang, Ou (bib54) 2021; 21 Orrenius, Kaminskyy, Zhivotovsky (bib29) 2013; 53 Tsukahara, Matsuda, Haniu (bib41) 2014; 16 Jia, Xu, Zhou, Chen, Ding, Cao (bib11) 2019; 10 Khan, Yamanaka, Nukina (bib14) 2008; 368 Wang (bib43) 2020 Toth, Simon, Kovacs, Vellai (bib40) 2007; 120 Mari, Mardente, Morgante, Tafani, Lococo, Fico, Valentini, Zicari (bib25) 2016; 17 Bolt (10.1016/j.ecoenv.2022.114289_bib4) 2012; 32 Jia (10.1016/j.ecoenv.2022.114289_bib11) 2019; 10 Park (10.1016/j.ecoenv.2022.114289_bib32) 2013; 223 Seabra (10.1016/j.ecoenv.2022.114289_bib38) 2014; 27 Kosztelnik (10.1016/j.ecoenv.2022.114289_bib15) 2019; 33 Yang (10.1016/j.ecoenv.2022.114289_bib50) 2013; 34 Zhang (10.1016/j.ecoenv.2022.114289_bib53) 2015; 11 Zhang (10.1016/j.ecoenv.2022.114289_bib51) 2020; 18 Babczynska (10.1016/j.ecoenv.2022.114289_bib2) 2020; 10 Pelin (10.1016/j.ecoenv.2022.114289_bib34) 2018; 10 Di Cristo (10.1016/j.ecoenv.2022.114289_bib8) 2020; 6 Xu (10.1016/j.ecoenv.2022.114289_bib49) 2019; 1206 Chang (10.1016/j.ecoenv.2022.114289_bib5) 2017; 6 Filomeni (10.1016/j.ecoenv.2022.114289_bib9) 2015; 22 Adachi (10.1016/j.ecoenv.2022.114289_bib1) 2017; 292 Toth (10.1016/j.ecoenv.2022.114289_bib40) 2007; 120 Tsukahara (10.1016/j.ecoenv.2022.114289_bib41) 2014; 16 Jin (10.1016/j.ecoenv.2022.114289_bib12) 2022; 229 Wu (10.1016/j.ecoenv.2022.114289_bib47) 2013; 5 Qiu (10.1016/j.ecoenv.2022.114289_bib36) 2020; 256 Zhao (10.1016/j.ecoenv.2022.114289_bib56) 2016; 10 Li (10.1016/j.ecoenv.2022.114289_bib20) 2020; 325 Zhang (10.1016/j.ecoenv.2022.114289_bib55) 2018; 296 Baysal (10.1016/j.ecoenv.2022.114289_bib3) 2020; 192 Levine (10.1016/j.ecoenv.2022.114289_bib17) 2004; 6 Khan (10.1016/j.ecoenv.2022.114289_bib14) 2008; 368 Lin (10.1016/j.ecoenv.2022.114289_bib22) 2018; 8 Zou (10.1016/j.ecoenv.2022.114289_bib58) 2014; 111 Orrenius (10.1016/j.ecoenv.2022.114289_bib29) 2013; 53 Wang (10.1016/j.ecoenv.2022.114289_bib44) 2011; 50 Moriwaki (10.1016/j.ecoenv.2022.114289_bib28) 2018; 2018 Ravanan (10.1016/j.ecoenv.2022.114289_bib37) 2017; 188 Mari (10.1016/j.ecoenv.2022.114289_bib25) 2016; 17 Chen (10.1016/j.ecoenv.2022.114289_bib6) 2014; 3 Wang (10.1016/j.ecoenv.2022.114289_bib43) 2020 Liu (10.1016/j.ecoenv.2022.114289_bib24) 2021; 286 Wang (10.1016/j.ecoenv.2022.114289_bib46) 2014; 18 Liu (10.1016/j.ecoenv.2022.114289_bib23) 2018; 41 Dai (10.1016/j.ecoenv.2022.114289_bib7) 2018; 5 Li (10.1016/j.ecoenv.2022.114289_bib18) 2020; 12 Zhao (10.1016/j.ecoenv.2022.114289_bib57) 2020; 700 Wang (10.1016/j.ecoenv.2022.114289_bib42) 2018 Parzych (10.1016/j.ecoenv.2022.114289_bib33) 2014; 20 Liao (10.1016/j.ecoenv.2022.114289_bib21) 2018; 19 Zhang (10.1016/j.ecoenv.2022.114289_bib54) 2021; 21 Palmisano (10.1016/j.ecoenv.2022.114289_bib31) 2016; 2016 Tang (10.1016/j.ecoenv.2022.114289_bib39) 2018; 13 Wu (10.1016/j.ecoenv.2022.114289_bib48) 2014; 6 Pesonen (10.1016/j.ecoenv.2022.114289_bib35) 2019; 305 Li (10.1016/j.ecoenv.2022.114289_bib19) 2013; 34 Melendez (10.1016/j.ecoenv.2022.114289_bib26) 2003; 301 Zhang (10.1016/j.ecoenv.2022.114289_bib52) 2015; 68 Johnston (10.1016/j.ecoenv.2022.114289_bib13) 2012; 2012 Guo (10.1016/j.ecoenv.2022.114289_bib10) 2014; 22 Wang (10.1016/j.ecoenv.2022.114289_bib45) 2013; 91 Mittal (10.1016/j.ecoenv.2022.114289_bib27) 2017; 14 Ou (10.1016/j.ecoenv.2022.114289_bib30) 2017; 12 Kroemer (10.1016/j.ecoenv.2022.114289_bib16) 2010; 40 |
References_xml | – volume: 19 start-page: 3564 year: 2018 ident: bib21 article-title: Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity publication-title: Int J. Mol. Sci. – volume: 21 start-page: 462 year: 2021 ident: bib54 article-title: Graphene oxide induces dose-dependent lung injury in rats by regulating autophagy publication-title: Exp. Ther. Med – volume: 229 year: 2022 ident: bib12 article-title: Sublethal toxicity of graphene oxide in publication-title: Ecotoxicol. Environ. Saf. – volume: 16 start-page: 40 year: 2014 end-page: 48 ident: bib41 article-title: The role of autophagy as a mechanism of toxicity induced by multi-walled carbon nanotubes in human lung cells publication-title: Int J. Mol. Sci. – volume: 18 start-page: 52 year: 2020 ident: bib51 article-title: The interrupted effect of autophagic flux and lysosomal function induced by graphene oxide in p62-dependent apoptosis of F98 cells publication-title: J. Nanobiotechnol. – volume: 5 start-page: 11166 year: 2013 end-page: 11178 ident: bib47 article-title: Crucial role of the biological barrier at the primary targeted organs in controlling the translocation and toxicity of multi-walled carbon nanotubes in the nematode publication-title: Nanoscale – volume: 50 start-page: 7065 year: 2011 end-page: 7069 ident: bib44 article-title: Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells publication-title: Angew. Chem. Int Ed. Engl. – volume: 2012 year: 2012 ident: bib13 article-title: The Redox System in C. elegans, a phylogenetic approach publication-title: J. Toxicol. – volume: 188 start-page: 53 year: 2017 end-page: 67 ident: bib37 article-title: Autophagy: the spotlight for cellular stress responses publication-title: Life Sci. – volume: 111 start-page: 12480 year: 2014 end-page: 12485 ident: bib58 article-title: Autophagy protects publication-title: Proc. Natl. Acad. Sci. USA – year: 2020 ident: bib43 article-title: Exposure Toxicology in – volume: 68 start-page: 100 year: 2015 end-page: 113 ident: bib52 article-title: The short- and long-term effects of orally administered high-dose reduced graphene oxide nanosheets on mouse behaviors publication-title: Biomaterials – volume: 20 start-page: 460 year: 2014 end-page: 473 ident: bib33 article-title: An overview of autophagy: morphology, mechanism, and regulation publication-title: Antioxid. Redox Signal – volume: 22 start-page: 105 year: 2014 end-page: 115 ident: bib10 article-title: Assessment of the toxic potential of graphene family nanomaterials publication-title: J. Food Drug Anal. – volume: 1206 start-page: 109 year: 2019 end-page: 126 ident: bib49 article-title: Beclin 1, Bcl-2 and Autophagy publication-title: Adv. Exp. Med Biol. – volume: 192 start-page: 622 year: 2020 ident: bib3 article-title: Risks of graphene nanomaterial contamination in the soil: evaluation of major ions publication-title: Environ. Monit. Assess. – volume: 8 start-page: 2477 year: 2018 end-page: 2487 ident: bib22 article-title: Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis publication-title: Neurochem Res – volume: 120 start-page: 1134 year: 2007 end-page: 1141 ident: bib40 article-title: Influence of autophagy genes on ion-channel-dependent neuronal degeneration in publication-title: J. Cell Sci. – volume: 34 start-page: 2787 year: 2013 end-page: 2795 ident: bib50 article-title: biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration publication-title: Biomaterials – volume: 6 year: 2020 ident: bib8 article-title: Repeated exposure to aerosolized graphene oxide mediates autophagy inhibition and inflammation in a three-dimensional human airway model publication-title: Mater. Today Bio – volume: 256 year: 2020 ident: bib36 article-title: Effect of chronic exposure to nanopolystyrene on nematode publication-title: Chemosphere – volume: 296 start-page: 124 year: 2018 end-page: 133 ident: bib55 article-title: Titanium dioxide nanoparticles induce proteostasis disruption and autophagy in human trophoblast cells publication-title: Chem. Biol. Interact. – volume: 91 start-page: 1266 year: 2013 end-page: 1271 ident: bib45 article-title: A sensitive biosensing strategy for DNA detection based on graphene oxide and T7 exonuclease assisted target recycling amplification publication-title: Can. J. Chem. – volume: 2018 start-page: 3862070 year: 2018 ident: bib28 article-title: ATM induces cell death with autophagy in response to H2O2 Specifically in Caenorhabditis elegans Nondividing Cells publication-title: Oxid. Med Cell Longev. – volume: 33 start-page: 2372 year: 2019 end-page: 2387 ident: bib15 article-title: Suppression of AMPK/aak-2 by NRF2/SKN-1 down-regulates autophagy during prolonged oxidative stress publication-title: FASEB J. – volume: 305 start-page: 1 year: 2019 end-page: 9 ident: bib35 article-title: Autophagy in exposure to environmental chemicals publication-title: Toxicol. Lett. – volume: 34 start-page: 644 year: 2013 end-page: 650 ident: bib19 article-title: Establishing a novel publication-title: Acta Pharm. Sin. – volume: 223 start-page: 25 year: 2013 end-page: 34 ident: bib32 article-title: Potential autophagy enhancers protect against fipronil-induced apoptosis in SH-SY5Y cells publication-title: Toxicol. Lett. – volume: 6 start-page: 463 year: 2004 end-page: 477 ident: bib17 article-title: Development by self-digestion: molecular mechanisms and biological functions of autophagy publication-title: Dev. Cell – volume: 5 start-page: 1711 year: 2018 end-page: 1728 ident: bib7 article-title: Graphene oxide antagonizes the toxic response to arsenic via activation of protective autophagy and suppression of the arsenic-binding protein LEC-1 in publication-title: Environ. Sci.: Nano – volume: 17 start-page: 1995 year: 2016 ident: bib25 article-title: Graphene oxide nanoribbons induce autophagic vacuoles in neuroblastoma cell lines publication-title: Int J. Mol. Sci. – volume: 286 year: 2021 ident: bib24 article-title: Oxidative stress, intestinal damage, and cell apoptosis: Toxicity induced by fluopyram in publication-title: Chemosphere – volume: 301 start-page: 1387 year: 2003 end-page: 1391 ident: bib26 article-title: Autophagy genes are essential for dauer development and life-span extension in publication-title: Science – volume: 10 start-page: 21141 year: 2020 ident: bib2 article-title: Autophagy: a necessary defense against extreme cadmium intoxication in a multigenerational 2D experiment publication-title: Sci. Rep. – volume: 325 year: 2020 ident: bib20 article-title: Graphene oxide enhances β-amyloid clearance by inducing autophagy of microglia and neurons publication-title: Chem. Biol. Inter. – volume: 53 start-page: 275 year: 2013 end-page: 297 ident: bib29 article-title: Autophagy in toxicology: cause or consequence? publication-title: Annu Rev. Pharm. Toxicol. – volume: 700 year: 2020 ident: bib57 article-title: Graphene oxide disrupts the protein-protein interaction between Neuroligin/NLG-1 and DLG-1 or MAGI-1 in nematode publication-title: Sci. Total Environ. – volume: 13 start-page: 2907 year: 2018 end-page: 2919 ident: bib39 article-title: Mechanisms of oxidative stress, apoptosis, and autophagy involved in graphene oxide nanomaterial anti-osteosarcoma effect publication-title: Int J. Nanomed. – volume: 292 start-page: 19905 year: 2017 end-page: 19918 ident: bib1 article-title: Autophagy induction under carbon starvation conditions is negatively regulated by carbon catabolite repression publication-title: J. Biol. Chem. – volume: 11 start-page: 9 year: 2015 end-page: 27 ident: bib53 article-title: Guidelines for monitoring autophagy in Caenorhabditis elegans publication-title: Autophagy – volume: 10 start-page: 1469 year: 2016 end-page: 1479 ident: bib56 article-title: p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in publication-title: Nanotoxicology – volume: 14 start-page: 15 year: 2017 ident: bib27 article-title: Impaired lysosomal activity mediated autophagic flux disruption by graphite carbon nanofibers induce apoptosis in human lung epithelial cells through oxidative stress and energetic impairment publication-title: Part Fibre Toxicol. – volume: 12 start-page: 6633 year: 2017 end-page: 6646 ident: bib30 article-title: The mechanisms of graphene-based materials-induced programmed cell death: a review of apoptosis, autophagy, and programmed necrosis publication-title: Int J. Nanomed. – year: 2018 ident: bib42 article-title: Nanotoxicology in – volume: 32 start-page: 465 year: 2012 end-page: 479 ident: bib4 article-title: Autophagy in toxicology: self-consumption in times of stress and plenty publication-title: J. Appl. Toxicol. – volume: 10 start-page: 15894 year: 2018 end-page: 15903 ident: bib34 article-title: Occupational exposure to graphene based nanomaterials: risk assessment publication-title: Nanoscale – volume: 22 start-page: 377 year: 2015 end-page: 388 ident: bib9 article-title: Oxidative stress and autophagy: the clash between damage and metabolic needs publication-title: Cell Death Differ. – volume: 41 start-page: 2028 year: 2018 end-page: 2036 ident: bib23 article-title: Dexamethasone-induced production of reactive oxygen species promotes apoptosis via endoplasmic reticulum stress and autophagy in MC3T3-E1 cells publication-title: Int J. Mol. Med – volume: 12 start-page: 21687 year: 2020 end-page: 21705 ident: bib18 article-title: Dexmedetomidine inhibits inflammatory response and autophagy through the circLrp1b/miR-27a-3p/Dram2 pathway in a rat model of traumatic brain injury publication-title: Aging (Albany NY) – volume: 10 start-page: 142 year: 2019 ident: bib11 article-title: Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways publication-title: Cell Death Dis. – volume: 27 start-page: 159 year: 2014 end-page: 168 ident: bib38 article-title: Nanotoxicity of graphene and graphene oxide publication-title: Chem. Res Toxicol. – volume: 2016 year: 2016 ident: bib31 article-title: RNAi-mediated inactivation of autophagy genes in caenorhabditis elegans publication-title: Cold Spring Harb. Protoc. – volume: 3 start-page: 1486 year: 2014 end-page: 1495 ident: bib6 article-title: Graphene oxide triggers toll-like receptors/autophagy responses in vitro and inhibits tumor growth in vivo publication-title: Adv. Health Mater. – volume: 6 year: 2017 ident: bib5 article-title: Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging publication-title: Elife – volume: 368 start-page: 729 year: 2008 end-page: 735 ident: bib14 article-title: Genetic impairment of autophagy intensifies expanded polyglutamine toxicity in Caenorhabditis elegans publication-title: Biochem Biophys. Res Commun. – volume: 6 start-page: 5894 year: 2014 end-page: 5906 ident: bib48 article-title: Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide publication-title: Nanoscale – volume: 40 start-page: 280 year: 2010 end-page: 293 ident: bib16 article-title: Autophagy and the integrated stress response publication-title: Mol. Cell – volume: 18 start-page: 2435 year: 2014 end-page: 2442 ident: bib46 article-title: Electrochemical biosensor for simultaneous determination of guanine and adenine based on dopamine-melanin colloidal nanospheres–graphene composites publication-title: J. Solid State Electrochem. – volume: 12 start-page: 21687 year: 2020 ident: 10.1016/j.ecoenv.2022.114289_bib18 article-title: Dexmedetomidine inhibits inflammatory response and autophagy through the circLrp1b/miR-27a-3p/Dram2 pathway in a rat model of traumatic brain injury publication-title: Aging (Albany NY) doi: 10.18632/aging.103975 – volume: 286 year: 2021 ident: 10.1016/j.ecoenv.2022.114289_bib24 article-title: Oxidative stress, intestinal damage, and cell apoptosis: Toxicity induced by fluopyram in Caenorhabditis elegans publication-title: Chemosphere – volume: 68 start-page: 100 year: 2015 ident: 10.1016/j.ecoenv.2022.114289_bib52 article-title: The short- and long-term effects of orally administered high-dose reduced graphene oxide nanosheets on mouse behaviors publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.07.060 – volume: 188 start-page: 53 year: 2017 ident: 10.1016/j.ecoenv.2022.114289_bib37 article-title: Autophagy: the spotlight for cellular stress responses publication-title: Life Sci. doi: 10.1016/j.lfs.2017.08.029 – volume: 368 start-page: 729 year: 2008 ident: 10.1016/j.ecoenv.2022.114289_bib14 article-title: Genetic impairment of autophagy intensifies expanded polyglutamine toxicity in Caenorhabditis elegans publication-title: Biochem Biophys. Res Commun. doi: 10.1016/j.bbrc.2008.01.150 – volume: 27 start-page: 159 year: 2014 ident: 10.1016/j.ecoenv.2022.114289_bib38 article-title: Nanotoxicity of graphene and graphene oxide publication-title: Chem. Res Toxicol. doi: 10.1021/tx400385x – volume: 19 start-page: 3564 year: 2018 ident: 10.1016/j.ecoenv.2022.114289_bib21 article-title: Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity publication-title: Int J. Mol. Sci. doi: 10.3390/ijms19113564 – volume: 18 start-page: 2435 year: 2014 ident: 10.1016/j.ecoenv.2022.114289_bib46 article-title: Electrochemical biosensor for simultaneous determination of guanine and adenine based on dopamine-melanin colloidal nanospheres–graphene composites publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-014-2494-z – volume: 111 start-page: 12480 year: 2014 ident: 10.1016/j.ecoenv.2022.114289_bib58 article-title: Autophagy protects C. elegans against necrosis during Pseudomonas aeruginosa infection publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1405032111 – volume: 21 start-page: 462 year: 2021 ident: 10.1016/j.ecoenv.2022.114289_bib54 article-title: Graphene oxide induces dose-dependent lung injury in rats by regulating autophagy publication-title: Exp. Ther. Med doi: 10.3892/etm.2021.9893 – volume: 192 start-page: 622 year: 2020 ident: 10.1016/j.ecoenv.2022.114289_bib3 article-title: Risks of graphene nanomaterial contamination in the soil: evaluation of major ions publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-020-08561-2 – volume: 301 start-page: 1387 year: 2003 ident: 10.1016/j.ecoenv.2022.114289_bib26 article-title: Autophagy genes are essential for dauer development and life-span extension in C. elegans publication-title: Science doi: 10.1126/science.1087782 – year: 2018 ident: 10.1016/j.ecoenv.2022.114289_bib42 – volume: 6 year: 2020 ident: 10.1016/j.ecoenv.2022.114289_bib8 article-title: Repeated exposure to aerosolized graphene oxide mediates autophagy inhibition and inflammation in a three-dimensional human airway model publication-title: Mater. Today Bio – volume: 22 start-page: 377 year: 2015 ident: 10.1016/j.ecoenv.2022.114289_bib9 article-title: Oxidative stress and autophagy: the clash between damage and metabolic needs publication-title: Cell Death Differ. doi: 10.1038/cdd.2014.150 – volume: 34 start-page: 644 year: 2013 ident: 10.1016/j.ecoenv.2022.114289_bib19 article-title: Establishing a novel C. elegans model to investigate the role of autophagy in amyotrophic lateral sclerosis publication-title: Acta Pharm. Sin. doi: 10.1038/aps.2012.190 – volume: 50 start-page: 7065 year: 2011 ident: 10.1016/j.ecoenv.2022.114289_bib44 article-title: Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells publication-title: Angew. Chem. Int Ed. Engl. doi: 10.1002/anie.201101351 – volume: 8 start-page: 2477 year: 2018 ident: 10.1016/j.ecoenv.2022.114289_bib22 article-title: Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis publication-title: Neurochem Res – volume: 6 start-page: 5894 year: 2014 ident: 10.1016/j.ecoenv.2022.114289_bib48 article-title: Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide publication-title: Nanoscale doi: 10.1039/c4nr00699b – volume: 305 start-page: 1 year: 2019 ident: 10.1016/j.ecoenv.2022.114289_bib35 article-title: Autophagy in exposure to environmental chemicals publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2019.01.007 – volume: 5 start-page: 1711 year: 2018 ident: 10.1016/j.ecoenv.2022.114289_bib7 article-title: Graphene oxide antagonizes the toxic response to arsenic via activation of protective autophagy and suppression of the arsenic-binding protein LEC-1 in Caenorhabditis elegans publication-title: Environ. Sci.: Nano – volume: 22 start-page: 105 year: 2014 ident: 10.1016/j.ecoenv.2022.114289_bib10 article-title: Assessment of the toxic potential of graphene family nanomaterials publication-title: J. Food Drug Anal. doi: 10.1016/j.jfda.2014.01.009 – volume: 40 start-page: 280 year: 2010 ident: 10.1016/j.ecoenv.2022.114289_bib16 article-title: Autophagy and the integrated stress response publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.09.023 – volume: 10 start-page: 15894 year: 2018 ident: 10.1016/j.ecoenv.2022.114289_bib34 article-title: Occupational exposure to graphene based nanomaterials: risk assessment publication-title: Nanoscale doi: 10.1039/C8NR04950E – volume: 296 start-page: 124 year: 2018 ident: 10.1016/j.ecoenv.2022.114289_bib55 article-title: Titanium dioxide nanoparticles induce proteostasis disruption and autophagy in human trophoblast cells publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2018.09.015 – volume: 53 start-page: 275 year: 2013 ident: 10.1016/j.ecoenv.2022.114289_bib29 article-title: Autophagy in toxicology: cause or consequence? publication-title: Annu Rev. Pharm. Toxicol. doi: 10.1146/annurev-pharmtox-011112-140210 – volume: 16 start-page: 40 year: 2014 ident: 10.1016/j.ecoenv.2022.114289_bib41 article-title: The role of autophagy as a mechanism of toxicity induced by multi-walled carbon nanotubes in human lung cells publication-title: Int J. Mol. Sci. doi: 10.3390/ijms16010040 – volume: 11 start-page: 9 year: 2015 ident: 10.1016/j.ecoenv.2022.114289_bib53 article-title: Guidelines for monitoring autophagy in Caenorhabditis elegans publication-title: Autophagy – volume: 6 start-page: 463 year: 2004 ident: 10.1016/j.ecoenv.2022.114289_bib17 article-title: Development by self-digestion: molecular mechanisms and biological functions of autophagy publication-title: Dev. Cell doi: 10.1016/S1534-5807(04)00099-1 – volume: 700 year: 2020 ident: 10.1016/j.ecoenv.2022.114289_bib57 article-title: Graphene oxide disrupts the protein-protein interaction between Neuroligin/NLG-1 and DLG-1 or MAGI-1 in nematode Caenorhabditis elegans publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134492 – volume: 2016 year: 2016 ident: 10.1016/j.ecoenv.2022.114289_bib31 article-title: RNAi-mediated inactivation of autophagy genes in caenorhabditis elegans publication-title: Cold Spring Harb. Protoc. – volume: 34 start-page: 2787 year: 2013 ident: 10.1016/j.ecoenv.2022.114289_bib50 article-title: In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.01.001 – volume: 17 start-page: 1995 year: 2016 ident: 10.1016/j.ecoenv.2022.114289_bib25 article-title: Graphene oxide nanoribbons induce autophagic vacuoles in neuroblastoma cell lines publication-title: Int J. Mol. Sci. doi: 10.3390/ijms17121995 – volume: 14 start-page: 15 year: 2017 ident: 10.1016/j.ecoenv.2022.114289_bib27 article-title: Impaired lysosomal activity mediated autophagic flux disruption by graphite carbon nanofibers induce apoptosis in human lung epithelial cells through oxidative stress and energetic impairment publication-title: Part Fibre Toxicol. doi: 10.1186/s12989-017-0194-4 – volume: 18 start-page: 52 year: 2020 ident: 10.1016/j.ecoenv.2022.114289_bib51 article-title: The interrupted effect of autophagic flux and lysosomal function induced by graphene oxide in p62-dependent apoptosis of F98 cells publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-020-00605-6 – volume: 229 year: 2022 ident: 10.1016/j.ecoenv.2022.114289_bib12 article-title: Sublethal toxicity of graphene oxide in Caenorhabditis elegans under multi-generational exposure publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.113064 – volume: 2012 year: 2012 ident: 10.1016/j.ecoenv.2022.114289_bib13 article-title: The Redox System in C. elegans, a phylogenetic approach publication-title: J. Toxicol. doi: 10.1155/2012/546915 – volume: 33 start-page: 2372 year: 2019 ident: 10.1016/j.ecoenv.2022.114289_bib15 article-title: Suppression of AMPK/aak-2 by NRF2/SKN-1 down-regulates autophagy during prolonged oxidative stress publication-title: FASEB J. doi: 10.1096/fj.201800565RR – volume: 91 start-page: 1266 year: 2013 ident: 10.1016/j.ecoenv.2022.114289_bib45 article-title: A sensitive biosensing strategy for DNA detection based on graphene oxide and T7 exonuclease assisted target recycling amplification publication-title: Can. J. Chem. doi: 10.1139/cjc-2013-0285 – volume: 6 year: 2017 ident: 10.1016/j.ecoenv.2022.114289_bib5 article-title: Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging publication-title: Elife doi: 10.7554/eLife.18459 – volume: 256 year: 2020 ident: 10.1016/j.ecoenv.2022.114289_bib36 article-title: Effect of chronic exposure to nanopolystyrene on nematode Caenorhabditis elegans publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127172 – volume: 12 start-page: 6633 year: 2017 ident: 10.1016/j.ecoenv.2022.114289_bib30 article-title: The mechanisms of graphene-based materials-induced programmed cell death: a review of apoptosis, autophagy, and programmed necrosis publication-title: Int J. Nanomed. doi: 10.2147/IJN.S140526 – volume: 41 start-page: 2028 year: 2018 ident: 10.1016/j.ecoenv.2022.114289_bib23 article-title: Dexamethasone-induced production of reactive oxygen species promotes apoptosis via endoplasmic reticulum stress and autophagy in MC3T3-E1 cells publication-title: Int J. Mol. Med – volume: 13 start-page: 2907 year: 2018 ident: 10.1016/j.ecoenv.2022.114289_bib39 article-title: Mechanisms of oxidative stress, apoptosis, and autophagy involved in graphene oxide nanomaterial anti-osteosarcoma effect publication-title: Int J. Nanomed. doi: 10.2147/IJN.S159388 – volume: 10 start-page: 1469 year: 2016 ident: 10.1016/j.ecoenv.2022.114289_bib56 article-title: p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans publication-title: Nanotoxicology doi: 10.1080/17435390.2016.1235738 – volume: 223 start-page: 25 year: 2013 ident: 10.1016/j.ecoenv.2022.114289_bib32 article-title: Potential autophagy enhancers protect against fipronil-induced apoptosis in SH-SY5Y cells publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2013.08.015 – volume: 20 start-page: 460 year: 2014 ident: 10.1016/j.ecoenv.2022.114289_bib33 article-title: An overview of autophagy: morphology, mechanism, and regulation publication-title: Antioxid. Redox Signal doi: 10.1089/ars.2013.5371 – volume: 120 start-page: 1134 year: 2007 ident: 10.1016/j.ecoenv.2022.114289_bib40 article-title: Influence of autophagy genes on ion-channel-dependent neuronal degeneration in Caenorhabditis elegans publication-title: J. Cell Sci. doi: 10.1242/jcs.03401 – volume: 32 start-page: 465 year: 2012 ident: 10.1016/j.ecoenv.2022.114289_bib4 article-title: Autophagy in toxicology: self-consumption in times of stress and plenty publication-title: J. Appl. Toxicol. doi: 10.1002/jat.1787 – volume: 10 start-page: 21141 year: 2020 ident: 10.1016/j.ecoenv.2022.114289_bib2 article-title: Autophagy: a necessary defense against extreme cadmium intoxication in a multigenerational 2D experiment publication-title: Sci. Rep. doi: 10.1038/s41598-020-78316-z – volume: 5 start-page: 11166 year: 2013 ident: 10.1016/j.ecoenv.2022.114289_bib47 article-title: Crucial role of the biological barrier at the primary targeted organs in controlling the translocation and toxicity of multi-walled carbon nanotubes in the nematode Caenorhabditis elegans. publication-title: Nanoscale doi: 10.1039/c3nr03917j – volume: 3 start-page: 1486 year: 2014 ident: 10.1016/j.ecoenv.2022.114289_bib6 article-title: Graphene oxide triggers toll-like receptors/autophagy responses in vitro and inhibits tumor growth in vivo publication-title: Adv. Health Mater. doi: 10.1002/adhm.201300591 – volume: 10 start-page: 142 year: 2019 ident: 10.1016/j.ecoenv.2022.114289_bib11 article-title: Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1366-y – volume: 2018 start-page: 3862070 year: 2018 ident: 10.1016/j.ecoenv.2022.114289_bib28 article-title: ATM induces cell death with autophagy in response to H2O2 Specifically in Caenorhabditis elegans Nondividing Cells publication-title: Oxid. Med Cell Longev. doi: 10.1155/2018/3862070 – volume: 292 start-page: 19905 year: 2017 ident: 10.1016/j.ecoenv.2022.114289_bib1 article-title: Autophagy induction under carbon starvation conditions is negatively regulated by carbon catabolite repression publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.817510 – volume: 325 year: 2020 ident: 10.1016/j.ecoenv.2022.114289_bib20 article-title: Graphene oxide enhances β-amyloid clearance by inducing autophagy of microglia and neurons publication-title: Chem. Biol. Inter. doi: 10.1016/j.cbi.2020.109126 – year: 2020 ident: 10.1016/j.ecoenv.2022.114289_bib43 – volume: 1206 start-page: 109 year: 2019 ident: 10.1016/j.ecoenv.2022.114289_bib49 article-title: Beclin 1, Bcl-2 and Autophagy publication-title: Adv. Exp. Med Biol. doi: 10.1007/978-981-15-0602-4_5 |
SSID | ssj0003055 |
Score | 2.4248662 |
Snippet | Graphene oxide (GO) exposure may cause damage to C. elegans. However, the role of autophagy and its interactive effect with oxidative response in GO toxicity... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114289 |
SubjectTerms | Autophagy Caenorhabditis elegans (C. elegans) Oxidative response Protective effect |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUAiU0uZBti9U6NXED8nSHpOQEArtqYHchKSR0i3BLpvdkr30t2dGkkPay156MhhZEtJo5htr5hvGPssoe98GV0U0nxVaqLpyNnSUBQId3XP5lC729Vt_dS2-3MibZ6W-KCYs0wPnhTsRGnoUsrmyWgur67mN2HdoobOijSpBI7R5kzNVdDDxWOXgRVX1summpLkU2YV-XRh-o2_YtkSV21KJ92dGKXH3_2Wb_tHSyfRcvmavCmbkp3mub9hOGPbZi4vEN73ZZy_zrzeeM4oO2B864yUqfLnhhYkBtRovwRt8jNyuiVHA3m64HYCPDwtIDOB8mWNmA7e3doHQkSdGa1SIqU3gK3x4RO58MfBzG4Zx-cM6IGIkThUs0PAdsuvLi-_nV1Ups1B5IZtVFevgnHW9FtITgaBzvZPCa-1UVFA7WzexUeiXqXlUCkC2FpxDmNFLqqbguyO2O4xDOGY8InwBAmUgQWjvHGXeyhpEBzAHDTPWTetsfOEgp1IYd2YKNvtp8u4Y2h2Td2fGqqevfmUOji3tz2gLn9oSg3Z6gXJlilyZbXI1Y2oSAFPASAYZ2NViy_CfJnkxeFbpAsYOYVzfGzwAiij2dPP2f0zxHdujYSm4ppHv2e5quQ4fECKt3Md0Gh4B978PrQ priority: 102 providerName: Directory of Open Access Journals |
Title | Complementary protective effects of autophagy and oxidative response against graphene oxide toxicity in Caenorhabditis elegans |
URI | https://dx.doi.org/10.1016/j.ecoenv.2022.114289 https://www.proquest.com/docview/2737119581 https://doaj.org/article/48d648897a884a809afc2ee2d3a42f7a |
Volume | 248 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lIggiWhXXyxLB13Hnkkyyj3VpWRX7ZKFvIdd1RGbKdFfcl_52z0ky1fpS8GmYkLmQnJxL8p3vEPKOB97a2psigPkswEKVhdG-wSwQ1-A5l43pYl_O2vU5-3TBLw7IasqFQVhl1v1Jp0dtnVsWeTQXl123QFiSaDlGUyU6DRi3M2gBmX5__QfmgYxWCcYoCuw9pc9FjBdEeL7_CVFiXSNpbo3F3v8yT5HF_5aV-kdfRyN0-pg8yt4jPU4_-IQc-P6I3D-JzNP7I_IwbcLRlFv0lFzjas_48HFPMycD6DeaYRx0CFTvkFtAb_ZU944OvzoXucDpmNCznuqN7sCJpJHbGlRj7OPpFi4WfHja9XSlfT-M37RxSJFEsZYFmMBn5Pz05OtqXeSCC4VlvNoWofTGaNNKxi1SCRrTGs6slEYE4UqjyypUAiI0sQxCOMdr7YwBh6PlWFfBNs_JYT_0_gWhARwZh-6Z445Jawzm4PLSsca5pZNuRpppnJXNbORYFOOHmmBn31WaHYWzo9LszEhx89RlYuO4o_8HnMKbvsilHRuGcaOyMCkmXQtqbCm0lEzLcqkDSK-vXaNZHYSeETEJgLolmvCq7o7Pv53kRcGqxaMY3fthd6VgKQgk25PVy_9--yvyAO8QW1Px1-RwO-78G_CQtmYel8Cc3Dv--Hl9No_7DL8BfbcS9Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEQIJIShULBQwEhzD5mHH3kMPpbTa0seplXozdmwvQSip0l1gL_1T_MHOOE6hXCoh9RQpcZzI43kl33xDyDvueVnlziQe3GcCHipNjHYFVoHYAv9zVaFc7PConJ6wz6f8dIX8HmphEFYZbX9v04O1jmfGcTXHZ3U9RliSKDlmUykGDWlEVu675U_I28439z6BkN_n-e7O8fY0ia0FkorxbJ741BmjTSkZr5A0z5jScFZJaYQXNjU6zXwmIBcREy-EtTzX1hhwrSXHDgJVAfPeIXcZmAtsm_Dh4g-uBCm0etykSPD1hnq9ACqDlNI1PyAtzXNk6c2xu_xf_jC0DbjmFv9xEMHr7T4mj2K4Srf6FXlCVlyzRu7tBKrr5Rp52H_1o30x01NygeYlAtK7JY0kEGBQacSN0NZTvUAyAz1bUt1Y2v6qbSAfp10P13VUz3QNUSsNZNpgi8MYR-dwqCBpoHVDt7Vr2u6rNhY5mSg2zwCf-4yc3IoY1slq0zbuOaEeIieL8aDllsnKGCz65allhbUTK-2IFMM6qyrSn2MXju9qwLl9U710FEpH9dIZkeTqrrOe_uOG8R9RhFdjkbw7nGi7mYq7VzFpS7CbE6GlZFqmE-1BXVxuC81yL_SIiGEDqGu6AFPVNzz-7bBfFJgJ_PejG9cuzhXonkB2P5m9-O_Z35D70-PDA3Wwd7T_kjzAKwjsyfgGWZ13C_cKwrO5eR3UgZIvt61_l2yETbw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complementary+protective+effects+of+autophagy+and+oxidative+response+against+graphene+oxide+toxicity+in+Caenorhabditis+elegans&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Dou%2C+Tingting&rft.au=Chen%2C+Jingya&rft.au=Wang%2C+Rui&rft.au=Pu%2C+Xiaoxiao&rft.date=2022-12-15&rft.issn=1090-2414&rft.eissn=1090-2414&rft.volume=248&rft.spage=114289&rft_id=info:doi/10.1016%2Fj.ecoenv.2022.114289&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |