Complementary protective effects of autophagy and oxidative response against graphene oxide toxicity in Caenorhabditis elegans

Graphene oxide (GO) exposure may cause damage to C. elegans. However, the role of autophagy and its interactive effect with oxidative response in GO toxicity still remain largely unclear. In the present study, we investigated the protective role of autophagy against GO and its association with oxida...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 248; p. 114289
Main Authors Dou, Tingting, Chen, Jingya, Wang, Rui, Pu, Xiaoxiao, Wu, Huazhang, Zhao, Yunli
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.12.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene oxide (GO) exposure may cause damage to C. elegans. However, the role of autophagy and its interactive effect with oxidative response in GO toxicity still remain largely unclear. In the present study, we investigated the protective role of autophagy against GO and its association with oxidative response using C. elegans as an in vivo system. Results indicated that GO exposure induced autophagy in a dose dependent manner in C. elegans. Autophagy inhibitor 3-methyladenine (3-MA) and silencing autophagy genes lgg-1, bec-1 and unc-51 exacerbated the toxicity of GO whereas autophagy activator rapamycin alleviated it. In addition, the antioxidant N-Acetyl-L-cysteine (NAC) effectively suppressed the toxicity of GO with increased resistance to oxidative stress. Worms with RNAi-induced antioxidative genes sod-1, sod-2, sod-3 and sod-4 knockdown were more sensitive to GO. 3-MA increased the expression of superoxide dismutase SOD-3 under GO exposure conditions and exacerbated the toxicity of GO under the anti-oxidation inaction condition by sod-3 RNAi. In contrast, NAC reduced autophagy levels in GO exposed nematodes and increased tolerance to GO in autophagy-defective worms. These results suggested that autophagy and antioxidative response provide complementary protection against GO in C. elegans. [Display omitted] •Autophagy exerts a protective response to cope with the toxicity of GO in C. elegans.•Oxidative response plays a protective role in response to GO in C. elegans.•Autophagy and oxidative act in a complementation way in the protective response.
AbstractList Graphene oxide (GO) exposure may cause damage to C. elegans. However, the role of autophagy and its interactive effect with oxidative response in GO toxicity still remain largely unclear. In the present study, we investigated the protective role of autophagy against GO and its association with oxidative response using C. elegans as an in vivo system. Results indicated that GO exposure induced autophagy in a dose dependent manner in C. elegans. Autophagy inhibitor 3-methyladenine (3-MA) and silencing autophagy genes lgg-1, bec-1 and unc-51 exacerbated the toxicity of GO whereas autophagy activator rapamycin alleviated it. In addition, the antioxidant N-Acetyl-L-cysteine (NAC) effectively suppressed the toxicity of GO with increased resistance to oxidative stress. Worms with RNAi-induced antioxidative genes sod-1, sod-2, sod-3 and sod-4 knockdown were more sensitive to GO. 3-MA increased the expression of superoxide dismutase SOD-3 under GO exposure conditions and exacerbated the toxicity of GO under the anti-oxidation inaction condition by sod-3 RNAi. In contrast, NAC reduced autophagy levels in GO exposed nematodes and increased tolerance to GO in autophagy-defective worms. These results suggested that autophagy and antioxidative response provide complementary protection against GO in C. elegans.
Graphene oxide (GO) exposure may cause damage to C. elegans. However, the role of autophagy and its interactive effect with oxidative response in GO toxicity still remain largely unclear. In the present study, we investigated the protective role of autophagy against GO and its association with oxidative response using C. elegans as an in vivo system. Results indicated that GO exposure induced autophagy in a dose dependent manner in C. elegans. Autophagy inhibitor 3-methyladenine (3-MA) and silencing autophagy genes lgg-1, bec-1 and unc-51 exacerbated the toxicity of GO whereas autophagy activator rapamycin alleviated it. In addition, the antioxidant N-Acetyl-L-cysteine (NAC) effectively suppressed the toxicity of GO with increased resistance to oxidative stress. Worms with RNAi-induced antioxidative genes sod-1, sod-2, sod-3 and sod-4 knockdown were more sensitive to GO. 3-MA increased the expression of superoxide dismutase SOD-3 under GO exposure conditions and exacerbated the toxicity of GO under the anti-oxidation inaction condition by sod-3 RNAi. In contrast, NAC reduced autophagy levels in GO exposed nematodes and increased tolerance to GO in autophagy-defective worms. These results suggested that autophagy and antioxidative response provide complementary protection against GO in C. elegans. [Display omitted] •Autophagy exerts a protective response to cope with the toxicity of GO in C. elegans.•Oxidative response plays a protective role in response to GO in C. elegans.•Autophagy and oxidative act in a complementation way in the protective response.
Graphene oxide (GO) exposure may cause damage to C. elegans. However, the role of autophagy and its interactive effect with oxidative response in GO toxicity still remain largely unclear. In the present study, we investigated the protective role of autophagy against GO and its association with oxidative response using C. elegans as an in vivo system. Results indicated that GO exposure induced autophagy in a dose dependent manner in C. elegans. Autophagy inhibitor 3-methyladenine (3-MA) and silencing autophagy genes lgg-1, bec-1 and unc-51 exacerbated the toxicity of GO whereas autophagy activator rapamycin alleviated it. In addition, the antioxidant N-Acetyl-L-cysteine (NAC) effectively suppressed the toxicity of GO with increased resistance to oxidative stress. Worms with RNAi-induced antioxidative genes sod-1, sod-2, sod-3 and sod-4 knockdown were more sensitive to GO. 3-MA increased the expression of superoxide dismutase SOD-3 under GO exposure conditions and exacerbated the toxicity of GO under the anti-oxidation inaction condition by sod-3 RNAi. In contrast, NAC reduced autophagy levels in GO exposed nematodes and increased tolerance to GO in autophagy-defective worms. These results suggested that autophagy and antioxidative response provide complementary protection against GO in C. elegans.Graphene oxide (GO) exposure may cause damage to C. elegans. However, the role of autophagy and its interactive effect with oxidative response in GO toxicity still remain largely unclear. In the present study, we investigated the protective role of autophagy against GO and its association with oxidative response using C. elegans as an in vivo system. Results indicated that GO exposure induced autophagy in a dose dependent manner in C. elegans. Autophagy inhibitor 3-methyladenine (3-MA) and silencing autophagy genes lgg-1, bec-1 and unc-51 exacerbated the toxicity of GO whereas autophagy activator rapamycin alleviated it. In addition, the antioxidant N-Acetyl-L-cysteine (NAC) effectively suppressed the toxicity of GO with increased resistance to oxidative stress. Worms with RNAi-induced antioxidative genes sod-1, sod-2, sod-3 and sod-4 knockdown were more sensitive to GO. 3-MA increased the expression of superoxide dismutase SOD-3 under GO exposure conditions and exacerbated the toxicity of GO under the anti-oxidation inaction condition by sod-3 RNAi. In contrast, NAC reduced autophagy levels in GO exposed nematodes and increased tolerance to GO in autophagy-defective worms. These results suggested that autophagy and antioxidative response provide complementary protection against GO in C. elegans.
ArticleNumber 114289
Author Zhao, Yunli
Pu, Xiaoxiao
Dou, Tingting
Chen, Jingya
Wu, Huazhang
Wang, Rui
Author_xml – sequence: 1
  givenname: Tingting
  surname: Dou
  fullname: Dou, Tingting
  organization: School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
– sequence: 2
  givenname: Jingya
  surname: Chen
  fullname: Chen, Jingya
  organization: School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
– sequence: 3
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  organization: School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
– sequence: 4
  givenname: Xiaoxiao
  surname: Pu
  fullname: Pu, Xiaoxiao
  organization: School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
– sequence: 5
  givenname: Huazhang
  surname: Wu
  fullname: Wu, Huazhang
  email: wuhuazhang@bbmc.edu.cn
  organization: School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, People's Republic of China
– sequence: 6
  givenname: Yunli
  orcidid: 0000-0002-8713-3767
  surname: Zhao
  fullname: Zhao, Yunli
  email: yunli201@126.com
  organization: School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
BookMark eNqFUbGOEzEUXKFDInfwBxQuaRJsr3ftpUBCEQcnnUQDtfVsv00cbezFdiLS8O34soiCAqr39DQzTzNz29yEGLBpXjO6YZT1bw8btBHDecMp5xvGBFfDs2bF6EDXXDBx06woE3Ldd6x90dzmfKCUtrTrVs3PbTzOEx4xFEgXMqdY0BZ_RoLjWLdM4kjgVOK8h92FQHAk_vAOrpCEeY4hI4Ed-JAL2SWY9xjwikFS6rC-XIgPZAsYYtqDcb74THDCHYT8snk-wpTx1e9513y7__h1-3n9-OXTw_bD49qKjpX1SNEYML0SnaVcDMb0phNWKSNH6agBykYm1TDIYZTSuY6DM2ZgtO-6atW2d83DousiHPSc_LG61RG8vh5i2mlIxdsJtVCuF0oNEpQSoOgAo-WI3LUg-Cihar1ZtGpY30-Yiz76bHGaIGA8Zc1lKxkbOsUqVCxQm2LOCcc_rxnVT9Xpg16q00_V6aW6Snv3F62mWCOPoSTw0__I7xcy1jzPHpPO1mOw6HyqhVbD_t8CvwAOOLxj
CitedBy_id crossref_primary_10_3390_toxics11030239
crossref_primary_10_3762_bjnano_15_105
crossref_primary_10_1016_j_cbpc_2024_109924
crossref_primary_10_1016_j_pestbp_2023_105511
crossref_primary_10_1016_j_pestbp_2025_106298
crossref_primary_10_3390_ijms24010290
Cites_doi 10.18632/aging.103975
10.1016/j.biomaterials.2015.07.060
10.1016/j.lfs.2017.08.029
10.1016/j.bbrc.2008.01.150
10.1021/tx400385x
10.3390/ijms19113564
10.1007/s10008-014-2494-z
10.1073/pnas.1405032111
10.3892/etm.2021.9893
10.1007/s10661-020-08561-2
10.1126/science.1087782
10.1038/cdd.2014.150
10.1038/aps.2012.190
10.1002/anie.201101351
10.1039/c4nr00699b
10.1016/j.toxlet.2019.01.007
10.1016/j.jfda.2014.01.009
10.1016/j.molcel.2010.09.023
10.1039/C8NR04950E
10.1016/j.cbi.2018.09.015
10.1146/annurev-pharmtox-011112-140210
10.3390/ijms16010040
10.1016/S1534-5807(04)00099-1
10.1016/j.scitotenv.2019.134492
10.1016/j.biomaterials.2013.01.001
10.3390/ijms17121995
10.1186/s12989-017-0194-4
10.1186/s12951-020-00605-6
10.1016/j.ecoenv.2021.113064
10.1155/2012/546915
10.1096/fj.201800565RR
10.1139/cjc-2013-0285
10.7554/eLife.18459
10.1016/j.chemosphere.2020.127172
10.2147/IJN.S140526
10.2147/IJN.S159388
10.1080/17435390.2016.1235738
10.1016/j.toxlet.2013.08.015
10.1089/ars.2013.5371
10.1242/jcs.03401
10.1002/jat.1787
10.1038/s41598-020-78316-z
10.1039/c3nr03917j
10.1002/adhm.201300591
10.1038/s41419-019-1366-y
10.1155/2018/3862070
10.1074/jbc.M117.817510
10.1016/j.cbi.2020.109126
10.1007/978-981-15-0602-4_5
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
DOA
DOI 10.1016/j.ecoenv.2022.114289
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Ecology
EISSN 1090-2414
ExternalDocumentID oai_doaj_org_article_48d648897a884a809afc2ee2d3a42f7a
10_1016_j_ecoenv_2022_114289
S0147651322011290
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
J1W
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
ZU3
~G-
29G
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
H~9
R2-
RIG
SEN
SEW
SSH
VH1
WUQ
XPP
ZMT
ZXP
~KM
7X8
EFKBS
ID FETCH-LOGICAL-c451t-f0ebbab6845c0249bb6b54c88b7f7d0ba01f1789979f77dd52adbb910655000c3
IEDL.DBID .~1
ISSN 0147-6513
1090-2414
IngestDate Wed Aug 27 01:22:51 EDT 2025
Fri Jul 11 16:51:13 EDT 2025
Tue Jul 01 04:00:39 EDT 2025
Thu Apr 24 23:01:02 EDT 2025
Fri Feb 23 02:39:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Caenorhabditis elegans (C. elegans)
Protective effect
Oxidative response
Autophagy
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-f0ebbab6845c0249bb6b54c88b7f7d0ba01f1789979f77dd52adbb910655000c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8713-3767
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0147651322011290
PQID 2737119581
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_48d648897a884a809afc2ee2d3a42f7a
proquest_miscellaneous_2737119581
crossref_primary_10_1016_j_ecoenv_2022_114289
crossref_citationtrail_10_1016_j_ecoenv_2022_114289
elsevier_sciencedirect_doi_10_1016_j_ecoenv_2022_114289
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-15
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Ecotoxicology and environmental safety
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Zhang, Chang, Guo, Hansen, Jia, Kovacs, Kumsta, Lapierre, Legouis, Lin, Lu, Melendez, O'Rourke, Sato, Sato, Wang, Wu (bib53) 2015; 11
Zhao, Zhi, Wu, Yu, Sun, Wang (bib56) 2016; 10
Ou, Lin, Song, Liu, Lai, Shao (bib30) 2017; 12
Parzych, Klionsky (bib33) 2014; 20
Qiu, Liu, Li, Li, Wang (bib36) 2020; 256
Adachi, Koizumi, Ohsumi (bib1) 2017; 292
Liu, Zhao, Na, Meng, Wang, Bai (bib23) 2018; 41
Kroemer, Marino, Levine (bib16) 2010; 40
Tang, Zhao, Yang, Liu, Gu, Bai, Liu, Xu, Yang (bib39) 2018; 13
Kosztelnik, Kurucz, Papp, Jones, Sigmond, Barna, Traka, Lorincz, Szarka, Banhegyi, Vellai, Korcsmaros, Kapuy (bib15) 2019; 33
Zhang, Feng, He, Zhang, Shao (bib51) 2020; 18
Li, Huang, Le (bib19) 2013; 34
Pelin, Sosa, Prato, Tubaro (bib34) 2018; 10
Zou, Ma, Dai, Zhang (bib58) 2014; 111
Wang (bib42) 2018
Xu, Qin (bib49) 2019; 1206
Park, Lee, Lee, Park, Park, Jeong, Koh (bib32) 2013; 223
Dai, Liu, Wang, Nie, Sun, Wang, Wang, Yang, Cheng, Wang, Weng, Wang, Wang, Wu, Zhao, Xu (bib7) 2018; 5
Wu, Li, Li, Zhao, Ge, Wang, Wang (bib47) 2013; 5
Yang, Gong, Shi, Wan, Zhang, Liu (bib50) 2013; 34
Wu, Zhao, Fang, Wang (bib48) 2014; 6
Li, Lu, Yao, Xu, Zhou, Zheng (bib18) 2020; 12
Ravanan, Srikumar, Talwar (bib37) 2017; 188
Pesonen, Vahakangas (bib35) 2019; 305
Li, Li, Chu, Huang, Yang (bib20) 2020; 325
Wang, Zhang, Chu, Chen, Ge, Yu (bib44) 2011; 50
Levine, Klionsky (bib17) 2004; 6
Moriwaki, Yamasaki, Zhang-Akiyama (bib28) 2018; 2018
Wang, Zhang, Xu, Gan, Huang, Liu (bib46) 2014; 18
Melendez, Talloczy, Seaman, Eskelinen, Hall, Levine (bib26) 2003; 301
Zhang, Zhang, Liu, Chu, Yang, Li, Shao, Yue, Xu (bib52) 2015; 68
Jin, Dou, Chen, Duan, Zhen, Wu, Zhao (bib12) 2022; 229
Liao, Li, Tjong (bib21) 2018; 19
Bolt, Klimecki (bib4) 2012; 32
Filomeni, De, Zio, Cecconi (bib9) 2015; 22
Wang, Ou, Huang, Wen, Wang, Liu (bib45) 2013; 91
Lin, Lin, Hsu, Yu-Chen, Chao, Tuan, Chiang, Hu (bib22) 2018; 8
Zhang, Xu, Yao, Dong, Mao, Hang, Han, Lin, Bian, Li, Xia (bib55) 2018; 296
Zhao, Chen, Yang, Wu, Wang (bib57) 2020; 700
Babczynska, Nowak, Kafel, Lozowski, Rost-Roszkowska, Tarnawska, Augustyniak, Sawadro, Molenda (bib2) 2020; 10
Guo, Mei (bib10) 2014; 22
Seabra, Paula, de Lima, Alves, Duran (bib38) 2014; 27
Baysal, Saygin, Ustabasi (bib3) 2020; 192
Chen, Chen, Tuan, Yuan, Li, Yang, Hu (bib6) 2014; 3
Johnston, Ebert (bib13) 2012; 2012
Mittal, Sharma, Tiwari, Rayavarapu, Shankar, Chauhan, Pandey (bib27) 2017; 14
Palmisano, Melendez (bib31) 2016; 2016
Di Cristo, Grimaldi, Catelani, Vázquez, Pompa, Sabella (bib8) 2020; 6
Liu, Zhang, Wang, Liu, Zhang, Ji, Qiao (bib24) 2021; 286
Chang, Kumsta, Hellman, Adams, Hansen (bib5) 2017; 6
Zhang, Ouyang, Zhang, Qiu, Dai, Wang, Wang, Ou (bib54) 2021; 21
Orrenius, Kaminskyy, Zhivotovsky (bib29) 2013; 53
Tsukahara, Matsuda, Haniu (bib41) 2014; 16
Jia, Xu, Zhou, Chen, Ding, Cao (bib11) 2019; 10
Khan, Yamanaka, Nukina (bib14) 2008; 368
Wang (bib43) 2020
Toth, Simon, Kovacs, Vellai (bib40) 2007; 120
Mari, Mardente, Morgante, Tafani, Lococo, Fico, Valentini, Zicari (bib25) 2016; 17
Bolt (10.1016/j.ecoenv.2022.114289_bib4) 2012; 32
Jia (10.1016/j.ecoenv.2022.114289_bib11) 2019; 10
Park (10.1016/j.ecoenv.2022.114289_bib32) 2013; 223
Seabra (10.1016/j.ecoenv.2022.114289_bib38) 2014; 27
Kosztelnik (10.1016/j.ecoenv.2022.114289_bib15) 2019; 33
Yang (10.1016/j.ecoenv.2022.114289_bib50) 2013; 34
Zhang (10.1016/j.ecoenv.2022.114289_bib53) 2015; 11
Zhang (10.1016/j.ecoenv.2022.114289_bib51) 2020; 18
Babczynska (10.1016/j.ecoenv.2022.114289_bib2) 2020; 10
Pelin (10.1016/j.ecoenv.2022.114289_bib34) 2018; 10
Di Cristo (10.1016/j.ecoenv.2022.114289_bib8) 2020; 6
Xu (10.1016/j.ecoenv.2022.114289_bib49) 2019; 1206
Chang (10.1016/j.ecoenv.2022.114289_bib5) 2017; 6
Filomeni (10.1016/j.ecoenv.2022.114289_bib9) 2015; 22
Adachi (10.1016/j.ecoenv.2022.114289_bib1) 2017; 292
Toth (10.1016/j.ecoenv.2022.114289_bib40) 2007; 120
Tsukahara (10.1016/j.ecoenv.2022.114289_bib41) 2014; 16
Jin (10.1016/j.ecoenv.2022.114289_bib12) 2022; 229
Wu (10.1016/j.ecoenv.2022.114289_bib47) 2013; 5
Qiu (10.1016/j.ecoenv.2022.114289_bib36) 2020; 256
Zhao (10.1016/j.ecoenv.2022.114289_bib56) 2016; 10
Li (10.1016/j.ecoenv.2022.114289_bib20) 2020; 325
Zhang (10.1016/j.ecoenv.2022.114289_bib55) 2018; 296
Baysal (10.1016/j.ecoenv.2022.114289_bib3) 2020; 192
Levine (10.1016/j.ecoenv.2022.114289_bib17) 2004; 6
Khan (10.1016/j.ecoenv.2022.114289_bib14) 2008; 368
Lin (10.1016/j.ecoenv.2022.114289_bib22) 2018; 8
Zou (10.1016/j.ecoenv.2022.114289_bib58) 2014; 111
Orrenius (10.1016/j.ecoenv.2022.114289_bib29) 2013; 53
Wang (10.1016/j.ecoenv.2022.114289_bib44) 2011; 50
Moriwaki (10.1016/j.ecoenv.2022.114289_bib28) 2018; 2018
Ravanan (10.1016/j.ecoenv.2022.114289_bib37) 2017; 188
Mari (10.1016/j.ecoenv.2022.114289_bib25) 2016; 17
Chen (10.1016/j.ecoenv.2022.114289_bib6) 2014; 3
Wang (10.1016/j.ecoenv.2022.114289_bib43) 2020
Liu (10.1016/j.ecoenv.2022.114289_bib24) 2021; 286
Wang (10.1016/j.ecoenv.2022.114289_bib46) 2014; 18
Liu (10.1016/j.ecoenv.2022.114289_bib23) 2018; 41
Dai (10.1016/j.ecoenv.2022.114289_bib7) 2018; 5
Li (10.1016/j.ecoenv.2022.114289_bib18) 2020; 12
Zhao (10.1016/j.ecoenv.2022.114289_bib57) 2020; 700
Wang (10.1016/j.ecoenv.2022.114289_bib42) 2018
Parzych (10.1016/j.ecoenv.2022.114289_bib33) 2014; 20
Liao (10.1016/j.ecoenv.2022.114289_bib21) 2018; 19
Zhang (10.1016/j.ecoenv.2022.114289_bib54) 2021; 21
Palmisano (10.1016/j.ecoenv.2022.114289_bib31) 2016; 2016
Tang (10.1016/j.ecoenv.2022.114289_bib39) 2018; 13
Wu (10.1016/j.ecoenv.2022.114289_bib48) 2014; 6
Pesonen (10.1016/j.ecoenv.2022.114289_bib35) 2019; 305
Li (10.1016/j.ecoenv.2022.114289_bib19) 2013; 34
Melendez (10.1016/j.ecoenv.2022.114289_bib26) 2003; 301
Zhang (10.1016/j.ecoenv.2022.114289_bib52) 2015; 68
Johnston (10.1016/j.ecoenv.2022.114289_bib13) 2012; 2012
Guo (10.1016/j.ecoenv.2022.114289_bib10) 2014; 22
Wang (10.1016/j.ecoenv.2022.114289_bib45) 2013; 91
Mittal (10.1016/j.ecoenv.2022.114289_bib27) 2017; 14
Ou (10.1016/j.ecoenv.2022.114289_bib30) 2017; 12
Kroemer (10.1016/j.ecoenv.2022.114289_bib16) 2010; 40
References_xml – volume: 19
  start-page: 3564
  year: 2018
  ident: bib21
  article-title: Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity
  publication-title: Int J. Mol. Sci.
– volume: 21
  start-page: 462
  year: 2021
  ident: bib54
  article-title: Graphene oxide induces dose-dependent lung injury in rats by regulating autophagy
  publication-title: Exp. Ther. Med
– volume: 229
  year: 2022
  ident: bib12
  article-title: Sublethal toxicity of graphene oxide in
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 16
  start-page: 40
  year: 2014
  end-page: 48
  ident: bib41
  article-title: The role of autophagy as a mechanism of toxicity induced by multi-walled carbon nanotubes in human lung cells
  publication-title: Int J. Mol. Sci.
– volume: 18
  start-page: 52
  year: 2020
  ident: bib51
  article-title: The interrupted effect of autophagic flux and lysosomal function induced by graphene oxide in p62-dependent apoptosis of F98 cells
  publication-title: J. Nanobiotechnol.
– volume: 5
  start-page: 11166
  year: 2013
  end-page: 11178
  ident: bib47
  article-title: Crucial role of the biological barrier at the primary targeted organs in controlling the translocation and toxicity of multi-walled carbon nanotubes in the nematode
  publication-title: Nanoscale
– volume: 50
  start-page: 7065
  year: 2011
  end-page: 7069
  ident: bib44
  article-title: Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells
  publication-title: Angew. Chem. Int Ed. Engl.
– volume: 2012
  year: 2012
  ident: bib13
  article-title: The Redox System in C. elegans, a phylogenetic approach
  publication-title: J. Toxicol.
– volume: 188
  start-page: 53
  year: 2017
  end-page: 67
  ident: bib37
  article-title: Autophagy: the spotlight for cellular stress responses
  publication-title: Life Sci.
– volume: 111
  start-page: 12480
  year: 2014
  end-page: 12485
  ident: bib58
  article-title: Autophagy protects
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2020
  ident: bib43
  article-title: Exposure Toxicology in
– volume: 68
  start-page: 100
  year: 2015
  end-page: 113
  ident: bib52
  article-title: The short- and long-term effects of orally administered high-dose reduced graphene oxide nanosheets on mouse behaviors
  publication-title: Biomaterials
– volume: 20
  start-page: 460
  year: 2014
  end-page: 473
  ident: bib33
  article-title: An overview of autophagy: morphology, mechanism, and regulation
  publication-title: Antioxid. Redox Signal
– volume: 22
  start-page: 105
  year: 2014
  end-page: 115
  ident: bib10
  article-title: Assessment of the toxic potential of graphene family nanomaterials
  publication-title: J. Food Drug Anal.
– volume: 1206
  start-page: 109
  year: 2019
  end-page: 126
  ident: bib49
  article-title: Beclin 1, Bcl-2 and Autophagy
  publication-title: Adv. Exp. Med Biol.
– volume: 192
  start-page: 622
  year: 2020
  ident: bib3
  article-title: Risks of graphene nanomaterial contamination in the soil: evaluation of major ions
  publication-title: Environ. Monit. Assess.
– volume: 8
  start-page: 2477
  year: 2018
  end-page: 2487
  ident: bib22
  article-title: Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis
  publication-title: Neurochem Res
– volume: 120
  start-page: 1134
  year: 2007
  end-page: 1141
  ident: bib40
  article-title: Influence of autophagy genes on ion-channel-dependent neuronal degeneration in
  publication-title: J. Cell Sci.
– volume: 34
  start-page: 2787
  year: 2013
  end-page: 2795
  ident: bib50
  article-title: biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration
  publication-title: Biomaterials
– volume: 6
  year: 2020
  ident: bib8
  article-title: Repeated exposure to aerosolized graphene oxide mediates autophagy inhibition and inflammation in a three-dimensional human airway model
  publication-title: Mater. Today Bio
– volume: 256
  year: 2020
  ident: bib36
  article-title: Effect of chronic exposure to nanopolystyrene on nematode
  publication-title: Chemosphere
– volume: 296
  start-page: 124
  year: 2018
  end-page: 133
  ident: bib55
  article-title: Titanium dioxide nanoparticles induce proteostasis disruption and autophagy in human trophoblast cells
  publication-title: Chem. Biol. Interact.
– volume: 91
  start-page: 1266
  year: 2013
  end-page: 1271
  ident: bib45
  article-title: A sensitive biosensing strategy for DNA detection based on graphene oxide and T7 exonuclease assisted target recycling amplification
  publication-title: Can. J. Chem.
– volume: 2018
  start-page: 3862070
  year: 2018
  ident: bib28
  article-title: ATM induces cell death with autophagy in response to H2O2 Specifically in Caenorhabditis elegans Nondividing Cells
  publication-title: Oxid. Med Cell Longev.
– volume: 33
  start-page: 2372
  year: 2019
  end-page: 2387
  ident: bib15
  article-title: Suppression of AMPK/aak-2 by NRF2/SKN-1 down-regulates autophagy during prolonged oxidative stress
  publication-title: FASEB J.
– volume: 305
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib35
  article-title: Autophagy in exposure to environmental chemicals
  publication-title: Toxicol. Lett.
– volume: 34
  start-page: 644
  year: 2013
  end-page: 650
  ident: bib19
  article-title: Establishing a novel
  publication-title: Acta Pharm. Sin.
– volume: 223
  start-page: 25
  year: 2013
  end-page: 34
  ident: bib32
  article-title: Potential autophagy enhancers protect against fipronil-induced apoptosis in SH-SY5Y cells
  publication-title: Toxicol. Lett.
– volume: 6
  start-page: 463
  year: 2004
  end-page: 477
  ident: bib17
  article-title: Development by self-digestion: molecular mechanisms and biological functions of autophagy
  publication-title: Dev. Cell
– volume: 5
  start-page: 1711
  year: 2018
  end-page: 1728
  ident: bib7
  article-title: Graphene oxide antagonizes the toxic response to arsenic via activation of protective autophagy and suppression of the arsenic-binding protein LEC-1 in
  publication-title: Environ. Sci.: Nano
– volume: 17
  start-page: 1995
  year: 2016
  ident: bib25
  article-title: Graphene oxide nanoribbons induce autophagic vacuoles in neuroblastoma cell lines
  publication-title: Int J. Mol. Sci.
– volume: 286
  year: 2021
  ident: bib24
  article-title: Oxidative stress, intestinal damage, and cell apoptosis: Toxicity induced by fluopyram in
  publication-title: Chemosphere
– volume: 301
  start-page: 1387
  year: 2003
  end-page: 1391
  ident: bib26
  article-title: Autophagy genes are essential for dauer development and life-span extension in
  publication-title: Science
– volume: 10
  start-page: 21141
  year: 2020
  ident: bib2
  article-title: Autophagy: a necessary defense against extreme cadmium intoxication in a multigenerational 2D experiment
  publication-title: Sci. Rep.
– volume: 325
  year: 2020
  ident: bib20
  article-title: Graphene oxide enhances β-amyloid clearance by inducing autophagy of microglia and neurons
  publication-title: Chem. Biol. Inter.
– volume: 53
  start-page: 275
  year: 2013
  end-page: 297
  ident: bib29
  article-title: Autophagy in toxicology: cause or consequence?
  publication-title: Annu Rev. Pharm. Toxicol.
– volume: 700
  year: 2020
  ident: bib57
  article-title: Graphene oxide disrupts the protein-protein interaction between Neuroligin/NLG-1 and DLG-1 or MAGI-1 in nematode
  publication-title: Sci. Total Environ.
– volume: 13
  start-page: 2907
  year: 2018
  end-page: 2919
  ident: bib39
  article-title: Mechanisms of oxidative stress, apoptosis, and autophagy involved in graphene oxide nanomaterial anti-osteosarcoma effect
  publication-title: Int J. Nanomed.
– volume: 292
  start-page: 19905
  year: 2017
  end-page: 19918
  ident: bib1
  article-title: Autophagy induction under carbon starvation conditions is negatively regulated by carbon catabolite repression
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 9
  year: 2015
  end-page: 27
  ident: bib53
  article-title: Guidelines for monitoring autophagy in Caenorhabditis elegans
  publication-title: Autophagy
– volume: 10
  start-page: 1469
  year: 2016
  end-page: 1479
  ident: bib56
  article-title: p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in
  publication-title: Nanotoxicology
– volume: 14
  start-page: 15
  year: 2017
  ident: bib27
  article-title: Impaired lysosomal activity mediated autophagic flux disruption by graphite carbon nanofibers induce apoptosis in human lung epithelial cells through oxidative stress and energetic impairment
  publication-title: Part Fibre Toxicol.
– volume: 12
  start-page: 6633
  year: 2017
  end-page: 6646
  ident: bib30
  article-title: The mechanisms of graphene-based materials-induced programmed cell death: a review of apoptosis, autophagy, and programmed necrosis
  publication-title: Int J. Nanomed.
– year: 2018
  ident: bib42
  article-title: Nanotoxicology in
– volume: 32
  start-page: 465
  year: 2012
  end-page: 479
  ident: bib4
  article-title: Autophagy in toxicology: self-consumption in times of stress and plenty
  publication-title: J. Appl. Toxicol.
– volume: 10
  start-page: 15894
  year: 2018
  end-page: 15903
  ident: bib34
  article-title: Occupational exposure to graphene based nanomaterials: risk assessment
  publication-title: Nanoscale
– volume: 22
  start-page: 377
  year: 2015
  end-page: 388
  ident: bib9
  article-title: Oxidative stress and autophagy: the clash between damage and metabolic needs
  publication-title: Cell Death Differ.
– volume: 41
  start-page: 2028
  year: 2018
  end-page: 2036
  ident: bib23
  article-title: Dexamethasone-induced production of reactive oxygen species promotes apoptosis via endoplasmic reticulum stress and autophagy in MC3T3-E1 cells
  publication-title: Int J. Mol. Med
– volume: 12
  start-page: 21687
  year: 2020
  end-page: 21705
  ident: bib18
  article-title: Dexmedetomidine inhibits inflammatory response and autophagy through the circLrp1b/miR-27a-3p/Dram2 pathway in a rat model of traumatic brain injury
  publication-title: Aging (Albany NY)
– volume: 10
  start-page: 142
  year: 2019
  ident: bib11
  article-title: Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways
  publication-title: Cell Death Dis.
– volume: 27
  start-page: 159
  year: 2014
  end-page: 168
  ident: bib38
  article-title: Nanotoxicity of graphene and graphene oxide
  publication-title: Chem. Res Toxicol.
– volume: 2016
  year: 2016
  ident: bib31
  article-title: RNAi-mediated inactivation of autophagy genes in caenorhabditis elegans
  publication-title: Cold Spring Harb. Protoc.
– volume: 3
  start-page: 1486
  year: 2014
  end-page: 1495
  ident: bib6
  article-title: Graphene oxide triggers toll-like receptors/autophagy responses in vitro and inhibits tumor growth in vivo
  publication-title: Adv. Health Mater.
– volume: 6
  year: 2017
  ident: bib5
  article-title: Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging
  publication-title: Elife
– volume: 368
  start-page: 729
  year: 2008
  end-page: 735
  ident: bib14
  article-title: Genetic impairment of autophagy intensifies expanded polyglutamine toxicity in Caenorhabditis elegans
  publication-title: Biochem Biophys. Res Commun.
– volume: 6
  start-page: 5894
  year: 2014
  end-page: 5906
  ident: bib48
  article-title: Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide
  publication-title: Nanoscale
– volume: 40
  start-page: 280
  year: 2010
  end-page: 293
  ident: bib16
  article-title: Autophagy and the integrated stress response
  publication-title: Mol. Cell
– volume: 18
  start-page: 2435
  year: 2014
  end-page: 2442
  ident: bib46
  article-title: Electrochemical biosensor for simultaneous determination of guanine and adenine based on dopamine-melanin colloidal nanospheres–graphene composites
  publication-title: J. Solid State Electrochem.
– volume: 12
  start-page: 21687
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114289_bib18
  article-title: Dexmedetomidine inhibits inflammatory response and autophagy through the circLrp1b/miR-27a-3p/Dram2 pathway in a rat model of traumatic brain injury
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.103975
– volume: 286
  year: 2021
  ident: 10.1016/j.ecoenv.2022.114289_bib24
  article-title: Oxidative stress, intestinal damage, and cell apoptosis: Toxicity induced by fluopyram in Caenorhabditis elegans
  publication-title: Chemosphere
– volume: 68
  start-page: 100
  year: 2015
  ident: 10.1016/j.ecoenv.2022.114289_bib52
  article-title: The short- and long-term effects of orally administered high-dose reduced graphene oxide nanosheets on mouse behaviors
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.07.060
– volume: 188
  start-page: 53
  year: 2017
  ident: 10.1016/j.ecoenv.2022.114289_bib37
  article-title: Autophagy: the spotlight for cellular stress responses
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2017.08.029
– volume: 368
  start-page: 729
  year: 2008
  ident: 10.1016/j.ecoenv.2022.114289_bib14
  article-title: Genetic impairment of autophagy intensifies expanded polyglutamine toxicity in Caenorhabditis elegans
  publication-title: Biochem Biophys. Res Commun.
  doi: 10.1016/j.bbrc.2008.01.150
– volume: 27
  start-page: 159
  year: 2014
  ident: 10.1016/j.ecoenv.2022.114289_bib38
  article-title: Nanotoxicity of graphene and graphene oxide
  publication-title: Chem. Res Toxicol.
  doi: 10.1021/tx400385x
– volume: 19
  start-page: 3564
  year: 2018
  ident: 10.1016/j.ecoenv.2022.114289_bib21
  article-title: Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity
  publication-title: Int J. Mol. Sci.
  doi: 10.3390/ijms19113564
– volume: 18
  start-page: 2435
  year: 2014
  ident: 10.1016/j.ecoenv.2022.114289_bib46
  article-title: Electrochemical biosensor for simultaneous determination of guanine and adenine based on dopamine-melanin colloidal nanospheres–graphene composites
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-014-2494-z
– volume: 111
  start-page: 12480
  year: 2014
  ident: 10.1016/j.ecoenv.2022.114289_bib58
  article-title: Autophagy protects C. elegans against necrosis during Pseudomonas aeruginosa infection
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1405032111
– volume: 21
  start-page: 462
  year: 2021
  ident: 10.1016/j.ecoenv.2022.114289_bib54
  article-title: Graphene oxide induces dose-dependent lung injury in rats by regulating autophagy
  publication-title: Exp. Ther. Med
  doi: 10.3892/etm.2021.9893
– volume: 192
  start-page: 622
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114289_bib3
  article-title: Risks of graphene nanomaterial contamination in the soil: evaluation of major ions
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-020-08561-2
– volume: 301
  start-page: 1387
  year: 2003
  ident: 10.1016/j.ecoenv.2022.114289_bib26
  article-title: Autophagy genes are essential for dauer development and life-span extension in C. elegans
  publication-title: Science
  doi: 10.1126/science.1087782
– year: 2018
  ident: 10.1016/j.ecoenv.2022.114289_bib42
– volume: 6
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114289_bib8
  article-title: Repeated exposure to aerosolized graphene oxide mediates autophagy inhibition and inflammation in a three-dimensional human airway model
  publication-title: Mater. Today Bio
– volume: 22
  start-page: 377
  year: 2015
  ident: 10.1016/j.ecoenv.2022.114289_bib9
  article-title: Oxidative stress and autophagy: the clash between damage and metabolic needs
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2014.150
– volume: 34
  start-page: 644
  year: 2013
  ident: 10.1016/j.ecoenv.2022.114289_bib19
  article-title: Establishing a novel C. elegans model to investigate the role of autophagy in amyotrophic lateral sclerosis
  publication-title: Acta Pharm. Sin.
  doi: 10.1038/aps.2012.190
– volume: 50
  start-page: 7065
  year: 2011
  ident: 10.1016/j.ecoenv.2022.114289_bib44
  article-title: Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells
  publication-title: Angew. Chem. Int Ed. Engl.
  doi: 10.1002/anie.201101351
– volume: 8
  start-page: 2477
  year: 2018
  ident: 10.1016/j.ecoenv.2022.114289_bib22
  article-title: Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis
  publication-title: Neurochem Res
– volume: 6
  start-page: 5894
  year: 2014
  ident: 10.1016/j.ecoenv.2022.114289_bib48
  article-title: Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide
  publication-title: Nanoscale
  doi: 10.1039/c4nr00699b
– volume: 305
  start-page: 1
  year: 2019
  ident: 10.1016/j.ecoenv.2022.114289_bib35
  article-title: Autophagy in exposure to environmental chemicals
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2019.01.007
– volume: 5
  start-page: 1711
  year: 2018
  ident: 10.1016/j.ecoenv.2022.114289_bib7
  article-title: Graphene oxide antagonizes the toxic response to arsenic via activation of protective autophagy and suppression of the arsenic-binding protein LEC-1 in Caenorhabditis elegans
  publication-title: Environ. Sci.: Nano
– volume: 22
  start-page: 105
  year: 2014
  ident: 10.1016/j.ecoenv.2022.114289_bib10
  article-title: Assessment of the toxic potential of graphene family nanomaterials
  publication-title: J. Food Drug Anal.
  doi: 10.1016/j.jfda.2014.01.009
– volume: 40
  start-page: 280
  year: 2010
  ident: 10.1016/j.ecoenv.2022.114289_bib16
  article-title: Autophagy and the integrated stress response
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.09.023
– volume: 10
  start-page: 15894
  year: 2018
  ident: 10.1016/j.ecoenv.2022.114289_bib34
  article-title: Occupational exposure to graphene based nanomaterials: risk assessment
  publication-title: Nanoscale
  doi: 10.1039/C8NR04950E
– volume: 296
  start-page: 124
  year: 2018
  ident: 10.1016/j.ecoenv.2022.114289_bib55
  article-title: Titanium dioxide nanoparticles induce proteostasis disruption and autophagy in human trophoblast cells
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2018.09.015
– volume: 53
  start-page: 275
  year: 2013
  ident: 10.1016/j.ecoenv.2022.114289_bib29
  article-title: Autophagy in toxicology: cause or consequence?
  publication-title: Annu Rev. Pharm. Toxicol.
  doi: 10.1146/annurev-pharmtox-011112-140210
– volume: 16
  start-page: 40
  year: 2014
  ident: 10.1016/j.ecoenv.2022.114289_bib41
  article-title: The role of autophagy as a mechanism of toxicity induced by multi-walled carbon nanotubes in human lung cells
  publication-title: Int J. Mol. Sci.
  doi: 10.3390/ijms16010040
– volume: 11
  start-page: 9
  year: 2015
  ident: 10.1016/j.ecoenv.2022.114289_bib53
  article-title: Guidelines for monitoring autophagy in Caenorhabditis elegans
  publication-title: Autophagy
– volume: 6
  start-page: 463
  year: 2004
  ident: 10.1016/j.ecoenv.2022.114289_bib17
  article-title: Development by self-digestion: molecular mechanisms and biological functions of autophagy
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(04)00099-1
– volume: 700
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114289_bib57
  article-title: Graphene oxide disrupts the protein-protein interaction between Neuroligin/NLG-1 and DLG-1 or MAGI-1 in nematode Caenorhabditis elegans
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134492
– volume: 2016
  year: 2016
  ident: 10.1016/j.ecoenv.2022.114289_bib31
  article-title: RNAi-mediated inactivation of autophagy genes in caenorhabditis elegans
  publication-title: Cold Spring Harb. Protoc.
– volume: 34
  start-page: 2787
  year: 2013
  ident: 10.1016/j.ecoenv.2022.114289_bib50
  article-title: In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.01.001
– volume: 17
  start-page: 1995
  year: 2016
  ident: 10.1016/j.ecoenv.2022.114289_bib25
  article-title: Graphene oxide nanoribbons induce autophagic vacuoles in neuroblastoma cell lines
  publication-title: Int J. Mol. Sci.
  doi: 10.3390/ijms17121995
– volume: 14
  start-page: 15
  year: 2017
  ident: 10.1016/j.ecoenv.2022.114289_bib27
  article-title: Impaired lysosomal activity mediated autophagic flux disruption by graphite carbon nanofibers induce apoptosis in human lung epithelial cells through oxidative stress and energetic impairment
  publication-title: Part Fibre Toxicol.
  doi: 10.1186/s12989-017-0194-4
– volume: 18
  start-page: 52
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114289_bib51
  article-title: The interrupted effect of autophagic flux and lysosomal function induced by graphene oxide in p62-dependent apoptosis of F98 cells
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-020-00605-6
– volume: 229
  year: 2022
  ident: 10.1016/j.ecoenv.2022.114289_bib12
  article-title: Sublethal toxicity of graphene oxide in Caenorhabditis elegans under multi-generational exposure
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2021.113064
– volume: 2012
  year: 2012
  ident: 10.1016/j.ecoenv.2022.114289_bib13
  article-title: The Redox System in C. elegans, a phylogenetic approach
  publication-title: J. Toxicol.
  doi: 10.1155/2012/546915
– volume: 33
  start-page: 2372
  year: 2019
  ident: 10.1016/j.ecoenv.2022.114289_bib15
  article-title: Suppression of AMPK/aak-2 by NRF2/SKN-1 down-regulates autophagy during prolonged oxidative stress
  publication-title: FASEB J.
  doi: 10.1096/fj.201800565RR
– volume: 91
  start-page: 1266
  year: 2013
  ident: 10.1016/j.ecoenv.2022.114289_bib45
  article-title: A sensitive biosensing strategy for DNA detection based on graphene oxide and T7 exonuclease assisted target recycling amplification
  publication-title: Can. J. Chem.
  doi: 10.1139/cjc-2013-0285
– volume: 6
  year: 2017
  ident: 10.1016/j.ecoenv.2022.114289_bib5
  article-title: Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging
  publication-title: Elife
  doi: 10.7554/eLife.18459
– volume: 256
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114289_bib36
  article-title: Effect of chronic exposure to nanopolystyrene on nematode Caenorhabditis elegans
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127172
– volume: 12
  start-page: 6633
  year: 2017
  ident: 10.1016/j.ecoenv.2022.114289_bib30
  article-title: The mechanisms of graphene-based materials-induced programmed cell death: a review of apoptosis, autophagy, and programmed necrosis
  publication-title: Int J. Nanomed.
  doi: 10.2147/IJN.S140526
– volume: 41
  start-page: 2028
  year: 2018
  ident: 10.1016/j.ecoenv.2022.114289_bib23
  article-title: Dexamethasone-induced production of reactive oxygen species promotes apoptosis via endoplasmic reticulum stress and autophagy in MC3T3-E1 cells
  publication-title: Int J. Mol. Med
– volume: 13
  start-page: 2907
  year: 2018
  ident: 10.1016/j.ecoenv.2022.114289_bib39
  article-title: Mechanisms of oxidative stress, apoptosis, and autophagy involved in graphene oxide nanomaterial anti-osteosarcoma effect
  publication-title: Int J. Nanomed.
  doi: 10.2147/IJN.S159388
– volume: 10
  start-page: 1469
  year: 2016
  ident: 10.1016/j.ecoenv.2022.114289_bib56
  article-title: p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans
  publication-title: Nanotoxicology
  doi: 10.1080/17435390.2016.1235738
– volume: 223
  start-page: 25
  year: 2013
  ident: 10.1016/j.ecoenv.2022.114289_bib32
  article-title: Potential autophagy enhancers protect against fipronil-induced apoptosis in SH-SY5Y cells
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2013.08.015
– volume: 20
  start-page: 460
  year: 2014
  ident: 10.1016/j.ecoenv.2022.114289_bib33
  article-title: An overview of autophagy: morphology, mechanism, and regulation
  publication-title: Antioxid. Redox Signal
  doi: 10.1089/ars.2013.5371
– volume: 120
  start-page: 1134
  year: 2007
  ident: 10.1016/j.ecoenv.2022.114289_bib40
  article-title: Influence of autophagy genes on ion-channel-dependent neuronal degeneration in Caenorhabditis elegans
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.03401
– volume: 32
  start-page: 465
  year: 2012
  ident: 10.1016/j.ecoenv.2022.114289_bib4
  article-title: Autophagy in toxicology: self-consumption in times of stress and plenty
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.1787
– volume: 10
  start-page: 21141
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114289_bib2
  article-title: Autophagy: a necessary defense against extreme cadmium intoxication in a multigenerational 2D experiment
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-78316-z
– volume: 5
  start-page: 11166
  year: 2013
  ident: 10.1016/j.ecoenv.2022.114289_bib47
  article-title: Crucial role of the biological barrier at the primary targeted organs in controlling the translocation and toxicity of multi-walled carbon nanotubes in the nematode Caenorhabditis elegans.
  publication-title: Nanoscale
  doi: 10.1039/c3nr03917j
– volume: 3
  start-page: 1486
  year: 2014
  ident: 10.1016/j.ecoenv.2022.114289_bib6
  article-title: Graphene oxide triggers toll-like receptors/autophagy responses in vitro and inhibits tumor growth in vivo
  publication-title: Adv. Health Mater.
  doi: 10.1002/adhm.201300591
– volume: 10
  start-page: 142
  year: 2019
  ident: 10.1016/j.ecoenv.2022.114289_bib11
  article-title: Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-1366-y
– volume: 2018
  start-page: 3862070
  year: 2018
  ident: 10.1016/j.ecoenv.2022.114289_bib28
  article-title: ATM induces cell death with autophagy in response to H2O2 Specifically in Caenorhabditis elegans Nondividing Cells
  publication-title: Oxid. Med Cell Longev.
  doi: 10.1155/2018/3862070
– volume: 292
  start-page: 19905
  year: 2017
  ident: 10.1016/j.ecoenv.2022.114289_bib1
  article-title: Autophagy induction under carbon starvation conditions is negatively regulated by carbon catabolite repression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.817510
– volume: 325
  year: 2020
  ident: 10.1016/j.ecoenv.2022.114289_bib20
  article-title: Graphene oxide enhances β-amyloid clearance by inducing autophagy of microglia and neurons
  publication-title: Chem. Biol. Inter.
  doi: 10.1016/j.cbi.2020.109126
– year: 2020
  ident: 10.1016/j.ecoenv.2022.114289_bib43
– volume: 1206
  start-page: 109
  year: 2019
  ident: 10.1016/j.ecoenv.2022.114289_bib49
  article-title: Beclin 1, Bcl-2 and Autophagy
  publication-title: Adv. Exp. Med Biol.
  doi: 10.1007/978-981-15-0602-4_5
SSID ssj0003055
Score 2.4248662
Snippet Graphene oxide (GO) exposure may cause damage to C. elegans. However, the role of autophagy and its interactive effect with oxidative response in GO toxicity...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114289
SubjectTerms Autophagy
Caenorhabditis elegans (C. elegans)
Oxidative response
Protective effect
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUAiU0uZBti9U6NXED8nSHpOQEArtqYHchKSR0i3BLpvdkr30t2dGkkPay156MhhZEtJo5htr5hvGPssoe98GV0U0nxVaqLpyNnSUBQId3XP5lC729Vt_dS2-3MibZ6W-KCYs0wPnhTsRGnoUsrmyWgur67mN2HdoobOijSpBI7R5kzNVdDDxWOXgRVX1summpLkU2YV-XRh-o2_YtkSV21KJ92dGKXH3_2Wb_tHSyfRcvmavCmbkp3mub9hOGPbZi4vEN73ZZy_zrzeeM4oO2B864yUqfLnhhYkBtRovwRt8jNyuiVHA3m64HYCPDwtIDOB8mWNmA7e3doHQkSdGa1SIqU3gK3x4RO58MfBzG4Zx-cM6IGIkThUs0PAdsuvLi-_nV1Ups1B5IZtVFevgnHW9FtITgaBzvZPCa-1UVFA7WzexUeiXqXlUCkC2FpxDmNFLqqbguyO2O4xDOGY8InwBAmUgQWjvHGXeyhpEBzAHDTPWTetsfOEgp1IYd2YKNvtp8u4Y2h2Td2fGqqevfmUOji3tz2gLn9oSg3Z6gXJlilyZbXI1Y2oSAFPASAYZ2NViy_CfJnkxeFbpAsYOYVzfGzwAiij2dPP2f0zxHdujYSm4ppHv2e5quQ4fECKt3Md0Gh4B978PrQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Complementary protective effects of autophagy and oxidative response against graphene oxide toxicity in Caenorhabditis elegans
URI https://dx.doi.org/10.1016/j.ecoenv.2022.114289
https://www.proquest.com/docview/2737119581
https://doaj.org/article/48d648897a884a809afc2ee2d3a42f7a
Volume 248
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lIggiWhXXyxLB13Hnkkyyj3VpWRX7ZKFvIdd1RGbKdFfcl_52z0ky1fpS8GmYkLmQnJxL8p3vEPKOB97a2psigPkswEKVhdG-wSwQ1-A5l43pYl_O2vU5-3TBLw7IasqFQVhl1v1Jp0dtnVsWeTQXl123QFiSaDlGUyU6DRi3M2gBmX5__QfmgYxWCcYoCuw9pc9FjBdEeL7_CVFiXSNpbo3F3v8yT5HF_5aV-kdfRyN0-pg8yt4jPU4_-IQc-P6I3D-JzNP7I_IwbcLRlFv0lFzjas_48HFPMycD6DeaYRx0CFTvkFtAb_ZU944OvzoXucDpmNCznuqN7sCJpJHbGlRj7OPpFi4WfHja9XSlfT-M37RxSJFEsZYFmMBn5Pz05OtqXeSCC4VlvNoWofTGaNNKxi1SCRrTGs6slEYE4UqjyypUAiI0sQxCOMdr7YwBh6PlWFfBNs_JYT_0_gWhARwZh-6Z445Jawzm4PLSsca5pZNuRpppnJXNbORYFOOHmmBn31WaHYWzo9LszEhx89RlYuO4o_8HnMKbvsilHRuGcaOyMCkmXQtqbCm0lEzLcqkDSK-vXaNZHYSeETEJgLolmvCq7o7Pv53kRcGqxaMY3fthd6VgKQgk25PVy_9--yvyAO8QW1Px1-RwO-78G_CQtmYel8Cc3Dv--Hl9No_7DL8BfbcS9Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEQIJIShULBQwEhzD5mHH3kMPpbTa0seplXozdmwvQSip0l1gL_1T_MHOOE6hXCoh9RQpcZzI43kl33xDyDvueVnlziQe3GcCHipNjHYFVoHYAv9zVaFc7PConJ6wz6f8dIX8HmphEFYZbX9v04O1jmfGcTXHZ3U9RliSKDlmUykGDWlEVu675U_I28439z6BkN_n-e7O8fY0ia0FkorxbJ741BmjTSkZr5A0z5jScFZJaYQXNjU6zXwmIBcREy-EtTzX1hhwrSXHDgJVAfPeIXcZmAtsm_Dh4g-uBCm0etykSPD1hnq9ACqDlNI1PyAtzXNk6c2xu_xf_jC0DbjmFv9xEMHr7T4mj2K4Srf6FXlCVlyzRu7tBKrr5Rp52H_1o30x01NygeYlAtK7JY0kEGBQacSN0NZTvUAyAz1bUt1Y2v6qbSAfp10P13VUz3QNUSsNZNpgi8MYR-dwqCBpoHVDt7Vr2u6rNhY5mSg2zwCf-4yc3IoY1slq0zbuOaEeIieL8aDllsnKGCz65allhbUTK-2IFMM6qyrSn2MXju9qwLl9U710FEpH9dIZkeTqrrOe_uOG8R9RhFdjkbw7nGi7mYq7VzFpS7CbE6GlZFqmE-1BXVxuC81yL_SIiGEDqGu6AFPVNzz-7bBfFJgJ_PejG9cuzhXonkB2P5m9-O_Z35D70-PDA3Wwd7T_kjzAKwjsyfgGWZ13C_cKwrO5eR3UgZIvt61_l2yETbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complementary+protective+effects+of+autophagy+and+oxidative+response+against+graphene+oxide+toxicity+in+Caenorhabditis+elegans&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Dou%2C+Tingting&rft.au=Chen%2C+Jingya&rft.au=Wang%2C+Rui&rft.au=Pu%2C+Xiaoxiao&rft.date=2022-12-15&rft.issn=1090-2414&rft.eissn=1090-2414&rft.volume=248&rft.spage=114289&rft_id=info:doi/10.1016%2Fj.ecoenv.2022.114289&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon