Wisdom of artificial crowds feature selection in untargeted metabolomics: An application to the development of a blood-based diagnostic test for thrombotic myocardial infarction

Graphical Abstract. Flow chart diagram of the process used to determine a diagnostic classifier for Acute Myocardial Infarction (AMI) from the abundance of circulating metabolites in plasma. Blood samples were drawn from human subjects presenting with Thrombotic MI, Non-thrombotic MI, and Stable Cor...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical informatics Vol. 81; pp. 53 - 60
Main Authors Trainor, Patrick J., Yampolskiy, Roman V., DeFilippis, Andrew P.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2018
Subjects
Online AccessGet full text
ISSN1532-0464
1532-0480
1532-0480
DOI10.1016/j.jbi.2018.03.007

Cover

Loading…
Abstract Graphical Abstract. Flow chart diagram of the process used to determine a diagnostic classifier for Acute Myocardial Infarction (AMI) from the abundance of circulating metabolites in plasma. Blood samples were drawn from human subjects presenting with Thrombotic MI, Non-thrombotic MI, and Stable Coronary Artery Disease (CAD). Abundances of plasma metabolites were quantified via a non-targeted approach using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography mass spectrometry (GC-MS). Feature selection was conducted by Wisdom of Artificial Crowds with other approaches (the Lasso and Random Forest Variable Importance) employed for comparison. A small fixed number of metabolites was selected, and classifiers were trained and evaluated. [Display omitted] •Heart disease remains a leading cause of global mortality.•Etiology of Myocardial Infarction (MI) cannot be determined by a blood-based diagnostic.•Blood plasma was analyzed from human subjects of varying MI type and stable CAD.•1032 metabolites were detected and quantified by untargeted mass spectrometry.•We compared the “Wisdom of Artificial Crowds” algorithm to traditional approaches for feature selection.•We developed a diagnostic model for discriminating thrombotic MI, an important type. Heart disease remains a leading cause of global mortality. While acute myocardial infarction (colloquially: heart attack), has multiple proximate causes, proximate etiology cannot be determined by a blood-based diagnostic test. We enrolled a suitable patient cohort and conducted a non-targeted quantification of plasma metabolites by mass spectrometry for developing a test that can differentiate between thrombotic MI, non-thrombotic MI, and stable disease. A significant challenge in developing such a diagnostic test is solving the NP-hard problem of feature selection for constructing an optimal statistical classifier. We employed a Wisdom of Artificial Crowds (WoAC) strategy for solving the feature selection problem and evaluated the accuracy and parsimony of downstream classifiers in comparison with traditional feature selection techniques including the Lasso and selection using Random Forest variable importance criteria. Artificial Crowd Wisdom was generated via aggregation of the best solutions from independent and diverse genetic algorithm populations that were initialized with bootstrapping and a random subspaces constraint. Strong evidence was observed that a statistical classifier utilizing WoAC feature selection can discriminate between human subjects presenting with thrombotic MI, non-thrombotic MI, and stable Coronary Artery Disease given abundances of selected plasma metabolites. Utilizing the abundances of twenty selected metabolites, a leave-one-out cross-validation estimated misclassification rate of 2.6% was observed. However, the WoAC feature selection strategy did not perform better than the Lasso over the current study.
AbstractList Heart disease remains a leading cause of global mortality. While acute myocardial infarction (colloquially: heart attack), has multiple proximate causes, proximate etiology cannot be determined by a blood-based diagnostic test. We enrolled a suitable patient cohort and conducted a non-targeted quantification of plasma metabolites by mass spectrometry for developing a test that can differentiate between thrombotic MI, non-thrombotic MI, and stable disease. A significant challenge in developing such a diagnostic test is solving the NP-hard problem of feature selection for constructing an optimal statistical classifier.INTRODUCTIONHeart disease remains a leading cause of global mortality. While acute myocardial infarction (colloquially: heart attack), has multiple proximate causes, proximate etiology cannot be determined by a blood-based diagnostic test. We enrolled a suitable patient cohort and conducted a non-targeted quantification of plasma metabolites by mass spectrometry for developing a test that can differentiate between thrombotic MI, non-thrombotic MI, and stable disease. A significant challenge in developing such a diagnostic test is solving the NP-hard problem of feature selection for constructing an optimal statistical classifier.We employed a Wisdom of Artificial Crowds (WoAC) strategy for solving the feature selection problem and evaluated the accuracy and parsimony of downstream classifiers in comparison with traditional feature selection techniques including the Lasso and selection using Random Forest variable importance criteria.OBJECTIVEWe employed a Wisdom of Artificial Crowds (WoAC) strategy for solving the feature selection problem and evaluated the accuracy and parsimony of downstream classifiers in comparison with traditional feature selection techniques including the Lasso and selection using Random Forest variable importance criteria.Artificial Crowd Wisdom was generated via aggregation of the best solutions from independent and diverse genetic algorithm populations that were initialized with bootstrapping and a random subspaces constraint.MATERIALS AND METHODSArtificial Crowd Wisdom was generated via aggregation of the best solutions from independent and diverse genetic algorithm populations that were initialized with bootstrapping and a random subspaces constraint.Strong evidence was observed that a statistical classifier utilizing WoAC feature selection can discriminate between human subjects presenting with thrombotic MI, non-thrombotic MI, and stable Coronary Artery Disease given abundances of selected plasma metabolites. Utilizing the abundances of twenty selected metabolites, a leave-one-out cross-validation estimated misclassification rate of 2.6% was observed. However, the WoAC feature selection strategy did not perform better than the Lasso over the current study.RESULTS/CONCLUSIONSStrong evidence was observed that a statistical classifier utilizing WoAC feature selection can discriminate between human subjects presenting with thrombotic MI, non-thrombotic MI, and stable Coronary Artery Disease given abundances of selected plasma metabolites. Utilizing the abundances of twenty selected metabolites, a leave-one-out cross-validation estimated misclassification rate of 2.6% was observed. However, the WoAC feature selection strategy did not perform better than the Lasso over the current study.
Heart disease remains a leading cause of global mortality. While acute myocardial infarction (colloquially: heart attack), has multiple proximate causes, proximate etiology cannot be determined by a blood-based diagnostic test. We enrolled a suitable patient cohort and conducted a non-targeted quantification of plasma metabolites by mass spectrometry for developing a test that can differentiate between thrombotic MI, non-thrombotic MI, and stable disease. A significant challenge in developing such a diagnostic test is solving the NP-hard problem of feature selection for constructing an optimal statistical classifier. We employed a Wisdom of Artificial Crowds (WoAC) strategy for solving the feature selection problem and evaluated the accuracy and parsimony of downstream classifiers in comparison with traditional feature selection techniques including the Lasso and selection using Random Forest variable importance criteria. Artificial Crowd Wisdom was generated via aggregation of the best solutions from independent and diverse genetic algorithm populations that were initialized with bootstrapping and a random subspaces constraint. Strong evidence was observed that a statistical classifier utilizing WoAC feature selection can discriminate between human subjects presenting with thrombotic MI, non-thrombotic MI, and stable Coronary Artery Disease given abundances of selected plasma metabolites. Utilizing the abundances of twenty selected metabolites, a leave-one-out cross-validation estimated misclassification rate of 2.6% was observed. However, the WoAC feature selection strategy did not perform better than the Lasso over the current study.
Flow chart diagram of the process used to determine a diagnostic classifier for Acute Myocardial Infarction (AMI) from the abundance of circulating metabolites in plasma. Blood samples were drawn from human subjects presenting with Thrombotic MI, Non-thrombotic MI, and Stable Coronary Artery Disease (CAD). Abundances of plasma metabolites were quantified via a non-targeted approach using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography mass spectrometry (GC-MS). Feature selection was conducted by Wisdom of Artificial Crowds with other approaches (the Lasso and Random Forest Variable Importance) employed for comparison. A small fixed number of metabolites was selected, and classifiers were trained and evaluated.
Graphical Abstract. Flow chart diagram of the process used to determine a diagnostic classifier for Acute Myocardial Infarction (AMI) from the abundance of circulating metabolites in plasma. Blood samples were drawn from human subjects presenting with Thrombotic MI, Non-thrombotic MI, and Stable Coronary Artery Disease (CAD). Abundances of plasma metabolites were quantified via a non-targeted approach using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography mass spectrometry (GC-MS). Feature selection was conducted by Wisdom of Artificial Crowds with other approaches (the Lasso and Random Forest Variable Importance) employed for comparison. A small fixed number of metabolites was selected, and classifiers were trained and evaluated. [Display omitted] •Heart disease remains a leading cause of global mortality.•Etiology of Myocardial Infarction (MI) cannot be determined by a blood-based diagnostic.•Blood plasma was analyzed from human subjects of varying MI type and stable CAD.•1032 metabolites were detected and quantified by untargeted mass spectrometry.•We compared the “Wisdom of Artificial Crowds” algorithm to traditional approaches for feature selection.•We developed a diagnostic model for discriminating thrombotic MI, an important type. Heart disease remains a leading cause of global mortality. While acute myocardial infarction (colloquially: heart attack), has multiple proximate causes, proximate etiology cannot be determined by a blood-based diagnostic test. We enrolled a suitable patient cohort and conducted a non-targeted quantification of plasma metabolites by mass spectrometry for developing a test that can differentiate between thrombotic MI, non-thrombotic MI, and stable disease. A significant challenge in developing such a diagnostic test is solving the NP-hard problem of feature selection for constructing an optimal statistical classifier. We employed a Wisdom of Artificial Crowds (WoAC) strategy for solving the feature selection problem and evaluated the accuracy and parsimony of downstream classifiers in comparison with traditional feature selection techniques including the Lasso and selection using Random Forest variable importance criteria. Artificial Crowd Wisdom was generated via aggregation of the best solutions from independent and diverse genetic algorithm populations that were initialized with bootstrapping and a random subspaces constraint. Strong evidence was observed that a statistical classifier utilizing WoAC feature selection can discriminate between human subjects presenting with thrombotic MI, non-thrombotic MI, and stable Coronary Artery Disease given abundances of selected plasma metabolites. Utilizing the abundances of twenty selected metabolites, a leave-one-out cross-validation estimated misclassification rate of 2.6% was observed. However, the WoAC feature selection strategy did not perform better than the Lasso over the current study.
Author DeFilippis, Andrew P.
Yampolskiy, Roman V.
Trainor, Patrick J.
AuthorAffiliation a Department of Medicine, Division of Cardiovascular Medicine, University of Louisville
c Department of Medicine, Division of Cardiovascular Medicine, University of Louisville
b Department of Computer Science and Engineering, University of Louisville
AuthorAffiliation_xml – name: b Department of Computer Science and Engineering, University of Louisville
– name: a Department of Medicine, Division of Cardiovascular Medicine, University of Louisville
– name: c Department of Medicine, Division of Cardiovascular Medicine, University of Louisville
Author_xml – sequence: 1
  givenname: Patrick J.
  surname: Trainor
  fullname: Trainor, Patrick J.
  email: patrick.trainor@louisville.edu
  organization: Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, United States
– sequence: 2
  givenname: Roman V.
  surname: Yampolskiy
  fullname: Yampolskiy, Roman V.
  organization: Department of Computer Science and Engineering, University of Louisville, United States
– sequence: 3
  givenname: Andrew P.
  surname: DeFilippis
  fullname: DeFilippis, Andrew P.
  organization: Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29578100$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEQXaEi-gE_gAvykUuCvR_eDUhIVQUtUiUuII6W1x6nE3k9wXZS9WfxD3GSEgGHygeP7PfejP3eeXUSKEBVvRZ8LriQ71bz1Yjzmothzps55_2z6kx0TT3j7cBPjrVsT6vzlFacC9F18kV1Wi-6fhCcn1W_fmCyNDFyTMeMDg1qz0yke5uYA503EVgCDyYjBYaBbULWcQkZLJsg65E8TWjSe3YZmF6vPRq9h2Zi-Q6YhS14Wk8Q8r4JGz2RnY06FQGLehkoZTQsQ8rMUSykSNNIu7PpgYyOdjcRBqfjfoaX1XOnfYJXj_tF9f3zp29XN7Pbr9dfri5vZ6btRJ4BjHLhaiGF0H0vaz1A34jR9XVrhahdI8dS9n0peeuEFaMsywmwrnNQ181F9fGgu96ME1hTHhC1V-uIk44PijSqf28C3qklbVW3aAcx8CLw9lEg0s9NeZ6aMBnwXgegTVI736SUXLYF-ubvXscmf3wqAHEAFGdSiuCOEMHVLgtqpUoW9pqKN6pkoXD6_zgG896bMi76J5kfDkwo_7tFiCoZhGDAYixBUJbwCfZvZd7T8A
CitedBy_id crossref_primary_10_1161_CIRCULATIONAHA_119_040631
crossref_primary_10_4239_wjd_v12_i8_1164
crossref_primary_10_3390_fi14030076
crossref_primary_10_1007_s40520_021_01985_x
crossref_primary_10_1186_s12916_018_1240_2
crossref_primary_10_1016_j_microc_2021_106919
crossref_primary_10_1021_acs_analchem_1c03237
crossref_primary_10_1161_CIRCRESAHA_119_315101
crossref_primary_10_1021_acs_jproteome_9b00779
Cites_doi 10.1016/j.jacc.2013.04.011
10.1016/S0169-7439(98)00051-3
10.1258/ebm.2012.012025
10.1007/978-0-387-84858-7
10.1371/journal.pone.0175591
10.1016/j.patrec.2010.03.014
10.1504/IJBIC.2011.043624
10.1016/S0003-2670(97)00065-2
10.1007/BF03345195
10.1111/j.2517-6161.1996.tb02080.x
10.1182/blood-2004-04-1439
10.1111/j.1551-6709.2011.01223.x
10.1016/j.jprot.2017.03.014
10.1007/978-0-387-21706-2
10.1371/journal.pone.0016957
10.1182/blood-2006-06-030619
10.1038/nature11708
10.32614/CRAN.package.cvTools
10.1677/joe.1.05937
10.1016/j.jacc.2012.08.001
10.1007/BF02536511
10.1016/j.jacc.2014.09.017
10.1373/clinchem.2005.051532
10.1038/nmeth.2016
10.1111/j.1467-9868.2005.00503.x
10.1016/j.jacc.2012.08.969
10.1023/A:1010933404324
10.1007/s11239-015-1292-5
10.18637/jss.v033.i01
10.1057/9780230509993
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.jbi.2018.03.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Public Health
EISSN 1532-0480
EndPage 60
ExternalDocumentID PMC5948180
29578100
10_1016_j_jbi_2018_03_007
S1532046418300492
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P20 GM103492
GroupedDBID ---
--K
--M
-~X
.DC
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAWTL
AAXUO
AAYFN
ABBOA
ABBQC
ABFRF
ABJNI
ABLVK
ABMAC
ABMZM
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BAWUL
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DIK
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LCYCR
LG5
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UAP
UHS
UNMZH
XPP
ZGI
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
NPM
7X8
5PM
ID FETCH-LOGICAL-c451t-eeb69f21611a7762a8e731bf724d112f36b7247712f04f1d1b6b6bf1edf5fe223
IEDL.DBID AIKHN
ISSN 1532-0464
1532-0480
IngestDate Thu Aug 21 18:17:51 EDT 2025
Fri Sep 05 11:11:35 EDT 2025
Mon Jul 21 05:58:24 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Tue Jul 01 04:12:03 EDT 2025
Fri Feb 23 02:34:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Myocardial infarction
Metabolomics
Wisdom of artificial crowds
Feature selection
Diagnostic test
Evolutionary computation
Classification
Language English
License This article is made available under the Elsevier license.
Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-eeb69f21611a7762a8e731bf724d112f36b7247712f04f1d1b6b6bf1edf5fe223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Equally contributing authors
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1532046418300492
PMID 29578100
PQID 2018666064
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948180
proquest_miscellaneous_2018666064
pubmed_primary_29578100
crossref_primary_10_1016_j_jbi_2018_03_007
crossref_citationtrail_10_1016_j_jbi_2018_03_007
elsevier_sciencedirect_doi_10_1016_j_jbi_2018_03_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomedical informatics
PublicationTitleAlternate J Biomed Inform
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References A. Alfons, cvTools: Cross-Validation Tools for Regression Models, R package version 0.3.0, 2012.
Amsterdam (b0015) 2014; 64
Breiman (b0130) 2001; 45
A.J.F. Griffiths, et al., Introduction to Genetic Analysis, eleventh ed., W.H. Freeman & Company, A Macmillan Education, New York, NY, 2015 imprint. xxiii, 868 pages.
D. Voet, J.G. Voet, C.W. Pratt, Fundamentals of Biochemistry: Life at the Molecular Level, forth ed., Wiley, Hoboken, NJ, 2013.
DeFilippis (b0040) 2017; 12
Panes (b0205) 2007; 109
Maisel (b0180) 2013; 62
Psychogios (b0025) 2011; 6
Mozaffarian (b0005) 2016; 133
Zou, Hastie (b0090) 2005; 67
Bengio, Grandvalet (b0110) 2004; 5
Leardi, Lupiáñez González (b0170) 1998; 41
Paganelli (b0175) 2003; 26
T. Hastie, R. Tibshirani, J.H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, second ed., Springer, New York, NY, 2009. xxii, 745 p.
G.F. Lawler, Introduction to Stochastic Processes, second ed., Chapman & Hall/CRC, Boca Raton, 2006. xiii, 234 p.
R.C. Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2016.
Aikawa (b0190) 1991; 26
Cohen, Borchers (b0050) 2012; 5
Liaw, Wiener (b0145) 2002; 2
Lequin (b0055) 2005; 51
W.N. Venables, B.D. Ripley, W.N. Venables, Modern Applied Statistics with S, Statistics and Computing, forth ed., Springer, New York, 2002, xi, 495 p.
Trainor (b0045) 2017; 160
Nicholson (b0030) 2012; 491
Nomura (b0115) 1997
Yampolskiy, Barkouky (b0060) 2011; 3
C.M. Bishop, Pattern Recognition and Machine Learning, Information Science and Statistics, Springer, New York, 2006. xx, 738 p.
Marbach (b0070) 2012; 9
DeFilippis (b0035) 2016; 42
J. Surowiecki, The Wisdom of Crowds: Why the Many are Smarter Than the Few and How Collective Wisdom Shapes Business, Economies, Societies, and Nations, first ed., Doubleday, New York, 2004. xxi, 296 p.
Thygesen (b0010) 2012; 60
Yi (b0065) 2012; 36
Friedman, Hastie, Tibshirani (b0135) 2010; 33
Newby (b0020) 2012; 60
Genuer, Poggi, Tuleau-Malot (b0085) 2010; 31
S. Weston, M. Corporation, doParallel: Foreach Parallel Adaptor for the Parallel Package, R Package, 2016.
Drake (b0200) 2012; 237
Brogren (b0210) 2004; 104
Tibshirani (b0080) 1996; 58
Broadhurst (b0165) 1997; 348
A. Agresti, Categorical Data Analysis, Wiley Series in Probability and Statistics, 3rd ed., Wiley, Hoboken, NJ, 2013, xvi, 714 p.
Shimada (b0185) 2005; 184
Paganelli (10.1016/j.jbi.2018.03.007_b0175) 2003; 26
Bengio (10.1016/j.jbi.2018.03.007_b0110) 2004; 5
Leardi (10.1016/j.jbi.2018.03.007_b0170) 1998; 41
Drake (10.1016/j.jbi.2018.03.007_b0200) 2012; 237
10.1016/j.jbi.2018.03.007_b0105
Breiman (10.1016/j.jbi.2018.03.007_b0130) 2001; 45
Psychogios (10.1016/j.jbi.2018.03.007_b0025) 2011; 6
Liaw (10.1016/j.jbi.2018.03.007_b0145) 2002; 2
Shimada (10.1016/j.jbi.2018.03.007_b0185) 2005; 184
10.1016/j.jbi.2018.03.007_b0095
10.1016/j.jbi.2018.03.007_b0150
Brogren (10.1016/j.jbi.2018.03.007_b0210) 2004; 104
DeFilippis (10.1016/j.jbi.2018.03.007_b0035) 2016; 42
Nicholson (10.1016/j.jbi.2018.03.007_b0030) 2012; 491
Yampolskiy (10.1016/j.jbi.2018.03.007_b0060) 2011; 3
10.1016/j.jbi.2018.03.007_b0155
10.1016/j.jbi.2018.03.007_b0075
Aikawa (10.1016/j.jbi.2018.03.007_b0190) 1991; 26
Amsterdam (10.1016/j.jbi.2018.03.007_b0015) 2014; 64
DeFilippis (10.1016/j.jbi.2018.03.007_b0040) 2017; 12
10.1016/j.jbi.2018.03.007_b0195
Broadhurst (10.1016/j.jbi.2018.03.007_b0165) 1997; 348
Maisel (10.1016/j.jbi.2018.03.007_b0180) 2013; 62
Trainor (10.1016/j.jbi.2018.03.007_b0045) 2017; 160
Panes (10.1016/j.jbi.2018.03.007_b0205) 2007; 109
Newby (10.1016/j.jbi.2018.03.007_b0020) 2012; 60
Cohen (10.1016/j.jbi.2018.03.007_b0050) 2012; 5
Friedman (10.1016/j.jbi.2018.03.007_b0135) 2010; 33
10.1016/j.jbi.2018.03.007_b0160
Mozaffarian (10.1016/j.jbi.2018.03.007_b0005) 2016; 133
Yi (10.1016/j.jbi.2018.03.007_b0065) 2012; 36
Marbach (10.1016/j.jbi.2018.03.007_b0070) 2012; 9
Tibshirani (10.1016/j.jbi.2018.03.007_b0080) 1996; 58
Nomura (10.1016/j.jbi.2018.03.007_b0115) 1997
Lequin (10.1016/j.jbi.2018.03.007_b0055) 2005; 51
10.1016/j.jbi.2018.03.007_b0125
Zou (10.1016/j.jbi.2018.03.007_b0090) 2005; 67
Genuer (10.1016/j.jbi.2018.03.007_b0085) 2010; 31
10.1016/j.jbi.2018.03.007_b0100
Thygesen (10.1016/j.jbi.2018.03.007_b0010) 2012; 60
10.1016/j.jbi.2018.03.007_b0120
10.1016/j.jbi.2018.03.007_b0140
References_xml – volume: 60
  start-page: 1581
  year: 2012
  end-page: 1598
  ident: b0010
  article-title: Third universal definition of myocardial infarction
  publication-title: J. Am. Coll. Cardiol.
– volume: 36
  start-page: 452
  year: 2012
  end-page: 470
  ident: b0065
  article-title: The wisdom of the crowd in combinatorial problems
  publication-title: Cogn. Sci.
– reference: A. Alfons, cvTools: Cross-Validation Tools for Regression Models, R package version 0.3.0, 2012.
– reference: D. Voet, J.G. Voet, C.W. Pratt, Fundamentals of Biochemistry: Life at the Molecular Level, forth ed., Wiley, Hoboken, NJ, 2013.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: b0090
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. Roy. Statist. Soc.: Ser. B (Statist. Methodol.)
– reference: W.N. Venables, B.D. Ripley, W.N. Venables, Modern Applied Statistics with S, Statistics and Computing, forth ed., Springer, New York, 2002, xi, 495 p.
– volume: 160
  start-page: 38
  year: 2017
  end-page: 46
  ident: b0045
  article-title: Systems characterization of differential plasma metabolome perturbations following thrombotic and non-thrombotic myocardial infarction
  publication-title: J. Prot.
– volume: 3
  start-page: 358
  year: 2011
  ident: b0060
  article-title: Wisdom of artificial crowds algorithm for solving NP-hard problems
  publication-title: Int. J. Bio-Insp. Comput.
– reference: A. Agresti, Categorical Data Analysis, Wiley Series in Probability and Statistics, 3rd ed., Wiley, Hoboken, NJ, 2013, xvi, 714 p.
– reference: T. Hastie, R. Tibshirani, J.H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, second ed., Springer, New York, NY, 2009. xxii, 745 p.
– reference: J. Surowiecki, The Wisdom of Crowds: Why the Many are Smarter Than the Few and How Collective Wisdom Shapes Business, Economies, Societies, and Nations, first ed., Doubleday, New York, 2004. xxi, 296 p.
– reference: R.C. Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2016.
– volume: 42
  start-page: 61
  year: 2016
  end-page: 76
  ident: b0035
  article-title: Circulating levels of plasminogen and oxidized phospholipids bound to plasminogen distinguish between atherothrombotic and non-atherothrombotic myocardial infarction
  publication-title: J. Thromb. Thrombol.
– volume: 237
  start-page: 1369
  year: 2012
  end-page: 1378
  ident: b0200
  article-title: Amino acids as metabolic substrates during cardiac ischemia
  publication-title: Exp. Biol. Med. (Maywood)
– volume: 109
  start-page: 5242
  year: 2007
  end-page: 5250
  ident: b0205
  article-title: Human platelets synthesize and express functional tissue factor
  publication-title: Blood
– volume: 348
  start-page: 71
  year: 1997
  end-page: 86
  ident: b0165
  article-title: Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry
  publication-title: Anal. Chim. Acta
– volume: 5
  start-page: 378
  year: 2012
  ident: b0050
  article-title: Multiple reaction monitoring (MRM): principles and application to coronary artery disease. Circulation: cardiovascular
  publication-title: Genetics
– volume: 2
  year: 2002
  ident: b0145
  article-title: Classification and Regression by randomForest
  publication-title: R News
– volume: 12
  start-page: e0175591
  year: 2017
  ident: b0040
  article-title: Identification of a plasma metabolomic signature of thrombotic myocardial infarction that is distinct from non-thrombotic myocardial infarction and stable coronary artery disease
  publication-title: Plos One
– volume: 9
  start-page: 796
  year: 2012
  end-page: 804
  ident: b0070
  article-title: Wisdom of crowds for robust gene network inference
  publication-title: Nat. Meth.
– volume: 26
  start-page: 1108
  year: 1991
  end-page: 1111
  ident: b0190
  article-title: Effect of platelet-activating factor on cortisol and corticosterone secretion by perfused dog adrenal
  publication-title: Lipids
– volume: 5
  start-page: 1089
  year: 2004
  end-page: 1105
  ident: b0110
  article-title: No unbiased estimator of the variance of k-fold cross-validation
  publication-title: J. Mach. Learn. Res.
– reference: A.J.F. Griffiths, et al., Introduction to Genetic Analysis, eleventh ed., W.H. Freeman & Company, A Macmillan Education, New York, NY, 2015 imprint. xxiii, 868 pages.
– volume: 51
  start-page: 2415
  year: 2005
  end-page: 2418
  ident: b0055
  article-title: Enzyme Immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA)
  publication-title: Clin. Chem.
– reference: C.M. Bishop, Pattern Recognition and Machine Learning, Information Science and Statistics, Springer, New York, 2006. xx, 738 p.
– volume: 26
  start-page: 407
  year: 2003
  end-page: 413
  ident: b0175
  article-title: Hypothalamo-pituitary-adrenal axis in acute myocardial infarction treated by percutaneous transluminal coronary angioplasty: effect of time of presentation
  publication-title: J. Endocrinol. Invest.
– volume: 41
  start-page: 195
  year: 1998
  end-page: 207
  ident: b0170
  article-title: Genetic algorithms applied to feature selection in PLS regression: how and when to use them
  publication-title: Chemomet. Intell. Lab. Syst.
– volume: 491
  start-page: 384
  year: 2012
  end-page: 392
  ident: b0030
  article-title: Metabolic phenotyping in clinical and surgical environments
  publication-title: Nature
– volume: 58
  year: 1996
  ident: b0080
  article-title: Regression Shrinkage and Selection via the Lasso
  publication-title: J. Roy. Statist. Soc. Ser. B
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0130
  article-title: Random forests
  publication-title: Mach. Learn.
– reference: S. Weston, M. Corporation, doParallel: Foreach Parallel Adaptor for the Parallel Package, R Package, 2016.
– volume: 64
  start-page: e139
  year: 2014
  end-page: e228
  ident: b0015
  article-title: 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association task force on practice guidelines
  publication-title: J. Am. Coll. Cardiol.
– reference: G.F. Lawler, Introduction to Stochastic Processes, second ed., Chapman & Hall/CRC, Boca Raton, 2006. xiii, 234 p.
– volume: 62
  start-page: 150
  year: 2013
  end-page: 160
  ident: b0180
  article-title: Copeptin helps in the early detection of patients with acute myocardial infarction: primary results of the CHOPIN trial (Copeptin Helps in the early detection Of Patients with acute myocardial INfarction)
  publication-title: J. Am. Coll. Cardiol.
– volume: 104
  start-page: 3943
  year: 2004
  end-page: 3948
  ident: b0210
  article-title: Platelets synthesize large amounts of active plasminogen activator inhibitor 1
  publication-title: Blood
– volume: 133
  start-page: e38
  year: 2016
  end-page: e360
  ident: b0005
  article-title: Heart disease and stroke statistics-2016 update: a report from the American Heart Association
  publication-title: Circulation
– volume: 33
  year: 2010
  ident: b0135
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Statist. Softw.
– volume: 31
  start-page: 2225
  year: 2010
  end-page: 2236
  ident: b0085
  article-title: Variable selection using random forests
  publication-title: Patt. Recogn. Lett.
– start-page: 111
  year: 1997
  end-page: 114
  ident: b0115
  article-title: An analysis on linear crossover for real number chromosomes in an infinite population size
  publication-title: IEEE Int. Conf. Evol. Comput.
– volume: 184
  start-page: 381
  year: 2005
  end-page: 391
  ident: b0185
  article-title: Platelet-activating factor acts on cortisol secretion by perfused guinea-pig adrenals via calcium-/phospholipid-dependent mechanisms
  publication-title: J. Endocrinol.
– volume: 60
  start-page: 2427
  year: 2012
  end-page: 2463
  ident: b0020
  article-title: ACCF 2012 expert consensus document on practical clinical considerations in the interpretation of troponin elevations
  publication-title: J. Am. Coll. Cardiol.
– volume: 6
  start-page: e16957
  year: 2011
  ident: b0025
  article-title: The human serum metabolome
  publication-title: PLoS One
– volume: 5
  start-page: 378
  issue: 3
  year: 2012
  ident: 10.1016/j.jbi.2018.03.007_b0050
  article-title: Multiple reaction monitoring (MRM): principles and application to coronary artery disease. Circulation: cardiovascular
  publication-title: Genetics
– ident: 10.1016/j.jbi.2018.03.007_b0095
– volume: 62
  start-page: 150
  issue: 2
  year: 2013
  ident: 10.1016/j.jbi.2018.03.007_b0180
  article-title: Copeptin helps in the early detection of patients with acute myocardial infarction: primary results of the CHOPIN trial (Copeptin Helps in the early detection Of Patients with acute myocardial INfarction)
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2013.04.011
– volume: 41
  start-page: 195
  issue: 2
  year: 1998
  ident: 10.1016/j.jbi.2018.03.007_b0170
  article-title: Genetic algorithms applied to feature selection in PLS regression: how and when to use them
  publication-title: Chemomet. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(98)00051-3
– volume: 5
  start-page: 1089
  issue: Sep
  year: 2004
  ident: 10.1016/j.jbi.2018.03.007_b0110
  article-title: No unbiased estimator of the variance of k-fold cross-validation
  publication-title: J. Mach. Learn. Res.
– volume: 237
  start-page: 1369
  issue: 12
  year: 2012
  ident: 10.1016/j.jbi.2018.03.007_b0200
  article-title: Amino acids as metabolic substrates during cardiac ischemia
  publication-title: Exp. Biol. Med. (Maywood)
  doi: 10.1258/ebm.2012.012025
– ident: 10.1016/j.jbi.2018.03.007_b0075
  doi: 10.1007/978-0-387-84858-7
– volume: 12
  start-page: e0175591
  issue: 4
  year: 2017
  ident: 10.1016/j.jbi.2018.03.007_b0040
  article-title: Identification of a plasma metabolomic signature of thrombotic myocardial infarction that is distinct from non-thrombotic myocardial infarction and stable coronary artery disease
  publication-title: Plos One
  doi: 10.1371/journal.pone.0175591
– volume: 31
  start-page: 2225
  issue: 14
  year: 2010
  ident: 10.1016/j.jbi.2018.03.007_b0085
  article-title: Variable selection using random forests
  publication-title: Patt. Recogn. Lett.
  doi: 10.1016/j.patrec.2010.03.014
– ident: 10.1016/j.jbi.2018.03.007_b0140
– volume: 3
  start-page: 358
  issue: 6
  year: 2011
  ident: 10.1016/j.jbi.2018.03.007_b0060
  article-title: Wisdom of artificial crowds algorithm for solving NP-hard problems
  publication-title: Int. J. Bio-Insp. Comput.
  doi: 10.1504/IJBIC.2011.043624
– ident: 10.1016/j.jbi.2018.03.007_b0100
– volume: 348
  start-page: 71
  issue: 1–3
  year: 1997
  ident: 10.1016/j.jbi.2018.03.007_b0165
  article-title: Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(97)00065-2
– ident: 10.1016/j.jbi.2018.03.007_b0125
– volume: 26
  start-page: 407
  issue: 5
  year: 2003
  ident: 10.1016/j.jbi.2018.03.007_b0175
  article-title: Hypothalamo-pituitary-adrenal axis in acute myocardial infarction treated by percutaneous transluminal coronary angioplasty: effect of time of presentation
  publication-title: J. Endocrinol. Invest.
  doi: 10.1007/BF03345195
– volume: 58
  issue: 1
  year: 1996
  ident: 10.1016/j.jbi.2018.03.007_b0080
  article-title: Regression Shrinkage and Selection via the Lasso
  publication-title: J. Roy. Statist. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 104
  start-page: 3943
  issue: 13
  year: 2004
  ident: 10.1016/j.jbi.2018.03.007_b0210
  article-title: Platelets synthesize large amounts of active plasminogen activator inhibitor 1
  publication-title: Blood
  doi: 10.1182/blood-2004-04-1439
– volume: 36
  start-page: 452
  issue: 3
  year: 2012
  ident: 10.1016/j.jbi.2018.03.007_b0065
  article-title: The wisdom of the crowd in combinatorial problems
  publication-title: Cogn. Sci.
  doi: 10.1111/j.1551-6709.2011.01223.x
– volume: 160
  start-page: 38
  year: 2017
  ident: 10.1016/j.jbi.2018.03.007_b0045
  article-title: Systems characterization of differential plasma metabolome perturbations following thrombotic and non-thrombotic myocardial infarction
  publication-title: J. Prot.
  doi: 10.1016/j.jprot.2017.03.014
– ident: 10.1016/j.jbi.2018.03.007_b0150
  doi: 10.1007/978-0-387-21706-2
– volume: 6
  start-page: e16957
  issue: 2
  year: 2011
  ident: 10.1016/j.jbi.2018.03.007_b0025
  article-title: The human serum metabolome
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016957
– ident: 10.1016/j.jbi.2018.03.007_b0105
– volume: 109
  start-page: 5242
  issue: 12
  year: 2007
  ident: 10.1016/j.jbi.2018.03.007_b0205
  article-title: Human platelets synthesize and express functional tissue factor
  publication-title: Blood
  doi: 10.1182/blood-2006-06-030619
– start-page: 111
  year: 1997
  ident: 10.1016/j.jbi.2018.03.007_b0115
  article-title: An analysis on linear crossover for real number chromosomes in an infinite population size
  publication-title: IEEE Int. Conf. Evol. Comput.
– volume: 491
  start-page: 384
  issue: 7424
  year: 2012
  ident: 10.1016/j.jbi.2018.03.007_b0030
  article-title: Metabolic phenotyping in clinical and surgical environments
  publication-title: Nature
  doi: 10.1038/nature11708
– volume: 133
  start-page: e38
  issue: 4
  year: 2016
  ident: 10.1016/j.jbi.2018.03.007_b0005
  article-title: Heart disease and stroke statistics-2016 update: a report from the American Heart Association
  publication-title: Circulation
– ident: 10.1016/j.jbi.2018.03.007_b0195
– ident: 10.1016/j.jbi.2018.03.007_b0155
  doi: 10.32614/CRAN.package.cvTools
– volume: 184
  start-page: 381
  issue: 2
  year: 2005
  ident: 10.1016/j.jbi.2018.03.007_b0185
  article-title: Platelet-activating factor acts on cortisol secretion by perfused guinea-pig adrenals via calcium-/phospholipid-dependent mechanisms
  publication-title: J. Endocrinol.
  doi: 10.1677/joe.1.05937
– ident: 10.1016/j.jbi.2018.03.007_b0120
– volume: 60
  start-page: 1581
  issue: 16
  year: 2012
  ident: 10.1016/j.jbi.2018.03.007_b0010
  article-title: Third universal definition of myocardial infarction
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2012.08.001
– volume: 26
  start-page: 1108
  issue: 12
  year: 1991
  ident: 10.1016/j.jbi.2018.03.007_b0190
  article-title: Effect of platelet-activating factor on cortisol and corticosterone secretion by perfused dog adrenal
  publication-title: Lipids
  doi: 10.1007/BF02536511
– volume: 64
  start-page: e139
  issue: 24
  year: 2014
  ident: 10.1016/j.jbi.2018.03.007_b0015
  article-title: 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association task force on practice guidelines
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2014.09.017
– volume: 51
  start-page: 2415
  issue: 12
  year: 2005
  ident: 10.1016/j.jbi.2018.03.007_b0055
  article-title: Enzyme Immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA)
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2005.051532
– volume: 9
  start-page: 796
  issue: 8
  year: 2012
  ident: 10.1016/j.jbi.2018.03.007_b0070
  article-title: Wisdom of crowds for robust gene network inference
  publication-title: Nat. Meth.
  doi: 10.1038/nmeth.2016
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 10.1016/j.jbi.2018.03.007_b0090
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. Roy. Statist. Soc.: Ser. B (Statist. Methodol.)
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: 10.1016/j.jbi.2018.03.007_b0160
– volume: 60
  start-page: 2427
  issue: 23
  year: 2012
  ident: 10.1016/j.jbi.2018.03.007_b0020
  article-title: ACCF 2012 expert consensus document on practical clinical considerations in the interpretation of troponin elevations
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2012.08.969
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.jbi.2018.03.007_b0130
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 42
  start-page: 61
  issue: 1
  year: 2016
  ident: 10.1016/j.jbi.2018.03.007_b0035
  article-title: Circulating levels of plasminogen and oxidized phospholipids bound to plasminogen distinguish between atherothrombotic and non-atherothrombotic myocardial infarction
  publication-title: J. Thromb. Thrombol.
  doi: 10.1007/s11239-015-1292-5
– volume: 33
  issue: 1
  year: 2010
  ident: 10.1016/j.jbi.2018.03.007_b0135
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Statist. Softw.
  doi: 10.18637/jss.v033.i01
– volume: 2
  issue: 3
  year: 2002
  ident: 10.1016/j.jbi.2018.03.007_b0145
  article-title: Classification and Regression by randomForest
  publication-title: R News
  doi: 10.1057/9780230509993
SSID ssj0011556
Score 2.2576604
Snippet Graphical Abstract. Flow chart diagram of the process used to determine a diagnostic classifier for Acute Myocardial Infarction (AMI) from the abundance of...
Heart disease remains a leading cause of global mortality. While acute myocardial infarction (colloquially: heart attack), has multiple proximate causes,...
Flow chart diagram of the process used to determine a diagnostic classifier for Acute Myocardial Infarction (AMI) from the abundance of circulating metabolites...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 53
SubjectTerms Classification
Diagnostic test
Evolutionary computation
Feature selection
Metabolomics
Myocardial infarction
Wisdom of artificial crowds
Title Wisdom of artificial crowds feature selection in untargeted metabolomics: An application to the development of a blood-based diagnostic test for thrombotic myocardial infarction
URI https://dx.doi.org/10.1016/j.jbi.2018.03.007
https://www.ncbi.nlm.nih.gov/pubmed/29578100
https://www.proquest.com/docview/2018666064
https://pubmed.ncbi.nlm.nih.gov/PMC5948180
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tXQmBEILyKo_VIHFCCo0dx0m5lRWrLoi9wIrerCS2RVZtsiKpEBf-E_-QcZyUFsQeUC9JaifTznjma-fzDMCLJOJGa84CZhMRCC2KIGNZEhSxtDPDtNZZx7Y4k4tz8W4ZLw_geNgL42iVve_3Pr3z1v2Vaf9tTi_LcvqRuZ4GQgoySodzyQ8f8mgm4xEczk_fL862yQQKmdKXTeWOySiG5GZH87rIS0fwSn2p0-Rf4elv-Pkni3InLJ3cgds9nsS5F_kuHJhqDDd3qgyO4fqHPn8-hlv-Xzr0m4_uwc_PZaPrNdYW3Yf21SSQRPumG7SmK_qJTdcqh_SHZYWbynPHjca1acmCVm5bc_Ma5xXuJMOxrZGgJerfnKTuIeiJ8i52atSe5keSIwHeFgk_o2vbsM5rd239neKss98VPdjSgnQ3vg_nJ28_HS-CvolDUIiYtYExuZxZTsCSTIA8b5aaJGK5TbjQhPVsJHM6TBI6DIVlmuWSXpYZbWNrCLw8gFFVV-YRoNQUWbPMcrofTQ5TkxYyzGXBs4JMSk4gHHSnir7CuWu0sVIDle1CkbqVU7cKI0XqnsDL7ZRLX97jqsFiMAi1Z6OKws9V054PxqNo7bqETFaZetN0g-jnI6HCCTz0xrSVgs_Il7IwnECyZ2bbAa4u-P47Vfmlqw_eVeBJw8f_J-4TuOHOPKnzKYzarxvzjIBXmx_BtVc_2FG_vOjsdPnmF1m5M0Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6ahsRFCEG5rFwPEk9IUePUtVPexsTUwbYXNtE3K4ltLVObTCTVxM_iH3JsJ6UFsQfUlyixk9Oe43O-1J8_A7yT48RonbCIWckjrnkRZSyTUTERdmqY1jrzbItTMTvnn-eT-Q4c9GthHK2yy_0hp_ts3Z0Zdb_m6KosR1-Z29OAC05B6XAu5eFbhAaEE9A_mn9cTyVQwRRBNDVxPEbeT216ktdlXjp6VxqETuW_itPf4PNPDuVGUTp8CA86NIn7weBHsGOqAdzb0BgcwO2TbvZ8APfDf3QYlh49hp_fykbXS6wtuq8ctCSQTLvWDVrjJT-x8RvlkPewrHBVBea40bg0LcXPwi1qbj7gfoUbU-HY1kjAEvVvRpJ_CAaavKucGnUg-ZHlSHC3RULP6DZtWOa1O7f8QVXWRe-CHmxpOLobP4Hzw09nB7Oo28IhKviEtZExuZjahGAlBQDl3Sw1csxyKxOuCenZscjpUEo6jLllmuWCPpYZbSfWEHR5CrtVXZk9QKGprmaZTeh-1DlOTVqIOBdFkhUUUGIIce87VXT65m6bjYXqiWyXitytnLtVPFbk7iG8X3e5CuIeNzXmfUCorQhVVHxu6va2Dx5FI9dNx2SVqVeNb0Qvj4QJh_AsBNPaimRKmZTF8RDkVpitGzhV8O0rVXnh1cG9_k4aP_8_c9_AndnZybE6Pjr98gLuuiuB3vkSdtvvK_OKIFibv_ZD7BfoqDMa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wisdom+of+artificial+crowds+feature+selection+in+untargeted+metabolomics%3A+An+application+to+the+development+of+a+blood-based+diagnostic+test+for+thrombotic+myocardial+infarction&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Trainor%2C+Patrick+J.&rft.au=Yampolskiy%2C+Roman+V.&rft.au=DeFilippis%2C+Andrew+P.&rft.date=2018-05-01&rft.issn=1532-0464&rft.volume=81&rft.spage=53&rft.epage=60&rft_id=info:doi/10.1016%2Fj.jbi.2018.03.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbi_2018_03_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon