On the approximation of functions by tanh neural networks

We derive bounds on the error, in high-order Sobolev norms, incurred in the approximation of Sobolev-regular as well as analytic functions by neural networks with the hyperbolic tangent activation function. These bounds provide explicit estimates on the approximation error with respect to the size o...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 143; pp. 732 - 750
Main Authors De Ryck, Tim, Lanthaler, Samuel, Mishra, Siddhartha
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2021
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2021.08.015

Cover

Abstract We derive bounds on the error, in high-order Sobolev norms, incurred in the approximation of Sobolev-regular as well as analytic functions by neural networks with the hyperbolic tangent activation function. These bounds provide explicit estimates on the approximation error with respect to the size of the neural networks. We show that tanh neural networks with only two hidden layers suffice to approximate functions at comparable or better rates than much deeper ReLU neural networks. •Explicit bounds for function approximation in Sobolev norms by tanh neural networks.•Tanh networks with 2 hidden layers are at least as expressive as deeper ReLU networks.•Improved convergence rate for neural network approximation of analytic functions.
AbstractList We derive bounds on the error, in high-order Sobolev norms, incurred in the approximation of Sobolev-regular as well as analytic functions by neural networks with the hyperbolic tangent activation function. These bounds provide explicit estimates on the approximation error with respect to the size of the neural networks. We show that tanh neural networks with only two hidden layers suffice to approximate functions at comparable or better rates than much deeper ReLU neural networks. •Explicit bounds for function approximation in Sobolev norms by tanh neural networks.•Tanh networks with 2 hidden layers are at least as expressive as deeper ReLU networks.•Improved convergence rate for neural network approximation of analytic functions.
We derive bounds on the error, in high-order Sobolev norms, incurred in the approximation of Sobolev-regular as well as analytic functions by neural networks with the hyperbolic tangent activation function. These bounds provide explicit estimates on the approximation error with respect to the size of the neural networks. We show that tanh neural networks with only two hidden layers suffice to approximate functions at comparable or better rates than much deeper ReLU neural networks.We derive bounds on the error, in high-order Sobolev norms, incurred in the approximation of Sobolev-regular as well as analytic functions by neural networks with the hyperbolic tangent activation function. These bounds provide explicit estimates on the approximation error with respect to the size of the neural networks. We show that tanh neural networks with only two hidden layers suffice to approximate functions at comparable or better rates than much deeper ReLU neural networks.
Author Lanthaler, Samuel
Mishra, Siddhartha
De Ryck, Tim
Author_xml – sequence: 1
  givenname: Tim
  orcidid: 0000-0001-6860-1345
  surname: De Ryck
  fullname: De Ryck, Tim
  email: tim.deryck@sam.math.ethz.com
– sequence: 2
  givenname: Samuel
  surname: Lanthaler
  fullname: Lanthaler, Samuel
– sequence: 3
  givenname: Siddhartha
  surname: Mishra
  fullname: Mishra, Siddhartha
BookMark eNqFkD9PwzAQxS1UJNrCN2DIyJLgcxLHYUBCFf8kpC4wW45zUV1Sp9gO0G-PS5kYYLo76b13d78ZmdjBIiHnQDOgwC_XmcXRYsgYZZBRkVEoj8gURFWnrBJsQqZU1HnKqaAnZOb9mlLKRZFPSb20SVhhorZbN3yajQpmsMnQJd1o9b73SbNLgrKrJO5wqo8lfAzu1Z-S4071Hs9-6py83N0-Lx7Sp-X94-LmKdVFCSFFpSjnukFVKl21FJquEKhL1pVAK9EwXXUtaBRVHJuqKyrRcg3QMA51ket8Ti4OufHAtxF9kBvjNfa9sjiMXrKS1xxK4BClVwepdoP3DjupTfj-KDhleglU7nnJtTzwkntekgoZeUVz8cu8dZGH2_1nuz7YMDJ4N-ik1watxtY41EG2g_k74AuEPomm
CitedBy_id crossref_primary_10_1016_j_cma_2022_115169
crossref_primary_10_1137_22M1522504
crossref_primary_10_1016_j_matcom_2024_10_039
crossref_primary_10_1016_j_engappai_2023_107256
crossref_primary_10_1093_imanum_drac085
crossref_primary_10_1007_s11868_025_00685_8
crossref_primary_10_1016_j_procs_2023_09_023
crossref_primary_10_1007_s10444_022_09985_9
crossref_primary_10_1142_S0219749924500023
crossref_primary_10_1186_s13059_024_03166_1
crossref_primary_10_1093_icesjms_fsad163
crossref_primary_10_1214_24_AOS2430
crossref_primary_10_1016_j_neunet_2023_01_035
crossref_primary_10_1016_j_rinam_2024_100532
crossref_primary_10_1016_j_engstruct_2023_117290
crossref_primary_10_1016_j_oceaneng_2024_118826
crossref_primary_10_1007_s42985_023_00254_y
crossref_primary_10_1016_j_jcp_2023_112495
crossref_primary_10_1007_s10915_022_01939_z
crossref_primary_10_1016_j_cma_2024_117211
crossref_primary_10_1137_22M152373X
crossref_primary_10_1090_mcom_3960
crossref_primary_10_3390_math10244730
crossref_primary_10_1109_TAI_2024_3416236
crossref_primary_10_1126_sciadv_adl2643
crossref_primary_10_1016_j_jcp_2023_112527
crossref_primary_10_1016_j_cpc_2024_109275
crossref_primary_10_3390_wevj14080227
crossref_primary_10_3390_math12030481
crossref_primary_10_1016_j_jpowsour_2025_236607
crossref_primary_10_1016_j_enganabound_2024_106054
crossref_primary_10_1016_j_spasta_2024_100850
crossref_primary_10_1515_jiip_2022_0015
crossref_primary_10_1016_j_engappai_2023_106862
crossref_primary_10_1016_j_matcom_2024_01_019
crossref_primary_10_1016_j_camwa_2024_06_008
crossref_primary_10_1063_5_0227581
crossref_primary_10_3390_smartcities7060132
crossref_primary_10_1016_j_jcp_2024_113709
crossref_primary_10_1016_j_jcp_2025_113906
crossref_primary_10_1093_mnras_stad1810
crossref_primary_10_3390_w15173026
crossref_primary_10_1109_ACCESS_2022_3148401
crossref_primary_10_1109_ACCESS_2022_3220765
crossref_primary_10_5802_smai_jcm_116
crossref_primary_10_1109_JSEN_2023_3335920
crossref_primary_10_1016_j_jcp_2024_113188
crossref_primary_10_22331_q_2024_12_10_1555
crossref_primary_10_1016_j_mineng_2022_107886
crossref_primary_10_1016_j_trc_2023_104318
crossref_primary_10_1007_s13369_025_10043_x
crossref_primary_10_1016_j_cma_2023_116160
crossref_primary_10_1109_ACCESS_2024_3467375
crossref_primary_10_1090_mcom_3934
crossref_primary_10_3390_app14125057
crossref_primary_10_4236_jcc_2021_912001
crossref_primary_10_1109_ACCESS_2022_3153056
crossref_primary_10_1039_D2AN00456A
crossref_primary_10_1155_2022_7873226
crossref_primary_10_1002_nme_7377
crossref_primary_10_1016_j_neunet_2024_106761
crossref_primary_10_1007_s10915_022_01950_4
crossref_primary_10_1016_j_jcp_2024_113579
crossref_primary_10_1016_j_neucom_2023_126692
crossref_primary_10_1016_j_jcp_2024_113217
crossref_primary_10_2139_ssrn_4615215
crossref_primary_10_26634_jaim_2_1_20225
Cites_doi 10.1016/S0925-2312(99)00111-3
10.1006/jath.1996.0031
10.1109/72.991414
10.1109/18.256500
10.1137/18M1189336
10.1038/nature14539
10.1080/07468342.2009.11922375
10.1016/j.jcp.2020.109339
10.1073/pnas.1718942115
10.1016/0893-6080(89)90020-8
10.1017/S0962492900002919
10.1162/neco.1997.9.8.1735
10.1016/j.neunet.2017.07.002
10.1090/S0002-9947-96-01501-2
10.1016/j.neunet.2020.05.019
10.1016/j.neucom.2018.07.075
10.3390/e21070627
10.1109/TNNLS.2013.2293637
10.1137/0720068
10.1137/060671139
10.1016/j.neunet.2013.03.015
10.1007/s10955-017-1836-5
10.1090/S0273-0979-01-00923-5
10.1007/s11425-018-9387-x
10.1007/BF00993164
10.1016/j.neunet.2013.07.009
10.1016/j.jcp.2018.10.045
10.1016/j.neunet.2017.12.007
10.1109/TIT.2011.2169531
10.1016/j.cma.2020.113575
10.1162/neco.1996.8.1.164
10.1007/s40304-017-0117-6
10.1109/TIT.2008.2006383
10.1137/080734339
10.1007/s11633-017-1054-2
10.1016/j.jcp.2017.11.039
10.3115/v1/D14-1179
10.1016/j.neunet.2020.11.010
10.1016/j.neunet.2019.12.013
10.1142/S0219530519410136
10.1088/1361-6420/abaf64
10.1007/BF02551274
10.1142/S0219530518500203
10.1142/S0219530519410021
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
DOI 10.1016/j.neunet.2021.08.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 750
ExternalDocumentID 10_1016_j_neunet_2021_08_015
S0893608021003208
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6I.
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
EFKBS
ID FETCH-LOGICAL-c451t-eaa066cbea5ac7d01bf48ec52f51078b2c7fd1ce87107b7f478d6c11b261943c3
IEDL.DBID AIKHN
ISSN 0893-6080
1879-2782
IngestDate Fri Sep 05 13:28:09 EDT 2025
Tue Jul 01 01:24:39 EDT 2025
Thu Apr 24 22:57:25 EDT 2025
Fri Feb 23 02:41:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Tanh
Deep learning
Function approximation
Neural networks
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-eaa066cbea5ac7d01bf48ec52f51078b2c7fd1ce87107b7f478d6c11b261943c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6860-1345
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0893608021003208
PQID 2569615161
PQPubID 23479
PageCount 19
ParticipantIDs proquest_miscellaneous_2569615161
crossref_citationtrail_10_1016_j_neunet_2021_08_015
crossref_primary_10_1016_j_neunet_2021_08_015
elsevier_sciencedirect_doi_10_1016_j_neunet_2021_08_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Neural networks
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lu, Su, Karniadakis (b48) 2018
Lye, Mishra, Ray (b49) 2020; 410
Makovoz (b51) 1996; 85
Durán (b18) 1983; 20
Opschoor, Petersen, Schwab (b62) 2020; 18
Costarelli, Spigler (b12) 2013; 44
Herrmann, Opschoor, Schwab (b26) 2021
Lavretsky (b41) 2002; 13
Mhaskar (b52) 1996; 8
Montanelli, Du (b58) 2019; 1
Gühring, Raslan (b22) 2021; 134
Lin, Tegmark, Rolnick (b45) 2017; 168
Grohs, Voigtlaender (b20) 2021
Kolmogorov (b35) 1957
Rolnick, D., & Tegmark, M. (2018). The power of deeper networks for expressing natural functions. In
Siegel, Xu (b71) 2020; 128
Han, Jentzen, E (b25) 2018; 115
Mishra, Molinaro (b53) 2020
Pinkus (b64) 1999; 8
Candes, Demanet, Ying (b9) 2009; 7
Cybenko (b15) 1989; 2
Constantine, Savits (b11) 1996; 348
Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In
Kutyniok, Petersen, Raslan, Schneider (b37) 2019
Barron (b2) 1994; 14
Katsuura (b33) 2009; 40
.
Yarotsky (b75) 2018
Montanelli, Yang (b59) 2020; 129
Gühring, Kutyniok, Petersen (b21) 2020; 18
Raissi, Perdikaris, Karniadakis (b67) 2019; 378
Yarotsky (b74) 2017; 94
Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Stuart (b43) 2020
Guliyev, Ismailov (b24) 2018; 316
Beck, Jentzen, Kuckuck (b3) 2019
Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. In
Shalev-Shwartz, Ben-David (b70) 2014
Demanet, Ying (b17) 2010
Costarelli, Spigler (b13) 2013; 48
Candes, Demanet, Ying (b8) 2007; 29
Cucker, Smale (b14) 2002; 39
Lagaris, Likas, Fotiadis (b39) 2000; 9(5)
Davidson, Donsig (b16) 2009
Li, Tang, Yu (b44) 2019
Jentzen, Welti (b30) 2020
Schwab, Zech (b69) 2019; 17
Bianchini, Scarselli (b5) 2014; 25
Mishra, Molinaro (b54) 2020
Blanchard, Bennouna (b6) 2020
Boyadzhiev (b7) 2009
Lye, Mishra, Ray, Chandrashekar (b50) 2021; 374
Moak (b57) 1990
LeCun, Bengio, Hinton (b42) 2015; 521
Guliyev, Ismailov (b23) 2018; 98
Raissi, Karniadakis (b66) 2018; 357
Weinan, Wang (b73) 2018; 61
Barron (b1) 1993; 39
Bengio, LeCun (b4) 2007; 34
Laakmann, Petersen (b38) 2020
Ohn, Kim (b61) 2019; 21
Longo, Mishra, Schwab, Rusch (b46) 2021
Weierstrass (b72) 1885; 2
Hornik, Stinchcombe, White (b29) 1989; 2
Mishra, Molinaro (b55) 2020
Herrmann, Schwab, Zech (b27) 2020; 36
Kainen, Kůrková, Vogt (b31) 1999; 29
Kainen, Kurkova, Sanguineti (b32) 2012; 58
Hochreiter, Schmidhuber (b28) 1997; 9
Lanthaler, Mishra, Karniadakis (b40) 2021
Poggio, Mhaskar, Rosasco, Miranda, Liao (b65) 2017; 14
Neyshabur, B., Tomioka, R., & Srebro, N. (2015). In search of the real inductive bias: on the role of implicit regularization in deep learning. In
Kurková, Sanguineti (b36) 2008; 54
Opschoor, Schwab, Zech (b63) 2019; 2019
E, Han, Jentzen (b19) 2017; 5
Mishra, Rusch (b56) 2021
Lu, Jin, Karniadakis (b47) 2019
Yarotsky (10.1016/j.neunet.2021.08.015_b74) 2017; 94
Candes (10.1016/j.neunet.2021.08.015_b9) 2009; 7
Herrmann (10.1016/j.neunet.2021.08.015_b26) 2021
Hornik (10.1016/j.neunet.2021.08.015_b29) 1989; 2
Moak (10.1016/j.neunet.2021.08.015_b57) 1990
Lu (10.1016/j.neunet.2021.08.015_b47) 2019
Pinkus (10.1016/j.neunet.2021.08.015_b64) 1999; 8
Lavretsky (10.1016/j.neunet.2021.08.015_b41) 2002; 13
Kainen (10.1016/j.neunet.2021.08.015_b31) 1999; 29
Bianchini (10.1016/j.neunet.2021.08.015_b5) 2014; 25
Barron (10.1016/j.neunet.2021.08.015_b1) 1993; 39
E (10.1016/j.neunet.2021.08.015_b19) 2017; 5
Mishra (10.1016/j.neunet.2021.08.015_b55) 2020
Lye (10.1016/j.neunet.2021.08.015_b49) 2020; 410
Weierstrass (10.1016/j.neunet.2021.08.015_b72) 1885; 2
Laakmann (10.1016/j.neunet.2021.08.015_b38) 2020
Beck (10.1016/j.neunet.2021.08.015_b3) 2019
Barron (10.1016/j.neunet.2021.08.015_b2) 1994; 14
Han (10.1016/j.neunet.2021.08.015_b25) 2018; 115
10.1016/j.neunet.2021.08.015_b10
Katsuura (10.1016/j.neunet.2021.08.015_b33) 2009; 40
Mishra (10.1016/j.neunet.2021.08.015_b56) 2021
Weinan (10.1016/j.neunet.2021.08.015_b73) 2018; 61
Lu (10.1016/j.neunet.2021.08.015_b48) 2018
Grohs (10.1016/j.neunet.2021.08.015_b20) 2021
Schwab (10.1016/j.neunet.2021.08.015_b69) 2019; 17
Poggio (10.1016/j.neunet.2021.08.015_b65) 2017; 14
Herrmann (10.1016/j.neunet.2021.08.015_b27) 2020; 36
Raissi (10.1016/j.neunet.2021.08.015_b66) 2018; 357
Guliyev (10.1016/j.neunet.2021.08.015_b23) 2018; 98
Cucker (10.1016/j.neunet.2021.08.015_b14) 2002; 39
Kainen (10.1016/j.neunet.2021.08.015_b32) 2012; 58
Cybenko (10.1016/j.neunet.2021.08.015_b15) 1989; 2
Davidson (10.1016/j.neunet.2021.08.015_b16) 2009
Mishra (10.1016/j.neunet.2021.08.015_b53) 2020
Bengio (10.1016/j.neunet.2021.08.015_b4) 2007; 34
Constantine (10.1016/j.neunet.2021.08.015_b11) 1996; 348
LeCun (10.1016/j.neunet.2021.08.015_b42) 2015; 521
Hochreiter (10.1016/j.neunet.2021.08.015_b28) 1997; 9
Siegel (10.1016/j.neunet.2021.08.015_b71) 2020; 128
10.1016/j.neunet.2021.08.015_b68
Demanet (10.1016/j.neunet.2021.08.015_b17) 2010
Jentzen (10.1016/j.neunet.2021.08.015_b30) 2020
Boyadzhiev (10.1016/j.neunet.2021.08.015_b7) 2009
Guliyev (10.1016/j.neunet.2021.08.015_b24) 2018; 316
Opschoor (10.1016/j.neunet.2021.08.015_b63) 2019; 2019
10.1016/j.neunet.2021.08.015_b60
Kolmogorov (10.1016/j.neunet.2021.08.015_b35) 1957
Lagaris (10.1016/j.neunet.2021.08.015_b39) 2000; 9(5)
Lye (10.1016/j.neunet.2021.08.015_b50) 2021; 374
Montanelli (10.1016/j.neunet.2021.08.015_b58) 2019; 1
Costarelli (10.1016/j.neunet.2021.08.015_b13) 2013; 48
Makovoz (10.1016/j.neunet.2021.08.015_b51) 1996; 85
Durán (10.1016/j.neunet.2021.08.015_b18) 1983; 20
Gühring (10.1016/j.neunet.2021.08.015_b22) 2021; 134
Yarotsky (10.1016/j.neunet.2021.08.015_b75) 2018
Raissi (10.1016/j.neunet.2021.08.015_b67) 2019; 378
Mhaskar (10.1016/j.neunet.2021.08.015_b52) 1996; 8
Mishra (10.1016/j.neunet.2021.08.015_b54) 2020
Kutyniok (10.1016/j.neunet.2021.08.015_b37) 2019
Opschoor (10.1016/j.neunet.2021.08.015_b62) 2020; 18
Lin (10.1016/j.neunet.2021.08.015_b45) 2017; 168
Longo (10.1016/j.neunet.2021.08.015_b46) 2021
10.1016/j.neunet.2021.08.015_b34
Li (10.1016/j.neunet.2021.08.015_b44) 2019
Gühring (10.1016/j.neunet.2021.08.015_b21) 2020; 18
Montanelli (10.1016/j.neunet.2021.08.015_b59) 2020; 129
Ohn (10.1016/j.neunet.2021.08.015_b61) 2019; 21
Blanchard (10.1016/j.neunet.2021.08.015_b6) 2020
Kurková (10.1016/j.neunet.2021.08.015_b36) 2008; 54
Candes (10.1016/j.neunet.2021.08.015_b8) 2007; 29
Costarelli (10.1016/j.neunet.2021.08.015_b12) 2013; 44
Shalev-Shwartz (10.1016/j.neunet.2021.08.015_b70) 2014
Lanthaler (10.1016/j.neunet.2021.08.015_b40) 2021
Li (10.1016/j.neunet.2021.08.015_b43) 2020
References_xml – year: 2018
  ident: b48
  article-title: Collapse of deep and narrow neural nets
– volume: 94
  start-page: 103
  year: 2017
  end-page: 114
  ident: b74
  article-title: Error bounds for approximations with deep ReLU networks
  publication-title: Neural Networks
– volume: 8
  start-page: 164
  year: 1996
  end-page: 177
  ident: b52
  article-title: Neural networks for optimal approximation of smooth and analytic functions
  publication-title: Neural Computation
– volume: 128
  start-page: 313
  year: 2020
  end-page: 321
  ident: b71
  article-title: Approximation rates for neural networks with general activation functions
  publication-title: Neural Networks
– volume: 13
  start-page: 274
  year: 2002
  end-page: 282
  ident: b41
  article-title: On the geometric convergence of neural approximations
  publication-title: IEEE Transactions on Neural Networks
– year: 2010
  ident: b17
  article-title: On Chebyshev interpolation of analytic functions
  publication-title: Preprint
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b42
  article-title: Deep learning
  publication-title: Nature
– volume: 2
  start-page: 633
  year: 1885
  end-page: 639
  ident: b72
  article-title: Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen
  publication-title: Sitzungsberichte Der KÖNiglich PreußIschen Akademie Der Wissenschaften Zu Berlin
– year: 2020
  ident: b43
  article-title: Fourier neural operator for parametric partial differential equations
– volume: 134
  start-page: 107
  year: 2021
  end-page: 130
  ident: b22
  article-title: Approximation rates for neural networks with encodable weights in smoothness spaces
  publication-title: Neural Networks
– reference: Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In
– volume: 14
  start-page: 503
  year: 2017
  end-page: 519
  ident: b65
  article-title: Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review
  publication-title: International Journal of Automation and Computing
– year: 2020
  ident: b54
  article-title: Estimates on the generalization error of physics-informed neural networks (PINNs) for approximating PDEs II: A class of inverse problems
– year: 2020
  ident: b30
  article-title: Overall error analysis for the training of deep neural networks via stochastic gradient descent with random initialisation
– year: 2019
  ident: b44
  article-title: Better approximations of high dimensional smooth functions by deep neural networks with rectified power units
– year: 2019
  ident: b47
  article-title: DeepOnet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b67
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: Journal of Computational Physics
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b28
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  ident: b15
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Mathematics of Control, Signals, and Systems
– reference: Rolnick, D., & Tegmark, M. (2018). The power of deeper networks for expressing natural functions. In
– year: 2021
  ident: b46
  article-title: Higher-order Quasi-Monte Carlo training of deep neural networks
– volume: 7
  start-page: 1727
  year: 2009
  end-page: 1750
  ident: b9
  article-title: A fast butterfly algorithm for the computation of Fourier integral operators
  publication-title: Multiscale Modeling and Simulation
– volume: 58
  start-page: 1203
  year: 2012
  end-page: 1214
  ident: b32
  article-title: Dependence of computational models on input dimension: Tractability of approximation and optimization tasks
  publication-title: IEEE Transactions on Information Theory
– volume: 85
  start-page: 98
  year: 1996
  end-page: 109
  ident: b51
  article-title: Random approximants and neural networks
  publication-title: Journal of Approximation Theory
– volume: 48
  start-page: 72
  year: 2013
  end-page: 77
  ident: b13
  article-title: Multivariate neural network operators with sigmoidal activation functions
  publication-title: Neural Networks
– volume: 21
  start-page: 627
  year: 2019
  ident: b61
  article-title: Smooth function approximation by deep neural networks with general activation functions
  publication-title: Entropy
– volume: 34
  start-page: 1
  year: 2007
  end-page: 41
  ident: b4
  article-title: Scaling learning algorithms towards AI
  publication-title: Large-Scale Kernel Machines
– volume: 40
  start-page: 275
  year: 2009
  end-page: 278
  ident: b33
  article-title: Summations involving binomial coefficients
  publication-title: The College Mathematics Journal
– volume: 410
  year: 2020
  ident: b49
  article-title: Deep learning observables in computational fluid dynamics
  publication-title: Journal of Computational Physics
– volume: 18
  start-page: 803
  year: 2020
  end-page: 859
  ident: b21
  article-title: Error bounds for approximations with deep ReLU neural networks in
  publication-title: Analysis and Applications
– volume: 36
  year: 2020
  ident: b27
  article-title: Deep neural network expression of posterior expectations in Bayesian PDE inversion
  publication-title: Inverse Problems
– reference: Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. In
– volume: 25
  start-page: 1553
  year: 2014
  end-page: 1565
  ident: b5
  article-title: On the complexity of neural network classifiers: A comparison between shallow and deep architectures
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2014
  ident: b70
  article-title: Understanding machine learning: from theory to algorithms
– volume: 39
  start-page: 1
  year: 2002
  end-page: 49
  ident: b14
  article-title: On the mathematical foundations of learning
  publication-title: American Mathematical Society. Bulletin
– year: 2020
  ident: b6
  article-title: The representation power of neural networks: Breaking the curse of dimensionality
– year: 2020
  ident: b53
  article-title: Estimates on the generalization error of physics informed neural networks (PINNs) for approximating PDEs
– year: 2009
  ident: b16
  article-title: Real analysis and applications: theory in practice
– year: 2009
  ident: b7
  article-title: Derivative polynomials for tanh, tan, sech and sec in explicit form
– volume: 348
  start-page: 503
  year: 1996
  end-page: 520
  ident: b11
  article-title: A multivariate Faà di Bruno formula with applications
  publication-title: Transactions of the American Mathematical Society
– volume: 29
  start-page: 2464
  year: 2007
  end-page: 2493
  ident: b8
  article-title: Fast computation of Fourier integral operators
  publication-title: SIAM Journal on Scientific Computing
– volume: 9(5)
  start-page: 987
  year: 2000
  end-page: 1000
  ident: b39
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Transactions on Neural Networks
– start-page: 1
  year: 1990
  end-page: 8
  ident: b57
  article-title: Combinatorial multinomial matrices and multinomial Stirling numbers
  publication-title: Proceedings of the Americal Mathematical Society
– volume: 357
  start-page: 125
  year: 2018
  end-page: 141
  ident: b66
  article-title: Hidden physics models: Machine learning of nonlinear partial differential equations
  publication-title: Journal of Computational Physics
– reference: Neyshabur, B., Tomioka, R., & Srebro, N. (2015). In search of the real inductive bias: on the role of implicit regularization in deep learning. In
– volume: 17
  start-page: 19
  year: 2019
  end-page: 55
  ident: b69
  article-title: Deep learning in high dimension: Neural network expression rates for generalized polynomial chaos expansions in UQ
  publication-title: Analysis and Applications
– start-page: 639
  year: 2018
  end-page: 649
  ident: b75
  article-title: Optimal approximation of continuous functions by very deep ReLU networks
  publication-title: Conference on learning theory
– volume: 374
  year: 2021
  ident: b50
  article-title: Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2021
  ident: b56
  article-title: Enhancing accuracy of deep learning algorithms by training on low-discrepancy sequences
– year: 2019
  ident: b37
  article-title: A theoretical analysis of deep neural networks and parametric PDEs
– volume: 8
  start-page: 143
  year: 1999
  end-page: 195
  ident: b64
  article-title: Approximation theory of the MLP model in neural networks
  publication-title: Acta Numerica
– volume: 20
  start-page: 985
  year: 1983
  end-page: 988
  ident: b18
  article-title: On polynomial approximation in Sobolev spaces
  publication-title: SIAM Journal on Numerical Analysis
– year: 2021
  ident: b40
  article-title: Error estimates for DeepOnets: A deep learning framework in infinite dimensions
– volume: 98
  start-page: 296
  year: 2018
  end-page: 304
  ident: b23
  article-title: On the approximation by single hidden layer feedforward neural networks with fixed weights
  publication-title: Neural Networks
– start-page: 953
  year: 1957
  end-page: 956
  ident: b35
  article-title: On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition
  publication-title: Doklady akademii nauk (vol. 114)
– year: 2019
  ident: b3
  article-title: Full error analysis for the training of deep neural networks
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: b29
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– volume: 1
  start-page: 78
  year: 2019
  end-page: 92
  ident: b58
  article-title: New error bounds for deep ReLU networks using sparse grids
  publication-title: SIAM Journal on Mathematics of Data Science
– volume: 5
  start-page: 349
  year: 2017
  end-page: 380
  ident: b19
  article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
  publication-title: Communications in Mathematics and Statistics
– volume: 129
  start-page: 1
  year: 2020
  end-page: 6
  ident: b59
  article-title: Error bounds for deep ReLU networks using the Kolmogorov-Arnold superposition theorem
  publication-title: Neural Networks
– volume: 168
  start-page: 1223
  year: 2017
  end-page: 1247
  ident: b45
  article-title: Why does deep and cheap learning work so well?
  publication-title: Journal of Statistical Physics
– volume: 316
  start-page: 262
  year: 2018
  end-page: 269
  ident: b24
  article-title: Approximation capability of two hidden layer feedforward neural networks with fixed weights
  publication-title: Neurocomputing
– volume: 18
  start-page: 715
  year: 2020
  end-page: 770
  ident: b62
  article-title: Deep ReLU networks and high-order finite element methods
  publication-title: Analysis and Applications
– volume: 29
  start-page: 47
  year: 1999
  end-page: 56
  ident: b31
  article-title: Approximation by neural networks is not continuous
  publication-title: Neurocomputing
– volume: 115
  start-page: 8505
  year: 2018
  end-page: 8510
  ident: b25
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proceedings of the National Academy of Sciences
– year: 2020
  ident: b55
  article-title: Physics-informed neural networks for simulating radiative transfer
– year: 2021
  ident: b20
  article-title: Proof of the theory-to-practice gap in deep learning via sampling complexity bounds for neural network approximation spaces
– volume: 44
  start-page: 101
  year: 2013
  end-page: 106
  ident: b12
  article-title: Approximation results for neural network operators activated by sigmoidal functions
  publication-title: Neural Networks
– volume: 61
  start-page: 1733
  year: 2018
  end-page: 1740
  ident: b73
  article-title: Exponential convergence of the deep neural network approximation for analytic functions
  publication-title: Science China Mathematics
– reference: .
– volume: 39
  start-page: 930
  year: 1993
  end-page: 945
  ident: b1
  article-title: Universal approximation bounds for superpositions of a sigmoidal function
  publication-title: IEEE Transactions on Information Theory
– year: 2021
  ident: b26
  article-title: Constructive deep ReLU neural network approximation
– volume: 2019
  year: 2019
  ident: b63
  article-title: Exponential ReLU DNN expression of holomorphic maps in high dimension
  publication-title: SAM Research Report
– volume: 54
  start-page: 5681
  year: 2008
  end-page: 5688
  ident: b36
  article-title: Geometric upper bounds on rates of variable-basis approximation
  publication-title: IEEE Transactions on Information Theory
– year: 2020
  ident: b38
  article-title: Efficient approximation of solutions of parametric linear transport equations by ReLU DNNs
– volume: 14
  start-page: 115
  year: 1994
  end-page: 133
  ident: b2
  article-title: Approximation and estimation bounds for artificial neural networks
  publication-title: Machine Learning
– volume: 29
  start-page: 47
  issue: 1–3
  year: 1999
  ident: 10.1016/j.neunet.2021.08.015_b31
  article-title: Approximation by neural networks is not continuous
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(99)00111-3
– ident: 10.1016/j.neunet.2021.08.015_b68
– volume: 85
  start-page: 98
  issue: 1
  year: 1996
  ident: 10.1016/j.neunet.2021.08.015_b51
  article-title: Random approximants and neural networks
  publication-title: Journal of Approximation Theory
  doi: 10.1006/jath.1996.0031
– volume: 2
  start-page: 633
  year: 1885
  ident: 10.1016/j.neunet.2021.08.015_b72
  article-title: Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen
  publication-title: Sitzungsberichte Der KÖNiglich PreußIschen Akademie Der Wissenschaften Zu Berlin
– volume: 13
  start-page: 274
  issue: 2
  year: 2002
  ident: 10.1016/j.neunet.2021.08.015_b41
  article-title: On the geometric convergence of neural approximations
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.991414
– year: 2021
  ident: 10.1016/j.neunet.2021.08.015_b46
– volume: 2019
  year: 2019
  ident: 10.1016/j.neunet.2021.08.015_b63
  article-title: Exponential ReLU DNN expression of holomorphic maps in high dimension
  publication-title: SAM Research Report
– year: 2021
  ident: 10.1016/j.neunet.2021.08.015_b26
– volume: 39
  start-page: 930
  issue: 3
  year: 1993
  ident: 10.1016/j.neunet.2021.08.015_b1
  article-title: Universal approximation bounds for superpositions of a sigmoidal function
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.256500
– volume: 1
  start-page: 78
  issue: 1
  year: 2019
  ident: 10.1016/j.neunet.2021.08.015_b58
  article-title: New error bounds for deep ReLU networks using sparse grids
  publication-title: SIAM Journal on Mathematics of Data Science
  doi: 10.1137/18M1189336
– start-page: 639
  year: 2018
  ident: 10.1016/j.neunet.2021.08.015_b75
  article-title: Optimal approximation of continuous functions by very deep ReLU networks
– year: 2021
  ident: 10.1016/j.neunet.2021.08.015_b20
– start-page: 953
  year: 1957
  ident: 10.1016/j.neunet.2021.08.015_b35
  article-title: On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.neunet.2021.08.015_b42
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2019
  ident: 10.1016/j.neunet.2021.08.015_b47
– volume: 40
  start-page: 275
  issue: 4
  year: 2009
  ident: 10.1016/j.neunet.2021.08.015_b33
  article-title: Summations involving binomial coefficients
  publication-title: The College Mathematics Journal
  doi: 10.1080/07468342.2009.11922375
– year: 2020
  ident: 10.1016/j.neunet.2021.08.015_b6
– year: 2019
  ident: 10.1016/j.neunet.2021.08.015_b3
– year: 2020
  ident: 10.1016/j.neunet.2021.08.015_b30
– volume: 410
  year: 2020
  ident: 10.1016/j.neunet.2021.08.015_b49
  article-title: Deep learning observables in computational fluid dynamics
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2020.109339
– volume: 115
  start-page: 8505
  issue: 34
  year: 2018
  ident: 10.1016/j.neunet.2021.08.015_b25
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1718942115
– volume: 2
  start-page: 359
  issn: 0893-6080
  issue: 5
  year: 1989
  ident: 10.1016/j.neunet.2021.08.015_b29
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– year: 2019
  ident: 10.1016/j.neunet.2021.08.015_b44
– year: 2020
  ident: 10.1016/j.neunet.2021.08.015_b54
– volume: 8
  start-page: 143
  issue: 1
  year: 1999
  ident: 10.1016/j.neunet.2021.08.015_b64
  article-title: Approximation theory of the MLP model in neural networks
  publication-title: Acta Numerica
  doi: 10.1017/S0962492900002919
– year: 2021
  ident: 10.1016/j.neunet.2021.08.015_b40
– year: 2010
  ident: 10.1016/j.neunet.2021.08.015_b17
  article-title: On Chebyshev interpolation of analytic functions
  publication-title: Preprint
– year: 2009
  ident: 10.1016/j.neunet.2021.08.015_b7
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.neunet.2021.08.015_b28
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 94
  start-page: 103
  year: 2017
  ident: 10.1016/j.neunet.2021.08.015_b74
  article-title: Error bounds for approximations with deep ReLU networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2017.07.002
– ident: 10.1016/j.neunet.2021.08.015_b34
– year: 2019
  ident: 10.1016/j.neunet.2021.08.015_b37
– year: 2020
  ident: 10.1016/j.neunet.2021.08.015_b38
– volume: 348
  start-page: 503
  issue: 2
  year: 1996
  ident: 10.1016/j.neunet.2021.08.015_b11
  article-title: A multivariate Faà di Bruno formula with applications
  publication-title: Transactions of the American Mathematical Society
  doi: 10.1090/S0002-9947-96-01501-2
– volume: 128
  start-page: 313
  year: 2020
  ident: 10.1016/j.neunet.2021.08.015_b71
  article-title: Approximation rates for neural networks with general activation functions
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.05.019
– volume: 316
  start-page: 262
  year: 2018
  ident: 10.1016/j.neunet.2021.08.015_b24
  article-title: Approximation capability of two hidden layer feedforward neural networks with fixed weights
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.075
– volume: 21
  start-page: 627
  issue: 7
  year: 2019
  ident: 10.1016/j.neunet.2021.08.015_b61
  article-title: Smooth function approximation by deep neural networks with general activation functions
  publication-title: Entropy
  doi: 10.3390/e21070627
– volume: 25
  start-page: 1553
  issue: 8
  year: 2014
  ident: 10.1016/j.neunet.2021.08.015_b5
  article-title: On the complexity of neural network classifiers: A comparison between shallow and deep architectures
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2293637
– volume: 20
  start-page: 985
  issue: 5
  year: 1983
  ident: 10.1016/j.neunet.2021.08.015_b18
  article-title: On polynomial approximation in Sobolev spaces
  publication-title: SIAM Journal on Numerical Analysis
  doi: 10.1137/0720068
– volume: 29
  start-page: 2464
  issue: 6
  year: 2007
  ident: 10.1016/j.neunet.2021.08.015_b8
  article-title: Fast computation of Fourier integral operators
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/060671139
– volume: 44
  start-page: 101
  year: 2013
  ident: 10.1016/j.neunet.2021.08.015_b12
  article-title: Approximation results for neural network operators activated by sigmoidal functions
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2013.03.015
– year: 2020
  ident: 10.1016/j.neunet.2021.08.015_b43
– volume: 168
  start-page: 1223
  issue: 6
  year: 2017
  ident: 10.1016/j.neunet.2021.08.015_b45
  article-title: Why does deep and cheap learning work so well?
  publication-title: Journal of Statistical Physics
  doi: 10.1007/s10955-017-1836-5
– year: 2009
  ident: 10.1016/j.neunet.2021.08.015_b16
– volume: 39
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.neunet.2021.08.015_b14
  article-title: On the mathematical foundations of learning
  publication-title: American Mathematical Society. Bulletin
  doi: 10.1090/S0273-0979-01-00923-5
– volume: 61
  start-page: 1733
  issue: 10
  year: 2018
  ident: 10.1016/j.neunet.2021.08.015_b73
  article-title: Exponential convergence of the deep neural network approximation for analytic functions
  publication-title: Science China Mathematics
  doi: 10.1007/s11425-018-9387-x
– volume: 14
  start-page: 115
  issue: 1
  year: 1994
  ident: 10.1016/j.neunet.2021.08.015_b2
  article-title: Approximation and estimation bounds for artificial neural networks
  publication-title: Machine Learning
  doi: 10.1007/BF00993164
– year: 2018
  ident: 10.1016/j.neunet.2021.08.015_b48
– year: 2014
  ident: 10.1016/j.neunet.2021.08.015_b70
– volume: 48
  start-page: 72
  year: 2013
  ident: 10.1016/j.neunet.2021.08.015_b13
  article-title: Multivariate neural network operators with sigmoidal activation functions
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2013.07.009
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.neunet.2021.08.015_b67
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2018.10.045
– volume: 98
  start-page: 296
  year: 2018
  ident: 10.1016/j.neunet.2021.08.015_b23
  article-title: On the approximation by single hidden layer feedforward neural networks with fixed weights
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2017.12.007
– volume: 58
  start-page: 1203
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2021.08.015_b32
  article-title: Dependence of computational models on input dimension: Tractability of approximation and optimization tasks
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2011.2169531
– volume: 9(5)
  start-page: 987
  year: 2000
  ident: 10.1016/j.neunet.2021.08.015_b39
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Transactions on Neural Networks
– volume: 374
  year: 2021
  ident: 10.1016/j.neunet.2021.08.015_b50
  article-title: Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2020.113575
– volume: 34
  start-page: 1
  issue: 5
  year: 2007
  ident: 10.1016/j.neunet.2021.08.015_b4
  article-title: Scaling learning algorithms towards AI
  publication-title: Large-Scale Kernel Machines
– volume: 8
  start-page: 164
  issue: 1
  year: 1996
  ident: 10.1016/j.neunet.2021.08.015_b52
  article-title: Neural networks for optimal approximation of smooth and analytic functions
  publication-title: Neural Computation
  doi: 10.1162/neco.1996.8.1.164
– volume: 5
  start-page: 349
  issue: 4
  year: 2017
  ident: 10.1016/j.neunet.2021.08.015_b19
  article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
  publication-title: Communications in Mathematics and Statistics
  doi: 10.1007/s40304-017-0117-6
– volume: 54
  start-page: 5681
  issue: 12
  year: 2008
  ident: 10.1016/j.neunet.2021.08.015_b36
  article-title: Geometric upper bounds on rates of variable-basis approximation
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2008.2006383
– year: 2020
  ident: 10.1016/j.neunet.2021.08.015_b53
– year: 2020
  ident: 10.1016/j.neunet.2021.08.015_b55
– volume: 7
  start-page: 1727
  issue: 4
  year: 2009
  ident: 10.1016/j.neunet.2021.08.015_b9
  article-title: A fast butterfly algorithm for the computation of Fourier integral operators
  publication-title: Multiscale Modeling and Simulation
  doi: 10.1137/080734339
– volume: 14
  start-page: 503
  issue: 5
  year: 2017
  ident: 10.1016/j.neunet.2021.08.015_b65
  article-title: Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review
  publication-title: International Journal of Automation and Computing
  doi: 10.1007/s11633-017-1054-2
– volume: 357
  start-page: 125
  year: 2018
  ident: 10.1016/j.neunet.2021.08.015_b66
  article-title: Hidden physics models: Machine learning of nonlinear partial differential equations
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2017.11.039
– ident: 10.1016/j.neunet.2021.08.015_b10
  doi: 10.3115/v1/D14-1179
– year: 2021
  ident: 10.1016/j.neunet.2021.08.015_b56
– volume: 134
  start-page: 107
  year: 2021
  ident: 10.1016/j.neunet.2021.08.015_b22
  article-title: Approximation rates for neural networks with encodable weights in smoothness spaces
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.11.010
– volume: 129
  start-page: 1
  year: 2020
  ident: 10.1016/j.neunet.2021.08.015_b59
  article-title: Error bounds for deep ReLU networks using the Kolmogorov-Arnold superposition theorem
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.12.013
– volume: 18
  start-page: 715
  issue: 05
  year: 2020
  ident: 10.1016/j.neunet.2021.08.015_b62
  article-title: Deep ReLU networks and high-order finite element methods
  publication-title: Analysis and Applications
  doi: 10.1142/S0219530519410136
– volume: 36
  issue: 12
  year: 2020
  ident: 10.1016/j.neunet.2021.08.015_b27
  article-title: Deep neural network expression of posterior expectations in Bayesian PDE inversion
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/abaf64
– volume: 2
  start-page: 303
  issn: 1435-568X
  issue: 4
  year: 1989
  ident: 10.1016/j.neunet.2021.08.015_b15
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Mathematics of Control, Signals, and Systems
  doi: 10.1007/BF02551274
– ident: 10.1016/j.neunet.2021.08.015_b60
– start-page: 1
  year: 1990
  ident: 10.1016/j.neunet.2021.08.015_b57
  article-title: Combinatorial multinomial matrices and multinomial Stirling numbers
  publication-title: Proceedings of the Americal Mathematical Society
– volume: 17
  start-page: 19
  issue: 01
  year: 2019
  ident: 10.1016/j.neunet.2021.08.015_b69
  article-title: Deep learning in high dimension: Neural network expression rates for generalized polynomial chaos expansions in UQ
  publication-title: Analysis and Applications
  doi: 10.1142/S0219530518500203
– volume: 18
  start-page: 803
  issue: 05
  year: 2020
  ident: 10.1016/j.neunet.2021.08.015_b21
  article-title: Error bounds for approximations with deep ReLU neural networks in Ws,p norms
  publication-title: Analysis and Applications
  doi: 10.1142/S0219530519410021
SSID ssj0006843
Score 2.6676145
Snippet We derive bounds on the error, in high-order Sobolev norms, incurred in the approximation of Sobolev-regular as well as analytic functions by neural networks...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 732
SubjectTerms Deep learning
Function approximation
Neural networks
Tanh
Title On the approximation of functions by tanh neural networks
URI https://dx.doi.org/10.1016/j.neunet.2021.08.015
https://www.proquest.com/docview/2569615161
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509-LFt_hcIniN27RN0h5lUVZFPeiCt9CkCa5IV3QX9OJvN9O0C4qw4LElE8qXycw3dB4AJ5HzTs6HO9TKLKKpzjOqrY1pnItSc1lGMsbi5JtbMRylV4_8cQkGbS0MplU2tj_Y9NpaN2_6DZr91_G4fx95VyuwVJRFOAU8W4ZunOSCd6B7dnk9vJ0bZJGF5Dm_nqJAW0FXp3lVdlZZTKqMQy9PnI_7t4f6ZatrB3SxDqsNcyRn4eM2YMlWm7DWTmUgzSXdgvyuIp7Vkbpb-Mc4lCaSiSPowmotI_qTeE74RLCZpd-yCqng79swujh_GAxpMyCBmpSzKbVF4RmD0bbghfG4Mu3SzBoeO3_TZKZjI13JjPVBUSS1dKnMSmEY0xg2pYlJdqBTTSq7C4RZi73fEud8gMSNKDC0ElYKbTLBXbkHSQuKMk33cBxi8aLaNLFnFaBUCKXC2ZaM7wGdS72G7hkL1ssWb_VDC5Q38Askj9vjUf6C4F-PorKT2bvynC5H2ibY_r93P4AVfAo1iIfQmb7N7JEnI1Pdg-XTL9ZrVO4bD-nehQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zHvTitzg_I3iNa9om6Y4yHFO3eXCD3UKTJjiRbrgN9OLfbl7TKoogeG2TUF7ex-_R33sPoYvAuiDn0h1iRBKQWLUSoowJSdjimWIiC0QIxcn9Ae-O4tsxG9dQu6qFAVpl6fu9Ty-8dfmkWUqzOZtMmg-BC7UcSkVpAFPAkxW0GrNIAK_v8v2L58ETT51zqwksr-rnCpJXbpa5AUpl6Dt5wnTc3-PTD09dhJ_OFtoocSO-8p-2jWom30Gb1UwGXJroLmrd59hhOlz0Cn-d-MJEPLUYAlihY1i9YYcIHzG0snRH5p4IPt9Do871sN0l5XgEomNGF8SkqcMLWpmUpdpJlSobJ0az0Do7E4kKtbAZ1calRIFQwsYiybimVEHSFEc62kf1fJqbA4SpMdD5LbLWpUdM8xQSK24EVzrhzGYNFFVCkbrsHQ4jLJ5lRRJ7kl6UEkQpYbIlZQ1EPnfNfO-MP9aLSt7ymw5I597_2HleXY905gH_PNLcTJdz6RBdC0Abp4f_Pv0MrXWH_Z7s3QzujtA6vPHViMeovnhZmhMHSxbqtFC7D_Aa31A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+approximation+of+functions+by+tanh+neural+networks&rft.jtitle=Neural+networks&rft.au=De+Ryck%2C+Tim&rft.au=Lanthaler%2C+Samuel&rft.au=Mishra%2C+Siddhartha&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=143&rft.spage=732&rft.epage=750&rft_id=info:doi/10.1016%2Fj.neunet.2021.08.015&rft.externalDocID=S0893608021003208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon