The effect of number of clusters and cluster size on statistical power and Type I error rates when testing random effects variance components in multilevel linear and logistic regression models

When using multilevel regression models that incorporate cluster-specific random effects, the Wald and the likelihood ratio (LR) tests are used for testing the null hypothesis that the variance of the random effects distribution is equal to zero. We conducted a series of Monte Carlo simulations to e...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical computation and simulation Vol. 88; no. 16; pp. 3151 - 3163
Main Authors Austin, Peter C., Leckie, George
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.11.2018
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When using multilevel regression models that incorporate cluster-specific random effects, the Wald and the likelihood ratio (LR) tests are used for testing the null hypothesis that the variance of the random effects distribution is equal to zero. We conducted a series of Monte Carlo simulations to examine the effect of the number of clusters and the number of subjects per cluster on the statistical power to detect a non-null random effects variance and to compare the empirical type I error rates of the Wald and LR tests. Statistical power increased with increasing number of clusters and number of subjects per cluster. Statistical power was greater for the LR test than for the Wald test. These results applied to both the linear and logistic regressions, but were more pronounced for the latter. The use of the LR test is preferable to the use of the Wald test.
AbstractList When using multilevel regression models that incorporate cluster-specific random effects, the Wald and the likelihood ratio (LR) tests are used for testing the null hypothesis that the variance of the random effects distribution is equal to zero. We conducted a series of Monte Carlo simulations to examine the effect of the number of clusters and the number of subjects per cluster on the statistical power to detect a non-null random effects variance and to compare the empirical type I error rates of the Wald and LR tests. Statistical power increased with increasing number of clusters and number of subjects per cluster. Statistical power was greater for the LR test than for the Wald test. These results applied to both the linear and logistic regressions, but were more pronounced for the latter. The use of the LR test is preferable to the use of the Wald test.
Author Austin, Peter C.
Leckie, George
Author_xml – sequence: 1
  givenname: Peter C.
  surname: Austin
  fullname: Austin, Peter C.
  email: peter.austin@ices.on.ca
  organization: Schulich Heart Research Program, Sunnybrook Research Institute
– sequence: 2
  givenname: George
  surname: Leckie
  fullname: Leckie, George
  organization: Centre for Multilevel Modelling, University of Bristol
BookMark eNqFUUtv3CAQRlUqdZP2J1RC6tkbsI0f6qVV1EekSL1szwjjYUOEwR1wVpt_139WnN1cemhPDMP3YOa7JBc-eCDkPWdbzjp2zVhf940Q25LxbssFq_tavCIbLpqqELypLshmxRQr6A25jPGBMca5KDfk9-4eKBgDOtFgqF-mAXCttFtiAoxU-fHlQqN9Aho8jUklG5PVytE5HPLLitodZ6C3FBADUlQJIj3cg6e5SNbvc8uPYTq7Rfqo0CqvgeowzXkin3vW02lxyTp4BEed9aBO2i7snw0pwh4hRpt_MYURXHxLXhvlIrw7n1fk59cvu5vvxd2Pb7c3n-8KXQueCugFtDXnvFdgSlWramjLjgMbu7ZSWgyd1iy3GtEOuqv4yOu2GUbDVNcPojfVFflw0p0x_FrySPIhLOizpSx5ydqu54JnlDihNIYYEYyc0U4Kj5IzuaYlX9KSa1rynFbmffyLp-265OATKuv-y_50YltvAk7qENCNMqmjC2jy2rWNsvq3xB8QzLTL
CitedBy_id crossref_primary_10_1080_10439463_2020_1749274
crossref_primary_10_1111_jcpp_13656
crossref_primary_10_1080_10888691_2023_2223999
crossref_primary_10_1016_S2665_9913_22_00192_8
crossref_primary_10_1371_journal_pcbi_1010061
crossref_primary_10_1016_j_chest_2022_12_033
crossref_primary_10_1016_j_resglo_2022_100097
crossref_primary_10_2139_ssrn_4874836
crossref_primary_10_1186_s12872_023_03320_w
crossref_primary_10_1080_16549716_2024_2397838
crossref_primary_10_1002_alz_14392
crossref_primary_10_3390_su17020603
crossref_primary_10_1016_j_drugpo_2023_103981
crossref_primary_10_1016_j_livsci_2021_104666
crossref_primary_10_1016_j_ijintrel_2021_08_008
crossref_primary_10_1001_jamanetworkopen_2021_23950
crossref_primary_10_1016_j_amepre_2019_12_022
crossref_primary_10_1016_j_artmed_2024_102784
crossref_primary_10_1080_00949655_2020_1797738
crossref_primary_10_1080_13670050_2022_2076552
crossref_primary_10_1007_s10964_024_02046_y
crossref_primary_10_1016_j_anbehav_2022_05_018
crossref_primary_10_3389_fevo_2021_722964
crossref_primary_10_1093_geront_gnaa168
crossref_primary_10_1002_jeab_872
crossref_primary_10_1111_avsc_70006
crossref_primary_10_1111_pops_12936
crossref_primary_10_1016_j_foreco_2022_120136
crossref_primary_10_1007_s11292_024_09613_0
crossref_primary_10_1016_j_eclinm_2020_100449
crossref_primary_10_1212_WNL_0000000000209947
crossref_primary_10_1016_j_socscimed_2023_116418
crossref_primary_10_1227_neu_0000000000002840
crossref_primary_10_1016_j_ultrasmedbio_2024_08_021
crossref_primary_10_1016_j_ibusrev_2021_101894
crossref_primary_10_2139_ssrn_4045948
crossref_primary_10_1016_j_landurbplan_2020_104024
crossref_primary_10_1002_dev_22157
crossref_primary_10_1186_s40798_024_00699_4
crossref_primary_10_1007_s11121_023_01550_0
crossref_primary_10_1136_bmjopen_2021_059280
crossref_primary_10_1187_cbe_21_08_0216
crossref_primary_10_1016_j_childyouth_2022_106521
crossref_primary_10_1089_lgbt_2021_0110
crossref_primary_10_1371_journal_pone_0233835
crossref_primary_10_1513_AnnalsATS_202110_1141RL
crossref_primary_10_1007_s11205_021_02852_y
crossref_primary_10_1093_abm_kaab014
crossref_primary_10_1002_sim_8286
crossref_primary_10_1017_S2045796022000026
Cites_doi 10.4324/9780203852279
10.1027/1614-2241.1.3.86
10.1111/j.1541-0420.2007.00775.x
10.1016/S0147-1767(03)00054-3
10.1080/01621459.1987.10478472
10.1002/9780470973394
10.1207/S15328031US0104_02
10.1198/000313007X171322
ContentType Journal Article
Copyright 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018
2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018
– notice: 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
DBID 0YH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00949655.2018.1504945
DatabaseName Taylor & Francis Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1563-5163
EndPage 3163
ExternalDocumentID 10_1080_00949655_2018_1504945
1504945
Genre Article
GrantInformation_xml – fundername: Institute for Clinical Evaluative Sciences (ICES)
  funderid: 10.13039/100012665
– fundername: Ontario Ministry of Health and Long-Term Care (MOHLTC)
  funderid: 10.13039/501100000226
– fundername: Canadian Institutes of Health Research (CIHR)
  grantid: MOP 86508
  funderid: 10.13039/501100000024
GroupedDBID .7F
.QJ
0BK
0R~
0YH
29L
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
AFRVT
AIYEW
CITATION
TASJS
7SC
8FD
ADYSH
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c451t-e95e741119aef2a4a3b7281e0d873ac5b8cc0b72657bc831d1476bdf0a89b59f3
IEDL.DBID 0YH
ISSN 0094-9655
IngestDate Fri Jul 25 07:04:49 EDT 2025
Sun Aug 03 02:37:22 EDT 2025
Thu Apr 24 23:00:26 EDT 2025
Wed Dec 25 09:08:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-e95e741119aef2a4a3b7281e0d873ac5b8cc0b72657bc831d1476bdf0a89b59f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/00949655.2018.1504945
PQID 2120789151
PQPubID 53118
PageCount 13
ParticipantIDs proquest_journals_2120789151
crossref_citationtrail_10_1080_00949655_2018_1504945
informaworld_taylorfrancis_310_1080_00949655_2018_1504945
crossref_primary_10_1080_00949655_2018_1504945
PublicationCentury 2000
PublicationDate 2018-11-02
PublicationDateYYYYMMDD 2018-11-02
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-02
  day: 02
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of statistical computation and simulation
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0001
CIT0003
Raudenbush SW (CIT0006) 2002
CIT0002
CIT0005
CIT0004
CIT0007
CIT0009
CIT0008
References_xml – ident: CIT0005
  doi: 10.4324/9780203852279
– ident: CIT0009
  doi: 10.1027/1614-2241.1.3.86
– volume-title: Hierarchical linear models: applications and data analysis methods
  year: 2002
  ident: CIT0006
– ident: CIT0008
  doi: 10.1111/j.1541-0420.2007.00775.x
– ident: CIT0001
  doi: 10.1016/S0147-1767(03)00054-3
– ident: CIT0007
  doi: 10.1080/01621459.1987.10478472
– ident: CIT0002
  doi: 10.1002/9780470973394
– ident: CIT0003
  doi: 10.1207/S15328031US0104_02
– ident: CIT0004
  doi: 10.1198/000313007X171322
SSID ssj0001152
Score 2.3791413
Snippet When using multilevel regression models that incorporate cluster-specific random effects, the Wald and the likelihood ratio (LR) tests are used for testing the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3151
SubjectTerms Clusters
Computer simulation
Economic models
hierarchical model
Likelihood ratio
multilevel analysis
multilevel model
Null hypothesis
Regression analysis
Regression models
Statistical analysis
Statistical power
Variance
variance components
Title The effect of number of clusters and cluster size on statistical power and Type I error rates when testing random effects variance components in multilevel linear and logistic regression models
URI https://www.tandfonline.com/doi/abs/10.1080/00949655.2018.1504945
https://www.proquest.com/docview/2120789151
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTt0wELVa2NBFH7etylOz6DY0TuzEXiIKukVqV0V9bCLbsemVLgmKA0j8HX-GJ06uQKhiwS62PHaU8WMmOj6HkM9SUGNTxRJqapewvKgTraRNQmVGjVK01gNA9kcxP2Unv_mEJvQjrBJzaBeJIoa9Ghe30n5CxH1BNJwsOEdgltgPEQ2TjL8k6-EkTlHEIP0zX23GNIruoEmCNtMlnv918-B4ekBe-mizHk6g47fk9Rg6wkH09TvywjYz8maSZYBxlc7Iq-8rKlY_IxsYTkY25vfkNswKiBAOaB1EORB8MstLZEzwED7KVAC_uLHQNuCnHsLoF6iqNrTCDBa-ge26tgMknPBw_c820CNvR3MWqpq6PR9H83AVknKcYYAg9rZB_AYsGhgAjUtELgF6QsW-472khYHOnkWgbmiJmj3-Azk9Pvp5OE9GEYfEME77xEpuQ9RCqVTWZYqpXJeZoDatRZkrw7UwJg1VBS-1ETmtKSsLXbtUCam5dPlHstaEt_pEoDC65DK0o0Ix4UJrrrnjzmJOljm2Sdjku8qMDOcotLGs6IoINbq8QpdXo8s3yf7K7CJSfDxlIO9PjKof_q24KIRS5U_Y7kyzqBp3C1-F8AFZ_0PwtfWMrrfJBhaHi5LZDlnru0u7GyKmXu8Na2KPrB_Mv_79dQdoIxCQ
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwELWgHCgHCguIQoE5cM0SJ3ZiHxGi2kK7p1bqzbIdu6xYkirJgtS_48_wxMmqBaEeekscj-PEk_E4en6PkPdSUOtSzRJqK5-wvKgSo6VLQmFGrda0MgNAdlksztiXc35-bS8MwipxDe0jUcQQq_Hjxp_REyTuA8LhZME5IrPEPKQ0TDJ-nzzgsijR1_N0uY3GNKruoEmCNtMunv81c2N-usFe-k-0Hqagwz1ip85H5Mn3-aY3c3v1F6_j3Z7uCXk8ZqjwMbrUU3LP1TOyN6k_wBgMZuTRyZbxtZuRXcxaI-nzM_I7OB9EpAg0HqLqCB7Z9QaJGToIvZtOoFtdOWhq6KYWwt0vUbxtqIULZTgC17ZNC8hr0cGvb66GHulB6otQVFfNj_FuHfwMa390ZECsfFMjTARWNQy4yTUCpABfiY5tx-1PKwutu4h44FATpYG65-Ts8PPpp0UyakUklnHaJ05yF5IjSqV2PtNM56bMBHVpJcpcW26EtWkoKnhprMhpRVlZmMqnWkjDpc9fkJ069OolgcKakstQjwrNhA-1ueGee4dLv8yzfcImD1F2JFJHPY-1olu-1TiCCkdQjSO4T-Zbs8vIJHKbgbzufqoffuH4qLei8ltsDyZfVWNQ6lTIUlBcIOR4r-7Q9DvycHF6cqyOj5ZfX5NdvDTszcwOyE7fbtybkKT15u3wFf4BTTgydA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgSKgcKCwgCgXmwDVLnNhJfETAquVjxYFK3CzbsdsVS7JKsiD13_HP8MTxioJQD73tOh7Hu56Mx9Gb9wh5KSpqbKpYQk3tEpYXdaKVsIlvzKhRitZ6BMgui-NT9v4rj2jCfoJV4hnaBaKIMVbjw72pXUTEvUI0nCg4R2BWNfcZDROM3yS3Ciy0xCqOdLkLxjSI7qBJgjaxiOd_w1zani6Rl_4TrMcdaHFAdJx7AJ58m28HPTcXf9E6XuvH3SN3p_wUXgeHuk9u2GZGDqL2A0yhYEbufNrxvfYzso85a6B8fkB-edeDgBOB1kHQHMFPZr1FWoYe_OTiF-hXFxbaBvo4gr_7BqXbxl54TIYTsF3XdoCsFj38PLcNDEgO0pz5pqZuv0936-GHP_mjGwMi5dsGQSKwamBETa4RHgX4j6gwdih-Whno7FlAA_ueKAzUPySni3df3hwnk1JEYhinQ2IFtz41olQo6zLFVK7LrKI2rasyV4brypjUNxW81KbKaU1ZWejapaoSmguXPyJ7jZ_VYwKF0SUXvh-tFKuc7801d9xZPPhljh0SFh1EmolGHdU81pLu2FbDCkpcQTmt4CGZ78w2gUfkKgPxp_fJYXyB44LaisyvsD2KriqnkNRLn6OgtIDP8J5cY-gX5Pbntwv58WT54SnZxytjYWZ2RPaGbmuf-Qxt0M_HZ_A3XyoxGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+number+of+clusters+and+cluster+size+on+statistical+power+and+Type+I+error+rates+when+testing+random+effects+variance+components+in+multilevel+linear+and+logistic+regression+models&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Austin%2C+Peter+C&rft.au=Leckie%2C+George&rft.date=2018-11-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=88&rft.issue=16&rft.spage=3151&rft_id=info:doi/10.1080%2F00949655.2018.1504945&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon