Cortical thinning and accumulation of large cortical pores in the tibia reflect local structural deterioration of the femoral neck
Cortical bone thinning and a rarefaction of the trabecular architecture represent possible causes of increased femoral neck (FN) fracture risk. Due to X-ray exposure limits, the bone microstructure is rarely measurable in the FN of subjects but can be assessed at the tibia. Here, we studied whether...
Saved in:
Published in | Bone (New York, N.Y.) Vol. 137; p. 115446 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 8756-3282 1873-2763 1873-2763 |
DOI | 10.1016/j.bone.2020.115446 |
Cover
Abstract | Cortical bone thinning and a rarefaction of the trabecular architecture represent possible causes of increased femoral neck (FN) fracture risk. Due to X-ray exposure limits, the bone microstructure is rarely measurable in the FN of subjects but can be assessed at the tibia. Here, we studied whether changes of the tibial cortical microstructure, which were previously reported to be associated with femur strength, are also associated with structural deteriorations of the femoral neck.
The cortical and trabecular architectures in the FN of 19 humans were analyzed ex vivo on 3D microcomputed tomography images with 30.3 μm voxel size. Cortical thickness (Ct.Thtibia), porosity (Ct.Potibia) and pore size distribution in the tibiae of the same subjects were measured using scanning acoustic microscopy (12 μm pixel size). Femur strength during sideways falls was simulated with homogenized voxel finite element models.
Femur strength was associated with the total (vBMDtot; R2 = 0.23, p < 0.01) and trabecular (vBMDtrab; R2 = 0.26, p < 0.01) volumetric bone mineral density (vBMD), with the cortical thickness (Ct.ThFN; R2 = 0.29, p < 0.001) and with the trabecular bone volume fraction (Tb.BV/TVFN; R2 = 0.34, p < 0.001), separation (Tb.SpFN; R2 = 0.25, p < 0.01) and number (Tb.NFN; R2 = 0.32, p < 0.001) of the femoral neck. Moreover, smaller Ct.Thtibia was associated with smaller Ct.ThFN (R2 = 0.31, p < 0.05), lower Tb.BV/TVFN (R2 = 0.29, p < 0.05), higher Tb.SpFN (R2 = 0.33, p < 0.05) and lower Tb.NFN (R2 = 0.42, p < 0.01). A higher prevalence of pores with diameter > 100 μm in tibial cortical bone (relCt.Po100μm-tibia) indicated higher Tb.SpFN (R2 = 0.36, p < 0.01) and lower Tb.NFN (R2 = 0.45, p < 0.01).
Bone resorption and structural decline of the femoral neck may be identified in vivo by measuring cortical bone thickness and large pores in the tibia.
A lower thickness and the accumulation of large pores in the cortical bone of the tibia were associated with factors that impair femur strength: cortical bone thinning and rarefaction of the trabecular architecture in the femoral neck. [Display omitted]
•Femoral neck vBMD, cortical bone thickness and trabecular architecture are associated with human proximal femur strength•Thinner cortical bone in the tibia reflects thinner cortical bone and lower density and number of trabeculae in the femur neck•Large cortical bone pores in the tibia are associated with higher separation and lower number of trabeculae in the femur neck |
---|---|
AbstractList | Cortical bone thinning and a rarefaction of the trabecular architecture represent possible causes of increased femoral neck (FN) fracture risk. Due to X-ray exposure limits, the bone microstructure is rarely measurable in the FN of subjects but can be assessed at the tibia. Here, we studied whether changes of the tibial cortical microstructure, which were previously reported to be associated with femur strength, are also associated with structural deteriorations of the femoral neck.
The cortical and trabecular architectures in the FN of 19 humans were analyzed ex vivo on 3D microcomputed tomography images with 30.3 μm voxel size. Cortical thickness (Ct.Thtibia), porosity (Ct.Potibia) and pore size distribution in the tibiae of the same subjects were measured using scanning acoustic microscopy (12 μm pixel size). Femur strength during sideways falls was simulated with homogenized voxel finite element models.
Femur strength was associated with the total (vBMDtot; R2 = 0.23, p < 0.01) and trabecular (vBMDtrab; R2 = 0.26, p < 0.01) volumetric bone mineral density (vBMD), with the cortical thickness (Ct.ThFN; R2 = 0.29, p < 0.001) and with the trabecular bone volume fraction (Tb.BV/TVFN; R2 = 0.34, p < 0.001), separation (Tb.SpFN; R2 = 0.25, p < 0.01) and number (Tb.NFN; R2 = 0.32, p < 0.001) of the femoral neck. Moreover, smaller Ct.Thtibia was associated with smaller Ct.ThFN (R2 = 0.31, p < 0.05), lower Tb.BV/TVFN (R2 = 0.29, p < 0.05), higher Tb.SpFN (R2 = 0.33, p < 0.05) and lower Tb.NFN (R2 = 0.42, p < 0.01). A higher prevalence of pores with diameter > 100 μm in tibial cortical bone (relCt.Po100μm-tibia) indicated higher Tb.SpFN (R2 = 0.36, p < 0.01) and lower Tb.NFN (R2 = 0.45, p < 0.01).
Bone resorption and structural decline of the femoral neck may be identified in vivo by measuring cortical bone thickness and large pores in the tibia.
A lower thickness and the accumulation of large pores in the cortical bone of the tibia were associated with factors that impair femur strength: cortical bone thinning and rarefaction of the trabecular architecture in the femoral neck. [Display omitted]
•Femoral neck vBMD, cortical bone thickness and trabecular architecture are associated with human proximal femur strength•Thinner cortical bone in the tibia reflects thinner cortical bone and lower density and number of trabeculae in the femur neck•Large cortical bone pores in the tibia are associated with higher separation and lower number of trabeculae in the femur neck Cortical bone thinning and a rarefaction of the trabecular architecture represent possible causes of increased femoral neck (FN) fracture risk. Due to X-ray exposure limits, the bone microstructure is rarely measurable in the FN of subjects but can be assessed at the tibia. Here, we studied whether changes of the tibial cortical microstructure, which were previously reported to be associated with femur strength, are also associated with structural deteriorations of the femoral neck. The cortical and trabecular architectures in the FN of 19 humans were analyzed ex vivo on 3D microcomputed tomography images with 30.3 μm voxel size. Cortical thickness (Ct.Th ), porosity (Ct.Po ) and pore size distribution in the tibiae of the same subjects were measured using scanning acoustic microscopy (12 μm pixel size). Femur strength during sideways falls was simulated with homogenized voxel finite element models. Femur strength was associated with the total (vBMD ; R = 0.23, p < 0.01) and trabecular (vBMD ; R = 0.26, p < 0.01) volumetric bone mineral density (vBMD), with the cortical thickness (Ct.Th ; R = 0.29, p < 0.001) and with the trabecular bone volume fraction (Tb.BV/TV ; R = 0.34, p < 0.001), separation (Tb.Sp ; R = 0.25, p < 0.01) and number (Tb.N ; R = 0.32, p < 0.001) of the femoral neck. Moreover, smaller Ct.Th was associated with smaller Ct.Th (R = 0.31, p < 0.05), lower Tb.BV/TV (R = 0.29, p < 0.05), higher Tb.Sp (R = 0.33, p < 0.05) and lower Tb.N (R = 0.42, p < 0.01). A higher prevalence of pores with diameter > 100 μm in tibial cortical bone (relCt.Po ) indicated higher Tb.Sp (R = 0.36, p < 0.01) and lower Tb.N (R = 0.45, p < 0.01). Bone resorption and structural decline of the femoral neck may be identified in vivo by measuring cortical bone thickness and large pores in the tibia. Cortical bone thinning and a rarefaction of the trabecular architecture represent possible causes of increased femoral neck (FN) fracture risk. Due to X-ray exposure limits, the bone microstructure is rarely measurable in the FN of subjects but can be assessed at the tibia. Here, we studied whether changes of the tibial cortical microstructure, which were previously reported to be associated with femur strength, are also associated with structural deteriorations of the femoral neck.INTRODUCTIONCortical bone thinning and a rarefaction of the trabecular architecture represent possible causes of increased femoral neck (FN) fracture risk. Due to X-ray exposure limits, the bone microstructure is rarely measurable in the FN of subjects but can be assessed at the tibia. Here, we studied whether changes of the tibial cortical microstructure, which were previously reported to be associated with femur strength, are also associated with structural deteriorations of the femoral neck.The cortical and trabecular architectures in the FN of 19 humans were analyzed ex vivo on 3D microcomputed tomography images with 30.3 μm voxel size. Cortical thickness (Ct.Thtibia), porosity (Ct.Potibia) and pore size distribution in the tibiae of the same subjects were measured using scanning acoustic microscopy (12 μm pixel size). Femur strength during sideways falls was simulated with homogenized voxel finite element models.METHODSThe cortical and trabecular architectures in the FN of 19 humans were analyzed ex vivo on 3D microcomputed tomography images with 30.3 μm voxel size. Cortical thickness (Ct.Thtibia), porosity (Ct.Potibia) and pore size distribution in the tibiae of the same subjects were measured using scanning acoustic microscopy (12 μm pixel size). Femur strength during sideways falls was simulated with homogenized voxel finite element models.Femur strength was associated with the total (vBMDtot; R2 = 0.23, p < 0.01) and trabecular (vBMDtrab; R2 = 0.26, p < 0.01) volumetric bone mineral density (vBMD), with the cortical thickness (Ct.ThFN; R2 = 0.29, p < 0.001) and with the trabecular bone volume fraction (Tb.BV/TVFN; R2 = 0.34, p < 0.001), separation (Tb.SpFN; R2 = 0.25, p < 0.01) and number (Tb.NFN; R2 = 0.32, p < 0.001) of the femoral neck. Moreover, smaller Ct.Thtibia was associated with smaller Ct.ThFN (R2 = 0.31, p < 0.05), lower Tb.BV/TVFN (R2 = 0.29, p < 0.05), higher Tb.SpFN (R2 = 0.33, p < 0.05) and lower Tb.NFN (R2 = 0.42, p < 0.01). A higher prevalence of pores with diameter > 100 μm in tibial cortical bone (relCt.Po100μm-tibia) indicated higher Tb.SpFN (R2 = 0.36, p < 0.01) and lower Tb.NFN (R2 = 0.45, p < 0.01).RESULTSFemur strength was associated with the total (vBMDtot; R2 = 0.23, p < 0.01) and trabecular (vBMDtrab; R2 = 0.26, p < 0.01) volumetric bone mineral density (vBMD), with the cortical thickness (Ct.ThFN; R2 = 0.29, p < 0.001) and with the trabecular bone volume fraction (Tb.BV/TVFN; R2 = 0.34, p < 0.001), separation (Tb.SpFN; R2 = 0.25, p < 0.01) and number (Tb.NFN; R2 = 0.32, p < 0.001) of the femoral neck. Moreover, smaller Ct.Thtibia was associated with smaller Ct.ThFN (R2 = 0.31, p < 0.05), lower Tb.BV/TVFN (R2 = 0.29, p < 0.05), higher Tb.SpFN (R2 = 0.33, p < 0.05) and lower Tb.NFN (R2 = 0.42, p < 0.01). A higher prevalence of pores with diameter > 100 μm in tibial cortical bone (relCt.Po100μm-tibia) indicated higher Tb.SpFN (R2 = 0.36, p < 0.01) and lower Tb.NFN (R2 = 0.45, p < 0.01).Bone resorption and structural decline of the femoral neck may be identified in vivo by measuring cortical bone thickness and large pores in the tibia.CONCLUSIONBone resorption and structural decline of the femoral neck may be identified in vivo by measuring cortical bone thickness and large pores in the tibia. |
ArticleNumber | 115446 |
Author | Schneider, Johannes Glüer, Claus C. van den Bergh, J.P. Pahr, Dieter Heyer, Frans Peralta, Laura Wyers, Caroline Iori, Gianluca Raum, Kay Reisinger, Andreas |
Author_xml | – sequence: 1 givenname: Gianluca orcidid: 0000-0001-8611-3281 surname: Iori fullname: Iori, Gianluca organization: Berlin-Brandenburg Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany – sequence: 2 givenname: Johannes surname: Schneider fullname: Schneider, Johannes organization: Berlin-Brandenburg Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany – sequence: 3 givenname: Andreas surname: Reisinger fullname: Reisinger, Andreas organization: Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria – sequence: 4 givenname: Frans surname: Heyer fullname: Heyer, Frans organization: Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands – sequence: 5 givenname: Laura orcidid: 0000-0002-3753-5370 surname: Peralta fullname: Peralta, Laura organization: Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, INSERM UMR S 1146, CNRS UMR 7371, Paris, France – sequence: 6 givenname: Caroline surname: Wyers fullname: Wyers, Caroline organization: Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands – sequence: 7 givenname: Claus C. surname: Glüer fullname: Glüer, Claus C. organization: Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany – sequence: 8 givenname: J.P. surname: van den Bergh fullname: van den Bergh, J.P. organization: Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands – sequence: 9 givenname: Dieter surname: Pahr fullname: Pahr, Dieter organization: Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria – sequence: 10 givenname: Kay orcidid: 0000-0003-0573-1622 surname: Raum fullname: Raum, Kay email: kay.raum@charite.de organization: Berlin-Brandenburg Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32450342$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb1OHDEURi0EgoXkBVJELtPMxn9jz0ZpolVCIiHRJLXl8dwhXjz2xvYg0ebJ42GBgoJUtq7PuZK_7xwdhxgAoXeUrCmh8uNu3dfBmhFWB7QVQh6hFe0Ub5iS_BitOtXKhrOOnaHznHeEEL5R9BSdcSZawgVbob_bmIqzxuPy24Xgwg02YcDG2nmavSkuBhxH7E26AWyf2H1MkLELVQJcXO8MTjB6sAX7uAC5pNmWOdXrAAWSi-l51-KMMMXlMYC9fYNORuMzvH08L9Cvb19_br83V9eXP7ZfrhorWloaaEH1RsmetV3LDCVCDnxDhRw3gisBvTVi5KazZADOiDKdIsBlL5QcgY4jv0AfDnv3Kf6ZIRc9uWzBexMgzlkzQeRGKEHbir5_ROd-gkHvk5tMutdPuVWAHQCbYs71788IJXopR-_0Uo5eytGHcqrUvZCsKw-xlGScf139fFChBnTnIOlsHQQLg0s1dT1E97r-6YVuvQtLlbdw_z_5H5UUvzE |
CitedBy_id | crossref_primary_10_1007_s11914_020_00632_0 crossref_primary_10_1016_j_jbiomech_2021_110868 crossref_primary_10_3390_app12105283 crossref_primary_10_1002_jbm4_10536 crossref_primary_10_1371_journal_pone_0277831 crossref_primary_10_3389_fendo_2024_1474546 crossref_primary_10_3390_biomechanics2010012 crossref_primary_10_1109_TUFFC_2020_3033050 |
Cites_doi | 10.1016/j.bone.2018.05.005 10.1359/JBMR.050510 10.1109/TSMC.1978.4310039 10.1371/journal.pone.0191369 10.1016/j.bone.2012.09.006 10.1359/jbmr.2003.18.10.1781 10.1016/j.bone.2015.02.014 10.1371/journal.pone.0149480 10.1359/jbmr.081108 10.1016/j.bone.2008.07.236 10.1016/j.medengphy.2020.03.005 10.1016/j.bone.2013.01.007 10.1007/s00198-008-0833-6 10.1359/jbmr.1999.14.1.111 10.1002/jbmr.3561 10.1016/j.bone.2011.03.776 10.1046/j.1365-2818.1997.1340694.x 10.1359/jbmr.091020 10.1002/jbm.a.30156 10.1002/jbmr.3091 10.1016/S0736-0266(00)00046-2 10.1016/S8756-3282(98)00143-4 10.1371/journal.pone.0038466 10.1210/jc.2017-00536 10.1016/j.ultrasmedbio.2019.01.008 10.1002/jbmr.1763 10.1109/TUFFC.2007.426 10.1088/1361-6560/aac784 10.1016/j.pmatsci.2007.06.001 10.1121/1.5121010 10.1007/s00198-009-0993-z 10.1016/j.bone.2010.05.034 10.1016/j.jbiomech.2015.02.022 10.1016/j.clinbiomech.2008.12.007 10.1016/j.jbiomech.2009.05.001 10.1016/j.bone.2018.05.028 10.1016/j.ultrasmedbio.2006.06.010 10.1359/jbmr.070329 10.1016/j.bone.2015.06.006 10.1016/j.jocd.2007.12.013 10.1016/S8756-3282(97)00072-0 10.1109/TUFFC.2019.2948896 10.1016/j.ajpath.2013.12.005 10.1002/jbmr.3354 10.1016/S0140-6736(02)08706-8 10.1007/s10237-008-0125-2 10.1016/j.bone.2007.08.039 10.1016/S8756-3282(99)00272-0 10.1016/j.jbiomech.2014.12.010 10.1002/jbmr.3529 10.1002/jbmr.2817 10.1016/j.bone.2013.01.015 10.1002/jbmr.2033 10.1016/j.jbiomech.2013.04.026 10.1016/j.bone.2018.05.027 10.1007/s10237-008-0128-z |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.bone.2020.115446 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1873-2763 |
ExternalDocumentID | 32450342 10_1016_j_bone_2020_115446 S875632822030226X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABGSF ABJNI ABLJU ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM L7B M29 M41 MO0 N9A O-L O9- OAUVE OF0 OR. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSU SSZ T5K WUQ X7M Z5R ZGI ZMT ~02 ~G- 1RT AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RIG ZA5 AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c451t-e5e7ba76b25852a1046d39146f94374ebca4f3a8c0de3207a870e36b476fe1ff3 |
IEDL.DBID | AIKHN |
ISSN | 8756-3282 1873-2763 |
IngestDate | Thu Sep 04 15:19:48 EDT 2025 Wed Feb 19 02:30:12 EST 2025 Tue Jul 01 03:41:40 EDT 2025 Thu Apr 24 22:55:15 EDT 2025 Fri Feb 23 02:47:24 EST 2024 Tue Aug 26 16:31:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Porosity Finite element analysis Bone strength Cortical bone Hip fragility |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-e5e7ba76b25852a1046d39146f94374ebca4f3a8c0de3207a870e36b476fe1ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0573-1622 0000-0002-3753-5370 0000-0001-8611-3281 |
OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S875632822030226X-ga1_lrg.jpg |
PMID | 32450342 |
PQID | 2406947415 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2406947415 pubmed_primary_32450342 crossref_primary_10_1016_j_bone_2020_115446 crossref_citationtrail_10_1016_j_bone_2020_115446 elsevier_sciencedirect_doi_10_1016_j_bone_2020_115446 elsevier_clinicalkey_doi_10_1016_j_bone_2020_115446 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Bone (New York, N.Y.) |
PublicationTitleAlternate | Bone |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Nawathe, Akhlaghpour, Bouxsein, Keaveny (bb0070) 2014; 29 Power, Loveridge, Kröger, Parker, Reeve (bb0055) 2018; 114 Ohlsson, Sundh, Wallerek, Nilsson, Karlsson, Johansson, Mellström, Lorentzon (bb0090) 2017; 102 Bell, Loveridge, Power, Garrahan, Stanton, Lunt, Meggitt, Reeve (bb0210) 1999; 14 Karbalaeisadegh, Yousefian, Iori, Raum, Muller (bb0115) 2019; 146 Renaud, Kruizinga, Cassereau, Laugier (bb0100) 2018; 63 Patsch, Burghardt, Yap, Baum, Schwartz, Joseph, Link (bb0270) 2013; 28 Keyak, Skinner, Fleming (bb0040) 2001; 19 M.E. Kersh, S. Martelli, R. Zebaze, E. Seeman, M.G. Pandy, Mechanical loading of the femoral neck in human locomotion, J. Bone Miner. Res.. 0. doi Manske, Zhu, Sandino, Boyd (bb0305) 2015; 79 de Bakker, Manske, Ebacher, Oxland, Cripton, Guy (bb0045) 2009; 42 Zebaze, Ghasem-Zadeh, Mbala, Seeman (bb0280) 2013; 54 Iori, Schneider, Reisinger, Heyer, Peralta, Wyers, Gräsel, Barkmann, Glüer, van den Bergh, Pahr, Raum (bb0125) 2019; 14 Iori, Peralta, Reisinger, Heyer, Wyers, van den Bergh, Pahr, Raum (bb0140) 2020 Tjong, Nirody, Burghardt, Carballido-Gamio, Kazakia (bb0275) 2014; 41 Andreasen, Delaisse, van der Eerden, van Leeuwen, Ding, Andersen (bb0235) 2017; 33 Lang, Keyak, Heitz, Augat, Lu, Mathur, Genant (bb0180) 1997; 21 Shanbhogue, Brixen, Hansen (bb0265) 2016; 31 Hube, Mayr, Hein, Raum (bb0165) 2006; 32 Raum, Reißhauer, Brandt (bb0160) 2004; 71A Cristofolini, Angeli, Juszczyk, Juszczyk (bb0295) 2013; 46 Rietbergen, Huiskes, Eckstein, Rüegsegger (bb0025) 2003; 18 Andreasen, Ding, Overgaard, Bollen, Andersen (bb0250) 2015; 75 Zebaze, Jones, Knackstedt, Maalouf, Seeman (bb0010) 2007; 22 Iori, Heyer, Kilappa, Wyers, Varga, Schneider, Gräsel, Wendlandt, Barkmann, van den Bergh, Raum (bb0130) 2018; 114 Fink, Langsetmo, Vo, Orwoll, Schousboe, Ensrud (bb0260) 2018; 113 Malo, Rohrbach, Isaksson, Töyräs, Jurvelin, Tamminen, Kröger, Raum (bb0205) 2013; 53 Bakalova, Andreasen, Thomsen, Brüel, Hauge, Kiil, Delaisse, Andersen, Kersh (bb0255) 2018; 33 Chen, Zhou, Shoumura, Emura, Bunai (bb0215) 2010; 21 Christen, Boutroy, Ellouz, Chapurlat, van Rietbergen (bb0085) 2018; 13 Johannesdottir, Poole, Reeve, Siggeirsdottir, Aspelund, Mogensen, Jonsson, Sigurdsson, Harris, Gudnason, Sigurdsson (bb0060) 2011; 48 Seeman (bb0075) 2002; 359 Hartel, Petersik, Schmidt, Kendoff, Nüchtern, Rueger, Lehmann, Grossterlinden (bb0170) 2016; 11 Schneider, Ramiandrisoa, Armbrecht, Ritter, Felsenberg, Raum, Minonzio (bb0095) 2019; 45 Lakshmanan, Bodi, Raum (bb0155) 2007; 54 Wehner, Claes, Simon (bb0290) 2009; 24 Zani, Erani, Grassi, Taddei, Cristofolini (bb0035) 2015; 48 Garcia, Zysset, Charlebois, Curnier (bb0145) 2008; 8 Dalzell, Kaptoge, Morris, Berthier, Koller, Braak, van Rietbergen, Reeve (bb0310) 2009; 20 Wellner (bb0200) 1993 Rincón-Kohli, Zysset (bb0150) 2008; 8 Bell, Loveridge, Power, Garrahan, Meggitt, Reeve (bb0230) 1999; 24 Dall’Ara, Luisier, Schmidt, Kainberger, Zysset, Pahr (bb0135) 2013; 52 Nishiyama, Macdonald, Buie, Hanley, Boyd (bb0080) 2010; 25 Du, Iori, Raum (bb0120) 2018 Hildebrand, Rüegsegger (bb0195) 1997; 185 Lassen, Andersen, Pløen, Søe, Hauge, Harving, Eschen, Delaisse (bb0225) 2017; 32 Cristofolini (bb0015) 2015; 48 Boyd (bb0300) 2008; 11 Verhulp, van Rietbergen, Huiskes (bb0030) 2008; 42 Carpenter, Beaupré Gary, Lang, Orwoll, Carter (bb0175) 2009; 20 Andersen, Hauge, Rolighed, Bollerslev, Kjærsgaard-Andersen, Delaisse (bb0245) 2014; 184 Fratzl, Weinkamer (bb0005) 2007; 52 Nguyen Minh, Du, Raum (bb0105) 2020; 67 Holzer, von Skrbensky, Holzer, Pichl (bb0220) 2009; 24 Poole, Treece, Mayhew, Vaculík, Dungl, Horák, Štěpán, Gee (bb0050) 2012; 7 Blain, Chavassieux, Portero-Muzy, Bonnel, Canovas, Chammas, Maury, Delmas (bb0065) 2008; 43 Ridler, Calvard (bb0190) 1978; 8 (n.d.). Wu, Gibbons, Foreman, Carballido-Gamio, Krug, Liu, Link, Kazakia (bb0285) 2019 Minonzio, Bochud, Vallet, Ramiandrisoa, Etcheto, Briot, Kolta, Roux, Laugier (bb0110) 2019; 0 Burghardt, Buie, Laib, Majumdar, Boyd (bb0185) 2010; 47 Jordan, Loveridge, Bell, Power, Rushton, Reeve (bb0240) 2000; 26 Keyak (10.1016/j.bone.2020.115446_bb0040) 2001; 19 Cristofolini (10.1016/j.bone.2020.115446_bb0295) 2013; 46 Cristofolini (10.1016/j.bone.2020.115446_bb0015) 2015; 48 Wehner (10.1016/j.bone.2020.115446_bb0290) 2009; 24 Christen (10.1016/j.bone.2020.115446_bb0085) 2018; 13 Zebaze (10.1016/j.bone.2020.115446_bb0280) 2013; 54 Malo (10.1016/j.bone.2020.115446_bb0205) 2013; 53 10.1016/j.bone.2020.115446_bb0020 Lassen (10.1016/j.bone.2020.115446_bb0225) 2017; 32 Burghardt (10.1016/j.bone.2020.115446_bb0185) 2010; 47 Verhulp (10.1016/j.bone.2020.115446_bb0030) 2008; 42 de Bakker (10.1016/j.bone.2020.115446_bb0045) 2009; 42 Ridler (10.1016/j.bone.2020.115446_bb0190) 1978; 8 Wellner (10.1016/j.bone.2020.115446_bb0200) 1993 Patsch (10.1016/j.bone.2020.115446_bb0270) 2013; 28 Garcia (10.1016/j.bone.2020.115446_bb0145) 2008; 8 Tjong (10.1016/j.bone.2020.115446_bb0275) 2014; 41 Johannesdottir (10.1016/j.bone.2020.115446_bb0060) 2011; 48 Blain (10.1016/j.bone.2020.115446_bb0065) 2008; 43 Iori (10.1016/j.bone.2020.115446_bb0125) 2019; 14 Rietbergen (10.1016/j.bone.2020.115446_bb0025) 2003; 18 Holzer (10.1016/j.bone.2020.115446_bb0220) 2009; 24 Manske (10.1016/j.bone.2020.115446_bb0305) 2015; 79 Karbalaeisadegh (10.1016/j.bone.2020.115446_bb0115) 2019; 146 Renaud (10.1016/j.bone.2020.115446_bb0100) 2018; 63 Nguyen Minh (10.1016/j.bone.2020.115446_bb0105) 2020; 67 Bell (10.1016/j.bone.2020.115446_bb0230) 1999; 24 Nishiyama (10.1016/j.bone.2020.115446_bb0080) 2010; 25 Andreasen (10.1016/j.bone.2020.115446_bb0235) 2017; 33 Zani (10.1016/j.bone.2020.115446_bb0035) 2015; 48 Andersen (10.1016/j.bone.2020.115446_bb0245) 2014; 184 Boyd (10.1016/j.bone.2020.115446_bb0300) 2008; 11 Nawathe (10.1016/j.bone.2020.115446_bb0070) 2014; 29 Jordan (10.1016/j.bone.2020.115446_bb0240) 2000; 26 Rincón-Kohli (10.1016/j.bone.2020.115446_bb0150) 2008; 8 Hartel (10.1016/j.bone.2020.115446_bb0170) 2016; 11 Du (10.1016/j.bone.2020.115446_bb0120) Schneider (10.1016/j.bone.2020.115446_bb0095) 2019; 45 Lang (10.1016/j.bone.2020.115446_bb0180) 1997; 21 Dalzell (10.1016/j.bone.2020.115446_bb0310) 2009; 20 Poole (10.1016/j.bone.2020.115446_bb0050) 2012; 7 Iori (10.1016/j.bone.2020.115446_bb0130) 2018; 114 Iori (10.1016/j.bone.2020.115446_bb0140) 2020 Raum (10.1016/j.bone.2020.115446_bb0160) 2004; 71A Wu (10.1016/j.bone.2020.115446_bb0285) Ohlsson (10.1016/j.bone.2020.115446_bb0090) 2017; 102 Chen (10.1016/j.bone.2020.115446_bb0215) 2010; 21 Zebaze (10.1016/j.bone.2020.115446_bb0010) 2007; 22 Fratzl (10.1016/j.bone.2020.115446_bb0005) 2007; 52 Shanbhogue (10.1016/j.bone.2020.115446_bb0265) 2016; 31 Minonzio (10.1016/j.bone.2020.115446_bb0110) 2019; 0 Seeman (10.1016/j.bone.2020.115446_bb0075) 2002; 359 Bell (10.1016/j.bone.2020.115446_bb0210) 1999; 14 Bakalova (10.1016/j.bone.2020.115446_bb0255) 2018; 33 Dall’Ara (10.1016/j.bone.2020.115446_bb0135) 2013; 52 Andreasen (10.1016/j.bone.2020.115446_bb0250) 2015; 75 Power (10.1016/j.bone.2020.115446_bb0055) 2018; 114 Lakshmanan (10.1016/j.bone.2020.115446_bb0155) 2007; 54 Fink (10.1016/j.bone.2020.115446_bb0260) 2018; 113 Hildebrand (10.1016/j.bone.2020.115446_bb0195) 1997; 185 Hube (10.1016/j.bone.2020.115446_bb0165) 2006; 32 Carpenter (10.1016/j.bone.2020.115446_bb0175) 2009; 20 |
References_xml | – volume: 71A start-page: 430 year: 2004 end-page: 438 ident: bb0160 article-title: Frequency and resolution dependence of the anisotropic impedance estimation in cortical bone using time-resolved scanning acoustic microscopy publication-title: J. Biomed. Mater. Res. – volume: 75 start-page: 32 year: 2015 end-page: 39 ident: bb0250 article-title: A reversal phase arrest uncoupling the bone formation and resorption contributes to the bone loss in glucocorticoid treated ovariectomised aged sheep publication-title: Bone – volume: 48 start-page: 1268 year: 2011 end-page: 1276 ident: bb0060 article-title: Distribution of cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the AGES-REYKJAVIK study publication-title: Bone – volume: 48 start-page: 787 year: 2015 end-page: 796 ident: bb0015 article-title: In vitro evidence of the structural optimization of the human skeletal bones publication-title: J. Biomech. – volume: 46 start-page: 1882 year: 2013 end-page: 1892 ident: bb0295 article-title: Shape and function of the diaphysis of the human tibia publication-title: J. Biomech. – volume: 13 year: 2018 ident: bb0085 article-title: Least-detectable and age-related local in vivo bone remodelling assessed by time-lapse HR-pQCT publication-title: PLoS One – start-page: 1 year: 1993 end-page: 19 ident: bb0200 article-title: Adaptive Thresholding for the DigitalDesk, Xerox, EPC1993-110 – reference: (n.d.). – volume: 48 start-page: 2130 year: 2015 end-page: 2143 ident: bb0035 article-title: Strain distribution in the proximal Human femur during in vitro simulated sideways fall publication-title: Journal of Biomechanics – year: 2020 ident: bb0140 article-title: Femur strength predictions by nonlinear homogenized voxel finite element models reflect the microarchitecture of the femoral neck publication-title: Med. Eng. Phys. – volume: 359 start-page: 1841 year: 2002 end-page: 1850 ident: bb0075 article-title: Pathogenesis of bone fragility in women and men publication-title: Lancet – volume: 45 start-page: 1234 year: 2019 end-page: 1242 ident: bb0095 article-title: In vivo measurements of cortical thickness and porosity at the proximal third of the tibia using guided waves: comparison with site-matched peripheral quantitative computed tomography and distal high-resolution peripheral quantitative computed tomography publication-title: Ultrasound Med. Biol. – volume: 32 start-page: 1395 year: 2017 end-page: 1405 ident: bb0225 article-title: Coupling of bone resorption and formation in real time: new knowledge gained from human Haversian BMUs publication-title: J. Bone Miner. Res. – volume: 54 start-page: 1560 year: 2007 end-page: 1570 ident: bb0155 article-title: Assessment of anisotropic tissue elasticity of cortical bone from high-resolution, angular acoustic measurements publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 42 start-page: 30 year: 2008 end-page: 35 ident: bb0030 article-title: Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side publication-title: Bone – volume: 114 start-page: 81 year: 2018 end-page: 89 ident: bb0055 article-title: Femoral neck cortical bone in female and male hip fracture cases: differential contrasts in cortical width and sub-periosteal porosity in 112 cases and controls publication-title: Bone – volume: 24 start-page: 468 year: 2009 end-page: 474 ident: bb0220 article-title: Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength publication-title: J. Bone Miner. Res. – volume: 29 start-page: 507 year: 2014 end-page: 515 ident: bb0070 article-title: Microstructural failure mechanisms in the human proximal femur for sideways fall loading publication-title: J. Bone Miner. Res. – volume: 33 start-page: 2177 year: 2018 end-page: 2185 ident: bb0255 article-title: Intracortical bone mechanics are related to pore morphology and remodeling in human bone publication-title: J. Bone Miner. Res. – volume: 31 start-page: 1541 year: 2016 end-page: 1549 ident: bb0265 article-title: Age- and sex-related changes in bone microarchitecture and estimated strength: a three-year prospective study using HRpQCT publication-title: J. Bone Miner. Res. – volume: 8 start-page: 195 year: 2008 end-page: 208 ident: bb0150 article-title: Multi-axial mechanical properties of human trabecular bone publication-title: Biomech. Model. Mechanobiol. – volume: 41 year: 2014 ident: bb0275 article-title: Structural analysis of cortical porosity applied to HR-pQCT data publication-title: Med. Phys. – volume: 113 start-page: 49 year: 2018 end-page: 56 ident: bb0260 article-title: Association of High-resolution Peripheral Quantitative Computed Tomography (HR-pQCT) bone microarchitectural parameters with previous clinical fracture in older men: the Osteoporotic Fractures in Men (MrOS) study publication-title: Bone – volume: 67 start-page: 568 year: 2020 end-page: 579 ident: bb0105 article-title: Estimation of thickness and speed of sound in cortical bone using multifocus pulse-echo ultrasound publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 63 year: 2018 ident: bb0100 article-title: In vivo ultrasound imaging of the bone cortex publication-title: Phys. Med. Biol. – volume: 19 start-page: 539 year: 2001 end-page: 544 ident: bb0040 article-title: Effect of force direction on femoral fracture load for two types of loading conditions publication-title: J. Orthop. Res. – volume: 26 start-page: 305 year: 2000 end-page: 313 ident: bb0240 article-title: Spatial clustering of remodeling osteons in the femoral neck cortex: a cause of weakness in hip fracture? publication-title: Bone – reference: M.E. Kersh, S. Martelli, R. Zebaze, E. Seeman, M.G. Pandy, Mechanical loading of the femoral neck in human locomotion, J. Bone Miner. Res.. 0. doi: – volume: 20 start-page: 1533 year: 2009 end-page: 1542 ident: bb0175 article-title: New QCT analysis approach shows the importance of fall orientation on femoral neck strength publication-title: J. Bone Miner. Res. – year: 2018 ident: bb0120 article-title: In-silico validation of microstructure estimation from cortical bone backscatter – volume: 185 start-page: 67 year: 1997 end-page: 75 ident: bb0195 article-title: A new method for the model-independent assessment of thickness in three-dimensional images publication-title: J. Microsc. – volume: 22 start-page: 1055 year: 2007 end-page: 1061 ident: bb0010 article-title: Construction of the femoral neck during growth determines its strength in old age publication-title: J. Bone Miner. Res. – volume: 25 start-page: 882 year: 2010 end-page: 890 ident: bb0080 article-title: Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study publication-title: J. Bone Miner. Res. – volume: 146 start-page: 1015 year: 2019 end-page: 1023 ident: bb0115 article-title: Acoustic diffusion constant of cortical bone: numerical simulation study of the effect of pore size and pore density on multiple scattering publication-title: J. Acoust. Soc. Am. – volume: 47 start-page: 519 year: 2010 end-page: 528 ident: bb0185 article-title: Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT publication-title: Bone – volume: 14 start-page: 111 year: 1999 end-page: 119 ident: bb0210 article-title: Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis publication-title: J. Bone Miner. Res. – volume: 54 start-page: 8 year: 2013 end-page: 20 ident: bb0280 article-title: A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images publication-title: Bone – volume: 32 start-page: 1913 year: 2006 end-page: 1921 ident: bb0165 article-title: Prediction of biomechanical stability after callus distraction by high resolution scanning acoustic microscopy publication-title: Ultrasound Med. Biol. – volume: 42 start-page: 1917 year: 2009 end-page: 1925 ident: bb0045 article-title: During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures publication-title: J. Biomech. – volume: 52 start-page: 27 year: 2013 end-page: 38 ident: bb0135 article-title: A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro publication-title: Bone – volume: 18 start-page: 1781 year: 2003 end-page: 1788 ident: bb0025 article-title: Trabecular bone tissue strains in the healthy and osteoporotic human femur publication-title: J. Bone Miner. Res. – volume: 24 start-page: 57 year: 1999 end-page: 64 ident: bb0230 article-title: Regional differences in cortical porosity in the fractured femoral neck publication-title: Bone – volume: 11 year: 2016 ident: bb0170 article-title: Determination of femoral neck angle and torsion angle utilizing a novel three-dimensional modeling and analytical technology based on CT datasets publication-title: PLoS One – volume: 184 start-page: 1142 year: 2014 end-page: 1151 ident: bb0245 article-title: Correlation between absence of bone remodeling compartment canopies, reversal phase arrest, and deficient bone formation in post-menopausal osteoporosis publication-title: Am. J. Pathol. – volume: 8 start-page: 630 year: 1978 end-page: 632 ident: bb0190 article-title: Picture thresholding using an iterative selection method publication-title: IEEE Trans. Syst. Man Cybern. – volume: 8 start-page: 149 year: 2008 end-page: 165 ident: bb0145 article-title: A three-dimensional elastic plastic damage constitutive law for bone tissue publication-title: Biomech. Model. Mechanobiol. – volume: 21 start-page: 101 year: 1997 end-page: 108 ident: bb0180 article-title: Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength publication-title: Bone – volume: 53 start-page: 451 year: 2013 end-page: 458 ident: bb0205 article-title: Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur publication-title: Bone – volume: 24 start-page: 299 year: 2009 end-page: 302 ident: bb0290 article-title: Internal loads in the human tibia during gait publication-title: Clin. Biomech. – volume: 11 start-page: 424 year: 2008 end-page: 430 ident: bb0300 article-title: Site-specific variation of bone micro-architecture in the distal radius and tibia publication-title: J. Clin. Densitom. – volume: 52 start-page: 1263 year: 2007 end-page: 1334 ident: bb0005 article-title: Nature’s hierarchical materials publication-title: Prog. Mater. Sci. – volume: 102 start-page: 516 year: 2017 end-page: 524 ident: bb0090 article-title: Cortical bone area predicts incident fractures independently of areal bone mineral density in older men publication-title: J. Clin. Endocrinol. Metab. – year: 2019 ident: bb0285 article-title: Multi-Modality In Vivo Detection of Cortical Bone Vasculature: Comparison of Diabetes Patients to Healthy Controls – volume: 114 start-page: 50 year: 2018 end-page: 61 ident: bb0130 article-title: BMD-based assessment of local porosity in human femoral cortical bone publication-title: Bone – volume: 21 start-page: 627 year: 2010 end-page: 636 ident: bb0215 article-title: Age- and gender-dependent changes in three-dimensional microstructure of cortical and trabecular bone at the human femoral neck publication-title: Osteoporos. Int. – volume: 7 year: 2012 ident: bb0050 article-title: Cortical thickness mapping to identify focal osteoporosis in patients with hip fracture publication-title: PLoS One – volume: 0 year: 2019 ident: bb0110 article-title: Ultrasound-based estimates of cortical bone thickness and porosity are associated with non-traumatic fractures in postmenopausal women: a pilot study publication-title: J. Bone Miner. Res. – volume: 28 start-page: 313 year: 2013 end-page: 324 ident: bb0270 article-title: Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures publication-title: J. Bone Miner. Res. – volume: 79 start-page: 213 year: 2015 end-page: 221 ident: bb0305 article-title: Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT publication-title: Bone – volume: 14 year: 2019 ident: bb0125 article-title: Large cortical bone pores in the tibia are associated with proximal femur strength publication-title: PLoS One – volume: 43 start-page: 862 year: 2008 end-page: 868 ident: bb0065 article-title: Cortical and trabecular bone distribution in the femoral neck in osteoporosis and osteoarthritis publication-title: Bone – volume: 33 start-page: 606 year: 2017 end-page: 620 ident: bb0235 article-title: Understanding age-induced cortical porosity in women: the accumulation and coalescence of eroded cavities upon existing intracortical canals is the main contributor publication-title: J. Bone Miner. Res. – volume: 20 start-page: 1683 year: 2009 end-page: 1694 ident: bb0310 article-title: Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT publication-title: Osteoporos. Int. – volume: 113 start-page: 49 year: 2018 ident: 10.1016/j.bone.2020.115446_bb0260 article-title: Association of High-resolution Peripheral Quantitative Computed Tomography (HR-pQCT) bone microarchitectural parameters with previous clinical fracture in older men: the Osteoporotic Fractures in Men (MrOS) study publication-title: Bone doi: 10.1016/j.bone.2018.05.005 – volume: 20 start-page: 1533 year: 2009 ident: 10.1016/j.bone.2020.115446_bb0175 article-title: New QCT analysis approach shows the importance of fall orientation on femoral neck strength publication-title: J. Bone Miner. Res. doi: 10.1359/JBMR.050510 – volume: 8 start-page: 630 year: 1978 ident: 10.1016/j.bone.2020.115446_bb0190 article-title: Picture thresholding using an iterative selection method publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1978.4310039 – volume: 13 year: 2018 ident: 10.1016/j.bone.2020.115446_bb0085 article-title: Least-detectable and age-related local in vivo bone remodelling assessed by time-lapse HR-pQCT publication-title: PLoS One doi: 10.1371/journal.pone.0191369 – volume: 52 start-page: 27 year: 2013 ident: 10.1016/j.bone.2020.115446_bb0135 article-title: A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro publication-title: Bone doi: 10.1016/j.bone.2012.09.006 – volume: 18 start-page: 1781 year: 2003 ident: 10.1016/j.bone.2020.115446_bb0025 article-title: Trabecular bone tissue strains in the healthy and osteoporotic human femur publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2003.18.10.1781 – volume: 75 start-page: 32 year: 2015 ident: 10.1016/j.bone.2020.115446_bb0250 article-title: A reversal phase arrest uncoupling the bone formation and resorption contributes to the bone loss in glucocorticoid treated ovariectomised aged sheep publication-title: Bone doi: 10.1016/j.bone.2015.02.014 – volume: 14 year: 2019 ident: 10.1016/j.bone.2020.115446_bb0125 article-title: Large cortical bone pores in the tibia are associated with proximal femur strength publication-title: PLoS One – volume: 11 year: 2016 ident: 10.1016/j.bone.2020.115446_bb0170 article-title: Determination of femoral neck angle and torsion angle utilizing a novel three-dimensional modeling and analytical technology based on CT datasets publication-title: PLoS One doi: 10.1371/journal.pone.0149480 – volume: 24 start-page: 468 year: 2009 ident: 10.1016/j.bone.2020.115446_bb0220 article-title: Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.081108 – volume: 41 year: 2014 ident: 10.1016/j.bone.2020.115446_bb0275 article-title: Structural analysis of cortical porosity applied to HR-pQCT data publication-title: Med. Phys. – volume: 43 start-page: 862 year: 2008 ident: 10.1016/j.bone.2020.115446_bb0065 article-title: Cortical and trabecular bone distribution in the femoral neck in osteoporosis and osteoarthritis publication-title: Bone doi: 10.1016/j.bone.2008.07.236 – year: 2020 ident: 10.1016/j.bone.2020.115446_bb0140 article-title: Femur strength predictions by nonlinear homogenized voxel finite element models reflect the microarchitecture of the femoral neck publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2020.03.005 – volume: 54 start-page: 8 year: 2013 ident: 10.1016/j.bone.2020.115446_bb0280 article-title: A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images publication-title: Bone doi: 10.1016/j.bone.2013.01.007 – volume: 20 start-page: 1683 year: 2009 ident: 10.1016/j.bone.2020.115446_bb0310 article-title: Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT publication-title: Osteoporos. Int. doi: 10.1007/s00198-008-0833-6 – volume: 14 start-page: 111 year: 1999 ident: 10.1016/j.bone.2020.115446_bb0210 article-title: Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.1999.14.1.111 – volume: 33 start-page: 2177 year: 2018 ident: 10.1016/j.bone.2020.115446_bb0255 article-title: Intracortical bone mechanics are related to pore morphology and remodeling in human bone publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.3561 – volume: 48 start-page: 1268 year: 2011 ident: 10.1016/j.bone.2020.115446_bb0060 article-title: Distribution of cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the AGES-REYKJAVIK study publication-title: Bone doi: 10.1016/j.bone.2011.03.776 – volume: 185 start-page: 67 year: 1997 ident: 10.1016/j.bone.2020.115446_bb0195 article-title: A new method for the model-independent assessment of thickness in three-dimensional images publication-title: J. Microsc. doi: 10.1046/j.1365-2818.1997.1340694.x – volume: 25 start-page: 882 year: 2010 ident: 10.1016/j.bone.2020.115446_bb0080 article-title: Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.091020 – volume: 71A start-page: 430 year: 2004 ident: 10.1016/j.bone.2020.115446_bb0160 article-title: Frequency and resolution dependence of the anisotropic impedance estimation in cortical bone using time-resolved scanning acoustic microscopy publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.a.30156 – volume: 32 start-page: 1395 year: 2017 ident: 10.1016/j.bone.2020.115446_bb0225 article-title: Coupling of bone resorption and formation in real time: new knowledge gained from human Haversian BMUs publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.3091 – volume: 19 start-page: 539 year: 2001 ident: 10.1016/j.bone.2020.115446_bb0040 article-title: Effect of force direction on femoral fracture load for two types of loading conditions publication-title: J. Orthop. Res. doi: 10.1016/S0736-0266(00)00046-2 – volume: 24 start-page: 57 year: 1999 ident: 10.1016/j.bone.2020.115446_bb0230 article-title: Regional differences in cortical porosity in the fractured femoral neck publication-title: Bone doi: 10.1016/S8756-3282(98)00143-4 – volume: 7 year: 2012 ident: 10.1016/j.bone.2020.115446_bb0050 article-title: Cortical thickness mapping to identify focal osteoporosis in patients with hip fracture publication-title: PLoS One doi: 10.1371/journal.pone.0038466 – volume: 102 start-page: 516 year: 2017 ident: 10.1016/j.bone.2020.115446_bb0090 article-title: Cortical bone area predicts incident fractures independently of areal bone mineral density in older men publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2017-00536 – ident: 10.1016/j.bone.2020.115446_bb0285 – volume: 45 start-page: 1234 year: 2019 ident: 10.1016/j.bone.2020.115446_bb0095 article-title: In vivo measurements of cortical thickness and porosity at the proximal third of the tibia using guided waves: comparison with site-matched peripheral quantitative computed tomography and distal high-resolution peripheral quantitative computed tomography publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2019.01.008 – volume: 0 year: 2019 ident: 10.1016/j.bone.2020.115446_bb0110 article-title: Ultrasound-based estimates of cortical bone thickness and porosity are associated with non-traumatic fractures in postmenopausal women: a pilot study publication-title: J. Bone Miner. Res. – volume: 28 start-page: 313 year: 2013 ident: 10.1016/j.bone.2020.115446_bb0270 article-title: Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1763 – volume: 54 start-page: 1560 year: 2007 ident: 10.1016/j.bone.2020.115446_bb0155 article-title: Assessment of anisotropic tissue elasticity of cortical bone from high-resolution, angular acoustic measurements publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2007.426 – volume: 63 year: 2018 ident: 10.1016/j.bone.2020.115446_bb0100 article-title: In vivo ultrasound imaging of the bone cortex publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aac784 – volume: 52 start-page: 1263 year: 2007 ident: 10.1016/j.bone.2020.115446_bb0005 article-title: Nature’s hierarchical materials publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2007.06.001 – volume: 146 start-page: 1015 year: 2019 ident: 10.1016/j.bone.2020.115446_bb0115 article-title: Acoustic diffusion constant of cortical bone: numerical simulation study of the effect of pore size and pore density on multiple scattering publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5121010 – volume: 21 start-page: 627 year: 2010 ident: 10.1016/j.bone.2020.115446_bb0215 article-title: Age- and gender-dependent changes in three-dimensional microstructure of cortical and trabecular bone at the human femoral neck publication-title: Osteoporos. Int. doi: 10.1007/s00198-009-0993-z – volume: 47 start-page: 519 year: 2010 ident: 10.1016/j.bone.2020.115446_bb0185 article-title: Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT publication-title: Bone doi: 10.1016/j.bone.2010.05.034 – volume: 48 start-page: 2130 year: 2015 ident: 10.1016/j.bone.2020.115446_bb0035 article-title: Strain distribution in the proximal Human femur during in vitro simulated sideways fall publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2015.02.022 – volume: 24 start-page: 299 year: 2009 ident: 10.1016/j.bone.2020.115446_bb0290 article-title: Internal loads in the human tibia during gait publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2008.12.007 – volume: 42 start-page: 1917 year: 2009 ident: 10.1016/j.bone.2020.115446_bb0045 article-title: During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.05.001 – volume: 114 start-page: 50 year: 2018 ident: 10.1016/j.bone.2020.115446_bb0130 article-title: BMD-based assessment of local porosity in human femoral cortical bone publication-title: Bone doi: 10.1016/j.bone.2018.05.028 – volume: 32 start-page: 1913 year: 2006 ident: 10.1016/j.bone.2020.115446_bb0165 article-title: Prediction of biomechanical stability after callus distraction by high resolution scanning acoustic microscopy publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2006.06.010 – volume: 22 start-page: 1055 year: 2007 ident: 10.1016/j.bone.2020.115446_bb0010 article-title: Construction of the femoral neck during growth determines its strength in old age publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.070329 – volume: 79 start-page: 213 year: 2015 ident: 10.1016/j.bone.2020.115446_bb0305 article-title: Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT publication-title: Bone doi: 10.1016/j.bone.2015.06.006 – volume: 11 start-page: 424 year: 2008 ident: 10.1016/j.bone.2020.115446_bb0300 article-title: Site-specific variation of bone micro-architecture in the distal radius and tibia publication-title: J. Clin. Densitom. doi: 10.1016/j.jocd.2007.12.013 – volume: 21 start-page: 101 year: 1997 ident: 10.1016/j.bone.2020.115446_bb0180 article-title: Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength publication-title: Bone doi: 10.1016/S8756-3282(97)00072-0 – volume: 67 start-page: 568 year: 2020 ident: 10.1016/j.bone.2020.115446_bb0105 article-title: Estimation of thickness and speed of sound in cortical bone using multifocus pulse-echo ultrasound publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2019.2948896 – volume: 184 start-page: 1142 year: 2014 ident: 10.1016/j.bone.2020.115446_bb0245 article-title: Correlation between absence of bone remodeling compartment canopies, reversal phase arrest, and deficient bone formation in post-menopausal osteoporosis publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2013.12.005 – ident: 10.1016/j.bone.2020.115446_bb0120 – volume: 33 start-page: 606 year: 2017 ident: 10.1016/j.bone.2020.115446_bb0235 article-title: Understanding age-induced cortical porosity in women: the accumulation and coalescence of eroded cavities upon existing intracortical canals is the main contributor publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.3354 – volume: 359 start-page: 1841 year: 2002 ident: 10.1016/j.bone.2020.115446_bb0075 article-title: Pathogenesis of bone fragility in women and men publication-title: Lancet doi: 10.1016/S0140-6736(02)08706-8 – volume: 8 start-page: 149 year: 2008 ident: 10.1016/j.bone.2020.115446_bb0145 article-title: A three-dimensional elastic plastic damage constitutive law for bone tissue publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-008-0125-2 – volume: 42 start-page: 30 year: 2008 ident: 10.1016/j.bone.2020.115446_bb0030 article-title: Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side publication-title: Bone doi: 10.1016/j.bone.2007.08.039 – volume: 26 start-page: 305 year: 2000 ident: 10.1016/j.bone.2020.115446_bb0240 article-title: Spatial clustering of remodeling osteons in the femoral neck cortex: a cause of weakness in hip fracture? publication-title: Bone doi: 10.1016/S8756-3282(99)00272-0 – volume: 48 start-page: 787 year: 2015 ident: 10.1016/j.bone.2020.115446_bb0015 article-title: In vitro evidence of the structural optimization of the human skeletal bones publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.12.010 – ident: 10.1016/j.bone.2020.115446_bb0020 doi: 10.1002/jbmr.3529 – start-page: 1 year: 1993 ident: 10.1016/j.bone.2020.115446_bb0200 – volume: 31 start-page: 1541 year: 2016 ident: 10.1016/j.bone.2020.115446_bb0265 article-title: Age- and sex-related changes in bone microarchitecture and estimated strength: a three-year prospective study using HRpQCT publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2817 – volume: 53 start-page: 451 year: 2013 ident: 10.1016/j.bone.2020.115446_bb0205 article-title: Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur publication-title: Bone doi: 10.1016/j.bone.2013.01.015 – volume: 29 start-page: 507 year: 2014 ident: 10.1016/j.bone.2020.115446_bb0070 article-title: Microstructural failure mechanisms in the human proximal femur for sideways fall loading publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2033 – volume: 46 start-page: 1882 year: 2013 ident: 10.1016/j.bone.2020.115446_bb0295 article-title: Shape and function of the diaphysis of the human tibia publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.04.026 – volume: 114 start-page: 81 year: 2018 ident: 10.1016/j.bone.2020.115446_bb0055 article-title: Femoral neck cortical bone in female and male hip fracture cases: differential contrasts in cortical width and sub-periosteal porosity in 112 cases and controls publication-title: Bone doi: 10.1016/j.bone.2018.05.027 – volume: 8 start-page: 195 year: 2008 ident: 10.1016/j.bone.2020.115446_bb0150 article-title: Multi-axial mechanical properties of human trabecular bone publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-008-0128-z |
SSID | ssj0003971 |
Score | 2.3928258 |
Snippet | Cortical bone thinning and a rarefaction of the trabecular architecture represent possible causes of increased femoral neck (FN) fracture risk. Due to X-ray... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 115446 |
SubjectTerms | Bone strength Cortical bone Finite element analysis Hip fragility Porosity |
Title | Cortical thinning and accumulation of large cortical pores in the tibia reflect local structural deterioration of the femoral neck |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S875632822030226X https://dx.doi.org/10.1016/j.bone.2020.115446 https://www.ncbi.nlm.nih.gov/pubmed/32450342 https://www.proquest.com/docview/2406947415 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BIlW9oBb6WNoiV6q4VOlubMfZHFerom0ruBSkvVm2Y6uhkEWwHLhw4Jd3JnZWQqJU6jGPSUb2eOaz_c0Y4FNJZb0DzzPBJz7D-ZfLrJmYLMjKOowXUgTKdz46VvNT-X1RLDZg1ufCEK0y-f7o0ztvne6MUmuOLptm9BORthLEgkQ7RRCx2IQtLipVDGBr-u3H_HjtkDHk5nGZT5FKPOXORJqXXbZULZOT8ygk4eDH49Pf8GcXhw5fwHYCkGwadXwJG77dgd1pi5Pni1t2wDpKZ7dWvgPPjtLO-S7cz5ZX3bI1W_1qumOKmGlrZpy7uUgneLFlYOdEDGeufxfBub9mTYtCnnXZJQw1ppV-1gVBFsvPUukOVhOxpkkWRd8imUBEXnzYevf7FZwefj2ZzbN0_kLmZJGvMl_40ppSWY5zCm5oN7gWFbrWUElRSqJRySDMxI1rL_i4NDj2vVBWlir4PATxGgYtNu9bYNY5VWMwDEYhBKq5KYK1iDysm1RjtJUh5H2ra5eKk9MZGee6Z6GdaeopTT2lY08N4fNa5jKW5njybdF3pu6TTtFNaowcT0oVa6kHZvlPuY-9vWgcr7QJY1q_vLnWMdWYcNwQ3kRDWmuP4Lagkox7__nXd_CcriI_8T0M0AT8B8RMK7sPm1_u8v00Mv4App0V0w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKlEuVctz6QMjIS4o7CZ2kt0jWoG2wHIpSHuzbMdWUyCLYDlw4dBf3hnbWVSJUqnXOJNY9njm8_ibMcBuSWW9XZYmPOvbBPdfJtGqrxInBtqgvxDcUb7z-LwYXYqTST5ZgGGbC0O0ymj7g0331jo-6cbR7N7Wdfc7Iu2CEwsS9RRBxOQNvBU5L4nXd_D0zPNAh5uGIF9BHcpi5kwgeelpQ7UyMzIduSAU_LJ3-hv69F7o-AO8j_CRHYYefoQF26zA6mGDW-ebR7bHPKHTR8pXYGkcz81X4ddweueD1mz2o_aXFDHVVEwZ83AT7-9iU8euiRbOTPsuQnN7z-oGhSzzuSUMe0xxfuZdIAvFZ6lwB6uIVlNHfaJvkYwjGi82NtZcrcHl8dHFcJTE2xcSI_J0ltjcllqVhc5wR5EpOguu-AANqxsIXgoiUQnHVd_0KsuzXqlw5VteaFEWzqbO8XVYbHB4N4FpY4oKXaFTBQKgKlO50xpxhzb9QQ81pQNpO-rSxNLkdEPGtWw5aD8lzZSkmZJhpjqwP5e5DYU5Xn2bt5Mp25RTNJIS_carUvlc6g-l_KfcTqsvElcrHcGoxk4f7mVINCYU14GNoEjz3iO0zakg49Z__nUb3o0uxmfy7Nv56SdYppbAVPwMi6gO9guip5n-6lfHbwRlFp4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+thinning+and+accumulation+of+large+cortical+pores+in+the+tibia+reflect+local+structural+deterioration+of+the+femoral+neck&rft.jtitle=Bone+%28New+York%2C+N.Y.%29&rft.au=Iori%2C+Gianluca&rft.au=Schneider%2C+Johannes&rft.au=Reisinger%2C+Andreas&rft.au=Heyer%2C+Frans&rft.date=2020-08-01&rft.pub=Elsevier+Inc&rft.issn=8756-3282&rft.eissn=1873-2763&rft.volume=137&rft_id=info:doi/10.1016%2Fj.bone.2020.115446&rft.externalDocID=S875632822030226X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-3282&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-3282&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-3282&client=summon |