The ubiquitin isopeptidase USP10 deubiquitinates LC3B to increase LC3B levels and autophagic activity

Components of the autophagy machinery are subject to regulation by various posttranslational modifications. Previous studies showed that monoubiquitination of LC3B catalyzed by the ubiquitin-activating enzyme UBA6 and ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 targets LC3B for proteasomal d...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 296; p. 100405
Main Authors Jia, Rui, Bonifacino, Juan S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2021
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Components of the autophagy machinery are subject to regulation by various posttranslational modifications. Previous studies showed that monoubiquitination of LC3B catalyzed by the ubiquitin-activating enzyme UBA6 and ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 targets LC3B for proteasomal degradation, thus reducing LC3B levels and autophagic activity under conditions of stress. However, mechanisms capable of counteracting this process are not known. Herein, we report that LC3B ubiquitination is reversed by the action of the deubiquitinating enzyme USP10. We identified USP10 in a CRISPR-Cas9 knockout screen for ubiquitination-related genes that regulate LC3B levels. Biochemical analyses showed that silencing of USP10 reduces the levels of both the LC3B-I and LC3B-II forms of LC3B through increased ubiquitination and proteasomal degradation. In turn, the reduced LC3B levels result in slower degradation of the autophagy receptors SQSTM1 and NBR1 and an increased accumulation of puromycin-induced aggresome-like structures. Taken together, these findings indicate that the levels of LC3B and autophagic activity are controlled through cycles of LC3B ubiquitination and deubiquitination.
AbstractList Components of the autophagy machinery are subject to regulation by various posttranslational modifications. Previous studies showed that monoubiquitination of LC3B catalyzed by the ubiquitin-activating enzyme UBA6 and ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 targets LC3B for proteasomal degradation, thus reducing LC3B levels and autophagic activity under conditions of stress. However, mechanisms capable of counteracting this process are not known. Herein, we report that LC3B ubiquitination is reversed by the action of the deubiquitinating enzyme USP10. We identified USP10 in a CRISPR-Cas9 knockout screen for ubiquitination-related genes that regulate LC3B levels. Biochemical analyses showed that silencing of USP10 reduces the levels of both the LC3B-I and LC3B-II forms of LC3B through increased ubiquitination and proteasomal degradation. In turn, the reduced LC3B levels result in slower degradation of the autophagy receptors SQSTM1 and NBR1 and an increased accumulation of puromycin-induced aggresome-like structures. Taken together, these findings indicate that the levels of LC3B and autophagic activity are controlled through cycles of LC3B ubiquitination and deubiquitination.
Components of the autophagy machinery are subject to regulation by various posttranslational modifications. Previous studies showed that monoubiquitination of LC3B catalyzed by the ubiquitin-activating enzyme UBA6 and ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 targets LC3B for proteasomal degradation, thus reducing LC3B levels and autophagic activity under conditions of stress. However, mechanisms capable of counteracting this process are not known. Herein, we report that LC3B ubiquitination is reversed by the action of the deubiquitinating enzyme USP10. We identified USP10 in a CRISPR-Cas9 knockout screen for ubiquitination-related genes that regulate LC3B levels. Biochemical analyses showed that silencing of USP10 reduces the levels of both the LC3B-I and LC3B-II forms of LC3B through increased ubiquitination and proteasomal degradation. In turn, the reduced LC3B levels result in slower degradation of the autophagy receptors SQSTM1 and NBR1 and an increased accumulation of puromycin-induced aggresome-like structures. Taken together, these findings indicate that the levels of LC3B and autophagic activity are controlled through cycles of LC3B ubiquitination and deubiquitination.Components of the autophagy machinery are subject to regulation by various posttranslational modifications. Previous studies showed that monoubiquitination of LC3B catalyzed by the ubiquitin-activating enzyme UBA6 and ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 targets LC3B for proteasomal degradation, thus reducing LC3B levels and autophagic activity under conditions of stress. However, mechanisms capable of counteracting this process are not known. Herein, we report that LC3B ubiquitination is reversed by the action of the deubiquitinating enzyme USP10. We identified USP10 in a CRISPR-Cas9 knockout screen for ubiquitination-related genes that regulate LC3B levels. Biochemical analyses showed that silencing of USP10 reduces the levels of both the LC3B-I and LC3B-II forms of LC3B through increased ubiquitination and proteasomal degradation. In turn, the reduced LC3B levels result in slower degradation of the autophagy receptors SQSTM1 and NBR1 and an increased accumulation of puromycin-induced aggresome-like structures. Taken together, these findings indicate that the levels of LC3B and autophagic activity are controlled through cycles of LC3B ubiquitination and deubiquitination.
ArticleNumber 100405
Author Bonifacino, Juan S.
Jia, Rui
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0002-1797-4069
  surname: Jia
  fullname: Jia, Rui
  email: rui.jia@nih.gov, rui.jia@hotmail.com
– sequence: 2
  givenname: Juan S.
  orcidid: 0000-0002-5673-6370
  surname: Bonifacino
  fullname: Bonifacino, Juan S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33577797$$D View this record in MEDLINE/PubMed
BookMark eNp9Uc9rFDEUDlKx2-of4EVy9DJrMkkmEwTBLrYKCwq24C1kkjfdt8xOppPMQv97Z922qIe-S3jv-wX5zshJH3sg5C1nS8549WG73DZ-WbKSzzuTTL0gC85qUQjFf52QBZuRwpSqPiVnKW3ZPNLwV-RUCKW1NnpB4HoDdGrwbsKMPcUUBxgyBpeA3vz8wRkN8AS7DImuV-KC5kix9yMcaH8OHeyhS9T1gbopx2HjbtFT5zPuMd-_Ji9b1yV48_Cek5vLL9err8X6-9W31ed14aXiuQAWfNMwAb42NTjVMGhN8DVoWWonlZfOmLaVdTC-rdtaa6hKJh3jQjslgzgnn46-w9TsIHjo8-g6O4y4c-O9jQ7tv0iPG3sb91abiikhZ4P3DwZjvJsgZbvD5KHrXA9xSraUtSkrUSk2U9_9nfUU8vi3M0EfCX6MKY3QWo_ZZYyHaOwsZ_bQot3auUV7aNEeW5yV_D_lo_lzmo9HzVwD7BFGmzxC7yHgCD7bEPEZ9W-vBLXt
CitedBy_id crossref_primary_10_1016_j_isci_2025_112118
crossref_primary_10_1016_j_tranon_2024_101996
crossref_primary_10_3389_fcell_2022_830046
crossref_primary_10_1016_j_bbadis_2023_166891
crossref_primary_10_1016_j_jchemneu_2022_102144
crossref_primary_10_1155_2022_4220331
crossref_primary_10_1016_j_cytogfr_2024_11_006
crossref_primary_10_3724_abbs_2023149
crossref_primary_10_1016_j_dld_2022_02_009
crossref_primary_10_1016_j_jbc_2025_108190
crossref_primary_10_1038_s41467_025_56346_3
crossref_primary_10_3389_fmolb_2022_1074701
crossref_primary_10_3389_fimmu_2023_1252827
crossref_primary_10_1007_s12032_022_01832_7
crossref_primary_10_1038_s41388_024_03141_x
crossref_primary_10_1186_s13578_024_01291_9
crossref_primary_10_3389_fmolb_2021_693325
crossref_primary_10_1155_2022_3881962
crossref_primary_10_1007_s10637_023_01360_9
crossref_primary_10_1128_mcb_00393_21
crossref_primary_10_3390_ijms26062762
crossref_primary_10_3390_genes13050831
Cites_doi 10.7554/eLife.50034
10.1016/j.molcel.2016.01.010
10.1038/s41580-018-0003-4
10.1038/s41580-019-0099-1
10.1242/jcs.026005
10.1074/jbc.M702824200
10.4161/15548627.2014.984267
10.1186/s13059-014-0554-4
10.1016/S0021-9258(17)49883-8
10.1073/pnas.0712145105
10.3892/etm.2015.2266
10.1016/j.cell.2018.09.048
10.4161/auto.1.2.1697
10.1146/annurev-biochem-060815-014556
10.1038/nrd.2017.22
10.1074/jbc.M112.350934
10.1038/labinvest.2014.131
10.1016/j.devcel.2015.02.011
10.1038/nrd3802
10.1016/j.molcel.2014.12.013
10.1038/emboj.2010.74
10.1016/j.neuropharm.2015.02.003
10.1080/15548627.2017.1343768
10.1074/mcp.R110.003871
10.1038/s41419-019-1520-6
10.1016/j.cell.2011.08.037
10.1016/j.bbrc.2010.04.030
10.1074/jbc.M807135200
10.1073/pnas.1901039116
10.4161/auto.2731
ContentType Journal Article
Copyright 2021
Published by Elsevier Inc.
Copyright_xml – notice: 2021
– notice: Published by Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jbc.2021.100405
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
ExternalDocumentID PMC7960534
33577797
10_1016_j_jbc_2021_100405
S0021925821001770
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA HD001607
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0SF
186
18M
29J
2WC
34G
39C
3O-
4.4
41~
53G
5BI
5GY
5RE
5VS
6I.
6TJ
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
AAYJJ
AAYOK
ABDNZ
ABFSI
ABOCM
ABPPZ
ABRJW
ABTAH
ACGFO
ACNCT
ACSFO
ACYGS
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFDAS
AFFNX
AFMIJ
AFOSN
AFPKN
AHPSJ
AI.
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F20
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
J5H
KQ8
L7B
MVM
N9A
NHB
OHT
OK1
P-O
P0W
P2P
QZG
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
ZA5
ZE2
ZGI
ZY4
~02
~KM
.7T
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
H13
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c451t-e0dcbb03ec898ea5b0ef9dc8e7427a45c4a99ff48d9cf8f877e6204a0137a54d3
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 14:09:25 EDT 2025
Thu Jul 10 20:03:21 EDT 2025
Mon Jul 21 05:35:40 EDT 2025
Thu Apr 24 23:09:26 EDT 2025
Tue Jul 01 04:33:20 EDT 2025
Fri Feb 23 02:43:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MAGeCK
RRA
autophagy
KO
USP10
LC3B
ALIS
tfLC3B
ubiquitin
DUB
CHX
ATG
protein aggregation
KD
deubiquitination
NGS
CRISPR/cas
LC3
Language English
License This is an open access article under the CC BY license.
Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c451t-e0dcbb03ec898ea5b0ef9dc8e7427a45c4a99ff48d9cf8f877e6204a0137a54d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5673-6370
0000-0002-1797-4069
OpenAccessLink http://dx.doi.org/10.1016/j.jbc.2021.100405
PMID 33577797
PQID 2489263650
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7960534
proquest_miscellaneous_2489263650
pubmed_primary_33577797
crossref_citationtrail_10_1016_j_jbc_2021_100405
crossref_primary_10_1016_j_jbc_2021_100405
elsevier_sciencedirect_doi_10_1016_j_jbc_2021_100405
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2021
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Wani, Boyer-Guittaut, Dodson, Chatham, Darley-Usmar, Zhang (bib4) 2015; 95
Galluzzi, Bravo-San Pedro, Levine, Green, Kroemer (bib28) 2017; 16
Pu, Schindler, Jia, Jarnik, Backlund, Bonifacino (bib30) 2015; 33
Jia, Bonifacino (bib12) 2019; 8
Shrestha, Skytte Rasmussen, Abudu, Bruun, Larsen, Alemu, Sjøttem, Lamark, Johansen (bib6) 2020; 295
Dikic, Elazar (bib2) 2018; 19
Jiang, Cheng, Liu, Peng, Feng (bib7) 2010; 395
Deng, Yang, Qin, Liu, Zhang, Guo, Lee, Kim, Yuan, Pei, Wang, Lou (bib22) 2016; 61
Hung, Huang, Liou, Fu (bib26) 2015; 93
Weidberg, Shvets, Shpilka, Shimron, Shinder, Elazar (bib24) 2010; 29
Li, Xu, Xiao, Cong, Love, Zhang, Irizarry, Liu, Brown, Liu (bib15) 2014; 15
Shvets, Fass, Scherz-Shouval, Elazar (bib23) 2008; 121
Xie, Kang, Sun, Zhong, Huang, Klionsky, Tang (bib5) 2015; 11
Peng, DU, Zhang, DU, Jin, Gong (bib25) 2015; 9
Lee, Lee, Hanna, King, Finley (bib18) 2011; 10
Levine, Kroemer (bib3) 2019; 176
Liu, Xia, Kim, Xu, Li, Zhang, Cai, Norberg, Zhang, Furuya, Jin, Zhu, Wang, Yu, Li (bib21) 2011; 147
Lee, Finkel (bib8) 2009; 284
Bento, Renna, Ghislat, Puri, Ashkenazi, Vicinanza, Menzies, Rubinsztein (bib1) 2016; 85
Jiang, Zou, Zhu, Liu, Wang, Du, Luo, Guo, Zhou, Liu, Zhang, Shu, Yu, Li, Ronai (bib11) 2019; 116
Clague, Urbé, Komander (bib14) 2019; 20
Pankiv, Clausen, Lamark, Brech, Bruun, Outzen, Øvervatn, Bjørkøy, Johansen (bib17) 2007; 282
Rubinsztein, Codogno, Levine (bib27) 2012; 11
Jia, Guardia, Pu, Chen, Bonifacino (bib29) 2017; 13
Liu, Ko, Xu, Fattah, Xiang, Jagannath, Ishii, Komatsu, Eissa (bib20) 2012; 287
Szeto, Kaniuk, Canadien, Nisman, Mizushima, Yoshimori, Bazett-Jones, Brumell (bib19) 2006; 2
Huang, Xu, Wan, Shou, Qian, You, Liu, Chang, Zhou, Lippincott-Schwartz, Liu (bib9) 2015; 57
Lee, Cao, Mostoslavsky, Lombard, Liu, Bruns, Tsokos, Alt, Finkel (bib10) 2008; 105
Kang, Noh, Chang, Park, Cho, Lim, Jung (bib13) 2019; 10
Tanida, Minematsu-Ikeguchi, Ueno, Kominami (bib16) 2005; 1
Wani (10.1016/j.jbc.2021.100405_bib4) 2015; 95
Hung (10.1016/j.jbc.2021.100405_bib26) 2015; 93
Jiang (10.1016/j.jbc.2021.100405_bib11) 2019; 116
Bento (10.1016/j.jbc.2021.100405_bib1) 2016; 85
Jia (10.1016/j.jbc.2021.100405_bib12) 2019; 8
Kang (10.1016/j.jbc.2021.100405_bib13) 2019; 10
Shrestha (10.1016/j.jbc.2021.100405_bib6) 2020; 295
Levine (10.1016/j.jbc.2021.100405_bib3) 2019; 176
Dikic (10.1016/j.jbc.2021.100405_bib2) 2018; 19
Weidberg (10.1016/j.jbc.2021.100405_bib24) 2010; 29
Xie (10.1016/j.jbc.2021.100405_bib5) 2015; 11
Huang (10.1016/j.jbc.2021.100405_bib9) 2015; 57
Liu (10.1016/j.jbc.2021.100405_bib21) 2011; 147
Jia (10.1016/j.jbc.2021.100405_bib29) 2017; 13
Lee (10.1016/j.jbc.2021.100405_bib10) 2008; 105
Peng (10.1016/j.jbc.2021.100405_bib25) 2015; 9
Jiang (10.1016/j.jbc.2021.100405_bib7) 2010; 395
Galluzzi (10.1016/j.jbc.2021.100405_bib28) 2017; 16
Szeto (10.1016/j.jbc.2021.100405_bib19) 2006; 2
Lee (10.1016/j.jbc.2021.100405_bib8) 2009; 284
Liu (10.1016/j.jbc.2021.100405_bib20) 2012; 287
Shvets (10.1016/j.jbc.2021.100405_bib23) 2008; 121
Li (10.1016/j.jbc.2021.100405_bib15) 2014; 15
Tanida (10.1016/j.jbc.2021.100405_bib16) 2005; 1
Pu (10.1016/j.jbc.2021.100405_bib30) 2015; 33
Rubinsztein (10.1016/j.jbc.2021.100405_bib27) 2012; 11
Deng (10.1016/j.jbc.2021.100405_bib22) 2016; 61
Pankiv (10.1016/j.jbc.2021.100405_bib17) 2007; 282
Lee (10.1016/j.jbc.2021.100405_bib18) 2011; 10
Clague (10.1016/j.jbc.2021.100405_bib14) 2019; 20
References_xml – volume: 1
  start-page: 84
  year: 2005
  end-page: 91
  ident: bib16
  article-title: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy
  publication-title: Autophagy
– volume: 61
  start-page: 614
  year: 2016
  end-page: 624
  ident: bib22
  article-title: Deubiquitination and activation of AMPK by USP10
  publication-title: Mol. Cell
– volume: 10
  year: 2011
  ident: bib18
  article-title: Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes
  publication-title: Mol. Cell Proteomics
– volume: 95
  start-page: 14
  year: 2015
  end-page: 25
  ident: bib4
  article-title: Regulation of autophagy by protein post-translational modification
  publication-title: Lab Invest.
– volume: 16
  start-page: 487
  year: 2017
  end-page: 511
  ident: bib28
  article-title: Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles
  publication-title: Nat. Rev. Drug Discov.
– volume: 395
  start-page: 471
  year: 2010
  end-page: 476
  ident: bib7
  article-title: Protein kinase C inhibits autophagy and phosphorylates LC3
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 176
  start-page: 11
  year: 2019
  end-page: 42
  ident: bib3
  article-title: Biological functions of autophagy genes: a disease Perspective
  publication-title: Cell
– volume: 19
  start-page: 349
  year: 2018
  end-page: 364
  ident: bib2
  article-title: Mechanism and medical implications of mammalian autophagy
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 29
  start-page: 1792
  year: 2010
  end-page: 1802
  ident: bib24
  article-title: LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
  publication-title: EMBO J.
– volume: 116
  start-page: 13404
  year: 2019
  end-page: 13413
  ident: bib11
  article-title: SIP/CacyBP promotes autophagy by regulating levels of BRUCE/Apollon, which stimulates LC3-I degradation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 13
  start-page: 1648
  year: 2017
  end-page: 1663
  ident: bib29
  article-title: BORC coordinates encounter and fusion of lysosomes with autophagosomes
  publication-title: Autophagy
– volume: 11
  start-page: 709
  year: 2012
  end-page: 730
  ident: bib27
  article-title: Autophagy modulation as a potential therapeutic target for diverse diseases
  publication-title: Nat. Rev. Drug Discov.
– volume: 15
  start-page: 554
  year: 2014
  ident: bib15
  article-title: MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens
  publication-title: Genome Biol.
– volume: 85
  start-page: 685
  year: 2016
  end-page: 713
  ident: bib1
  article-title: Mammalian autophagy: How does it Work
  publication-title: Annu. Rev. Biochem.
– volume: 282
  start-page: 24131
  year: 2007
  end-page: 24145
  ident: bib17
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 338
  year: 2019
  end-page: 352
  ident: bib14
  article-title: Breaking the chains: deubiquitylating enzyme specificity begets function
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 11
  start-page: 28
  year: 2015
  end-page: 45
  ident: bib5
  article-title: Posttranslational modification of autophagy-related proteins in macroautophagy
  publication-title: Autophagy
– volume: 33
  start-page: 176
  year: 2015
  end-page: 188
  ident: bib30
  article-title: BORC, a multisubunit complex that regulates lysosome positioning
  publication-title: Dev. Cell
– volume: 8
  start-page: e50034
  year: 2019
  ident: bib12
  article-title: Negative regulation of autophagy by UBA6-BIRC6-mediated ubiquitination of LC3
  publication-title: Elife
– volume: 287
  start-page: 19687
  year: 2012
  end-page: 19698
  ident: bib20
  article-title: Transient aggregation of ubiquitinated proteins is a cytosolic unfolded protein response to inflammation and endoplasmic reticulum stress
  publication-title: J. Biol. Chem.
– volume: 93
  start-page: 243
  year: 2015
  end-page: 251
  ident: bib26
  article-title: LC3 overexpression reduces Aβ neurotoxicity through increasing α7nAchR expression and autophagic activity in neurons and mice
  publication-title: Neuropharmacology
– volume: 295
  start-page: 1240
  year: 2020
  end-page: 1260
  ident: bib6
  article-title: NIMA-related kinase 9-mediated phosphorylation of the microtubule-associated LC3B protein at Thr-50 suppresses selective autophagy of p62/sequestosome 1
  publication-title: J. Biol. Chem.
– volume: 57
  start-page: 456
  year: 2015
  end-page: 466
  ident: bib9
  article-title: Deacetylation of nuclear LC3 drives autophagy initiation under starvation
  publication-title: Mol. Cell
– volume: 121
  start-page: 2685
  year: 2008
  end-page: 2695
  ident: bib23
  article-title: The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes
  publication-title: J. Cell Sci.
– volume: 284
  start-page: 6322
  year: 2009
  end-page: 6328
  ident: bib8
  article-title: Regulation of autophagy by the p300 acetyltransferase
  publication-title: J. Biol. Chem.
– volume: 147
  start-page: 223
  year: 2011
  end-page: 234
  ident: bib21
  article-title: Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13
  publication-title: Cell
– volume: 105
  start-page: 3374
  year: 2008
  end-page: 3379
  ident: bib10
  article-title: A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 10
  start-page: 279
  year: 2019
  ident: bib13
  article-title: Ubiquitination of MAP1LC3B by pVHL is associated with autophagy and cell death in renal cell carcinoma
  publication-title: Cell Death Dis.
– volume: 2
  start-page: 189
  year: 2006
  end-page: 199
  ident: bib19
  article-title: ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy
  publication-title: Autophagy
– volume: 9
  start-page: 1271
  year: 2015
  end-page: 1276
  ident: bib25
  article-title: Knockdown of autophagy-related gene LC3 enhances the sensitivity of HepG
  publication-title: Exp. Ther. Med.
– volume: 8
  start-page: e50034
  year: 2019
  ident: 10.1016/j.jbc.2021.100405_bib12
  article-title: Negative regulation of autophagy by UBA6-BIRC6-mediated ubiquitination of LC3
  publication-title: Elife
  doi: 10.7554/eLife.50034
– volume: 61
  start-page: 614
  year: 2016
  ident: 10.1016/j.jbc.2021.100405_bib22
  article-title: Deubiquitination and activation of AMPK by USP10
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.01.010
– volume: 19
  start-page: 349
  year: 2018
  ident: 10.1016/j.jbc.2021.100405_bib2
  article-title: Mechanism and medical implications of mammalian autophagy
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0003-4
– volume: 20
  start-page: 338
  year: 2019
  ident: 10.1016/j.jbc.2021.100405_bib14
  article-title: Breaking the chains: deubiquitylating enzyme specificity begets function
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0099-1
– volume: 121
  start-page: 2685
  year: 2008
  ident: 10.1016/j.jbc.2021.100405_bib23
  article-title: The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.026005
– volume: 282
  start-page: 24131
  year: 2007
  ident: 10.1016/j.jbc.2021.100405_bib17
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702824200
– volume: 11
  start-page: 28
  year: 2015
  ident: 10.1016/j.jbc.2021.100405_bib5
  article-title: Posttranslational modification of autophagy-related proteins in macroautophagy
  publication-title: Autophagy
  doi: 10.4161/15548627.2014.984267
– volume: 15
  start-page: 554
  year: 2014
  ident: 10.1016/j.jbc.2021.100405_bib15
  article-title: MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0554-4
– volume: 295
  start-page: 1240
  year: 2020
  ident: 10.1016/j.jbc.2021.100405_bib6
  article-title: NIMA-related kinase 9-mediated phosphorylation of the microtubule-associated LC3B protein at Thr-50 suppresses selective autophagy of p62/sequestosome 1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)49883-8
– volume: 105
  start-page: 3374
  year: 2008
  ident: 10.1016/j.jbc.2021.100405_bib10
  article-title: A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0712145105
– volume: 9
  start-page: 1271
  year: 2015
  ident: 10.1016/j.jbc.2021.100405_bib25
  article-title: Knockdown of autophagy-related gene LC3 enhances the sensitivity of HepG
  publication-title: Exp. Ther. Med.
  doi: 10.3892/etm.2015.2266
– volume: 176
  start-page: 11
  year: 2019
  ident: 10.1016/j.jbc.2021.100405_bib3
  article-title: Biological functions of autophagy genes: a disease Perspective
  publication-title: Cell
  doi: 10.1016/j.cell.2018.09.048
– volume: 1
  start-page: 84
  year: 2005
  ident: 10.1016/j.jbc.2021.100405_bib16
  article-title: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.1.2.1697
– volume: 85
  start-page: 685
  year: 2016
  ident: 10.1016/j.jbc.2021.100405_bib1
  article-title: Mammalian autophagy: How does it Work
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060815-014556
– volume: 16
  start-page: 487
  year: 2017
  ident: 10.1016/j.jbc.2021.100405_bib28
  article-title: Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2017.22
– volume: 287
  start-page: 19687
  year: 2012
  ident: 10.1016/j.jbc.2021.100405_bib20
  article-title: Transient aggregation of ubiquitinated proteins is a cytosolic unfolded protein response to inflammation and endoplasmic reticulum stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.350934
– volume: 95
  start-page: 14
  year: 2015
  ident: 10.1016/j.jbc.2021.100405_bib4
  article-title: Regulation of autophagy by protein post-translational modification
  publication-title: Lab Invest.
  doi: 10.1038/labinvest.2014.131
– volume: 33
  start-page: 176
  year: 2015
  ident: 10.1016/j.jbc.2021.100405_bib30
  article-title: BORC, a multisubunit complex that regulates lysosome positioning
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2015.02.011
– volume: 11
  start-page: 709
  year: 2012
  ident: 10.1016/j.jbc.2021.100405_bib27
  article-title: Autophagy modulation as a potential therapeutic target for diverse diseases
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3802
– volume: 57
  start-page: 456
  year: 2015
  ident: 10.1016/j.jbc.2021.100405_bib9
  article-title: Deacetylation of nuclear LC3 drives autophagy initiation under starvation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.12.013
– volume: 29
  start-page: 1792
  year: 2010
  ident: 10.1016/j.jbc.2021.100405_bib24
  article-title: LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.74
– volume: 93
  start-page: 243
  year: 2015
  ident: 10.1016/j.jbc.2021.100405_bib26
  article-title: LC3 overexpression reduces Aβ neurotoxicity through increasing α7nAchR expression and autophagic activity in neurons and mice
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2015.02.003
– volume: 13
  start-page: 1648
  year: 2017
  ident: 10.1016/j.jbc.2021.100405_bib29
  article-title: BORC coordinates encounter and fusion of lysosomes with autophagosomes
  publication-title: Autophagy
  doi: 10.1080/15548627.2017.1343768
– volume: 10
  year: 2011
  ident: 10.1016/j.jbc.2021.100405_bib18
  article-title: Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes
  publication-title: Mol. Cell Proteomics
  doi: 10.1074/mcp.R110.003871
– volume: 10
  start-page: 279
  year: 2019
  ident: 10.1016/j.jbc.2021.100405_bib13
  article-title: Ubiquitination of MAP1LC3B by pVHL is associated with autophagy and cell death in renal cell carcinoma
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-1520-6
– volume: 147
  start-page: 223
  year: 2011
  ident: 10.1016/j.jbc.2021.100405_bib21
  article-title: Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.037
– volume: 395
  start-page: 471
  year: 2010
  ident: 10.1016/j.jbc.2021.100405_bib7
  article-title: Protein kinase C inhibits autophagy and phosphorylates LC3
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.04.030
– volume: 284
  start-page: 6322
  year: 2009
  ident: 10.1016/j.jbc.2021.100405_bib8
  article-title: Regulation of autophagy by the p300 acetyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807135200
– volume: 116
  start-page: 13404
  year: 2019
  ident: 10.1016/j.jbc.2021.100405_bib11
  article-title: SIP/CacyBP promotes autophagy by regulating levels of BRUCE/Apollon, which stimulates LC3-I degradation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1901039116
– volume: 2
  start-page: 189
  year: 2006
  ident: 10.1016/j.jbc.2021.100405_bib19
  article-title: ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.2731
SSID ssj0000491
Score 2.4880211
Snippet Components of the autophagy machinery are subject to regulation by various posttranslational modifications. Previous studies showed that monoubiquitination of...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100405
SubjectTerms autophagy
Autophagy - physiology
Cell Line
Cell Line, Tumor
CRISPR/cas
deubiquitination
Endopeptidases - metabolism
Humans
Inhibitor of Apoptosis Proteins
Intracellular Signaling Peptides and Proteins
LC3
Microtubule-Associated Proteins - metabolism
Microtubule-Associated Proteins - physiology
protein aggregation
Protein Processing, Post-Translational
Sequestosome-1 Protein
ubiquitin
Ubiquitin Thiolesterase - genetics
Ubiquitin Thiolesterase - metabolism
Ubiquitin Thiolesterase - physiology
Ubiquitin-Activating Enzymes - metabolism
Ubiquitination
USP10
Title The ubiquitin isopeptidase USP10 deubiquitinates LC3B to increase LC3B levels and autophagic activity
URI https://dx.doi.org/10.1016/j.jbc.2021.100405
https://www.ncbi.nlm.nih.gov/pubmed/33577797
https://www.proquest.com/docview/2489263650
https://pubmed.ncbi.nlm.nih.gov/PMC7960534
Volume 296
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKkGAvCDY-ysdkJMQDVao0cWrncatAE18asEp9ixzHGam2pLDkAV7549xrx2nWwQR7iSonaaKe49tr-_hcQl6EEus58Nzj0JE8xv3MkzKEQyTyMJNYG9YIZD9OD-fs7SJaDAa_eqqlpk7H6ucf95VcB1VoA1xxl-x_INt9KTTAZ8AXjoAwHP8Z4yYtvjVFXZSj4rxaoUYlgz-m0fzL0cQfZbo7jTnl6P0sPMBssygxWYTLTMMpCoesV7Ns0GhAnqCLq7KFJfrp63ojmUlhrYOT9RhxheM6SY5V4X5uim7ED-Ejl6oo7WJPg5Fl3J91CCYbsw7dclJfW3pQVN3DrEzEVfhtC2v2g5uRhgTWtn2sbfCFdBB3Fiz60TmwBW8vRXo76bAcL1M0ogwmKPdgZgd33UN-dWagD8OIc26FwBv22kcfZhxGcVHIbpCbAYw1sAzGu09ry3kYQtmyi-0Lu6VxIxLcePo2ueUe9bc85_I4ZlOO28tvju-SOy2qdN-y7B4Z6HKH7O4Db6qzH_QlNVJh8_PukNszB8Au0cAJ2rGM9klIDQnpBgkpco7WFXUktA2WhBQApWsSUkfC-2T-5vXx7NBra3d4Crp37Wk_U2nqh1qJWGgZpb7O40wJzVnAJYsUk3Gc50xkscpFLjjXWBlBogOmjFgWPiBbZVXqR4TmiqkMYgeWt2VYI0lkAlgxFWmUR0rLIfHdL52o1tge66ucJk7BuEwApwRxSixOQ_Kqu2VlXV2uupg5-JI2LbXpZgJcvOq25w7qBCDBdThZ6qo5TwIm4mAawthoSB5a6Lu3cPQZEn6BFN0FaAd_8UxZfDW28C2NH1_7zidke93Vn5Kt-nujn0HKXad7Zqpqz3SM346v2mU
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ubiquitin+isopeptidase+USP10+deubiquitinates+LC3B+to+increase+LC3B+levels+and+autophagic+activity&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Jia%2C+Rui&rft.au=Bonifacino%2C+Juan+S.&rft.date=2021-01-01&rft.pub=American+Society+for+Biochemistry+and+Molecular+Biology&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=296&rft_id=info:doi/10.1016%2Fj.jbc.2021.100405&rft_id=info%3Apmid%2F33577797&rft.externalDocID=PMC7960534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon