The ubiquitin isopeptidase USP10 deubiquitinates LC3B to increase LC3B levels and autophagic activity
Components of the autophagy machinery are subject to regulation by various posttranslational modifications. Previous studies showed that monoubiquitination of LC3B catalyzed by the ubiquitin-activating enzyme UBA6 and ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 targets LC3B for proteasomal d...
Saved in:
Published in | The Journal of biological chemistry Vol. 296; p. 100405 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2021
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Components of the autophagy machinery are subject to regulation by various posttranslational modifications. Previous studies showed that monoubiquitination of LC3B catalyzed by the ubiquitin-activating enzyme UBA6 and ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 targets LC3B for proteasomal degradation, thus reducing LC3B levels and autophagic activity under conditions of stress. However, mechanisms capable of counteracting this process are not known. Herein, we report that LC3B ubiquitination is reversed by the action of the deubiquitinating enzyme USP10. We identified USP10 in a CRISPR-Cas9 knockout screen for ubiquitination-related genes that regulate LC3B levels. Biochemical analyses showed that silencing of USP10 reduces the levels of both the LC3B-I and LC3B-II forms of LC3B through increased ubiquitination and proteasomal degradation. In turn, the reduced LC3B levels result in slower degradation of the autophagy receptors SQSTM1 and NBR1 and an increased accumulation of puromycin-induced aggresome-like structures. Taken together, these findings indicate that the levels of LC3B and autophagic activity are controlled through cycles of LC3B ubiquitination and deubiquitination. |
---|---|
AbstractList | Components of the autophagy machinery are subject to regulation by various posttranslational modifications. Previous studies showed that monoubiquitination of LC3B catalyzed by the ubiquitin-activating enzyme UBA6 and ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 targets LC3B for proteasomal degradation, thus reducing LC3B levels and autophagic activity under conditions of stress. However, mechanisms capable of counteracting this process are not known. Herein, we report that LC3B ubiquitination is reversed by the action of the deubiquitinating enzyme USP10. We identified USP10 in a CRISPR-Cas9 knockout screen for ubiquitination-related genes that regulate LC3B levels. Biochemical analyses showed that silencing of USP10 reduces the levels of both the LC3B-I and LC3B-II forms of LC3B through increased ubiquitination and proteasomal degradation. In turn, the reduced LC3B levels result in slower degradation of the autophagy receptors SQSTM1 and NBR1 and an increased accumulation of puromycin-induced aggresome-like structures. Taken together, these findings indicate that the levels of LC3B and autophagic activity are controlled through cycles of LC3B ubiquitination and deubiquitination. Components of the autophagy machinery are subject to regulation by various posttranslational modifications. Previous studies showed that monoubiquitination of LC3B catalyzed by the ubiquitin-activating enzyme UBA6 and ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 targets LC3B for proteasomal degradation, thus reducing LC3B levels and autophagic activity under conditions of stress. However, mechanisms capable of counteracting this process are not known. Herein, we report that LC3B ubiquitination is reversed by the action of the deubiquitinating enzyme USP10. We identified USP10 in a CRISPR-Cas9 knockout screen for ubiquitination-related genes that regulate LC3B levels. Biochemical analyses showed that silencing of USP10 reduces the levels of both the LC3B-I and LC3B-II forms of LC3B through increased ubiquitination and proteasomal degradation. In turn, the reduced LC3B levels result in slower degradation of the autophagy receptors SQSTM1 and NBR1 and an increased accumulation of puromycin-induced aggresome-like structures. Taken together, these findings indicate that the levels of LC3B and autophagic activity are controlled through cycles of LC3B ubiquitination and deubiquitination.Components of the autophagy machinery are subject to regulation by various posttranslational modifications. Previous studies showed that monoubiquitination of LC3B catalyzed by the ubiquitin-activating enzyme UBA6 and ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 targets LC3B for proteasomal degradation, thus reducing LC3B levels and autophagic activity under conditions of stress. However, mechanisms capable of counteracting this process are not known. Herein, we report that LC3B ubiquitination is reversed by the action of the deubiquitinating enzyme USP10. We identified USP10 in a CRISPR-Cas9 knockout screen for ubiquitination-related genes that regulate LC3B levels. Biochemical analyses showed that silencing of USP10 reduces the levels of both the LC3B-I and LC3B-II forms of LC3B through increased ubiquitination and proteasomal degradation. In turn, the reduced LC3B levels result in slower degradation of the autophagy receptors SQSTM1 and NBR1 and an increased accumulation of puromycin-induced aggresome-like structures. Taken together, these findings indicate that the levels of LC3B and autophagic activity are controlled through cycles of LC3B ubiquitination and deubiquitination. |
ArticleNumber | 100405 |
Author | Bonifacino, Juan S. Jia, Rui |
Author_xml | – sequence: 1 givenname: Rui orcidid: 0000-0002-1797-4069 surname: Jia fullname: Jia, Rui email: rui.jia@nih.gov, rui.jia@hotmail.com – sequence: 2 givenname: Juan S. orcidid: 0000-0002-5673-6370 surname: Bonifacino fullname: Bonifacino, Juan S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33577797$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uc9rFDEUDlKx2-of4EVy9DJrMkkmEwTBLrYKCwq24C1kkjfdt8xOppPMQv97Z922qIe-S3jv-wX5zshJH3sg5C1nS8549WG73DZ-WbKSzzuTTL0gC85qUQjFf52QBZuRwpSqPiVnKW3ZPNLwV-RUCKW1NnpB4HoDdGrwbsKMPcUUBxgyBpeA3vz8wRkN8AS7DImuV-KC5kix9yMcaH8OHeyhS9T1gbopx2HjbtFT5zPuMd-_Ji9b1yV48_Cek5vLL9err8X6-9W31ed14aXiuQAWfNMwAb42NTjVMGhN8DVoWWonlZfOmLaVdTC-rdtaa6hKJh3jQjslgzgnn46-w9TsIHjo8-g6O4y4c-O9jQ7tv0iPG3sb91abiikhZ4P3DwZjvJsgZbvD5KHrXA9xSraUtSkrUSk2U9_9nfUU8vi3M0EfCX6MKY3QWo_ZZYyHaOwsZ_bQot3auUV7aNEeW5yV_D_lo_lzmo9HzVwD7BFGmzxC7yHgCD7bEPEZ9W-vBLXt |
CitedBy_id | crossref_primary_10_1016_j_isci_2025_112118 crossref_primary_10_1016_j_tranon_2024_101996 crossref_primary_10_3389_fcell_2022_830046 crossref_primary_10_1016_j_bbadis_2023_166891 crossref_primary_10_1016_j_jchemneu_2022_102144 crossref_primary_10_1155_2022_4220331 crossref_primary_10_1016_j_cytogfr_2024_11_006 crossref_primary_10_3724_abbs_2023149 crossref_primary_10_1016_j_dld_2022_02_009 crossref_primary_10_1016_j_jbc_2025_108190 crossref_primary_10_1038_s41467_025_56346_3 crossref_primary_10_3389_fmolb_2022_1074701 crossref_primary_10_3389_fimmu_2023_1252827 crossref_primary_10_1007_s12032_022_01832_7 crossref_primary_10_1038_s41388_024_03141_x crossref_primary_10_1186_s13578_024_01291_9 crossref_primary_10_3389_fmolb_2021_693325 crossref_primary_10_1155_2022_3881962 crossref_primary_10_1007_s10637_023_01360_9 crossref_primary_10_1128_mcb_00393_21 crossref_primary_10_3390_ijms26062762 crossref_primary_10_3390_genes13050831 |
Cites_doi | 10.7554/eLife.50034 10.1016/j.molcel.2016.01.010 10.1038/s41580-018-0003-4 10.1038/s41580-019-0099-1 10.1242/jcs.026005 10.1074/jbc.M702824200 10.4161/15548627.2014.984267 10.1186/s13059-014-0554-4 10.1016/S0021-9258(17)49883-8 10.1073/pnas.0712145105 10.3892/etm.2015.2266 10.1016/j.cell.2018.09.048 10.4161/auto.1.2.1697 10.1146/annurev-biochem-060815-014556 10.1038/nrd.2017.22 10.1074/jbc.M112.350934 10.1038/labinvest.2014.131 10.1016/j.devcel.2015.02.011 10.1038/nrd3802 10.1016/j.molcel.2014.12.013 10.1038/emboj.2010.74 10.1016/j.neuropharm.2015.02.003 10.1080/15548627.2017.1343768 10.1074/mcp.R110.003871 10.1038/s41419-019-1520-6 10.1016/j.cell.2011.08.037 10.1016/j.bbrc.2010.04.030 10.1074/jbc.M807135200 10.1073/pnas.1901039116 10.4161/auto.2731 |
ContentType | Journal Article |
Copyright | 2021 Published by Elsevier Inc. |
Copyright_xml | – notice: 2021 – notice: Published by Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jbc.2021.100405 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
ExternalDocumentID | PMC7960534 33577797 10_1016_j_jbc_2021_100405 S0021925821001770 |
Genre | Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIA HD001607 |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0SF 186 18M 29J 2WC 34G 39C 3O- 4.4 41~ 53G 5BI 5GY 5RE 5VS 6I. 6TJ 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO AAYJJ AAYOK ABDNZ ABFSI ABOCM ABPPZ ABRJW ABTAH ACGFO ACNCT ACSFO ACYGS ADBBV ADIYS ADNWM AENEX AEXQZ AFDAS AFFNX AFMIJ AFOSN AFPKN AHPSJ AI. ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F20 F5P FA8 FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 J5H KQ8 L7B MVM N9A NHB OHT OK1 P-O P0W P2P QZG R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VH1 VQA W8F WH7 WHG WOQ X7M XFK XJT XSW Y6R YQT YSK YWH YYP YZZ ZA5 ZE2 ZGI ZY4 ~02 ~KM .7T 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION H13 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c451t-e0dcbb03ec898ea5b0ef9dc8e7427a45c4a99ff48d9cf8f877e6204a0137a54d3 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 14:09:25 EDT 2025 Thu Jul 10 20:03:21 EDT 2025 Mon Jul 21 05:35:40 EDT 2025 Thu Apr 24 23:09:26 EDT 2025 Tue Jul 01 04:33:20 EDT 2025 Fri Feb 23 02:43:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MAGeCK RRA autophagy KO USP10 LC3B ALIS tfLC3B ubiquitin DUB CHX ATG protein aggregation KD deubiquitination NGS CRISPR/cas LC3 |
Language | English |
License | This is an open access article under the CC BY license. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c451t-e0dcbb03ec898ea5b0ef9dc8e7427a45c4a99ff48d9cf8f877e6204a0137a54d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5673-6370 0000-0002-1797-4069 |
OpenAccessLink | http://dx.doi.org/10.1016/j.jbc.2021.100405 |
PMID | 33577797 |
PQID | 2489263650 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7960534 proquest_miscellaneous_2489263650 pubmed_primary_33577797 crossref_citationtrail_10_1016_j_jbc_2021_100405 crossref_primary_10_1016_j_jbc_2021_100405 elsevier_sciencedirect_doi_10_1016_j_jbc_2021_100405 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2021 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Wani, Boyer-Guittaut, Dodson, Chatham, Darley-Usmar, Zhang (bib4) 2015; 95 Galluzzi, Bravo-San Pedro, Levine, Green, Kroemer (bib28) 2017; 16 Pu, Schindler, Jia, Jarnik, Backlund, Bonifacino (bib30) 2015; 33 Jia, Bonifacino (bib12) 2019; 8 Shrestha, Skytte Rasmussen, Abudu, Bruun, Larsen, Alemu, Sjøttem, Lamark, Johansen (bib6) 2020; 295 Dikic, Elazar (bib2) 2018; 19 Jiang, Cheng, Liu, Peng, Feng (bib7) 2010; 395 Deng, Yang, Qin, Liu, Zhang, Guo, Lee, Kim, Yuan, Pei, Wang, Lou (bib22) 2016; 61 Hung, Huang, Liou, Fu (bib26) 2015; 93 Weidberg, Shvets, Shpilka, Shimron, Shinder, Elazar (bib24) 2010; 29 Li, Xu, Xiao, Cong, Love, Zhang, Irizarry, Liu, Brown, Liu (bib15) 2014; 15 Shvets, Fass, Scherz-Shouval, Elazar (bib23) 2008; 121 Xie, Kang, Sun, Zhong, Huang, Klionsky, Tang (bib5) 2015; 11 Peng, DU, Zhang, DU, Jin, Gong (bib25) 2015; 9 Lee, Lee, Hanna, King, Finley (bib18) 2011; 10 Levine, Kroemer (bib3) 2019; 176 Liu, Xia, Kim, Xu, Li, Zhang, Cai, Norberg, Zhang, Furuya, Jin, Zhu, Wang, Yu, Li (bib21) 2011; 147 Lee, Finkel (bib8) 2009; 284 Bento, Renna, Ghislat, Puri, Ashkenazi, Vicinanza, Menzies, Rubinsztein (bib1) 2016; 85 Jiang, Zou, Zhu, Liu, Wang, Du, Luo, Guo, Zhou, Liu, Zhang, Shu, Yu, Li, Ronai (bib11) 2019; 116 Clague, Urbé, Komander (bib14) 2019; 20 Pankiv, Clausen, Lamark, Brech, Bruun, Outzen, Øvervatn, Bjørkøy, Johansen (bib17) 2007; 282 Rubinsztein, Codogno, Levine (bib27) 2012; 11 Jia, Guardia, Pu, Chen, Bonifacino (bib29) 2017; 13 Liu, Ko, Xu, Fattah, Xiang, Jagannath, Ishii, Komatsu, Eissa (bib20) 2012; 287 Szeto, Kaniuk, Canadien, Nisman, Mizushima, Yoshimori, Bazett-Jones, Brumell (bib19) 2006; 2 Huang, Xu, Wan, Shou, Qian, You, Liu, Chang, Zhou, Lippincott-Schwartz, Liu (bib9) 2015; 57 Lee, Cao, Mostoslavsky, Lombard, Liu, Bruns, Tsokos, Alt, Finkel (bib10) 2008; 105 Kang, Noh, Chang, Park, Cho, Lim, Jung (bib13) 2019; 10 Tanida, Minematsu-Ikeguchi, Ueno, Kominami (bib16) 2005; 1 Wani (10.1016/j.jbc.2021.100405_bib4) 2015; 95 Hung (10.1016/j.jbc.2021.100405_bib26) 2015; 93 Jiang (10.1016/j.jbc.2021.100405_bib11) 2019; 116 Bento (10.1016/j.jbc.2021.100405_bib1) 2016; 85 Jia (10.1016/j.jbc.2021.100405_bib12) 2019; 8 Kang (10.1016/j.jbc.2021.100405_bib13) 2019; 10 Shrestha (10.1016/j.jbc.2021.100405_bib6) 2020; 295 Levine (10.1016/j.jbc.2021.100405_bib3) 2019; 176 Dikic (10.1016/j.jbc.2021.100405_bib2) 2018; 19 Weidberg (10.1016/j.jbc.2021.100405_bib24) 2010; 29 Xie (10.1016/j.jbc.2021.100405_bib5) 2015; 11 Huang (10.1016/j.jbc.2021.100405_bib9) 2015; 57 Liu (10.1016/j.jbc.2021.100405_bib21) 2011; 147 Jia (10.1016/j.jbc.2021.100405_bib29) 2017; 13 Lee (10.1016/j.jbc.2021.100405_bib10) 2008; 105 Peng (10.1016/j.jbc.2021.100405_bib25) 2015; 9 Jiang (10.1016/j.jbc.2021.100405_bib7) 2010; 395 Galluzzi (10.1016/j.jbc.2021.100405_bib28) 2017; 16 Szeto (10.1016/j.jbc.2021.100405_bib19) 2006; 2 Lee (10.1016/j.jbc.2021.100405_bib8) 2009; 284 Liu (10.1016/j.jbc.2021.100405_bib20) 2012; 287 Shvets (10.1016/j.jbc.2021.100405_bib23) 2008; 121 Li (10.1016/j.jbc.2021.100405_bib15) 2014; 15 Tanida (10.1016/j.jbc.2021.100405_bib16) 2005; 1 Pu (10.1016/j.jbc.2021.100405_bib30) 2015; 33 Rubinsztein (10.1016/j.jbc.2021.100405_bib27) 2012; 11 Deng (10.1016/j.jbc.2021.100405_bib22) 2016; 61 Pankiv (10.1016/j.jbc.2021.100405_bib17) 2007; 282 Lee (10.1016/j.jbc.2021.100405_bib18) 2011; 10 Clague (10.1016/j.jbc.2021.100405_bib14) 2019; 20 |
References_xml | – volume: 1 start-page: 84 year: 2005 end-page: 91 ident: bib16 article-title: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy publication-title: Autophagy – volume: 61 start-page: 614 year: 2016 end-page: 624 ident: bib22 article-title: Deubiquitination and activation of AMPK by USP10 publication-title: Mol. Cell – volume: 10 year: 2011 ident: bib18 article-title: Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes publication-title: Mol. Cell Proteomics – volume: 95 start-page: 14 year: 2015 end-page: 25 ident: bib4 article-title: Regulation of autophagy by protein post-translational modification publication-title: Lab Invest. – volume: 16 start-page: 487 year: 2017 end-page: 511 ident: bib28 article-title: Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles publication-title: Nat. Rev. Drug Discov. – volume: 395 start-page: 471 year: 2010 end-page: 476 ident: bib7 article-title: Protein kinase C inhibits autophagy and phosphorylates LC3 publication-title: Biochem. Biophys. Res. Commun. – volume: 176 start-page: 11 year: 2019 end-page: 42 ident: bib3 article-title: Biological functions of autophagy genes: a disease Perspective publication-title: Cell – volume: 19 start-page: 349 year: 2018 end-page: 364 ident: bib2 article-title: Mechanism and medical implications of mammalian autophagy publication-title: Nat. Rev. Mol. Cell Biol. – volume: 29 start-page: 1792 year: 2010 end-page: 1802 ident: bib24 article-title: LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis publication-title: EMBO J. – volume: 116 start-page: 13404 year: 2019 end-page: 13413 ident: bib11 article-title: SIP/CacyBP promotes autophagy by regulating levels of BRUCE/Apollon, which stimulates LC3-I degradation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 13 start-page: 1648 year: 2017 end-page: 1663 ident: bib29 article-title: BORC coordinates encounter and fusion of lysosomes with autophagosomes publication-title: Autophagy – volume: 11 start-page: 709 year: 2012 end-page: 730 ident: bib27 article-title: Autophagy modulation as a potential therapeutic target for diverse diseases publication-title: Nat. Rev. Drug Discov. – volume: 15 start-page: 554 year: 2014 ident: bib15 article-title: MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens publication-title: Genome Biol. – volume: 85 start-page: 685 year: 2016 end-page: 713 ident: bib1 article-title: Mammalian autophagy: How does it Work publication-title: Annu. Rev. Biochem. – volume: 282 start-page: 24131 year: 2007 end-page: 24145 ident: bib17 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J. Biol. Chem. – volume: 20 start-page: 338 year: 2019 end-page: 352 ident: bib14 article-title: Breaking the chains: deubiquitylating enzyme specificity begets function publication-title: Nat. Rev. Mol. Cell Biol. – volume: 11 start-page: 28 year: 2015 end-page: 45 ident: bib5 article-title: Posttranslational modification of autophagy-related proteins in macroautophagy publication-title: Autophagy – volume: 33 start-page: 176 year: 2015 end-page: 188 ident: bib30 article-title: BORC, a multisubunit complex that regulates lysosome positioning publication-title: Dev. Cell – volume: 8 start-page: e50034 year: 2019 ident: bib12 article-title: Negative regulation of autophagy by UBA6-BIRC6-mediated ubiquitination of LC3 publication-title: Elife – volume: 287 start-page: 19687 year: 2012 end-page: 19698 ident: bib20 article-title: Transient aggregation of ubiquitinated proteins is a cytosolic unfolded protein response to inflammation and endoplasmic reticulum stress publication-title: J. Biol. Chem. – volume: 93 start-page: 243 year: 2015 end-page: 251 ident: bib26 article-title: LC3 overexpression reduces Aβ neurotoxicity through increasing α7nAchR expression and autophagic activity in neurons and mice publication-title: Neuropharmacology – volume: 295 start-page: 1240 year: 2020 end-page: 1260 ident: bib6 article-title: NIMA-related kinase 9-mediated phosphorylation of the microtubule-associated LC3B protein at Thr-50 suppresses selective autophagy of p62/sequestosome 1 publication-title: J. Biol. Chem. – volume: 57 start-page: 456 year: 2015 end-page: 466 ident: bib9 article-title: Deacetylation of nuclear LC3 drives autophagy initiation under starvation publication-title: Mol. Cell – volume: 121 start-page: 2685 year: 2008 end-page: 2695 ident: bib23 article-title: The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes publication-title: J. Cell Sci. – volume: 284 start-page: 6322 year: 2009 end-page: 6328 ident: bib8 article-title: Regulation of autophagy by the p300 acetyltransferase publication-title: J. Biol. Chem. – volume: 147 start-page: 223 year: 2011 end-page: 234 ident: bib21 article-title: Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13 publication-title: Cell – volume: 105 start-page: 3374 year: 2008 end-page: 3379 ident: bib10 article-title: A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 start-page: 279 year: 2019 ident: bib13 article-title: Ubiquitination of MAP1LC3B by pVHL is associated with autophagy and cell death in renal cell carcinoma publication-title: Cell Death Dis. – volume: 2 start-page: 189 year: 2006 end-page: 199 ident: bib19 article-title: ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy publication-title: Autophagy – volume: 9 start-page: 1271 year: 2015 end-page: 1276 ident: bib25 article-title: Knockdown of autophagy-related gene LC3 enhances the sensitivity of HepG publication-title: Exp. Ther. Med. – volume: 8 start-page: e50034 year: 2019 ident: 10.1016/j.jbc.2021.100405_bib12 article-title: Negative regulation of autophagy by UBA6-BIRC6-mediated ubiquitination of LC3 publication-title: Elife doi: 10.7554/eLife.50034 – volume: 61 start-page: 614 year: 2016 ident: 10.1016/j.jbc.2021.100405_bib22 article-title: Deubiquitination and activation of AMPK by USP10 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.01.010 – volume: 19 start-page: 349 year: 2018 ident: 10.1016/j.jbc.2021.100405_bib2 article-title: Mechanism and medical implications of mammalian autophagy publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0003-4 – volume: 20 start-page: 338 year: 2019 ident: 10.1016/j.jbc.2021.100405_bib14 article-title: Breaking the chains: deubiquitylating enzyme specificity begets function publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0099-1 – volume: 121 start-page: 2685 year: 2008 ident: 10.1016/j.jbc.2021.100405_bib23 article-title: The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes publication-title: J. Cell Sci. doi: 10.1242/jcs.026005 – volume: 282 start-page: 24131 year: 2007 ident: 10.1016/j.jbc.2021.100405_bib17 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702824200 – volume: 11 start-page: 28 year: 2015 ident: 10.1016/j.jbc.2021.100405_bib5 article-title: Posttranslational modification of autophagy-related proteins in macroautophagy publication-title: Autophagy doi: 10.4161/15548627.2014.984267 – volume: 15 start-page: 554 year: 2014 ident: 10.1016/j.jbc.2021.100405_bib15 article-title: MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens publication-title: Genome Biol. doi: 10.1186/s13059-014-0554-4 – volume: 295 start-page: 1240 year: 2020 ident: 10.1016/j.jbc.2021.100405_bib6 article-title: NIMA-related kinase 9-mediated phosphorylation of the microtubule-associated LC3B protein at Thr-50 suppresses selective autophagy of p62/sequestosome 1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)49883-8 – volume: 105 start-page: 3374 year: 2008 ident: 10.1016/j.jbc.2021.100405_bib10 article-title: A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0712145105 – volume: 9 start-page: 1271 year: 2015 ident: 10.1016/j.jbc.2021.100405_bib25 article-title: Knockdown of autophagy-related gene LC3 enhances the sensitivity of HepG publication-title: Exp. Ther. Med. doi: 10.3892/etm.2015.2266 – volume: 176 start-page: 11 year: 2019 ident: 10.1016/j.jbc.2021.100405_bib3 article-title: Biological functions of autophagy genes: a disease Perspective publication-title: Cell doi: 10.1016/j.cell.2018.09.048 – volume: 1 start-page: 84 year: 2005 ident: 10.1016/j.jbc.2021.100405_bib16 article-title: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy publication-title: Autophagy doi: 10.4161/auto.1.2.1697 – volume: 85 start-page: 685 year: 2016 ident: 10.1016/j.jbc.2021.100405_bib1 article-title: Mammalian autophagy: How does it Work publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060815-014556 – volume: 16 start-page: 487 year: 2017 ident: 10.1016/j.jbc.2021.100405_bib28 article-title: Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.22 – volume: 287 start-page: 19687 year: 2012 ident: 10.1016/j.jbc.2021.100405_bib20 article-title: Transient aggregation of ubiquitinated proteins is a cytosolic unfolded protein response to inflammation and endoplasmic reticulum stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.350934 – volume: 95 start-page: 14 year: 2015 ident: 10.1016/j.jbc.2021.100405_bib4 article-title: Regulation of autophagy by protein post-translational modification publication-title: Lab Invest. doi: 10.1038/labinvest.2014.131 – volume: 33 start-page: 176 year: 2015 ident: 10.1016/j.jbc.2021.100405_bib30 article-title: BORC, a multisubunit complex that regulates lysosome positioning publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.02.011 – volume: 11 start-page: 709 year: 2012 ident: 10.1016/j.jbc.2021.100405_bib27 article-title: Autophagy modulation as a potential therapeutic target for diverse diseases publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3802 – volume: 57 start-page: 456 year: 2015 ident: 10.1016/j.jbc.2021.100405_bib9 article-title: Deacetylation of nuclear LC3 drives autophagy initiation under starvation publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.12.013 – volume: 29 start-page: 1792 year: 2010 ident: 10.1016/j.jbc.2021.100405_bib24 article-title: LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis publication-title: EMBO J. doi: 10.1038/emboj.2010.74 – volume: 93 start-page: 243 year: 2015 ident: 10.1016/j.jbc.2021.100405_bib26 article-title: LC3 overexpression reduces Aβ neurotoxicity through increasing α7nAchR expression and autophagic activity in neurons and mice publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2015.02.003 – volume: 13 start-page: 1648 year: 2017 ident: 10.1016/j.jbc.2021.100405_bib29 article-title: BORC coordinates encounter and fusion of lysosomes with autophagosomes publication-title: Autophagy doi: 10.1080/15548627.2017.1343768 – volume: 10 year: 2011 ident: 10.1016/j.jbc.2021.100405_bib18 article-title: Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.R110.003871 – volume: 10 start-page: 279 year: 2019 ident: 10.1016/j.jbc.2021.100405_bib13 article-title: Ubiquitination of MAP1LC3B by pVHL is associated with autophagy and cell death in renal cell carcinoma publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1520-6 – volume: 147 start-page: 223 year: 2011 ident: 10.1016/j.jbc.2021.100405_bib21 article-title: Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13 publication-title: Cell doi: 10.1016/j.cell.2011.08.037 – volume: 395 start-page: 471 year: 2010 ident: 10.1016/j.jbc.2021.100405_bib7 article-title: Protein kinase C inhibits autophagy and phosphorylates LC3 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.04.030 – volume: 284 start-page: 6322 year: 2009 ident: 10.1016/j.jbc.2021.100405_bib8 article-title: Regulation of autophagy by the p300 acetyltransferase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M807135200 – volume: 116 start-page: 13404 year: 2019 ident: 10.1016/j.jbc.2021.100405_bib11 article-title: SIP/CacyBP promotes autophagy by regulating levels of BRUCE/Apollon, which stimulates LC3-I degradation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1901039116 – volume: 2 start-page: 189 year: 2006 ident: 10.1016/j.jbc.2021.100405_bib19 article-title: ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy publication-title: Autophagy doi: 10.4161/auto.2731 |
SSID | ssj0000491 |
Score | 2.4880211 |
Snippet | Components of the autophagy machinery are subject to regulation by various posttranslational modifications. Previous studies showed that monoubiquitination of... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100405 |
SubjectTerms | autophagy Autophagy - physiology Cell Line Cell Line, Tumor CRISPR/cas deubiquitination Endopeptidases - metabolism Humans Inhibitor of Apoptosis Proteins Intracellular Signaling Peptides and Proteins LC3 Microtubule-Associated Proteins - metabolism Microtubule-Associated Proteins - physiology protein aggregation Protein Processing, Post-Translational Sequestosome-1 Protein ubiquitin Ubiquitin Thiolesterase - genetics Ubiquitin Thiolesterase - metabolism Ubiquitin Thiolesterase - physiology Ubiquitin-Activating Enzymes - metabolism Ubiquitination USP10 |
Title | The ubiquitin isopeptidase USP10 deubiquitinates LC3B to increase LC3B levels and autophagic activity |
URI | https://dx.doi.org/10.1016/j.jbc.2021.100405 https://www.ncbi.nlm.nih.gov/pubmed/33577797 https://www.proquest.com/docview/2489263650 https://pubmed.ncbi.nlm.nih.gov/PMC7960534 |
Volume | 296 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKkGAvCDY-ysdkJMQDVao0cWrncatAE18asEp9ixzHGam2pLDkAV7549xrx2nWwQR7iSonaaKe49tr-_hcQl6EEus58Nzj0JE8xv3MkzKEQyTyMJNYG9YIZD9OD-fs7SJaDAa_eqqlpk7H6ucf95VcB1VoA1xxl-x_INt9KTTAZ8AXjoAwHP8Z4yYtvjVFXZSj4rxaoUYlgz-m0fzL0cQfZbo7jTnl6P0sPMBssygxWYTLTMMpCoesV7Ns0GhAnqCLq7KFJfrp63ojmUlhrYOT9RhxheM6SY5V4X5uim7ED-Ejl6oo7WJPg5Fl3J91CCYbsw7dclJfW3pQVN3DrEzEVfhtC2v2g5uRhgTWtn2sbfCFdBB3Fiz60TmwBW8vRXo76bAcL1M0ogwmKPdgZgd33UN-dWagD8OIc26FwBv22kcfZhxGcVHIbpCbAYw1sAzGu09ry3kYQtmyi-0Lu6VxIxLcePo2ueUe9bc85_I4ZlOO28tvju-SOy2qdN-y7B4Z6HKH7O4Db6qzH_QlNVJh8_PukNszB8Au0cAJ2rGM9klIDQnpBgkpco7WFXUktA2WhBQApWsSUkfC-2T-5vXx7NBra3d4Crp37Wk_U2nqh1qJWGgZpb7O40wJzVnAJYsUk3Gc50xkscpFLjjXWBlBogOmjFgWPiBbZVXqR4TmiqkMYgeWt2VYI0lkAlgxFWmUR0rLIfHdL52o1tge66ucJk7BuEwApwRxSixOQ_Kqu2VlXV2uupg5-JI2LbXpZgJcvOq25w7qBCDBdThZ6qo5TwIm4mAawthoSB5a6Lu3cPQZEn6BFN0FaAd_8UxZfDW28C2NH1_7zidke93Vn5Kt-nujn0HKXad7Zqpqz3SM346v2mU |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ubiquitin+isopeptidase+USP10+deubiquitinates+LC3B+to+increase+LC3B+levels+and+autophagic+activity&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Jia%2C+Rui&rft.au=Bonifacino%2C+Juan+S.&rft.date=2021-01-01&rft.pub=American+Society+for+Biochemistry+and+Molecular+Biology&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=296&rft_id=info:doi/10.1016%2Fj.jbc.2021.100405&rft_id=info%3Apmid%2F33577797&rft.externalDocID=PMC7960534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |