Validating diverse human body models against side impact tests with post-mortem human subjects
This study aimed at evaluating the ability of morphed finite element (FE) human body models (HBMs) to reproduce the impact responses of post-mortem human subjects (PMHS) with various stature and shape. Ten side impact tests previously performed using seven PMHS under 3 m/s and 8 m/s impact velocitie...
Saved in:
Published in | Journal of biomechanics Vol. 98; p. 109444 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
02.01.2020
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study aimed at evaluating the ability of morphed finite element (FE) human body models (HBMs) to reproduce the impact responses of post-mortem human subjects (PMHS) with various stature and shape. Ten side impact tests previously performed using seven PMHS under 3 m/s and 8 m/s impact velocities were selected for model evaluation. With weight, stature, sex, and age of PMHS, seven FE HBMs were developed by morphing the midsize male THUMS model into the target geometries predicted by the statistical skeleton and external body shape models. The model-predicted force histories, accelerations along the spine, and deflections in the chest and abdomen were compared to the test data. For comparison, simulations in all testing conditions were also conducted with the original midsize male THUMS, and the results from the THUMS simulations were scaled to the weight and stature from each PMHS. The CORrelation and Analysis (CORA) was used to evaluate the model accuracy, with CORA scores close to one indicating excellent agreement. Ten simulations using the morphed models exhibited 0.80 ± 0.01, 0.80 ± 0.01, 0.78 ± 0.02, and 0.78 ± 0.02 CORA scores for the impact forces to the thorax, abdomen, iliac-wings, and greater-trochanter, respectively; the corresponding CORA scores with the original THUMS were markedly lower at 0.60 ± 0.06, 0.69 ± 0.05, 0.71 ± 0.05, and 0.69 ± 0.04; while those for the scaled THUMS were 0.65 ± 0.05, 0.71 ± 0.05, 0.73 ± 0.05, and 0.72 ± 0.02, also lower than the morphed models. Across all simulations, the morphed HBMs demonstrated significantly higher accuracy than the THUMS with or without scaling. These results suggested the necessity of accounting for size and shape effects on predicting human responses in side impacts. |
---|---|
AbstractList | This study aimed at evaluating the ability of morphed finite element (FE) human body models (HBMs) to reproduce the impact responses of post-mortem human subjects (PMHS) with various stature and shape. Ten side impact tests previously performed using seven PMHS under 3 m/s and 8 m/s impact velocities were selected for model evaluation. With weight, stature, sex, and age of PMHS, seven FE HBMs were developed by morphing the midsize male THUMS model into the target geometries predicted by the statistical skeleton and external body shape models. The model-predicted force histories, accelerations along the spine, and deflections in the chest and abdomen were compared to the test data. For comparison, simulations in all testing conditions were also conducted with the original midsize male THUMS, and the results from the THUMS simulations were scaled to the weight and stature from each PMHS. The CORrelation and Analysis (CORA) was used to evaluate the model accuracy, with CORA scores close to one indicating excellent agreement. Ten simulations using the morphed models exhibited 0.80 ± 0.01, 0.80 ± 0.01, 0.78 ± 0.02, and 0.78 ± 0.02 CORA scores for the impact forces to the thorax, abdomen, iliac-wings, and greater-trochanter, respectively; the corresponding CORA scores with the original THUMS were markedly lower at 0.60 ± 0.06, 0.69 ± 0.05, 0.71 ± 0.05, and 0.69 ± 0.04; while those for the scaled THUMS were 0.65 ± 0.05, 0.71 ± 0.05, 0.73 ± 0.05, and 0.72 ± 0.02, also lower than the morphed models. Across all simulations, the morphed HBMs demonstrated significantly higher accuracy than the THUMS with or without scaling. These results suggested the necessity of accounting for size and shape effects on predicting human responses in side impacts. This study aimed at evaluating the ability of morphed finite element (FE) human body models (HBMs) to reproduce the impact responses of post-mortem human subjects (PMHS) with various stature and shape. Ten side impact tests previously performed using seven PMHS under 3 m/s and 8 m/s impact velocities were selected for model evaluation. With weight, stature, sex, and age of PMHS, seven FE HBMs were developed by morphing the midsize male THUMS model into the target geometries predicted by the statistical skeleton and external body shape models. The model-predicted force histories, accelerations along the spine, and deflections in the chest and abdomen were compared to the test data. For comparison, simulations in all testing conditions were also conducted with the original midsize male THUMS, and the results from the THUMS simulations were scaled to the weight and stature from each PMHS. The CORrelation and Analysis (CORA) was used to evaluate the model accuracy, with CORA scores close to one indicating excellent agreement. Ten simulations using the morphed models exhibited 0.80 ± 0.01, 0.80 ± 0.01, 0.78 ± 0.02, and 0.78 ± 0.02 CORA scores for the impact forces to the thorax, abdomen, iliac-wings, and greater-trochanter, respectively; the corresponding CORA scores with the original THUMS were markedly lower at 0.60 ± 0.06, 0.69 ± 0.05, 0.71 ± 0.05, and 0.69 ± 0.04; while those for the scaled THUMS were 0.65 ± 0.05, 0.71 ± 0.05, 0.73 ± 0.05, and 0.72 ± 0.02, also lower than the morphed models. Across all simulations, the morphed HBMs demonstrated significantly higher accuracy than the THUMS with or without scaling. These results suggested the necessity of accounting for size and shape effects on predicting human responses in side impacts.This study aimed at evaluating the ability of morphed finite element (FE) human body models (HBMs) to reproduce the impact responses of post-mortem human subjects (PMHS) with various stature and shape. Ten side impact tests previously performed using seven PMHS under 3 m/s and 8 m/s impact velocities were selected for model evaluation. With weight, stature, sex, and age of PMHS, seven FE HBMs were developed by morphing the midsize male THUMS model into the target geometries predicted by the statistical skeleton and external body shape models. The model-predicted force histories, accelerations along the spine, and deflections in the chest and abdomen were compared to the test data. For comparison, simulations in all testing conditions were also conducted with the original midsize male THUMS, and the results from the THUMS simulations were scaled to the weight and stature from each PMHS. The CORrelation and Analysis (CORA) was used to evaluate the model accuracy, with CORA scores close to one indicating excellent agreement. Ten simulations using the morphed models exhibited 0.80 ± 0.01, 0.80 ± 0.01, 0.78 ± 0.02, and 0.78 ± 0.02 CORA scores for the impact forces to the thorax, abdomen, iliac-wings, and greater-trochanter, respectively; the corresponding CORA scores with the original THUMS were markedly lower at 0.60 ± 0.06, 0.69 ± 0.05, 0.71 ± 0.05, and 0.69 ± 0.04; while those for the scaled THUMS were 0.65 ± 0.05, 0.71 ± 0.05, 0.73 ± 0.05, and 0.72 ± 0.02, also lower than the morphed models. Across all simulations, the morphed HBMs demonstrated significantly higher accuracy than the THUMS with or without scaling. These results suggested the necessity of accounting for size and shape effects on predicting human responses in side impacts. |
ArticleNumber | 109444 |
Author | Hwang, Eunjoo Hu, Jingwen Reed, Matthew P. |
Author_xml | – sequence: 1 givenname: Eunjoo surname: Hwang fullname: Hwang, Eunjoo – sequence: 2 givenname: Jingwen orcidid: 0000-0001-6477-0360 surname: Hu fullname: Hu, Jingwen email: jwhu@umich.edu – sequence: 3 givenname: Matthew P. surname: Reed fullname: Reed, Matthew P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31708242$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9rGzEQxUVJaZy0XyEIeullHY1W611BKQ2hfwKBXtoeK7TSONZ2V3IlbYq_fRVsX3xJTwPD770Z3rsgZz54JOQK2BIYrK6H5dC7MKHZLDkDWZZSCPGCLKBr64rXHTsjC8Y4VJJLdk4uUhoYY61o5StyXkPLOi74gvz6qUdndXb-gVr3iDEh3cyT9rQPdkenYHFMVD9o51OmyVmkbtpqk2nGlBP96_KGbkPK1RRixukgTnM_oMnpNXm51mPCN4d5SX58_vT99mt1_-3L3e3NfWVEA7mylnOQTCMwUVtkCD1br6ERouFcNrYBw7uVgYZjx1uQttPIRC9rbmTX16a-JO_2vtsY_szlMzW5ZHActccwJ8VrqFdNK0EU9O0JOoQ5-vJdobjkgkHbFerqQM39hFZto5t03KljcgV4vwdMDClFXCvjcskx-By1GxUw9VSUGtSxKPVUlNoXVeSrE_nxwrPCj3th6QUfHUaVjENv0LpYElc2uOctPpxYmNF5Z_T4G3f_Y_APx8TFNQ |
CitedBy_id | crossref_primary_10_1007_s10439_024_03652_4 crossref_primary_10_1007_s10237_020_01335_2 crossref_primary_10_1115_1_4064033 crossref_primary_10_1111_joa_13999 crossref_primary_10_1080_10255842_2021_2003790 crossref_primary_10_1016_j_jth_2021_101293 crossref_primary_10_1111_joa_13751 crossref_primary_10_1016_j_cej_2022_139869 crossref_primary_10_1080_15389588_2022_2152282 crossref_primary_10_1016_j_ssci_2025_106779 crossref_primary_10_1080_15389588_2024_2376939 crossref_primary_10_1007_s10439_021_02794_z crossref_primary_10_4271_09_11_02_0018 crossref_primary_10_1080_15389588_2022_2160199 crossref_primary_10_1016_j_oceaneng_2024_118768 crossref_primary_10_3389_fbioe_2024_1394177 crossref_primary_10_3389_fbioe_2023_1169365 |
Cites_doi | 10.1002/oby.21947 10.1007/s10439-015-1307-6 10.1016/j.jbiomech.2016.06.020 10.1080/15389588.2016.1269172 10.1016/j.jbiomech.2014.04.045 10.1080/15389588.2017.1307971 10.1016/j.aap.2014.05.024 10.1002/oby.20079 10.1007/s10439-015-1286-7 10.1016/j.jbiomech.2014.12.042 10.1080/15389588.2013.792109 10.1016/j.jbiomech.2017.06.015 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. 2019. Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: 2019. Elsevier Ltd |
DBID | AAYXX CITATION NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2019.109444 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
ExternalDocumentID | 31708242 10_1016_j_jbiomech_2019_109444 S0021929019306918 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AI. AIGII ALIPV ASPBG AVWKF AZFZN CITATION EBD EJD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP ZGI NPM 3V. 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c451t-dd22190ae1043de0e1b0ff154452295d51c286c152e82719d8ae04b932c98b3c3 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Tue Aug 05 10:01:12 EDT 2025 Wed Aug 13 04:58:48 EDT 2025 Wed Feb 19 02:32:17 EST 2025 Thu Apr 24 23:09:26 EDT 2025 Tue Jul 01 00:44:15 EDT 2025 Fri Feb 23 02:47:00 EST 2024 Tue Aug 26 17:09:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Scaling Finite element model PMHS test Mesh morphing Diverse human body models Side impact |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-dd22190ae1043de0e1b0ff154452295d51c286c152e82719d8ae04b932c98b3c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6477-0360 |
PMID | 31708242 |
PQID | 2329240178 |
PQPubID | 1226346 |
ParticipantIDs | proquest_miscellaneous_2313657914 proquest_journals_2329240178 pubmed_primary_31708242 crossref_citationtrail_10_1016_j_jbiomech_2019_109444 crossref_primary_10_1016_j_jbiomech_2019_109444 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2019_109444 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2019_109444 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-02 |
PublicationDateYYYYMMDD | 2020-01-02 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Klein, Hu, Reed, Hoff, Rupp (b0050) 2015; 43 Vavalle, Davis, Stitzel, Gayzik (b0120) 2015; 43 Hwang, Hu, Chen, Klein, Miller, Reed, Rupp, Hallman (b0035) 2016; 60 Hu (b0030) 2018 Subit, Duprey, Lau, Guillemot, Lessley, Kent (b0110) 2010; 54 Klein, Hu, Reed, Schneider, Rupp (b0055) 2017; 18 Maltese, Eppinger, Rhule, Donnelly, Pintar, Yoganandan (b0065) 2002; 46 Yang, Hu, White, King, Chou, Prasad (b0130) 2006; 50 Donlon, Poulard, Lessley, Riley, Subit (b0020) 2015; 48 Toyota, 2015. Documentation for Total Human Model for Safety (THUMS) AM50 Pedestrian/Occupant Model Academic Version 4.02_20150527. Hayashi, Yasuki, Kitagawa (b0025) 2008; 52 Beillas, Berthet (b0005) 2017; 18 Schoell, Weaver, Urban, Jones, Stitzel, Hwang, Reed, Rupp, Hu (b0095) 2015; 59 Davis, Koya, Schap, Gayzik (b0015) 2016; 60 Lessley, Shaw, Parent, Arregui-Dalmases, Kindig, Riley, Purtsezov, Sochor, Gochenour, Bolton, Subit, Crandall, Takayama, Ono, Kamiji, Yasuki (b0060) 2010; 54 Reed, M.P., Ebert, S.M., 2013. Elderly occupants: posture, body shape, and belt fit. University of Michigan Transportation Research Institute, Ann Arbor, MI Report Number: UMTRI-2013-26. Shi, Cao, Reed, Rupp, Hoff, Hu (b0105) 2014; 47 Ruan, El-Jawahri, Rouhana, Barbat, Prasad (b0085) 2006; 50 Wang, Cao, Bai, Reed, Rupp, Hoff, Hu (b0125) 2016; 49 Zhang, Cao, Fanta, Reed, Neal, Wang, Lin, Hu (b0135) 2017; 60 Miller, Madura, Schneider, Klinich, Reed, Rupp (b0070) 2013; 57 Kemper, McNally, Kennedy, Manoogian, Duma (b0045) 2008; 52 Shaw, Lessley, Ash, Sochor, Crandall, Luzon-Narro, Arregui-Dalmases (b0100) 2014; 15 Jolivet, Lafon, Petit, Beillas (b0040) 2015; 59 Rupp, Flannagan, Leslie, Hoff, Reed, Cunningham (b0090) 2013; 21 Poulard, Subit, Donlon, Lessley, Kim, Park, Kent (b0075) 2014; 58 Zhang, Cao, Wang, Hwang, Reed, Forman, Hu (b0140) 2017; 25 Carter, Flannagan, Reed, Cunningham, Rupp (b0010) 2014; 72 10.1016/j.jbiomech.2019.109444_b0080 Kemper (10.1016/j.jbiomech.2019.109444_b0045) 2008; 52 Ruan (10.1016/j.jbiomech.2019.109444_b0085) 2006; 50 Hayashi (10.1016/j.jbiomech.2019.109444_b0025) 2008; 52 Davis (10.1016/j.jbiomech.2019.109444_b0015) 2016; 60 Beillas (10.1016/j.jbiomech.2019.109444_b0005) 2017; 18 Zhang (10.1016/j.jbiomech.2019.109444_b0140) 2017; 25 Carter (10.1016/j.jbiomech.2019.109444_b0010) 2014; 72 Hu (10.1016/j.jbiomech.2019.109444_b0030) 2018 Subit (10.1016/j.jbiomech.2019.109444_b0110) 2010; 54 Klein (10.1016/j.jbiomech.2019.109444_b0050) 2015; 43 Poulard (10.1016/j.jbiomech.2019.109444_b0075) 2014; 58 Rupp (10.1016/j.jbiomech.2019.109444_b0090) 2013; 21 Donlon (10.1016/j.jbiomech.2019.109444_b0020) 2015; 48 Klein (10.1016/j.jbiomech.2019.109444_b0055) 2017; 18 Wang (10.1016/j.jbiomech.2019.109444_b0125) 2016; 49 Hwang (10.1016/j.jbiomech.2019.109444_b0035) 2016; 60 Maltese (10.1016/j.jbiomech.2019.109444_b0065) 2002; 46 Miller (10.1016/j.jbiomech.2019.109444_b0070) 2013; 57 Zhang (10.1016/j.jbiomech.2019.109444_b0135) 2017; 60 Yang (10.1016/j.jbiomech.2019.109444_b0130) 2006; 50 Lessley (10.1016/j.jbiomech.2019.109444_b0060) 2010; 54 Vavalle (10.1016/j.jbiomech.2019.109444_b0120) 2015; 43 Schoell (10.1016/j.jbiomech.2019.109444_b0095) 2015; 59 Shi (10.1016/j.jbiomech.2019.109444_b0105) 2014; 47 Jolivet (10.1016/j.jbiomech.2019.109444_b0040) 2015; 59 Shaw (10.1016/j.jbiomech.2019.109444_b0100) 2014; 15 10.1016/j.jbiomech.2019.109444_b0115 |
References_xml | – volume: 18 start-page: S142 year: 2017 end-page: S147 ident: b0005 article-title: An investigation of human body model morphing for the assessment of abdomen responses to impact against a population of test subjects publication-title: Traffic Inj. Prev. – volume: 50 start-page: 429 year: 2006 end-page: 490 ident: b0130 article-title: Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp Car Crash Conference publication-title: Stapp. Car. Crash J. – volume: 54 start-page: 27 year: 2010 end-page: 40 ident: b0110 article-title: Response of the human torso to lateral and oblique constant-velocity impacts publication-title: Ann. Adv. Automot. Med. – volume: 72 start-page: 146 year: 2014 end-page: 160 ident: b0010 article-title: Comparing the effects of age, BMI and gender on severe injury (AIS 3+) in motor-vehicle crashes publication-title: Accid. Anal. Prev. – volume: 21 start-page: E88 year: 2013 end-page: 97 ident: b0090 article-title: Effects of BMI on the risk and frequency of AIS 3+ injuries in motor-vehicle crashes publication-title: Obesity (Silver Spring) – volume: 60 start-page: 253 year: 2017 end-page: 260 ident: b0135 article-title: An automated method to morph finite element whole-body human models with a wide range of stature and body shape for both men and women publication-title: J. Biomech. – volume: 47 start-page: 2277 year: 2014 end-page: 2285 ident: b0105 article-title: A statistical human rib cage geometry model accounting for variations by age, sex, stature and body mass index publication-title: J. Biomech. – volume: 59 start-page: 337 year: 2015 end-page: 357 ident: b0040 article-title: Comparison of kriging and moving least square methods to change the geometry of human body models publication-title: Stapp. Car. Crash J. – reference: Toyota, 2015. Documentation for Total Human Model for Safety (THUMS) AM50 Pedestrian/Occupant Model Academic Version 4.02_20150527. – volume: 18 start-page: 420 year: 2017 end-page: 426 ident: b0055 article-title: Validation of a parametric finite element human femur model publication-title: Traffic Inj. Prev. – volume: 52 start-page: 379 year: 2008 end-page: 420 ident: b0045 article-title: The influence of arm position on thoracic response in side impacts publication-title: Stapp. Car. Crash J. – volume: 57 start-page: 387 year: 2013 end-page: 425 ident: b0070 article-title: PMHS impact response in 3 m/s and 8 m/s nearside impacts with abdomen offset publication-title: Stapp. Car. Crash J. – volume: 49 start-page: 2791 year: 2016 end-page: 2798 ident: b0125 article-title: A parametric ribcage geometry model accounting for variations among the adult population publication-title: J. Biomech. – volume: 59 start-page: 359 year: 2015 end-page: 383 ident: b0095 article-title: Development and validation of an older occupant finite element model of a mid-sized male for investigation of age-related injury risk publication-title: Stapp. Car. Crash J. – volume: 46 start-page: 321 year: 2002 end-page: 351 ident: b0065 article-title: Response corridors of human surrogates in lateral impacts publication-title: Stapp. Car. Crash J. – reference: Reed, M.P., Ebert, S.M., 2013. Elderly occupants: posture, body shape, and belt fit. University of Michigan Transportation Research Institute, Ann Arbor, MI Report Number: UMTRI-2013-26. – volume: 50 start-page: 491 year: 2006 end-page: 507 ident: b0085 article-title: Analysis and evaluation of the biofidelity of the human body finite element model in lateral impact simulations according to ISO-TR9790 procedures publication-title: Stapp. Car. Crash J. – volume: 54 start-page: 289 year: 2010 end-page: 336 ident: b0060 article-title: Whole-body response to pure lateral impact publication-title: Stapp. Car. Crash J. – volume: 60 start-page: 473 year: 2016 end-page: 508 ident: b0035 article-title: Development, evaluation, and sensitivity analysis of parametric finite element whole-body human models in side impacts publication-title: Stapp. Car. Crash J. – volume: 52 start-page: 363 year: 2008 end-page: 377 ident: b0025 article-title: Occupant kinematics and estimated effectiveness of side airbags in pole side impacts using a human FE model with internal organs publication-title: Stapp. Car. Crash J. – volume: 48 start-page: 529 year: 2015 end-page: 533 ident: b0020 article-title: Understanding how pre-impact posture can affect injury outcome in side impact sled tests using a new tool for visualization of cadaver kinematics publication-title: J. Biomech. – start-page: 417 year: 2018 end-page: 445 ident: b0030 article-title: Parametric human modeling publication-title: Basic Finite Element Method as Applied to Injury Biomechanics – volume: 60 start-page: 509 year: 2016 end-page: 544 ident: b0015 article-title: Development and full body validation of a 5th percentile female finite element model publication-title: Stapp. Car. Crash J. – volume: 25 start-page: 1786 year: 2017 end-page: 1794 ident: b0140 article-title: Impact response comparison between parametric human models and postmortem human subjects with a wide range of obesity levels publication-title: Obesity (Silver Spring) – volume: 43 start-page: 2503 year: 2015 end-page: 2514 ident: b0050 article-title: Development and validation of statistical models of femur geometry for use with parametric finite element models publication-title: Ann. Biomed. Eng. – volume: 15 start-page: 40 year: 2014 end-page: 47 ident: b0100 article-title: Side impact PMHS thoracic response with large-volume air bag publication-title: Traffic Inj. Prev. – volume: 58 start-page: 385 year: 2014 end-page: 422 ident: b0075 article-title: The contribution of pre-impact spine posture on human body model response in whole-body side impact publication-title: Stapp. Car. Crash J. – volume: 43 start-page: 2163 year: 2015 end-page: 2174 ident: b0120 article-title: Quantitative validation of a human body finite element model using rigid body impacts publication-title: Ann. Biomed. Eng. – volume: 50 start-page: 491 year: 2006 ident: 10.1016/j.jbiomech.2019.109444_b0085 article-title: Analysis and evaluation of the biofidelity of the human body finite element model in lateral impact simulations according to ISO-TR9790 procedures publication-title: Stapp. Car. Crash J. – volume: 25 start-page: 1786 year: 2017 ident: 10.1016/j.jbiomech.2019.109444_b0140 article-title: Impact response comparison between parametric human models and postmortem human subjects with a wide range of obesity levels publication-title: Obesity (Silver Spring) doi: 10.1002/oby.21947 – volume: 43 start-page: 2503 year: 2015 ident: 10.1016/j.jbiomech.2019.109444_b0050 article-title: Development and validation of statistical models of femur geometry for use with parametric finite element models publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1307-6 – start-page: 417 year: 2018 ident: 10.1016/j.jbiomech.2019.109444_b0030 article-title: Parametric human modeling – ident: 10.1016/j.jbiomech.2019.109444_b0115 – volume: 49 start-page: 2791 year: 2016 ident: 10.1016/j.jbiomech.2019.109444_b0125 article-title: A parametric ribcage geometry model accounting for variations among the adult population publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.06.020 – volume: 57 start-page: 387 year: 2013 ident: 10.1016/j.jbiomech.2019.109444_b0070 article-title: PMHS impact response in 3 m/s and 8 m/s nearside impacts with abdomen offset publication-title: Stapp. Car. Crash J. – volume: 54 start-page: 27 year: 2010 ident: 10.1016/j.jbiomech.2019.109444_b0110 article-title: Response of the human torso to lateral and oblique constant-velocity impacts publication-title: Ann. Adv. Automot. Med. – volume: 18 start-page: 420 year: 2017 ident: 10.1016/j.jbiomech.2019.109444_b0055 article-title: Validation of a parametric finite element human femur model publication-title: Traffic Inj. Prev. doi: 10.1080/15389588.2016.1269172 – volume: 50 start-page: 429 year: 2006 ident: 10.1016/j.jbiomech.2019.109444_b0130 article-title: Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp Car Crash Conference publication-title: Stapp. Car. Crash J. – volume: 47 start-page: 2277 year: 2014 ident: 10.1016/j.jbiomech.2019.109444_b0105 article-title: A statistical human rib cage geometry model accounting for variations by age, sex, stature and body mass index publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.04.045 – volume: 59 start-page: 337 year: 2015 ident: 10.1016/j.jbiomech.2019.109444_b0040 article-title: Comparison of kriging and moving least square methods to change the geometry of human body models publication-title: Stapp. Car. Crash J. – volume: 59 start-page: 359 year: 2015 ident: 10.1016/j.jbiomech.2019.109444_b0095 article-title: Development and validation of an older occupant finite element model of a mid-sized male for investigation of age-related injury risk publication-title: Stapp. Car. Crash J. – volume: 18 start-page: S142 year: 2017 ident: 10.1016/j.jbiomech.2019.109444_b0005 article-title: An investigation of human body model morphing for the assessment of abdomen responses to impact against a population of test subjects publication-title: Traffic Inj. Prev. doi: 10.1080/15389588.2017.1307971 – ident: 10.1016/j.jbiomech.2019.109444_b0080 – volume: 52 start-page: 363 year: 2008 ident: 10.1016/j.jbiomech.2019.109444_b0025 article-title: Occupant kinematics and estimated effectiveness of side airbags in pole side impacts using a human FE model with internal organs publication-title: Stapp. Car. Crash J. – volume: 72 start-page: 146 year: 2014 ident: 10.1016/j.jbiomech.2019.109444_b0010 article-title: Comparing the effects of age, BMI and gender on severe injury (AIS 3+) in motor-vehicle crashes publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2014.05.024 – volume: 60 start-page: 509 year: 2016 ident: 10.1016/j.jbiomech.2019.109444_b0015 article-title: Development and full body validation of a 5th percentile female finite element model publication-title: Stapp. Car. Crash J. – volume: 58 start-page: 385 year: 2014 ident: 10.1016/j.jbiomech.2019.109444_b0075 article-title: The contribution of pre-impact spine posture on human body model response in whole-body side impact publication-title: Stapp. Car. Crash J. – volume: 21 start-page: E88 year: 2013 ident: 10.1016/j.jbiomech.2019.109444_b0090 article-title: Effects of BMI on the risk and frequency of AIS 3+ injuries in motor-vehicle crashes publication-title: Obesity (Silver Spring) doi: 10.1002/oby.20079 – volume: 52 start-page: 379 year: 2008 ident: 10.1016/j.jbiomech.2019.109444_b0045 article-title: The influence of arm position on thoracic response in side impacts publication-title: Stapp. Car. Crash J. – volume: 54 start-page: 289 year: 2010 ident: 10.1016/j.jbiomech.2019.109444_b0060 article-title: Whole-body response to pure lateral impact publication-title: Stapp. Car. Crash J. – volume: 43 start-page: 2163 year: 2015 ident: 10.1016/j.jbiomech.2019.109444_b0120 article-title: Quantitative validation of a human body finite element model using rigid body impacts publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1286-7 – volume: 60 start-page: 473 year: 2016 ident: 10.1016/j.jbiomech.2019.109444_b0035 article-title: Development, evaluation, and sensitivity analysis of parametric finite element whole-body human models in side impacts publication-title: Stapp. Car. Crash J. – volume: 48 start-page: 529 year: 2015 ident: 10.1016/j.jbiomech.2019.109444_b0020 article-title: Understanding how pre-impact posture can affect injury outcome in side impact sled tests using a new tool for visualization of cadaver kinematics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.12.042 – volume: 15 start-page: 40 year: 2014 ident: 10.1016/j.jbiomech.2019.109444_b0100 article-title: Side impact PMHS thoracic response with large-volume air bag publication-title: Traffic Inj. Prev. doi: 10.1080/15389588.2013.792109 – volume: 46 start-page: 321 year: 2002 ident: 10.1016/j.jbiomech.2019.109444_b0065 article-title: Response corridors of human surrogates in lateral impacts publication-title: Stapp. Car. Crash J. – volume: 60 start-page: 253 year: 2017 ident: 10.1016/j.jbiomech.2019.109444_b0135 article-title: An automated method to morph finite element whole-body human models with a wide range of stature and body shape for both men and women publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.06.015 |
SSID | ssj0007479 |
Score | 2.4060054 |
Snippet | This study aimed at evaluating the ability of morphed finite element (FE) human body models (HBMs) to reproduce the impact responses of post-mortem human... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109444 |
SubjectTerms | Abdomen Autopsy Bones Computer simulation Correlation analysis Diverse human body models Finite element method Finite element model Geometry Human behavior Human body Human subjects Impact loads Impact tests Mathematical models Mesh morphing Methods Model accuracy Morphing PMHS test Scaling Shape effects Side impact Statistical analysis Thorax Trochanter Weight |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xkBAcULtAWUorI1XcArHjzeOEECpCldoTVHvCih9BrGiybXYP_HtmHCflwuOcjKVk7JlvxjPzAXxLEqGLKkujKjEikprLqNRU64qxAk8NChk_7fNXenUjf0wn05Bwa0NZZW8TvaG2jaEc-Sl6fgwViEz-bP43ItYoul0NFBqrsE6jy2hXZ9Mh4KLZ8KHEg0cIA-JnHcKzk5nvb_cXErygqUpSypec00vg0zuhyw-wHdAjO-_U_RFWXD2CnfMaI-c_j-yY-XpOnygfwdazUYMj2PgZLtF34PY3Ym_qaqjvmPVlGY55qj6mG_vIPDdOy8q78h6hIyM6T9b1UjKEpYuWUeqWzZsWI2ZfqRuE26WmnE67CzeX368vrqJAsxAZOeGLyFqBZisuHUZmiXWx4zquKj-lh7i-7YQbkacGHb3LRcYLm5culhqBnylynZhkD9bqpnb7wNKsSmkmWVHlRmJgWWgpYpfREtaVUoxh0v9fZcIMcqLCeFB9sdlM9XpRpBfV6WUMp4PcvJvC8aZE1qtP9T2maBUVOoo3JYtBMqCQDl28S_aw3ykq2IJW_d-5YzgaHuMppquZsnbNkt6hcsOs4LjEp26HDR-KCA9xmhQHry_-GTYF5QIoPSQOYW3xb-m-IGBa6K_-VDwBodIS4g priority: 102 providerName: ProQuest |
Title | Validating diverse human body models against side impact tests with post-mortem human subjects |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929019306918 https://dx.doi.org/10.1016/j.jbiomech.2019.109444 https://www.ncbi.nlm.nih.gov/pubmed/31708242 https://www.proquest.com/docview/2329240178 https://www.proquest.com/docview/2313657914 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NQ0LwgKDjo2NMRkK8ZY0dN44fy7SpgKgQYqhPWLHjTK0grZb2YS_87dw5ThkP05B4SaQkFyX-OP_u_Ls7gDdZJqyuVZ7UmROJtFwmpSWuK9oKPHco5EK2z1k-vZAf5uP5Hpz2sTBEq4y6v9PpQVvHK6PYmqP1YkExvjjbaBtQI-zVnAJ-pVQ0yk9-_aF5IFyONA-e0NM3ooSXJ8sQ4x42JbimzEpSytsWqNsAaFiIzh_Do4gg2aT7yCew55sBHEwatJ5_XrO3LHA6g7N8AA9vpBscwP1PcSP9AL5_Q_xNkQ3NJasCNcOzUK6P2VV1zUJ9nJaVl-UC4SOjkp6si6dkCE03LSP3LVuvWrSaA1s3CrdbS36d9ilcnJ99PZ0msdRC4uSYb5KqEtiYaenROssqn3pu07oOmXqo3nc15k4UucPF3hdCcV0VpU-lRfDndGEzlz2D_WbV-BfAclXnlJdM14WTaFxqK0XqFb2i8qUUQxj37WtczENO5TB-mJ5wtjR9vxjqF9P1yxBGO7l1l4njTgnVd5_p40xRMxpcLO6U1DvJv0bjP8ke9SPFRH3QGsStaOii9iuG8Hp3G2cybc-UjV9t6RmiHCrN8RXPuxG2-1FEeYjVpDj8jw97CQ8EOQvIfySOYH9ztfWvEFFt7HGYMnhUc3UM9ybvP05neH53Nvv85TfL_CFO |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKkYAeEGx5bCkwSMAtNDOZzeOAUAVUW_o4tWhPTDOPVF2VZNvsCu2f4jdiTx70Usql58QjJZ6xP3tsfwBvo0jorEjioIiMCKTmMsg11bpirMBjg0LGT_s8jMfH8ttkNFmB310vDJVVdjbRG2pbGcqRb6Hnx1CByOQ_zS4CYo2i29WOQqPZFntu-QtDtvrj7hfU7zshdr4efR4HLatAYOSIzwNrBZ7SMHcYiETWhY7rsCj8UBqitrYjbkQaG_RrLhUJz2yau1BqxDkmS3VkIlz3DtxFxxtSsJdM-gCPZtG3JSU8QNgRXulInn6Y-n56fwHCM5riJKW8zhleB3a909t5BA9btMq2m-31GFZcOYD17RIj9Z9L9p75-lGfmB_A2pXRhgO4d9Be2q_Dj--I9amLojxl1peBOOapAZmu7JJ5Lp6a5af5GUJVRvShrOndZAiD5zWjVDGbVTVG6L4yuBWuF5pySPUTOL4VBTyF1bIq3XNgcVLENAMtK1IjUR-ZliJ0CS1hXS7FEEbd_1WmnXlO1Bvnqitum6pOL4r0ohq9DGGrl5s1Uz9ulEg69amupxWtsELHdKNk1ku2qKdBM_8lu9ntFNXanlr9PSlDeNM_RqtBV0F56aoFvUPljUnGcYlnzQ7rPxQRJeJCKTb-vfhruD8-OthX-7uHey_ggaA8BKWmxCaszi8X7iWCtbl-5U8Ig5PbPpJ_AGkKTjM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKrgUEHKI7TAIgE3E3u98eOAUKGNWgpRhSjqqYt3va4aFTutE6H8NX4dM-u16aWUS8_JrJTMzsw3s9_MALwKQ67SIo68ItTcEyoQXqaI64q5QhBpFNJ22uck2jsSn45Hxyvwu-2FIVpl6xOto84rTTXyIUZ-TBVomfywcLSIw53x-9mFRxuk6KW1XafRXJEDs_yF6Vv9bn8Hdf2a8_Hut497ntsw4GkxCuZennO0WD8zmJSEufFNoPyisANqaM11Pgo0TyKNMc4kPA7SPMmMLxRiHp0mKtQhnnsHVmPKinqw-mF3cvi1iwMI1B3BJPAQhPhX-pOnb6e2u94-hwQpzXQSQlwXGq-DvjYEju_DusOubLu5bA9gxZR92NguMW__uWRvmGWT2jJ9H-5dGXTYh7Uv7gl_A06-I_KnnorylOWWFGKYXRTIVJUvmd3MU7PsNDtD4MpomShrOjkZguJ5zahwzGZVjfm65Qk74XqhqKJUP4SjW1HBI-iVVWmeAIviIqKJaGmRaIFpbaoE901MR-QmE3wAo_b_ldpNQKdFHOeypbpNZasXSXqRjV4GMOzkZs0MkBsl4lZ9su1wRZ8sMUzdKJl2kg4DNdjmv2S32psinSeq5V-7GcDL7mP0IfQwlJWmWtB3iOwYpwEe8bi5Yd0PRXyJKFHwp_8-_AWsoTnKz_uTg024y6koQXUqvgW9-eXCPEPkNlfPnYkw-HHbVvkH3WpTzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validating+diverse+human+body+models+against+side+impact+tests+with+post-mortem+human+subjects&rft.jtitle=Journal+of+biomechanics&rft.au=Hwang%2C+Eunjoo&rft.au=Hu%2C+Jingwen&rft.au=Reed%2C+Matthew+P.&rft.date=2020-01-02&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=98&rft_id=info:doi/10.1016%2Fj.jbiomech.2019.109444&rft.externalDocID=S0021929019306918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |