Validating diverse human body models against side impact tests with post-mortem human subjects

This study aimed at evaluating the ability of morphed finite element (FE) human body models (HBMs) to reproduce the impact responses of post-mortem human subjects (PMHS) with various stature and shape. Ten side impact tests previously performed using seven PMHS under 3 m/s and 8 m/s impact velocitie...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 98; p. 109444
Main Authors Hwang, Eunjoo, Hu, Jingwen, Reed, Matthew P.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 02.01.2020
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study aimed at evaluating the ability of morphed finite element (FE) human body models (HBMs) to reproduce the impact responses of post-mortem human subjects (PMHS) with various stature and shape. Ten side impact tests previously performed using seven PMHS under 3 m/s and 8 m/s impact velocities were selected for model evaluation. With weight, stature, sex, and age of PMHS, seven FE HBMs were developed by morphing the midsize male THUMS model into the target geometries predicted by the statistical skeleton and external body shape models. The model-predicted force histories, accelerations along the spine, and deflections in the chest and abdomen were compared to the test data. For comparison, simulations in all testing conditions were also conducted with the original midsize male THUMS, and the results from the THUMS simulations were scaled to the weight and stature from each PMHS. The CORrelation and Analysis (CORA) was used to evaluate the model accuracy, with CORA scores close to one indicating excellent agreement. Ten simulations using the morphed models exhibited 0.80 ± 0.01, 0.80 ± 0.01, 0.78 ± 0.02, and 0.78 ± 0.02 CORA scores for the impact forces to the thorax, abdomen, iliac-wings, and greater-trochanter, respectively; the corresponding CORA scores with the original THUMS were markedly lower at 0.60 ± 0.06, 0.69 ± 0.05, 0.71 ± 0.05, and 0.69 ± 0.04; while those for the scaled THUMS were 0.65 ± 0.05, 0.71 ± 0.05, 0.73 ± 0.05, and 0.72 ± 0.02, also lower than the morphed models. Across all simulations, the morphed HBMs demonstrated significantly higher accuracy than the THUMS with or without scaling. These results suggested the necessity of accounting for size and shape effects on predicting human responses in side impacts.
AbstractList This study aimed at evaluating the ability of morphed finite element (FE) human body models (HBMs) to reproduce the impact responses of post-mortem human subjects (PMHS) with various stature and shape. Ten side impact tests previously performed using seven PMHS under 3 m/s and 8 m/s impact velocities were selected for model evaluation. With weight, stature, sex, and age of PMHS, seven FE HBMs were developed by morphing the midsize male THUMS model into the target geometries predicted by the statistical skeleton and external body shape models. The model-predicted force histories, accelerations along the spine, and deflections in the chest and abdomen were compared to the test data. For comparison, simulations in all testing conditions were also conducted with the original midsize male THUMS, and the results from the THUMS simulations were scaled to the weight and stature from each PMHS. The CORrelation and Analysis (CORA) was used to evaluate the model accuracy, with CORA scores close to one indicating excellent agreement. Ten simulations using the morphed models exhibited 0.80 ± 0.01, 0.80 ± 0.01, 0.78 ± 0.02, and 0.78 ± 0.02 CORA scores for the impact forces to the thorax, abdomen, iliac-wings, and greater-trochanter, respectively; the corresponding CORA scores with the original THUMS were markedly lower at 0.60 ± 0.06, 0.69 ± 0.05, 0.71 ± 0.05, and 0.69 ± 0.04; while those for the scaled THUMS were 0.65 ± 0.05, 0.71 ± 0.05, 0.73 ± 0.05, and 0.72 ± 0.02, also lower than the morphed models. Across all simulations, the morphed HBMs demonstrated significantly higher accuracy than the THUMS with or without scaling. These results suggested the necessity of accounting for size and shape effects on predicting human responses in side impacts.
This study aimed at evaluating the ability of morphed finite element (FE) human body models (HBMs) to reproduce the impact responses of post-mortem human subjects (PMHS) with various stature and shape. Ten side impact tests previously performed using seven PMHS under 3 m/s and 8 m/s impact velocities were selected for model evaluation. With weight, stature, sex, and age of PMHS, seven FE HBMs were developed by morphing the midsize male THUMS model into the target geometries predicted by the statistical skeleton and external body shape models. The model-predicted force histories, accelerations along the spine, and deflections in the chest and abdomen were compared to the test data. For comparison, simulations in all testing conditions were also conducted with the original midsize male THUMS, and the results from the THUMS simulations were scaled to the weight and stature from each PMHS. The CORrelation and Analysis (CORA) was used to evaluate the model accuracy, with CORA scores close to one indicating excellent agreement. Ten simulations using the morphed models exhibited 0.80 ± 0.01, 0.80 ± 0.01, 0.78 ± 0.02, and 0.78 ± 0.02 CORA scores for the impact forces to the thorax, abdomen, iliac-wings, and greater-trochanter, respectively; the corresponding CORA scores with the original THUMS were markedly lower at 0.60 ± 0.06, 0.69 ± 0.05, 0.71 ± 0.05, and 0.69 ± 0.04; while those for the scaled THUMS were 0.65 ± 0.05, 0.71 ± 0.05, 0.73 ± 0.05, and 0.72 ± 0.02, also lower than the morphed models. Across all simulations, the morphed HBMs demonstrated significantly higher accuracy than the THUMS with or without scaling. These results suggested the necessity of accounting for size and shape effects on predicting human responses in side impacts.This study aimed at evaluating the ability of morphed finite element (FE) human body models (HBMs) to reproduce the impact responses of post-mortem human subjects (PMHS) with various stature and shape. Ten side impact tests previously performed using seven PMHS under 3 m/s and 8 m/s impact velocities were selected for model evaluation. With weight, stature, sex, and age of PMHS, seven FE HBMs were developed by morphing the midsize male THUMS model into the target geometries predicted by the statistical skeleton and external body shape models. The model-predicted force histories, accelerations along the spine, and deflections in the chest and abdomen were compared to the test data. For comparison, simulations in all testing conditions were also conducted with the original midsize male THUMS, and the results from the THUMS simulations were scaled to the weight and stature from each PMHS. The CORrelation and Analysis (CORA) was used to evaluate the model accuracy, with CORA scores close to one indicating excellent agreement. Ten simulations using the morphed models exhibited 0.80 ± 0.01, 0.80 ± 0.01, 0.78 ± 0.02, and 0.78 ± 0.02 CORA scores for the impact forces to the thorax, abdomen, iliac-wings, and greater-trochanter, respectively; the corresponding CORA scores with the original THUMS were markedly lower at 0.60 ± 0.06, 0.69 ± 0.05, 0.71 ± 0.05, and 0.69 ± 0.04; while those for the scaled THUMS were 0.65 ± 0.05, 0.71 ± 0.05, 0.73 ± 0.05, and 0.72 ± 0.02, also lower than the morphed models. Across all simulations, the morphed HBMs demonstrated significantly higher accuracy than the THUMS with or without scaling. These results suggested the necessity of accounting for size and shape effects on predicting human responses in side impacts.
ArticleNumber 109444
Author Hwang, Eunjoo
Hu, Jingwen
Reed, Matthew P.
Author_xml – sequence: 1
  givenname: Eunjoo
  surname: Hwang
  fullname: Hwang, Eunjoo
– sequence: 2
  givenname: Jingwen
  orcidid: 0000-0001-6477-0360
  surname: Hu
  fullname: Hu, Jingwen
  email: jwhu@umich.edu
– sequence: 3
  givenname: Matthew P.
  surname: Reed
  fullname: Reed, Matthew P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31708242$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9rGzEQxUVJaZy0XyEIeullHY1W611BKQ2hfwKBXtoeK7TSONZ2V3IlbYq_fRVsX3xJTwPD770Z3rsgZz54JOQK2BIYrK6H5dC7MKHZLDkDWZZSCPGCLKBr64rXHTsjC8Y4VJJLdk4uUhoYY61o5StyXkPLOi74gvz6qUdndXb-gVr3iDEh3cyT9rQPdkenYHFMVD9o51OmyVmkbtpqk2nGlBP96_KGbkPK1RRixukgTnM_oMnpNXm51mPCN4d5SX58_vT99mt1_-3L3e3NfWVEA7mylnOQTCMwUVtkCD1br6ERouFcNrYBw7uVgYZjx1uQttPIRC9rbmTX16a-JO_2vtsY_szlMzW5ZHActccwJ8VrqFdNK0EU9O0JOoQ5-vJdobjkgkHbFerqQM39hFZto5t03KljcgV4vwdMDClFXCvjcskx-By1GxUw9VSUGtSxKPVUlNoXVeSrE_nxwrPCj3th6QUfHUaVjENv0LpYElc2uOctPpxYmNF5Z_T4G3f_Y_APx8TFNQ
CitedBy_id crossref_primary_10_1007_s10439_024_03652_4
crossref_primary_10_1007_s10237_020_01335_2
crossref_primary_10_1115_1_4064033
crossref_primary_10_1111_joa_13999
crossref_primary_10_1080_10255842_2021_2003790
crossref_primary_10_1016_j_jth_2021_101293
crossref_primary_10_1111_joa_13751
crossref_primary_10_1016_j_cej_2022_139869
crossref_primary_10_1080_15389588_2022_2152282
crossref_primary_10_1016_j_ssci_2025_106779
crossref_primary_10_1080_15389588_2024_2376939
crossref_primary_10_1007_s10439_021_02794_z
crossref_primary_10_4271_09_11_02_0018
crossref_primary_10_1080_15389588_2022_2160199
crossref_primary_10_1016_j_oceaneng_2024_118768
crossref_primary_10_3389_fbioe_2024_1394177
crossref_primary_10_3389_fbioe_2023_1169365
Cites_doi 10.1002/oby.21947
10.1007/s10439-015-1307-6
10.1016/j.jbiomech.2016.06.020
10.1080/15389588.2016.1269172
10.1016/j.jbiomech.2014.04.045
10.1080/15389588.2017.1307971
10.1016/j.aap.2014.05.024
10.1002/oby.20079
10.1007/s10439-015-1286-7
10.1016/j.jbiomech.2014.12.042
10.1080/15389588.2013.792109
10.1016/j.jbiomech.2017.06.015
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
2019. Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: 2019. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2019.109444
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
ExternalDocumentID 31708242
10_1016_j_jbiomech_2019_109444
S0021929019306918
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
EFLBG
LCYCR
.GJ
29J
53G
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AGRNS
AI.
AIGII
ALIPV
ASPBG
AVWKF
AZFZN
CITATION
EBD
EJD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
NPM
3V.
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c451t-dd22190ae1043de0e1b0ff154452295d51c286c152e82719d8ae04b932c98b3c3
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Tue Aug 05 10:01:12 EDT 2025
Wed Aug 13 04:58:48 EDT 2025
Wed Feb 19 02:32:17 EST 2025
Thu Apr 24 23:09:26 EDT 2025
Tue Jul 01 00:44:15 EDT 2025
Fri Feb 23 02:47:00 EST 2024
Tue Aug 26 17:09:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Scaling
Finite element model
PMHS test
Mesh morphing
Diverse human body models
Side impact
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-dd22190ae1043de0e1b0ff154452295d51c286c152e82719d8ae04b932c98b3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6477-0360
PMID 31708242
PQID 2329240178
PQPubID 1226346
ParticipantIDs proquest_miscellaneous_2313657914
proquest_journals_2329240178
pubmed_primary_31708242
crossref_citationtrail_10_1016_j_jbiomech_2019_109444
crossref_primary_10_1016_j_jbiomech_2019_109444
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2019_109444
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2019_109444
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-02
PublicationDateYYYYMMDD 2020-01-02
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Klein, Hu, Reed, Hoff, Rupp (b0050) 2015; 43
Vavalle, Davis, Stitzel, Gayzik (b0120) 2015; 43
Hwang, Hu, Chen, Klein, Miller, Reed, Rupp, Hallman (b0035) 2016; 60
Hu (b0030) 2018
Subit, Duprey, Lau, Guillemot, Lessley, Kent (b0110) 2010; 54
Klein, Hu, Reed, Schneider, Rupp (b0055) 2017; 18
Maltese, Eppinger, Rhule, Donnelly, Pintar, Yoganandan (b0065) 2002; 46
Yang, Hu, White, King, Chou, Prasad (b0130) 2006; 50
Donlon, Poulard, Lessley, Riley, Subit (b0020) 2015; 48
Toyota, 2015. Documentation for Total Human Model for Safety (THUMS) AM50 Pedestrian/Occupant Model Academic Version 4.02_20150527.
Hayashi, Yasuki, Kitagawa (b0025) 2008; 52
Beillas, Berthet (b0005) 2017; 18
Schoell, Weaver, Urban, Jones, Stitzel, Hwang, Reed, Rupp, Hu (b0095) 2015; 59
Davis, Koya, Schap, Gayzik (b0015) 2016; 60
Lessley, Shaw, Parent, Arregui-Dalmases, Kindig, Riley, Purtsezov, Sochor, Gochenour, Bolton, Subit, Crandall, Takayama, Ono, Kamiji, Yasuki (b0060) 2010; 54
Reed, M.P., Ebert, S.M., 2013. Elderly occupants: posture, body shape, and belt fit. University of Michigan Transportation Research Institute, Ann Arbor, MI Report Number: UMTRI-2013-26.
Shi, Cao, Reed, Rupp, Hoff, Hu (b0105) 2014; 47
Ruan, El-Jawahri, Rouhana, Barbat, Prasad (b0085) 2006; 50
Wang, Cao, Bai, Reed, Rupp, Hoff, Hu (b0125) 2016; 49
Zhang, Cao, Fanta, Reed, Neal, Wang, Lin, Hu (b0135) 2017; 60
Miller, Madura, Schneider, Klinich, Reed, Rupp (b0070) 2013; 57
Kemper, McNally, Kennedy, Manoogian, Duma (b0045) 2008; 52
Shaw, Lessley, Ash, Sochor, Crandall, Luzon-Narro, Arregui-Dalmases (b0100) 2014; 15
Jolivet, Lafon, Petit, Beillas (b0040) 2015; 59
Rupp, Flannagan, Leslie, Hoff, Reed, Cunningham (b0090) 2013; 21
Poulard, Subit, Donlon, Lessley, Kim, Park, Kent (b0075) 2014; 58
Zhang, Cao, Wang, Hwang, Reed, Forman, Hu (b0140) 2017; 25
Carter, Flannagan, Reed, Cunningham, Rupp (b0010) 2014; 72
10.1016/j.jbiomech.2019.109444_b0080
Kemper (10.1016/j.jbiomech.2019.109444_b0045) 2008; 52
Ruan (10.1016/j.jbiomech.2019.109444_b0085) 2006; 50
Hayashi (10.1016/j.jbiomech.2019.109444_b0025) 2008; 52
Davis (10.1016/j.jbiomech.2019.109444_b0015) 2016; 60
Beillas (10.1016/j.jbiomech.2019.109444_b0005) 2017; 18
Zhang (10.1016/j.jbiomech.2019.109444_b0140) 2017; 25
Carter (10.1016/j.jbiomech.2019.109444_b0010) 2014; 72
Hu (10.1016/j.jbiomech.2019.109444_b0030) 2018
Subit (10.1016/j.jbiomech.2019.109444_b0110) 2010; 54
Klein (10.1016/j.jbiomech.2019.109444_b0050) 2015; 43
Poulard (10.1016/j.jbiomech.2019.109444_b0075) 2014; 58
Rupp (10.1016/j.jbiomech.2019.109444_b0090) 2013; 21
Donlon (10.1016/j.jbiomech.2019.109444_b0020) 2015; 48
Klein (10.1016/j.jbiomech.2019.109444_b0055) 2017; 18
Wang (10.1016/j.jbiomech.2019.109444_b0125) 2016; 49
Hwang (10.1016/j.jbiomech.2019.109444_b0035) 2016; 60
Maltese (10.1016/j.jbiomech.2019.109444_b0065) 2002; 46
Miller (10.1016/j.jbiomech.2019.109444_b0070) 2013; 57
Zhang (10.1016/j.jbiomech.2019.109444_b0135) 2017; 60
Yang (10.1016/j.jbiomech.2019.109444_b0130) 2006; 50
Lessley (10.1016/j.jbiomech.2019.109444_b0060) 2010; 54
Vavalle (10.1016/j.jbiomech.2019.109444_b0120) 2015; 43
Schoell (10.1016/j.jbiomech.2019.109444_b0095) 2015; 59
Shi (10.1016/j.jbiomech.2019.109444_b0105) 2014; 47
Jolivet (10.1016/j.jbiomech.2019.109444_b0040) 2015; 59
Shaw (10.1016/j.jbiomech.2019.109444_b0100) 2014; 15
10.1016/j.jbiomech.2019.109444_b0115
References_xml – volume: 18
  start-page: S142
  year: 2017
  end-page: S147
  ident: b0005
  article-title: An investigation of human body model morphing for the assessment of abdomen responses to impact against a population of test subjects
  publication-title: Traffic Inj. Prev.
– volume: 50
  start-page: 429
  year: 2006
  end-page: 490
  ident: b0130
  article-title: Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp Car Crash Conference
  publication-title: Stapp. Car. Crash J.
– volume: 54
  start-page: 27
  year: 2010
  end-page: 40
  ident: b0110
  article-title: Response of the human torso to lateral and oblique constant-velocity impacts
  publication-title: Ann. Adv. Automot. Med.
– volume: 72
  start-page: 146
  year: 2014
  end-page: 160
  ident: b0010
  article-title: Comparing the effects of age, BMI and gender on severe injury (AIS 3+) in motor-vehicle crashes
  publication-title: Accid. Anal. Prev.
– volume: 21
  start-page: E88
  year: 2013
  end-page: 97
  ident: b0090
  article-title: Effects of BMI on the risk and frequency of AIS 3+ injuries in motor-vehicle crashes
  publication-title: Obesity (Silver Spring)
– volume: 60
  start-page: 253
  year: 2017
  end-page: 260
  ident: b0135
  article-title: An automated method to morph finite element whole-body human models with a wide range of stature and body shape for both men and women
  publication-title: J. Biomech.
– volume: 47
  start-page: 2277
  year: 2014
  end-page: 2285
  ident: b0105
  article-title: A statistical human rib cage geometry model accounting for variations by age, sex, stature and body mass index
  publication-title: J. Biomech.
– volume: 59
  start-page: 337
  year: 2015
  end-page: 357
  ident: b0040
  article-title: Comparison of kriging and moving least square methods to change the geometry of human body models
  publication-title: Stapp. Car. Crash J.
– reference: Toyota, 2015. Documentation for Total Human Model for Safety (THUMS) AM50 Pedestrian/Occupant Model Academic Version 4.02_20150527.
– volume: 18
  start-page: 420
  year: 2017
  end-page: 426
  ident: b0055
  article-title: Validation of a parametric finite element human femur model
  publication-title: Traffic Inj. Prev.
– volume: 52
  start-page: 379
  year: 2008
  end-page: 420
  ident: b0045
  article-title: The influence of arm position on thoracic response in side impacts
  publication-title: Stapp. Car. Crash J.
– volume: 57
  start-page: 387
  year: 2013
  end-page: 425
  ident: b0070
  article-title: PMHS impact response in 3 m/s and 8 m/s nearside impacts with abdomen offset
  publication-title: Stapp. Car. Crash J.
– volume: 49
  start-page: 2791
  year: 2016
  end-page: 2798
  ident: b0125
  article-title: A parametric ribcage geometry model accounting for variations among the adult population
  publication-title: J. Biomech.
– volume: 59
  start-page: 359
  year: 2015
  end-page: 383
  ident: b0095
  article-title: Development and validation of an older occupant finite element model of a mid-sized male for investigation of age-related injury risk
  publication-title: Stapp. Car. Crash J.
– volume: 46
  start-page: 321
  year: 2002
  end-page: 351
  ident: b0065
  article-title: Response corridors of human surrogates in lateral impacts
  publication-title: Stapp. Car. Crash J.
– reference: Reed, M.P., Ebert, S.M., 2013. Elderly occupants: posture, body shape, and belt fit. University of Michigan Transportation Research Institute, Ann Arbor, MI Report Number: UMTRI-2013-26.
– volume: 50
  start-page: 491
  year: 2006
  end-page: 507
  ident: b0085
  article-title: Analysis and evaluation of the biofidelity of the human body finite element model in lateral impact simulations according to ISO-TR9790 procedures
  publication-title: Stapp. Car. Crash J.
– volume: 54
  start-page: 289
  year: 2010
  end-page: 336
  ident: b0060
  article-title: Whole-body response to pure lateral impact
  publication-title: Stapp. Car. Crash J.
– volume: 60
  start-page: 473
  year: 2016
  end-page: 508
  ident: b0035
  article-title: Development, evaluation, and sensitivity analysis of parametric finite element whole-body human models in side impacts
  publication-title: Stapp. Car. Crash J.
– volume: 52
  start-page: 363
  year: 2008
  end-page: 377
  ident: b0025
  article-title: Occupant kinematics and estimated effectiveness of side airbags in pole side impacts using a human FE model with internal organs
  publication-title: Stapp. Car. Crash J.
– volume: 48
  start-page: 529
  year: 2015
  end-page: 533
  ident: b0020
  article-title: Understanding how pre-impact posture can affect injury outcome in side impact sled tests using a new tool for visualization of cadaver kinematics
  publication-title: J. Biomech.
– start-page: 417
  year: 2018
  end-page: 445
  ident: b0030
  article-title: Parametric human modeling
  publication-title: Basic Finite Element Method as Applied to Injury Biomechanics
– volume: 60
  start-page: 509
  year: 2016
  end-page: 544
  ident: b0015
  article-title: Development and full body validation of a 5th percentile female finite element model
  publication-title: Stapp. Car. Crash J.
– volume: 25
  start-page: 1786
  year: 2017
  end-page: 1794
  ident: b0140
  article-title: Impact response comparison between parametric human models and postmortem human subjects with a wide range of obesity levels
  publication-title: Obesity (Silver Spring)
– volume: 43
  start-page: 2503
  year: 2015
  end-page: 2514
  ident: b0050
  article-title: Development and validation of statistical models of femur geometry for use with parametric finite element models
  publication-title: Ann. Biomed. Eng.
– volume: 15
  start-page: 40
  year: 2014
  end-page: 47
  ident: b0100
  article-title: Side impact PMHS thoracic response with large-volume air bag
  publication-title: Traffic Inj. Prev.
– volume: 58
  start-page: 385
  year: 2014
  end-page: 422
  ident: b0075
  article-title: The contribution of pre-impact spine posture on human body model response in whole-body side impact
  publication-title: Stapp. Car. Crash J.
– volume: 43
  start-page: 2163
  year: 2015
  end-page: 2174
  ident: b0120
  article-title: Quantitative validation of a human body finite element model using rigid body impacts
  publication-title: Ann. Biomed. Eng.
– volume: 50
  start-page: 491
  year: 2006
  ident: 10.1016/j.jbiomech.2019.109444_b0085
  article-title: Analysis and evaluation of the biofidelity of the human body finite element model in lateral impact simulations according to ISO-TR9790 procedures
  publication-title: Stapp. Car. Crash J.
– volume: 25
  start-page: 1786
  year: 2017
  ident: 10.1016/j.jbiomech.2019.109444_b0140
  article-title: Impact response comparison between parametric human models and postmortem human subjects with a wide range of obesity levels
  publication-title: Obesity (Silver Spring)
  doi: 10.1002/oby.21947
– volume: 43
  start-page: 2503
  year: 2015
  ident: 10.1016/j.jbiomech.2019.109444_b0050
  article-title: Development and validation of statistical models of femur geometry for use with parametric finite element models
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1307-6
– start-page: 417
  year: 2018
  ident: 10.1016/j.jbiomech.2019.109444_b0030
  article-title: Parametric human modeling
– ident: 10.1016/j.jbiomech.2019.109444_b0115
– volume: 49
  start-page: 2791
  year: 2016
  ident: 10.1016/j.jbiomech.2019.109444_b0125
  article-title: A parametric ribcage geometry model accounting for variations among the adult population
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.06.020
– volume: 57
  start-page: 387
  year: 2013
  ident: 10.1016/j.jbiomech.2019.109444_b0070
  article-title: PMHS impact response in 3 m/s and 8 m/s nearside impacts with abdomen offset
  publication-title: Stapp. Car. Crash J.
– volume: 54
  start-page: 27
  year: 2010
  ident: 10.1016/j.jbiomech.2019.109444_b0110
  article-title: Response of the human torso to lateral and oblique constant-velocity impacts
  publication-title: Ann. Adv. Automot. Med.
– volume: 18
  start-page: 420
  year: 2017
  ident: 10.1016/j.jbiomech.2019.109444_b0055
  article-title: Validation of a parametric finite element human femur model
  publication-title: Traffic Inj. Prev.
  doi: 10.1080/15389588.2016.1269172
– volume: 50
  start-page: 429
  year: 2006
  ident: 10.1016/j.jbiomech.2019.109444_b0130
  article-title: Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp Car Crash Conference
  publication-title: Stapp. Car. Crash J.
– volume: 47
  start-page: 2277
  year: 2014
  ident: 10.1016/j.jbiomech.2019.109444_b0105
  article-title: A statistical human rib cage geometry model accounting for variations by age, sex, stature and body mass index
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.04.045
– volume: 59
  start-page: 337
  year: 2015
  ident: 10.1016/j.jbiomech.2019.109444_b0040
  article-title: Comparison of kriging and moving least square methods to change the geometry of human body models
  publication-title: Stapp. Car. Crash J.
– volume: 59
  start-page: 359
  year: 2015
  ident: 10.1016/j.jbiomech.2019.109444_b0095
  article-title: Development and validation of an older occupant finite element model of a mid-sized male for investigation of age-related injury risk
  publication-title: Stapp. Car. Crash J.
– volume: 18
  start-page: S142
  year: 2017
  ident: 10.1016/j.jbiomech.2019.109444_b0005
  article-title: An investigation of human body model morphing for the assessment of abdomen responses to impact against a population of test subjects
  publication-title: Traffic Inj. Prev.
  doi: 10.1080/15389588.2017.1307971
– ident: 10.1016/j.jbiomech.2019.109444_b0080
– volume: 52
  start-page: 363
  year: 2008
  ident: 10.1016/j.jbiomech.2019.109444_b0025
  article-title: Occupant kinematics and estimated effectiveness of side airbags in pole side impacts using a human FE model with internal organs
  publication-title: Stapp. Car. Crash J.
– volume: 72
  start-page: 146
  year: 2014
  ident: 10.1016/j.jbiomech.2019.109444_b0010
  article-title: Comparing the effects of age, BMI and gender on severe injury (AIS 3+) in motor-vehicle crashes
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2014.05.024
– volume: 60
  start-page: 509
  year: 2016
  ident: 10.1016/j.jbiomech.2019.109444_b0015
  article-title: Development and full body validation of a 5th percentile female finite element model
  publication-title: Stapp. Car. Crash J.
– volume: 58
  start-page: 385
  year: 2014
  ident: 10.1016/j.jbiomech.2019.109444_b0075
  article-title: The contribution of pre-impact spine posture on human body model response in whole-body side impact
  publication-title: Stapp. Car. Crash J.
– volume: 21
  start-page: E88
  year: 2013
  ident: 10.1016/j.jbiomech.2019.109444_b0090
  article-title: Effects of BMI on the risk and frequency of AIS 3+ injuries in motor-vehicle crashes
  publication-title: Obesity (Silver Spring)
  doi: 10.1002/oby.20079
– volume: 52
  start-page: 379
  year: 2008
  ident: 10.1016/j.jbiomech.2019.109444_b0045
  article-title: The influence of arm position on thoracic response in side impacts
  publication-title: Stapp. Car. Crash J.
– volume: 54
  start-page: 289
  year: 2010
  ident: 10.1016/j.jbiomech.2019.109444_b0060
  article-title: Whole-body response to pure lateral impact
  publication-title: Stapp. Car. Crash J.
– volume: 43
  start-page: 2163
  year: 2015
  ident: 10.1016/j.jbiomech.2019.109444_b0120
  article-title: Quantitative validation of a human body finite element model using rigid body impacts
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1286-7
– volume: 60
  start-page: 473
  year: 2016
  ident: 10.1016/j.jbiomech.2019.109444_b0035
  article-title: Development, evaluation, and sensitivity analysis of parametric finite element whole-body human models in side impacts
  publication-title: Stapp. Car. Crash J.
– volume: 48
  start-page: 529
  year: 2015
  ident: 10.1016/j.jbiomech.2019.109444_b0020
  article-title: Understanding how pre-impact posture can affect injury outcome in side impact sled tests using a new tool for visualization of cadaver kinematics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.12.042
– volume: 15
  start-page: 40
  year: 2014
  ident: 10.1016/j.jbiomech.2019.109444_b0100
  article-title: Side impact PMHS thoracic response with large-volume air bag
  publication-title: Traffic Inj. Prev.
  doi: 10.1080/15389588.2013.792109
– volume: 46
  start-page: 321
  year: 2002
  ident: 10.1016/j.jbiomech.2019.109444_b0065
  article-title: Response corridors of human surrogates in lateral impacts
  publication-title: Stapp. Car. Crash J.
– volume: 60
  start-page: 253
  year: 2017
  ident: 10.1016/j.jbiomech.2019.109444_b0135
  article-title: An automated method to morph finite element whole-body human models with a wide range of stature and body shape for both men and women
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.06.015
SSID ssj0007479
Score 2.4060054
Snippet This study aimed at evaluating the ability of morphed finite element (FE) human body models (HBMs) to reproduce the impact responses of post-mortem human...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109444
SubjectTerms Abdomen
Autopsy
Bones
Computer simulation
Correlation analysis
Diverse human body models
Finite element method
Finite element model
Geometry
Human behavior
Human body
Human subjects
Impact loads
Impact tests
Mathematical models
Mesh morphing
Methods
Model accuracy
Morphing
PMHS test
Scaling
Shape effects
Side impact
Statistical analysis
Thorax
Trochanter
Weight
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xkBAcULtAWUorI1XcArHjzeOEECpCldoTVHvCih9BrGiybXYP_HtmHCflwuOcjKVk7JlvxjPzAXxLEqGLKkujKjEikprLqNRU64qxAk8NChk_7fNXenUjf0wn05Bwa0NZZW8TvaG2jaEc-Sl6fgwViEz-bP43ItYoul0NFBqrsE6jy2hXZ9Mh4KLZ8KHEg0cIA-JnHcKzk5nvb_cXErygqUpSypec00vg0zuhyw-wHdAjO-_U_RFWXD2CnfMaI-c_j-yY-XpOnygfwdazUYMj2PgZLtF34PY3Ym_qaqjvmPVlGY55qj6mG_vIPDdOy8q78h6hIyM6T9b1UjKEpYuWUeqWzZsWI2ZfqRuE26WmnE67CzeX368vrqJAsxAZOeGLyFqBZisuHUZmiXWx4zquKj-lh7i-7YQbkacGHb3LRcYLm5culhqBnylynZhkD9bqpnb7wNKsSmkmWVHlRmJgWWgpYpfREtaVUoxh0v9fZcIMcqLCeFB9sdlM9XpRpBfV6WUMp4PcvJvC8aZE1qtP9T2maBUVOoo3JYtBMqCQDl28S_aw3ykq2IJW_d-5YzgaHuMppquZsnbNkt6hcsOs4LjEp26HDR-KCA9xmhQHry_-GTYF5QIoPSQOYW3xb-m-IGBa6K_-VDwBodIS4g
  priority: 102
  providerName: ProQuest
Title Validating diverse human body models against side impact tests with post-mortem human subjects
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929019306918
https://dx.doi.org/10.1016/j.jbiomech.2019.109444
https://www.ncbi.nlm.nih.gov/pubmed/31708242
https://www.proquest.com/docview/2329240178
https://www.proquest.com/docview/2313657914
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NQ0LwgKDjo2NMRkK8ZY0dN44fy7SpgKgQYqhPWLHjTK0grZb2YS_87dw5ThkP05B4SaQkFyX-OP_u_Ls7gDdZJqyuVZ7UmROJtFwmpSWuK9oKPHco5EK2z1k-vZAf5uP5Hpz2sTBEq4y6v9PpQVvHK6PYmqP1YkExvjjbaBtQI-zVnAJ-pVQ0yk9-_aF5IFyONA-e0NM3ooSXJ8sQ4x42JbimzEpSytsWqNsAaFiIzh_Do4gg2aT7yCew55sBHEwatJ5_XrO3LHA6g7N8AA9vpBscwP1PcSP9AL5_Q_xNkQ3NJasCNcOzUK6P2VV1zUJ9nJaVl-UC4SOjkp6si6dkCE03LSP3LVuvWrSaA1s3CrdbS36d9ilcnJ99PZ0msdRC4uSYb5KqEtiYaenROssqn3pu07oOmXqo3nc15k4UucPF3hdCcV0VpU-lRfDndGEzlz2D_WbV-BfAclXnlJdM14WTaFxqK0XqFb2i8qUUQxj37WtczENO5TB-mJ5wtjR9vxjqF9P1yxBGO7l1l4njTgnVd5_p40xRMxpcLO6U1DvJv0bjP8ke9SPFRH3QGsStaOii9iuG8Hp3G2cybc-UjV9t6RmiHCrN8RXPuxG2-1FEeYjVpDj8jw97CQ8EOQvIfySOYH9ztfWvEFFt7HGYMnhUc3UM9ybvP05neH53Nvv85TfL_CFO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKkYAeEGx5bCkwSMAtNDOZzeOAUAVUW_o4tWhPTDOPVF2VZNvsCu2f4jdiTx70Usql58QjJZ6xP3tsfwBvo0jorEjioIiMCKTmMsg11bpirMBjg0LGT_s8jMfH8ttkNFmB310vDJVVdjbRG2pbGcqRb6Hnx1CByOQ_zS4CYo2i29WOQqPZFntu-QtDtvrj7hfU7zshdr4efR4HLatAYOSIzwNrBZ7SMHcYiETWhY7rsCj8UBqitrYjbkQaG_RrLhUJz2yau1BqxDkmS3VkIlz3DtxFxxtSsJdM-gCPZtG3JSU8QNgRXulInn6Y-n56fwHCM5riJKW8zhleB3a909t5BA9btMq2m-31GFZcOYD17RIj9Z9L9p75-lGfmB_A2pXRhgO4d9Be2q_Dj--I9amLojxl1peBOOapAZmu7JJ5Lp6a5af5GUJVRvShrOndZAiD5zWjVDGbVTVG6L4yuBWuF5pySPUTOL4VBTyF1bIq3XNgcVLENAMtK1IjUR-ZliJ0CS1hXS7FEEbd_1WmnXlO1Bvnqitum6pOL4r0ohq9DGGrl5s1Uz9ulEg69amupxWtsELHdKNk1ku2qKdBM_8lu9ntFNXanlr9PSlDeNM_RqtBV0F56aoFvUPljUnGcYlnzQ7rPxQRJeJCKTb-vfhruD8-OthX-7uHey_ggaA8BKWmxCaszi8X7iWCtbl-5U8Ig5PbPpJ_AGkKTjM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKrgUEHKI7TAIgE3E3u98eOAUKGNWgpRhSjqqYt3va4aFTutE6H8NX4dM-u16aWUS8_JrJTMzsw3s9_MALwKQ67SIo68ItTcEyoQXqaI64q5QhBpFNJ22uck2jsSn45Hxyvwu-2FIVpl6xOto84rTTXyIUZ-TBVomfywcLSIw53x-9mFRxuk6KW1XafRXJEDs_yF6Vv9bn8Hdf2a8_Hut497ntsw4GkxCuZennO0WD8zmJSEufFNoPyisANqaM11Pgo0TyKNMc4kPA7SPMmMLxRiHp0mKtQhnnsHVmPKinqw-mF3cvi1iwMI1B3BJPAQhPhX-pOnb6e2u94-hwQpzXQSQlwXGq-DvjYEju_DusOubLu5bA9gxZR92NguMW__uWRvmGWT2jJ9H-5dGXTYh7Uv7gl_A06-I_KnnorylOWWFGKYXRTIVJUvmd3MU7PsNDtD4MpomShrOjkZguJ5zahwzGZVjfm65Qk74XqhqKJUP4SjW1HBI-iVVWmeAIviIqKJaGmRaIFpbaoE901MR-QmE3wAo_b_ldpNQKdFHOeypbpNZasXSXqRjV4GMOzkZs0MkBsl4lZ9su1wRZ8sMUzdKJl2kg4DNdjmv2S32psinSeq5V-7GcDL7mP0IfQwlJWmWtB3iOwYpwEe8bi5Yd0PRXyJKFHwp_8-_AWsoTnKz_uTg024y6koQXUqvgW9-eXCPEPkNlfPnYkw-HHbVvkH3WpTzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validating+diverse+human+body+models+against+side+impact+tests+with+post-mortem+human+subjects&rft.jtitle=Journal+of+biomechanics&rft.au=Hwang%2C+Eunjoo&rft.au=Hu%2C+Jingwen&rft.au=Reed%2C+Matthew+P.&rft.date=2020-01-02&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=98&rft_id=info:doi/10.1016%2Fj.jbiomech.2019.109444&rft.externalDocID=S0021929019306918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon