Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering
Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS’s mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of...
Saved in:
Published in | Biophysical journal Vol. 121; no. 8; pp. 1525 - 1540 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
19.04.2022
The Biophysical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS’s mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of lipid membrane thermodynamics appears to play an important role in how fast IR-mediated heating nonspecifically drives action potential generation. Direct observation of lipid membrane dynamics during INS remains to be shown in a live neural model system. We used hyperspectral stimulated Raman scattering microscopy to study biochemical signatures of high-speed vibrational dynamics underlying INS in a live neural cell culture model. The findings suggest that lipid bilayer structural changes occur during INS in vitro in NG108-15 neuroglioma cells. Lipid-specific signatures of cell stimulated Raman scattering spectra varied with stimulation energy and radiation exposure. The spectroscopic observations agree with high-speed ratiometric fluorescence imaging of a conventional lipophilic membrane structure reporter, 4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)pyridinium hydroxide. The findings support the hypothesis that INS causes changes in the lipid membrane of neural cells by changing the lipid membrane packing order. This work highlights the potential of hyperspectral stimulated Raman scattering as a method to safely study biophysical and biochemical dynamics in live cells. |
---|---|
AbstractList | Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS's mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of lipid membrane thermodynamics appears to play an important role in how fast IR-mediated heating nonspecifically drives action potential generation. Direct observation of lipid membrane dynamics during INS remains to be shown in a live neural model system. We used hyperspectral stimulated Raman scattering microscopy to study biochemical signatures of high-speed vibrational dynamics underlying INS in a live neural cell culture model. The findings suggest that lipid bilayer structural changes occur during INS in vitro in NG108-15 neuroglioma cells. Lipid-specific signatures of cell stimulated Raman scattering spectra varied with stimulation energy and radiation exposure. The spectroscopic observations agree with high-speed ratiometric fluorescence imaging of a conventional lipophilic membrane structure reporter, 4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)pyridinium hydroxide. The findings support the hypothesis that INS causes changes in the lipid membrane of neural cells by changing the lipid membrane packing order. This work highlights the potential of hyperspectral stimulated Raman scattering as a method to safely study biophysical and biochemical dynamics in live cells.Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS's mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of lipid membrane thermodynamics appears to play an important role in how fast IR-mediated heating nonspecifically drives action potential generation. Direct observation of lipid membrane dynamics during INS remains to be shown in a live neural model system. We used hyperspectral stimulated Raman scattering microscopy to study biochemical signatures of high-speed vibrational dynamics underlying INS in a live neural cell culture model. The findings suggest that lipid bilayer structural changes occur during INS in vitro in NG108-15 neuroglioma cells. Lipid-specific signatures of cell stimulated Raman scattering spectra varied with stimulation energy and radiation exposure. The spectroscopic observations agree with high-speed ratiometric fluorescence imaging of a conventional lipophilic membrane structure reporter, 4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)pyridinium hydroxide. The findings support the hypothesis that INS causes changes in the lipid membrane of neural cells by changing the lipid membrane packing order. This work highlights the potential of hyperspectral stimulated Raman scattering as a method to safely study biophysical and biochemical dynamics in live cells. Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS’s mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of lipid membrane thermodynamics appears to play an important role in how fast IR-mediated heating nonspecifically drives action potential generation. Direct observation of lipid membrane dynamics during INS remains to be shown in a live neural model system. We used hyperspectral stimulated Raman scattering microscopy to study biochemical signatures of high-speed vibrational dynamics underlying INS in a live neural cell culture model. The findings suggest that lipid bilayer structural changes occur during INS in vitro in NG108-15 neuroglioma cells. Lipid-specific signatures of cell stimulated Raman scattering spectra varied with stimulation energy and radiation exposure. The spectroscopic observations agree with high-speed ratiometric fluorescence imaging of a conventional lipophilic membrane structure reporter, 4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)pyridinium hydroxide. The findings support the hypothesis that INS causes changes in the lipid membrane of neural cells by changing the lipid membrane packing order. This work highlights the potential of hyperspectral stimulated Raman scattering as a method to safely study biophysical and biochemical dynamics in live cells. Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS’s mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of lipid membrane thermodynamics appears to play an important role in how fast IR-mediated heating nonspecifically drives action potential generation. Direct observation of lipid membrane dynamics during INS remains to be shown in a live neural model system. We used hyperspectral stimulated Raman scattering microscopy to study biochemical signatures of high-speed vibrational dynamics underlying INS in a live neural cell culture model. The findings suggest that lipid bilayer structural changes occur during INS in vitro in NG108-15 neuroglioma cells. Lipid-specific signatures of cell stimulated Raman scattering spectra varied with stimulation energy and radiation exposure. The spectroscopic observations agree with high-speed ratiometric fluorescence imaging of a conventional lipophilic membrane structure reporter, 4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)pyridinium hydroxide. The findings support the hypothesis that INS causes changes in the lipid membrane of neural cells by changing the lipid membrane packing order. This work highlights the potential of hyperspectral stimulated Raman scattering as a method to safely study biophysical and biochemical dynamics in live cells. |
Author | Dollinger, Bryan R. Locke, Andrea Throckmorton, Graham A. Masson, Laura E. Gautam, Rekha Jansen, E. Duco Adams, Wilson R. Borrachero-Conejo, Ana I. Duvall, Craig Mahadevan-Jansen, Anita |
Author_xml | – sequence: 1 givenname: Wilson R. orcidid: 0000-0001-6605-4149 surname: Adams fullname: Adams, Wilson R. organization: Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee – sequence: 2 givenname: Rekha orcidid: 0000-0002-1176-8491 surname: Gautam fullname: Gautam, Rekha organization: Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee – sequence: 3 givenname: Andrea orcidid: 0000-0002-7357-9688 surname: Locke fullname: Locke, Andrea organization: Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee – sequence: 4 givenname: Laura E. surname: Masson fullname: Masson, Laura E. organization: Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee – sequence: 5 givenname: Ana I. surname: Borrachero-Conejo fullname: Borrachero-Conejo, Ana I. organization: Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee – sequence: 6 givenname: Bryan R. surname: Dollinger fullname: Dollinger, Bryan R. organization: Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee – sequence: 7 givenname: Graham A. surname: Throckmorton fullname: Throckmorton, Graham A. organization: Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee – sequence: 8 givenname: Craig surname: Duvall fullname: Duvall, Craig organization: Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee – sequence: 9 givenname: E. Duco orcidid: 0000-0002-1778-6180 surname: Jansen fullname: Jansen, E. Duco organization: Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee – sequence: 10 givenname: Anita surname: Mahadevan-Jansen fullname: Mahadevan-Jansen, Anita email: anita.mahadevan-jansen@vanderbilt.edu organization: Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35276133$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UV1rFDEUDVKx29Yf4IvMoy8z5mMzmSAIUtQWCgUpfQ2Z5E57l5nMmmQK9debdbuifSgEAveej8s5J-QozAEIecdowyhrP26afrtpOOW8oaKhtH1FVkyueU1p1x6RFS2jWqy1PCYnKW0oZVxS9oYcC8lVy4RYEX-LabEj_sJwV-V7qEbcoq_8Y7ATulTFeYQKQ3lDtBF8FWCJdqxSxmkZbcY5VEvakQ-TgvlhJxuq5GzOEMvujLwe7Jjg7dN_Sm6-fb05v6ivrr9fnn-5qt1aslx7q7XXTDvVSeDMD8pKMXjf9p5KbQE4KCVkLyxXltmW8153es2FZO0gmTgln_ey26WfwDsIuZxqthEnGx_NbNH8vwl4b-7mB6Op4lKJIvDhSSDOPxdI2UyYHIyjDTAvyfBWdIqrTugCff-v11-TQ7IFoPYAF-eUIgzGYf6TV7HG0TBqdh2ajSkdml2HhgpTCitM9ox5EH-J82nPgRLvA0I0ySEEBx4juGz8jC-wfwNnrbbf |
CitedBy_id | crossref_primary_10_1002_advs_202403205 crossref_primary_10_1063_5_0153753 crossref_primary_10_1038_s41598_022_18139_2 crossref_primary_10_1088_1361_6633_ad4729 crossref_primary_10_1021_acs_jpcb_3c00038 crossref_primary_10_1039_D3NH00258F crossref_primary_10_1146_annurev_bioeng_110220_034007 |
Cites_doi | 10.1103/PhysRevE.63.011907 10.1063/1.4919104 10.1364/BOE.10.003860 10.1073/pnas.77.5.2362 10.1016/j.bbamem.2016.07.006 10.1038/nphoton.2014.145 10.1002/lsm.23139 10.1016/0005-2736(78)90390-5 10.1021/bi00417a005 10.1038/ncomms1742 10.1364/BOE.6.004105 10.1117/1.NPh.8.1.015012 10.1073/pnas.1009043108 10.1016/j.cell.2017.05.024 10.1038/nmeth.2019 10.1016/j.jid.2020.06.027 10.1364/OE.25.005618 10.1088/1367-2630/11/3/033026 10.1038/283585a0 10.1152/jn.00424.2011 10.1063/1.555859 10.1117/1.3533314 10.1007/s00232-005-7006-8 10.1016/j.ymeth.2017.07.020 10.1364/OL.30.000504 10.1088/1361-6463/aa5dbc 10.1002/jbio.201700020 10.1002/lsm.22080 10.1529/biophysj.107.104786 10.1186/s12859-016-1383-0 10.1073/pnas.1732202100 10.1002/lsm.21023 10.1038/s41598-021-86774-2 10.1002/jrs.4607 10.1016/S0006-3495(85)83927-8 10.1002/jbio.201300043 10.1021/acs.analchem.6b04699 10.1016/j.bbamem.2011.07.022 10.1016/j.stem.2016.11.004 10.1038/nprot.2011.419 10.1021/jp207566n 10.1117/1.NPh.4.2.025001 10.1021/acs.jpcc.5b06980 10.1007/s002320001021 10.1371/journal.pone.0183761 10.1016/0005-2736(77)90078-5 10.1021/ja504199s 10.1364/OL.34.001363 10.1063/1.1768312 10.1021/ac3019119 10.7554/eLife.46084 10.1038/srep39660 10.1007/s00216-008-2592-9 10.1016/0005-2736(80)90512-X 10.1021/jp5113813 10.1096/fj.201903049R 10.1152/jn.00253.2014 10.1016/S0304-4157(00)00016-2 10.1146/annurev-anchem-061516-045317 10.1016/j.ultrasmedbio.2018.12.015 10.1016/S0006-3495(97)78887-8 10.1093/bioinformatics/btw413 10.1016/j.bbamem.2014.06.010 10.1152/jn.00740.2017 10.1002/jbio.201300005 10.1529/biophysj.108.132662 10.1073/pnas.1515121112 10.1038/nphoton.2010.294 10.1021/acs.jpclett.7b00575 10.1021/jp308938t |
ContentType | Journal Article |
Copyright | 2022 Biophysical Society Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved. 2022 Biophysical Society. 2022 Biophysical Society |
Copyright_xml | – notice: 2022 Biophysical Society – notice: Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved. – notice: 2022 Biophysical Society. 2022 Biophysical Society |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.bpj.2022.03.006 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1542-0086 |
EndPage | 1540 |
ExternalDocumentID | PMC9072573 35276133 10_1016_j_bpj_2022_03_006 S000634952200193X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: T32 DK101003 |
GroupedDBID | --- -DZ -~X .55 0R~ 23N 2WC 4.4 457 5GY 5RE 62- 6I. 6J9 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACBEA ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ADBBV ADEZE ADJPV AENEX AEXQZ AFRAH AFTJW AGKMS AHMBA ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AYCSE AZFZN BAWUL CS3 D0L DIK DU5 E3Z EBS EJD F5P FCP FDB FRP HYE IH2 IXB JIG KQ8 L7B M41 N9A O-L O9- OK1 P2P RCE RNS ROL RPM RWL SES SSZ TAE TBP TN5 WH7 WOQ WOW WQ6 X7M YNY YWH ZA5 ~02 --K .GJ 3O- 53G 6TJ 7X2 7X7 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 AAEDT AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABUWG ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEUPX AEUYN AFKRA AFPUW AGCQF AGHFR AGQPQ AI. AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALIPV APXCP ARAPS ASPBG ATCPS AVWKF AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION DWQXO FEDTE FGOYB FYUFA G-2 GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HVGLF HX~ HZ~ LK8 M0K M1P M2O M2P M2Q M7P MVM OZT P62 PHGZM PHGZT PQQKQ PRG PROAC PSQYO Q2X R2- RIG S0X UKHRP UKR VH1 YYP ZGI ZXP ~KM CGR CUY CVF ECM EIF NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c451t-da99d919c785e21df7a53fdd6bd059aee2e7735b3a27a1a622b989423516f513 |
IEDL.DBID | IXB |
ISSN | 0006-3495 1542-0086 |
IngestDate | Thu Aug 21 18:37:42 EDT 2025 Tue Aug 05 11:23:07 EDT 2025 Thu Apr 03 07:04:42 EDT 2025 Thu Apr 24 23:12:09 EDT 2025 Tue Jul 01 00:57:56 EDT 2025 Fri Feb 23 02:40:57 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-da99d919c785e21df7a53fdd6bd059aee2e7735b3a27a1a622b989423516f513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7357-9688 0000-0002-1778-6180 0000-0001-6605-4149 0000-0002-1176-8491 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S000634952200193X |
PMID | 35276133 |
PQID | 2638727839 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9072573 proquest_miscellaneous_2638727839 pubmed_primary_35276133 crossref_citationtrail_10_1016_j_bpj_2022_03_006 crossref_primary_10_1016_j_bpj_2022_03_006 elsevier_sciencedirect_doi_10_1016_j_bpj_2022_03_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-19 |
PublicationDateYYYYMMDD | 2022-04-19 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biophysical journal |
PublicationTitleAlternate | Biophys J |
PublicationYear | 2022 |
Publisher | Elsevier Inc The Biophysical Society |
Publisher_xml | – name: Elsevier Inc – name: The Biophysical Society |
References | Owen, Rentero, Gaus (bib29) 2011; 7 Moreau, Lefort, O’Connor (bib41) 2015; 6 Feizpour, Marstrand, Evans (bib63) 2020; 141 Legland, Arganda-Carreras, Andrey (bib28) 2016; 32 Nagle, Tristram-Nagle (bib8) 2000; 1469 Fu, Holtom, Xie (bib23) 2013; 117 Walsh, Cantu, Beier (bib7) 2017 Syed, Smith (bib12) 2017; 10 Pézolet, Georgescauld (bib36) 1985; 47 Barrett, Rincon, Rajguru (bib66) 2018; 120 Zhang, Li, Cheng (bib56) 2017; 89 Albert, Bec, Chabbert (bib67) 2012; 107 Lu, Basu, Xie (bib35) 2015; 112 Cantu, Tarango, Ibey (bib53) 2016; 1858 Throckmorton, Cayce, Mahadevan-Jansen (bib4) 2021; 8 Duboisset, Berto, Brasselet (bib16) 2015; 119 Plaksin, Shapira, Shoham (bib3) 2018; 8 Wang, Zhang, Cheng (bib34) 2013; 6 Zhuang, Makover, Klauda (bib47) 2014; 1838 Lee, Cheng (bib15) 2017; 128 Gaber, Peticolas (bib44) 1977; 465 Szekely, Dvir, Raviv (bib46) 2011; 115 Lyatskaya, Liu, Nagle (bib54) 2001; 63 Camp, Lee, Cicerone (bib61) 2014; 8 Moen, Beier, Armani (bib6) 2016 Fu, Yu, Wang (bib59) 2014; 136 Wells, Kao, Jansen (bib1) 2007; 93 Shapiro, Homma, Bezanilla (bib2) 2012; 3 Kucerka, Tristram-Nagle, Nagle (bib55) 2005; 208 Adams, Mehl, Mahadevan-Jansen (bib22) 2021; 11 Czamara, Majzner, Baranska (bib75) 2015; 46 Kučerka, Nieh, Katsaras (bib48) 2011; 1808 Tolstykh, Olsovsky, Beier (bib20) 2017; 4 Amaro, Reina, Sezgin (bib11) 2017; 50 Brown, Needham, Stoddart (bib38) 2013; 77 McPheeters, Wang, Laurita (bib69) 2017; 12 Liu, Lee, Cicerone (bib65) 2009; 34 Cheng, Pautot, Xie (bib17) 2003; 100 Schindelin, Arganda-Carreras, Cardona (bib26) 2012; 9 Snyder, Scherer, Gaber (bib45) 1980; 601 Blackmore, Shrivastava, Cleveland (bib71) 2019; 45 Lee, Zhang, Cheng (bib18) 2017; 8 Grossman, Bono, Boyden (bib72) 2017; 169 Levi, Rossi, González Flecha (bib52) 2000; 173 Manifold, Thomas, Fu (bib64) 2019; 10 Hiner, Rueden, Eliceiri (bib27) 2016; 17 Liu, Zhang, Cheng (bib32) 2015; 106 Minamikawa, Niioka, Hashimoto (bib42) 2011; 16 Li, Condello, Cheng (bib57) 2017; 20 Nandakumar, Kovalev, Volkmer (bib73) 2009; 11 Startek, Boonen, Talavera (bib50) 2019; 8 Mendelsohn, Maisano (bib58) 1978; 506 Paviolo, Haycock, Stoddart (bib19) 2014; 7 Zaman, Rajaram, Mahadevan-Jansen (bib40) 2011; 43 Antonov, Petrov, Ivanov (bib51) 1980; 283 Wells, Kao, Mahadevan-Jansen (bib5) 2005; 30 Hu, Lamprecht, Min (bib60) 2016; 6 Köhler, Machill, Krafft (bib13) 2009; 393 Schiebener, Straub, Gallagher (bib31) 1990; 19 Hellerer, Enejder, Zumbusch (bib24) 2004; 85 Zhang, Wang, Cheng (bib33) 2013; 85 Kucerka, Nagle, Katsaras (bib10) 2008; 95 Ford, Ganguly, Jansen (bib30) 2020; 52 Taraschi, Mendelsohn (bib37) 1980; 77 Lyatskaya, Liu, Nagle (bib9) 2001; 63 Parasassi, Gratton, Levi (bib25) 1997; 72 Wu, Volponi, Singh (bib43) 2011; 108 Lumbreras, Bas, Rajguru (bib68) 2014; 112 Walsh, Masters, Mahadevan-Jansen (bib39) 2012; 44 Kerdoncuff, Pollard, Lassen (bib74) 2017; 25 Laroche, Carrier, Pézolet (bib49) 1988; 27 Borrachero-Conejo, Adams, Benfenati (bib21) 2020; 34 Moreau, Lefort, O'Connor (bib70) 2018; 11 Freudiger, Min, Xie (bib14) 2011; 5 Liao, Choi, Cheng (bib62) 2015; 119 Wang (10.1016/j.bpj.2022.03.006_bib34) 2013; 6 Schindelin (10.1016/j.bpj.2022.03.006_bib26) 2012; 9 Barrett (10.1016/j.bpj.2022.03.006_bib66) 2018; 120 Borrachero-Conejo (10.1016/j.bpj.2022.03.006_bib21) 2020; 34 Nagle (10.1016/j.bpj.2022.03.006_bib8) 2000; 1469 Albert (10.1016/j.bpj.2022.03.006_bib67) 2012; 107 Lyatskaya (10.1016/j.bpj.2022.03.006_bib54) 2001; 63 Moreau (10.1016/j.bpj.2022.03.006_bib70) 2018; 11 Shapiro (10.1016/j.bpj.2022.03.006_bib2) 2012; 3 Hu (10.1016/j.bpj.2022.03.006_bib60) 2016; 6 Taraschi (10.1016/j.bpj.2022.03.006_bib37) 1980; 77 Mendelsohn (10.1016/j.bpj.2022.03.006_bib58) 1978; 506 Amaro (10.1016/j.bpj.2022.03.006_bib11) 2017; 50 Antonov (10.1016/j.bpj.2022.03.006_bib51) 1980; 283 Hellerer (10.1016/j.bpj.2022.03.006_bib24) 2004; 85 Manifold (10.1016/j.bpj.2022.03.006_bib64) 2019; 10 Camp (10.1016/j.bpj.2022.03.006_bib61) 2014; 8 Liu (10.1016/j.bpj.2022.03.006_bib32) 2015; 106 Nandakumar (10.1016/j.bpj.2022.03.006_bib73) 2009; 11 Wells (10.1016/j.bpj.2022.03.006_bib1) 2007; 93 Pézolet (10.1016/j.bpj.2022.03.006_bib36) 1985; 47 Laroche (10.1016/j.bpj.2022.03.006_bib49) 1988; 27 Szekely (10.1016/j.bpj.2022.03.006_bib46) 2011; 115 Lu (10.1016/j.bpj.2022.03.006_bib35) 2015; 112 Zhang (10.1016/j.bpj.2022.03.006_bib56) 2017; 89 Kucerka (10.1016/j.bpj.2022.03.006_bib55) 2005; 208 Throckmorton (10.1016/j.bpj.2022.03.006_bib4) 2021; 8 Walsh (10.1016/j.bpj.2022.03.006_bib7) 2017 Zaman (10.1016/j.bpj.2022.03.006_bib40) 2011; 43 Feizpour (10.1016/j.bpj.2022.03.006_bib63) 2020; 141 Ford (10.1016/j.bpj.2022.03.006_bib30) 2020; 52 Kerdoncuff (10.1016/j.bpj.2022.03.006_bib74) 2017; 25 Lyatskaya (10.1016/j.bpj.2022.03.006_bib9) 2001; 63 Lee (10.1016/j.bpj.2022.03.006_bib15) 2017; 128 Lee (10.1016/j.bpj.2022.03.006_bib18) 2017; 8 Freudiger (10.1016/j.bpj.2022.03.006_bib14) 2011; 5 Owen (10.1016/j.bpj.2022.03.006_bib29) 2011; 7 Kucerka (10.1016/j.bpj.2022.03.006_bib10) 2008; 95 Zhuang (10.1016/j.bpj.2022.03.006_bib47) 2014; 1838 Wu (10.1016/j.bpj.2022.03.006_bib43) 2011; 108 Hiner (10.1016/j.bpj.2022.03.006_bib27) 2016; 17 Moreau (10.1016/j.bpj.2022.03.006_bib41) 2015; 6 Czamara (10.1016/j.bpj.2022.03.006_bib75) 2015; 46 Gaber (10.1016/j.bpj.2022.03.006_bib44) 1977; 465 Legland (10.1016/j.bpj.2022.03.006_bib28) 2016; 32 Syed (10.1016/j.bpj.2022.03.006_bib12) 2017; 10 Cheng (10.1016/j.bpj.2022.03.006_bib17) 2003; 100 Lumbreras (10.1016/j.bpj.2022.03.006_bib68) 2014; 112 Snyder (10.1016/j.bpj.2022.03.006_bib45) 1980; 601 Cantu (10.1016/j.bpj.2022.03.006_bib53) 2016; 1858 Li (10.1016/j.bpj.2022.03.006_bib57) 2017; 20 Grossman (10.1016/j.bpj.2022.03.006_bib72) 2017; 169 Walsh (10.1016/j.bpj.2022.03.006_bib39) 2012; 44 Liu (10.1016/j.bpj.2022.03.006_bib65) 2009; 34 Paviolo (10.1016/j.bpj.2022.03.006_bib19) 2014; 7 Startek (10.1016/j.bpj.2022.03.006_bib50) 2019; 8 McPheeters (10.1016/j.bpj.2022.03.006_bib69) 2017; 12 Plaksin (10.1016/j.bpj.2022.03.006_bib3) 2018; 8 Liao (10.1016/j.bpj.2022.03.006_bib62) 2015; 119 Tolstykh (10.1016/j.bpj.2022.03.006_bib20) 2017; 4 Moen (10.1016/j.bpj.2022.03.006_bib6) 2016 Levi (10.1016/j.bpj.2022.03.006_bib52) 2000; 173 Adams (10.1016/j.bpj.2022.03.006_bib22) 2021; 11 Parasassi (10.1016/j.bpj.2022.03.006_bib25) 1997; 72 Köhler (10.1016/j.bpj.2022.03.006_bib13) 2009; 393 Wells (10.1016/j.bpj.2022.03.006_bib5) 2005; 30 Brown (10.1016/j.bpj.2022.03.006_bib38) 2013; 77 Duboisset (10.1016/j.bpj.2022.03.006_bib16) 2015; 119 Kučerka (10.1016/j.bpj.2022.03.006_bib48) 2011; 1808 Fu (10.1016/j.bpj.2022.03.006_bib23) 2013; 117 Fu (10.1016/j.bpj.2022.03.006_bib59) 2014; 136 Minamikawa (10.1016/j.bpj.2022.03.006_bib42) 2011; 16 Schiebener (10.1016/j.bpj.2022.03.006_bib31) 1990; 19 Zhang (10.1016/j.bpj.2022.03.006_bib33) 2013; 85 Blackmore (10.1016/j.bpj.2022.03.006_bib71) 2019; 45 |
References_xml | – volume: 283 start-page: 585 year: 1980 end-page: 586 ident: bib51 article-title: The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature publication-title: Nature – volume: 5 start-page: 103 year: 2011 end-page: 109 ident: bib14 article-title: Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy publication-title: Nat. Photon. – volume: 16 start-page: 021111 year: 2011 ident: bib42 article-title: Real-time imaging of laser-induced membrane disruption of a living cell observed with multifocus coherent anti-Stokes Raman scattering microscopy publication-title: J. Biomed. Opt. – volume: 6 start-page: 4105 year: 2015 end-page: 4117 ident: bib41 article-title: Rhodamine B as an optical thermometer in cells focally exposed to infrared laser light or nanosecond pulsed electric fields publication-title: Biomed. Opt. Express – volume: 19 start-page: 677 year: 1990 end-page: 717 ident: bib31 article-title: Refractive index of water and steam as function of wavelength, temperature and density publication-title: J. Phys. Chem. Ref. Data – volume: 506 start-page: 192 year: 1978 end-page: 201 ident: bib58 article-title: Use of deuterated phospholipids in Raman spectroscopic studies of membrane structure. I. Multilayers of dimyristoyl phosphatidylcholine (and its -d54 derivative) with distearoyl phosphatidylcholine publication-title: Biochim. Biophys. Acta – volume: 34 start-page: 6539 year: 2020 end-page: 6553 ident: bib21 article-title: Stimulation of water and calcium dynamics in astrocytes with pulsed infrared light publication-title: FASEB J. – volume: 117 start-page: 4634 year: 2013 end-page: 4640 ident: bib23 article-title: Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers publication-title: J. Phys. Chem. B. – volume: 601 start-page: 47 year: 1980 end-page: 53 ident: bib45 article-title: Effects of chain packing and chain mobility on the Raman spectra of biomembranes publication-title: Biochim. Biophys. Acta – volume: 8 start-page: e46084 year: 2019 ident: bib50 article-title: Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol publication-title: Elife – volume: 1858 start-page: 2636 year: 2016 end-page: 2646 ident: bib53 article-title: The biological response of cells to nanosecond pulsed electric fields is dependent on plasma membrane cholesterol publication-title: Biochim. Biophys. Acta – volume: 7 start-page: 24 year: 2011 end-page: 35 ident: bib29 article-title: Quantitative imaging of membrane lipid order in cells and organisms publication-title: Nat. Protoc. – volume: 43 start-page: 36 year: 2011 end-page: 42 ident: bib40 article-title: Variation of fluorescence in tissue with temperature publication-title: Lasers Surg. Med. – volume: 27 start-page: 6220 year: 1988 end-page: 6228 ident: bib49 article-title: Study of the effect of poly(L-lysine) on phosphatidic acid and phosphatidylcholine/phosphatidic acid bilayers by Raman spectroscopy publication-title: Biochemistry – volume: 52 start-page: 259 year: 2020 end-page: 275 ident: bib30 article-title: Identifying the role of block length in neural heat block to reduce temperatures during infrared neural inhibition publication-title: Lasers Surg. Med. – volume: 8 start-page: 627 year: 2014 end-page: 634 ident: bib61 article-title: High-speed coherent Raman fingerprint imaging of biological tissues publication-title: Nat. Photon. – volume: 25 start-page: 5618 year: 2017 end-page: 5625 ident: bib74 article-title: Compact and versatile laser system for polarization-sensitive stimulated Raman spectroscopy publication-title: Opt. Express – volume: 11 start-page: 8067 year: 2021 ident: bib22 article-title: Multi-modal nonlinear optical and thermal imaging platform for label-free characterization of biological tissue publication-title: Sci. Rep. – volume: 115 start-page: 14501 year: 2011 end-page: 14506 ident: bib46 article-title: Effect of temperature on the structure of charged membranes publication-title: J. Phys. Chem. B. – volume: 11 start-page: 033026 year: 2009 ident: bib73 article-title: Vibrational imaging based on stimulated Raman scattering microscopy publication-title: New J. Phys. – volume: 208 start-page: 193 year: 2005 end-page: 202 ident: bib55 article-title: Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains publication-title: J. Membr. Biol. – volume: 85 start-page: 98 year: 2013 end-page: 106 ident: bib33 article-title: Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis publication-title: Anal. Chem. – volume: 85 start-page: 25 year: 2004 end-page: 27 ident: bib24 article-title: Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses publication-title: Appl. Phys. Lett. – volume: 8 start-page: 011043 year: 2018 ident: bib3 article-title: Thermal transients excite neurons through universal intramembrane mechanoelectrical effects publication-title: Phys. Rev. X – volume: 6 start-page: 39660 year: 2016 ident: bib60 article-title: Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering publication-title: Sci. Rep. – volume: 11 start-page: 201700020 year: 2018 ident: bib70 article-title: Infrared neural stimulation induces intracellular Ca2+ release mediated by phospholipase C publication-title: J. Biophotonics – volume: 169 start-page: 1029 year: 2017 end-page: 1041.e16 ident: bib72 article-title: Noninvasive deep brain stimulation via temporally interfering electric fields publication-title: Cell – volume: 1808 start-page: 2761 year: 2011 end-page: 2771 ident: bib48 article-title: Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature publication-title: Biochim. Biophys. Acta – volume: 141 start-page: 395 year: 2020 end-page: 403 ident: bib63 article-title: Label-free quantification of pharmacokinetics in skin with stimulated Raman scattering microscopy and deep learning publication-title: J. Invest. Dermatol. – volume: 465 start-page: 260 year: 1977 end-page: 274 ident: bib44 article-title: On the quantitative interpretation of biomembrane structure by Raman spectroscopy publication-title: Biochim. Biophys. Acta – volume: 95 start-page: 2356 year: 2008 end-page: 2367 ident: bib10 article-title: Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data publication-title: Biophys. J. – start-page: 9719 year: 2016 ident: bib6 article-title: The role of membrane dynamics in electrical and infrared neural stimulation publication-title: Biophysics, Biology, and Biophotonics: The Crossroads – volume: 4 start-page: 025001 year: 2017 ident: bib20 article-title: Ryanodine and IP3 receptor-mediated calcium signaling play a pivotal role in neurological infrared laser modulation publication-title: Neurophotonics – volume: 17 start-page: 521 year: 2016 ident: bib27 article-title: SCIFIO: an extensible framework to support scientific image formats publication-title: BMC Bioinformatics – volume: 112 start-page: 11624 year: 2015 end-page: 11629 ident: bib35 article-title: Label-free DNA imaging publication-title: Proc. Natl. Acad. Sci. U S A – volume: 12 start-page: e0183761 year: 2017 ident: bib69 article-title: An infrared optical pacing system for screening cardiac electrophysiology in human cardiomyocytes publication-title: PLoS One – volume: 1469 start-page: 159 year: 2000 end-page: 195 ident: bib8 article-title: Structure of lipid bilayers publication-title: Biochim. Biophys. Acta (Bba) - Rev. Biomembranes – volume: 112 start-page: 1246 year: 2014 end-page: 1255 ident: bib68 article-title: Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling publication-title: J. Neurophysiol. – volume: 3 start-page: 736 year: 2012 ident: bib2 article-title: Infrared light excites cells by changing their electrical capacitance publication-title: Nat. Commun. – volume: 106 start-page: 173704 year: 2015 ident: bib32 article-title: Label-free spectroscopic detection of membrane potential using stimulated Raman scattering publication-title: Appl. Phys. Lett. – volume: 32 start-page: 3532 year: 2016 end-page: 3534 ident: bib28 article-title: MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ publication-title: Bioinformatics – volume: 50 start-page: 134004 year: 2017 ident: bib11 article-title: Laurdan and Di-4-ANEPPDHQ probe different properties of the membrane publication-title: J. Phys. D, Appl. Phys. – volume: 10 start-page: 3860 year: 2019 end-page: 3874 ident: bib64 article-title: Denoising of stimulated Raman scattering microscopy images via deep learning publication-title: Biomed. Opt. Express – volume: 77 start-page: 2362 year: 1980 end-page: 2366 ident: bib37 article-title: Lipid-protein interaction in the glycophorin-dipalmitoylphosphatidylcholine system: Raman spectroscopic investigation publication-title: Proc. Natl. Acad. Sci. U S A – volume: 63 start-page: 011907 year: 2001 ident: bib54 article-title: Method for obtaining structure and interactions from oriented lipid bilayers publication-title: Phys. Rev. E, Stat. Nonlin. Soft. Matter. Phys. – volume: 93 start-page: 2567 year: 2007 end-page: 2580 ident: bib1 article-title: Biophysical mechanisms of transient optical stimulation of peripheral nerve publication-title: Biophys. J. – volume: 47 start-page: 367 year: 1985 end-page: 372 ident: bib36 article-title: Raman spectroscopy of nerve fibers. A study of membrane lipids under steady state conditions publication-title: Biophys. J. – volume: 89 start-page: 4502 year: 2017 end-page: 4507 ident: bib56 article-title: Quantification of lipid metabolism in living cells through the dynamics of lipid droplets measured by stimulated Raman scattering imaging publication-title: Anal. Chem. – volume: 136 start-page: 8820 year: 2014 end-page: 8828 ident: bib59 article-title: metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy publication-title: J. Am. Chem. Soc. – volume: 77 start-page: 50444 year: 2013 ident: bib38 article-title: Whole cell patch clamp for investigating the mechanisms of infrared neural stimulation publication-title: J. Vis. Exp. – volume: 119 start-page: 19397 year: 2015 end-page: 19403 ident: bib62 article-title: Denoising stimulated Raman spectroscopic images by total variation minimization publication-title: J. Phys. Chem. C Nanomater. Inter. – volume: 120 start-page: 509 year: 2018 end-page: 524 ident: bib66 article-title: Pulsed infrared releases Ca2+ from the endoplasmic reticulum of cultured spiral ganglion neurons publication-title: J. Neurophysiol. – volume: 7 start-page: 761 year: 2014 end-page: 765 ident: bib19 article-title: Laser exposure of gold nanorods can induce intracellular calcium transients publication-title: J. Biophotonics – volume: 107 start-page: 3227 year: 2012 end-page: 3234 ident: bib67 article-title: TRPV4 channels mediate the infrared laser-evoked response in sensory neurons publication-title: J. Neurophysiol. – volume: 8 start-page: 015012 year: 2021 ident: bib4 article-title: Identifying optimal parameters for infrared neural stimulation in the peripheral nervous system publication-title: Neurophotonics – volume: 1838 start-page: 2520 year: 2014 end-page: 2529 ident: bib47 article-title: A systematic molecular dynamics simulation study of temperature dependent bilayer structural properties publication-title: Biochim. Biophys. Acta – volume: 393 start-page: 1513 year: 2009 end-page: 1520 ident: bib13 article-title: Characterization of lipid extracts from brain tissue and tumors using Raman spectroscopy and mass spectrometry publication-title: Anal. Bioanal. Chem. – volume: 45 start-page: 1509 year: 2019 end-page: 1536 ident: bib71 article-title: Ultrasound neuromodulation: a review of results, mechanisms and safety publication-title: Ultrasound Med. Biol. – volume: 30 start-page: 504 year: 2005 end-page: 506 ident: bib5 article-title: Optical stimulation of neural tissue publication-title: Opt. Lett. – volume: 100 start-page: 9826 year: 2003 end-page: 9830 ident: bib17 article-title: Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy publication-title: Proc. Natl. Acad. Sci. U S A – volume: 6 start-page: 815 year: 2013 end-page: 820 ident: bib34 article-title: Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis publication-title: J. Biophotonics – start-page: 10062 year: 2017 ident: bib7 article-title: Short infrared laser pulses increase cell membrane fluidity publication-title: Optical Interactions with Tissue and Cells XXVIII – volume: 63 start-page: 011907 year: 2001 ident: bib9 article-title: Method for obtaining structure and interactions from oriented lipid bilayers publication-title: Phys. Rev. E, Stat. nonlinear, soft matter Phys. – volume: 46 start-page: 4 year: 2015 end-page: 20 ident: bib75 article-title: Raman spectroscopy of lipids: a review publication-title: J. Raman Spectrosc. – volume: 10 start-page: 271 year: 2017 end-page: 291 ident: bib12 article-title: Raman imaging in cell membranes, lipid-rich organelles, and lipid bilayers publication-title: Annu. Rev. Anal. Chem. – volume: 72 start-page: 2413 year: 1997 end-page: 2429 ident: bib25 article-title: Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes publication-title: Biophys. J. – volume: 128 start-page: 119 year: 2017 end-page: 128 ident: bib15 article-title: Imaging chemistry inside living cells by stimulated Raman scattering microscopy publication-title: Methods – volume: 34 start-page: 1363 year: 2009 ident: bib65 article-title: Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform publication-title: Opt. Lett. – volume: 173 start-page: 215 year: 2000 end-page: 225 ident: bib52 article-title: Thermal stability of the plasma membrane calcium pump. quantitative analysis of its dependence on lipid-protein interactions publication-title: J. Membr. Biol. – volume: 8 start-page: 1932 year: 2017 end-page: 1936 ident: bib18 article-title: Label-free vibrational spectroscopic imaging of neuronal membrane potential publication-title: J. Phys. Chem. Lett. – volume: 119 start-page: 3242 year: 2015 end-page: 3249 ident: bib16 article-title: Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study publication-title: J. Phys. Chem. B. – volume: 108 start-page: 3809 year: 2011 end-page: 3814 ident: bib43 article-title: lipidomics using single-cell Raman spectroscopy publication-title: Proc. Natl. Acad. Sci. U S A – volume: 44 start-page: 712 year: 2012 end-page: 718 ident: bib39 article-title: The effect of temperature on the autofluorescence of scattering and non-scattering tissue publication-title: Lasers Surg. Med. – volume: 20 start-page: 303 year: 2017 end-page: 314.e5 ident: bib57 article-title: Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells publication-title: Cell Stem Cell – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: bib26 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 63 start-page: 011907 year: 2001 ident: 10.1016/j.bpj.2022.03.006_bib54 article-title: Method for obtaining structure and interactions from oriented lipid bilayers publication-title: Phys. Rev. E, Stat. Nonlin. Soft. Matter. Phys. doi: 10.1103/PhysRevE.63.011907 – volume: 106 start-page: 173704 year: 2015 ident: 10.1016/j.bpj.2022.03.006_bib32 article-title: Label-free spectroscopic detection of membrane potential using stimulated Raman scattering publication-title: Appl. Phys. Lett. doi: 10.1063/1.4919104 – volume: 10 start-page: 3860 year: 2019 ident: 10.1016/j.bpj.2022.03.006_bib64 article-title: Denoising of stimulated Raman scattering microscopy images via deep learning publication-title: Biomed. Opt. Express doi: 10.1364/BOE.10.003860 – volume: 77 start-page: 2362 year: 1980 ident: 10.1016/j.bpj.2022.03.006_bib37 article-title: Lipid-protein interaction in the glycophorin-dipalmitoylphosphatidylcholine system: Raman spectroscopic investigation publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.77.5.2362 – volume: 1858 start-page: 2636 year: 2016 ident: 10.1016/j.bpj.2022.03.006_bib53 article-title: The biological response of cells to nanosecond pulsed electric fields is dependent on plasma membrane cholesterol publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2016.07.006 – volume: 8 start-page: 627 year: 2014 ident: 10.1016/j.bpj.2022.03.006_bib61 article-title: High-speed coherent Raman fingerprint imaging of biological tissues publication-title: Nat. Photon. doi: 10.1038/nphoton.2014.145 – volume: 52 start-page: 259 year: 2020 ident: 10.1016/j.bpj.2022.03.006_bib30 article-title: Identifying the role of block length in neural heat block to reduce temperatures during infrared neural inhibition publication-title: Lasers Surg. Med. doi: 10.1002/lsm.23139 – volume: 506 start-page: 192 year: 1978 ident: 10.1016/j.bpj.2022.03.006_bib58 article-title: Use of deuterated phospholipids in Raman spectroscopic studies of membrane structure. I. Multilayers of dimyristoyl phosphatidylcholine (and its -d54 derivative) with distearoyl phosphatidylcholine publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(78)90390-5 – volume: 27 start-page: 6220 year: 1988 ident: 10.1016/j.bpj.2022.03.006_bib49 article-title: Study of the effect of poly(L-lysine) on phosphatidic acid and phosphatidylcholine/phosphatidic acid bilayers by Raman spectroscopy publication-title: Biochemistry doi: 10.1021/bi00417a005 – volume: 3 start-page: 736 year: 2012 ident: 10.1016/j.bpj.2022.03.006_bib2 article-title: Infrared light excites cells by changing their electrical capacitance publication-title: Nat. Commun. doi: 10.1038/ncomms1742 – volume: 6 start-page: 4105 year: 2015 ident: 10.1016/j.bpj.2022.03.006_bib41 article-title: Rhodamine B as an optical thermometer in cells focally exposed to infrared laser light or nanosecond pulsed electric fields publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.004105 – volume: 8 start-page: 015012 year: 2021 ident: 10.1016/j.bpj.2022.03.006_bib4 article-title: Identifying optimal parameters for infrared neural stimulation in the peripheral nervous system publication-title: Neurophotonics doi: 10.1117/1.NPh.8.1.015012 – volume: 108 start-page: 3809 year: 2011 ident: 10.1016/j.bpj.2022.03.006_bib43 article-title: In Vivo lipidomics using single-cell Raman spectroscopy publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1009043108 – volume: 169 start-page: 1029 year: 2017 ident: 10.1016/j.bpj.2022.03.006_bib72 article-title: Noninvasive deep brain stimulation via temporally interfering electric fields publication-title: Cell doi: 10.1016/j.cell.2017.05.024 – start-page: 9719 year: 2016 ident: 10.1016/j.bpj.2022.03.006_bib6 article-title: The role of membrane dynamics in electrical and infrared neural stimulation – volume: 9 start-page: 676 year: 2012 ident: 10.1016/j.bpj.2022.03.006_bib26 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 141 start-page: 395 year: 2020 ident: 10.1016/j.bpj.2022.03.006_bib63 article-title: Label-free quantification of pharmacokinetics in skin with stimulated Raman scattering microscopy and deep learning publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2020.06.027 – volume: 25 start-page: 5618 year: 2017 ident: 10.1016/j.bpj.2022.03.006_bib74 article-title: Compact and versatile laser system for polarization-sensitive stimulated Raman spectroscopy publication-title: Opt. Express doi: 10.1364/OE.25.005618 – volume: 11 start-page: 033026 year: 2009 ident: 10.1016/j.bpj.2022.03.006_bib73 article-title: Vibrational imaging based on stimulated Raman scattering microscopy publication-title: New J. Phys. doi: 10.1088/1367-2630/11/3/033026 – volume: 283 start-page: 585 year: 1980 ident: 10.1016/j.bpj.2022.03.006_bib51 article-title: The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature publication-title: Nature doi: 10.1038/283585a0 – volume: 107 start-page: 3227 year: 2012 ident: 10.1016/j.bpj.2022.03.006_bib67 article-title: TRPV4 channels mediate the infrared laser-evoked response in sensory neurons publication-title: J. Neurophysiol. doi: 10.1152/jn.00424.2011 – volume: 19 start-page: 677 year: 1990 ident: 10.1016/j.bpj.2022.03.006_bib31 article-title: Refractive index of water and steam as function of wavelength, temperature and density publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555859 – volume: 16 start-page: 021111 year: 2011 ident: 10.1016/j.bpj.2022.03.006_bib42 article-title: Real-time imaging of laser-induced membrane disruption of a living cell observed with multifocus coherent anti-Stokes Raman scattering microscopy publication-title: J. Biomed. Opt. doi: 10.1117/1.3533314 – volume: 208 start-page: 193 year: 2005 ident: 10.1016/j.bpj.2022.03.006_bib55 article-title: Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains publication-title: J. Membr. Biol. doi: 10.1007/s00232-005-7006-8 – volume: 128 start-page: 119 year: 2017 ident: 10.1016/j.bpj.2022.03.006_bib15 article-title: Imaging chemistry inside living cells by stimulated Raman scattering microscopy publication-title: Methods doi: 10.1016/j.ymeth.2017.07.020 – volume: 30 start-page: 504 year: 2005 ident: 10.1016/j.bpj.2022.03.006_bib5 article-title: Optical stimulation of neural tissue in vivo publication-title: Opt. Lett. doi: 10.1364/OL.30.000504 – volume: 50 start-page: 134004 year: 2017 ident: 10.1016/j.bpj.2022.03.006_bib11 article-title: Laurdan and Di-4-ANEPPDHQ probe different properties of the membrane publication-title: J. Phys. D, Appl. Phys. doi: 10.1088/1361-6463/aa5dbc – volume: 11 start-page: 201700020 year: 2018 ident: 10.1016/j.bpj.2022.03.006_bib70 article-title: Infrared neural stimulation induces intracellular Ca2+ release mediated by phospholipase C publication-title: J. Biophotonics doi: 10.1002/jbio.201700020 – volume: 44 start-page: 712 year: 2012 ident: 10.1016/j.bpj.2022.03.006_bib39 article-title: The effect of temperature on the autofluorescence of scattering and non-scattering tissue publication-title: Lasers Surg. Med. doi: 10.1002/lsm.22080 – volume: 8 start-page: 011043 year: 2018 ident: 10.1016/j.bpj.2022.03.006_bib3 article-title: Thermal transients excite neurons through universal intramembrane mechanoelectrical effects publication-title: Phys. Rev. X – volume: 93 start-page: 2567 year: 2007 ident: 10.1016/j.bpj.2022.03.006_bib1 article-title: Biophysical mechanisms of transient optical stimulation of peripheral nerve publication-title: Biophys. J. doi: 10.1529/biophysj.107.104786 – volume: 17 start-page: 521 year: 2016 ident: 10.1016/j.bpj.2022.03.006_bib27 article-title: SCIFIO: an extensible framework to support scientific image formats publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1383-0 – volume: 100 start-page: 9826 year: 2003 ident: 10.1016/j.bpj.2022.03.006_bib17 article-title: Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1732202100 – volume: 43 start-page: 36 year: 2011 ident: 10.1016/j.bpj.2022.03.006_bib40 article-title: Variation of fluorescence in tissue with temperature publication-title: Lasers Surg. Med. doi: 10.1002/lsm.21023 – volume: 11 start-page: 8067 year: 2021 ident: 10.1016/j.bpj.2022.03.006_bib22 article-title: Multi-modal nonlinear optical and thermal imaging platform for label-free characterization of biological tissue publication-title: Sci. Rep. doi: 10.1038/s41598-021-86774-2 – volume: 46 start-page: 4 year: 2015 ident: 10.1016/j.bpj.2022.03.006_bib75 article-title: Raman spectroscopy of lipids: a review publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4607 – volume: 47 start-page: 367 year: 1985 ident: 10.1016/j.bpj.2022.03.006_bib36 article-title: Raman spectroscopy of nerve fibers. A study of membrane lipids under steady state conditions publication-title: Biophys. J. doi: 10.1016/S0006-3495(85)83927-8 – volume: 7 start-page: 761 year: 2014 ident: 10.1016/j.bpj.2022.03.006_bib19 article-title: Laser exposure of gold nanorods can induce intracellular calcium transients publication-title: J. Biophotonics doi: 10.1002/jbio.201300043 – volume: 89 start-page: 4502 year: 2017 ident: 10.1016/j.bpj.2022.03.006_bib56 article-title: Quantification of lipid metabolism in living cells through the dynamics of lipid droplets measured by stimulated Raman scattering imaging publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b04699 – volume: 1808 start-page: 2761 year: 2011 ident: 10.1016/j.bpj.2022.03.006_bib48 article-title: Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2011.07.022 – volume: 20 start-page: 303 year: 2017 ident: 10.1016/j.bpj.2022.03.006_bib57 article-title: Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.11.004 – volume: 7 start-page: 24 year: 2011 ident: 10.1016/j.bpj.2022.03.006_bib29 article-title: Quantitative imaging of membrane lipid order in cells and organisms publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.419 – volume: 115 start-page: 14501 year: 2011 ident: 10.1016/j.bpj.2022.03.006_bib46 article-title: Effect of temperature on the structure of charged membranes publication-title: J. Phys. Chem. B. doi: 10.1021/jp207566n – volume: 4 start-page: 025001 year: 2017 ident: 10.1016/j.bpj.2022.03.006_bib20 article-title: Ryanodine and IP3 receptor-mediated calcium signaling play a pivotal role in neurological infrared laser modulation publication-title: Neurophotonics doi: 10.1117/1.NPh.4.2.025001 – volume: 119 start-page: 19397 year: 2015 ident: 10.1016/j.bpj.2022.03.006_bib62 article-title: Denoising stimulated Raman spectroscopic images by total variation minimization publication-title: J. Phys. Chem. C Nanomater. Inter. doi: 10.1021/acs.jpcc.5b06980 – volume: 173 start-page: 215 year: 2000 ident: 10.1016/j.bpj.2022.03.006_bib52 article-title: Thermal stability of the plasma membrane calcium pump. quantitative analysis of its dependence on lipid-protein interactions publication-title: J. Membr. Biol. doi: 10.1007/s002320001021 – start-page: 10062 year: 2017 ident: 10.1016/j.bpj.2022.03.006_bib7 article-title: Short infrared laser pulses increase cell membrane fluidity – volume: 12 start-page: e0183761 year: 2017 ident: 10.1016/j.bpj.2022.03.006_bib69 article-title: An infrared optical pacing system for screening cardiac electrophysiology in human cardiomyocytes publication-title: PLoS One doi: 10.1371/journal.pone.0183761 – volume: 465 start-page: 260 year: 1977 ident: 10.1016/j.bpj.2022.03.006_bib44 article-title: On the quantitative interpretation of biomembrane structure by Raman spectroscopy publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(77)90078-5 – volume: 136 start-page: 8820 year: 2014 ident: 10.1016/j.bpj.2022.03.006_bib59 article-title: In Vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504199s – volume: 34 start-page: 1363 year: 2009 ident: 10.1016/j.bpj.2022.03.006_bib65 article-title: Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform publication-title: Opt. Lett. doi: 10.1364/OL.34.001363 – volume: 85 start-page: 25 year: 2004 ident: 10.1016/j.bpj.2022.03.006_bib24 article-title: Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses publication-title: Appl. Phys. Lett. doi: 10.1063/1.1768312 – volume: 63 start-page: 011907 year: 2001 ident: 10.1016/j.bpj.2022.03.006_bib9 article-title: Method for obtaining structure and interactions from oriented lipid bilayers publication-title: Phys. Rev. E, Stat. nonlinear, soft matter Phys. doi: 10.1103/PhysRevE.63.011907 – volume: 85 start-page: 98 year: 2013 ident: 10.1016/j.bpj.2022.03.006_bib33 article-title: Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis publication-title: Anal. Chem. doi: 10.1021/ac3019119 – volume: 8 start-page: e46084 year: 2019 ident: 10.1016/j.bpj.2022.03.006_bib50 article-title: Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol publication-title: Elife doi: 10.7554/eLife.46084 – volume: 6 start-page: 39660 year: 2016 ident: 10.1016/j.bpj.2022.03.006_bib60 article-title: Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering publication-title: Sci. Rep. doi: 10.1038/srep39660 – volume: 393 start-page: 1513 year: 2009 ident: 10.1016/j.bpj.2022.03.006_bib13 article-title: Characterization of lipid extracts from brain tissue and tumors using Raman spectroscopy and mass spectrometry publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-008-2592-9 – volume: 601 start-page: 47 year: 1980 ident: 10.1016/j.bpj.2022.03.006_bib45 article-title: Effects of chain packing and chain mobility on the Raman spectra of biomembranes publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(80)90512-X – volume: 119 start-page: 3242 year: 2015 ident: 10.1016/j.bpj.2022.03.006_bib16 article-title: Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study publication-title: J. Phys. Chem. B. doi: 10.1021/jp5113813 – volume: 34 start-page: 6539 year: 2020 ident: 10.1016/j.bpj.2022.03.006_bib21 article-title: Stimulation of water and calcium dynamics in astrocytes with pulsed infrared light publication-title: FASEB J. doi: 10.1096/fj.201903049R – volume: 112 start-page: 1246 year: 2014 ident: 10.1016/j.bpj.2022.03.006_bib68 article-title: Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling publication-title: J. Neurophysiol. doi: 10.1152/jn.00253.2014 – volume: 1469 start-page: 159 year: 2000 ident: 10.1016/j.bpj.2022.03.006_bib8 article-title: Structure of lipid bilayers publication-title: Biochim. Biophys. Acta (Bba) - Rev. Biomembranes doi: 10.1016/S0304-4157(00)00016-2 – volume: 77 start-page: 50444 year: 2013 ident: 10.1016/j.bpj.2022.03.006_bib38 article-title: Whole cell patch clamp for investigating the mechanisms of infrared neural stimulation publication-title: J. Vis. Exp. – volume: 10 start-page: 271 year: 2017 ident: 10.1016/j.bpj.2022.03.006_bib12 article-title: Raman imaging in cell membranes, lipid-rich organelles, and lipid bilayers publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-061516-045317 – volume: 45 start-page: 1509 year: 2019 ident: 10.1016/j.bpj.2022.03.006_bib71 article-title: Ultrasound neuromodulation: a review of results, mechanisms and safety publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2018.12.015 – volume: 72 start-page: 2413 year: 1997 ident: 10.1016/j.bpj.2022.03.006_bib25 article-title: Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes publication-title: Biophys. J. doi: 10.1016/S0006-3495(97)78887-8 – volume: 32 start-page: 3532 year: 2016 ident: 10.1016/j.bpj.2022.03.006_bib28 article-title: MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw413 – volume: 1838 start-page: 2520 year: 2014 ident: 10.1016/j.bpj.2022.03.006_bib47 article-title: A systematic molecular dynamics simulation study of temperature dependent bilayer structural properties publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2014.06.010 – volume: 120 start-page: 509 year: 2018 ident: 10.1016/j.bpj.2022.03.006_bib66 article-title: Pulsed infrared releases Ca2+ from the endoplasmic reticulum of cultured spiral ganglion neurons publication-title: J. Neurophysiol. doi: 10.1152/jn.00740.2017 – volume: 6 start-page: 815 year: 2013 ident: 10.1016/j.bpj.2022.03.006_bib34 article-title: Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis publication-title: J. Biophotonics doi: 10.1002/jbio.201300005 – volume: 95 start-page: 2356 year: 2008 ident: 10.1016/j.bpj.2022.03.006_bib10 article-title: Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data publication-title: Biophys. J. doi: 10.1529/biophysj.108.132662 – volume: 112 start-page: 11624 year: 2015 ident: 10.1016/j.bpj.2022.03.006_bib35 article-title: Label-free DNA imaging in vivo with stimulated Raman scattering microscopy publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1515121112 – volume: 5 start-page: 103 year: 2011 ident: 10.1016/j.bpj.2022.03.006_bib14 article-title: Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy publication-title: Nat. Photon. doi: 10.1038/nphoton.2010.294 – volume: 8 start-page: 1932 year: 2017 ident: 10.1016/j.bpj.2022.03.006_bib18 article-title: Label-free vibrational spectroscopic imaging of neuronal membrane potential publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00575 – volume: 117 start-page: 4634 year: 2013 ident: 10.1016/j.bpj.2022.03.006_bib23 article-title: Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers publication-title: J. Phys. Chem. B. doi: 10.1021/jp308938t |
SSID | ssj0012501 |
Score | 2.431025 |
Snippet | Infrared neural stimulation (INS) uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1525 |
SubjectTerms | Lipid Bilayers Nonlinear Optical Microscopy Optical Imaging Spectrum Analysis, Raman - methods Vibration |
Title | Visualizing the lipid dynamics role in infrared neural stimulation using stimulated Raman scattering |
URI | https://dx.doi.org/10.1016/j.bpj.2022.03.006 https://www.ncbi.nlm.nih.gov/pubmed/35276133 https://www.proquest.com/docview/2638727839 https://pubmed.ncbi.nlm.nih.gov/PMC9072573 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yIHgR364vIngSym6TpmmOKoooCorK3kLSpNpF6-KuB_31zvSFq7gHoRTaTkroNDMT5ptvCDlgqZOW9dMgsw42KJlwQVKBabLQpMzZRGHt8NV1fH4fXQzEYI6cNLUwCKusbX9l00trXd_p1V-zN8pzrPEF9wrxPUNYkOIDsMM8SsoivsFxm0kAF193zYsDlG4ymyXGy46GsEVkrOI5jf_yTb9jz58Qym8-6WyJLNbBJD2q5rtM5nyxQuar9pIfq8Q95GOsmfwE90Qh0KPP-Sh31FVN6McUkYU0L-DI3hCHTpHcEt4Hq_6l7upFERf_2N4BmVvzYgo6TkteTni2Ru7OTu9OzoO6q0KQRiKcBM4o5VSoUpkIz0KXSSN45lxsHYRaxnvmpeTCcsOkCU3MmEWSdsZFGGci5OukU7wWfpNQKVIZW-aVcT5yDhOwyMbHRYa5Th91Sb_5nDqtGcex8cWzbqBlQw0a0KgB3ecaNNAlh-2QUUW3MUs4anSkp_4ZDe5g1rD9Rp8a1hImSEzhX9_HmoExkth6RHXJRqXfdhYQqEoIfXiXyCnNtwLI0z39pMifSr5u1ZdgGPnW_6a7TRbwCjNYodohncnbu9-FQGhi98o_Hc6XN8kXKB0Jmg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUEUvVemDbmmpkXpCitjYcbw-AgItz0O1oL1ZduxAEIQVuxzg1zOTl7pF5YCUUzyJLI8z80Xz-RuA3zzzyvF-FuXO4w9KLn00qMk0eWwz7t1A09nh07N0eJ4cjeV4AfbaszBEq2xifx3Tq2jd3NluVnN7UhR0xhfTK-J7TrQgLcaLsIxoQFH_hsPxbldKwBzftM1LIzJvS5sVyctNrvEfkfNa6DT9X3J6CT7_5VD-lZQOPsKHBk2ynXrCq7AQyk_wru4v-fgZ_EUxpUOTT5ifGCI9dlNMCs983YV-yohayIoSr_yeiOiM1C3xffjZ3zZtvRgR4y-7O2jzx97akk2zSpgTx77A6GB_tDeMmrYKUZbIeBZ5q7XXsc7UQAYe-1xZKXLvU-cRa9kQeFBKSCcsVza2KeeOVNq5kHGay1h8haXyrgzfgCmZqdTxoK0PifdUgSU5PiFzKnaGpAf9djlN1kiOU-eLG9Nyy64NesCQB0xfGPRAD7a6Rya13sZrxknrIzO3aQzmg9ce22z9afBjogqJLcPdw9RwjEaKeo_oHqzV_u1mgUhVIfYRPVBznu8MSKh7fqQsrirBbt1XGBnF97dN9xesDEenJ-bk8Ox4Hd7TCJWzYv0Dlmb3D-EnoqKZ26h2_TM88wvE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualizing+the+lipid+dynamics+role+in+infrared+neural+stimulation+using+stimulated+Raman+scattering&rft.jtitle=Biophysical+journal&rft.au=Adams%2C+Wilson+R&rft.au=Gautam%2C+Rekha&rft.au=Locke%2C+Andrea&rft.au=Masson%2C+Laura+E&rft.date=2022-04-19&rft.issn=1542-0086&rft.eissn=1542-0086&rft.volume=121&rft.issue=8&rft.spage=1525&rft_id=info:doi/10.1016%2Fj.bpj.2022.03.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon |