Crop type mapping using LiDAR, Sentinel-2 and aerial imagery with machine learning algorithms

LiDAR data are becoming increasingly available, which has opened up many new applications. One such application is crop type mapping. Accurate crop type maps are critical for monitoring water use, estimating harvests and in precision agriculture. The traditional approach to obtaining maps of cultiva...

Full description

Saved in:
Bibliographic Details
Published inGeo-spatial information science Vol. 24; no. 2; pp. 215 - 227
Main Authors Prins, Adriaan Jacobus, Van Niekerk, Adriaan
Format Journal Article
LanguageEnglish
Published Wuhan Taylor & Francis 03.04.2021
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract LiDAR data are becoming increasingly available, which has opened up many new applications. One such application is crop type mapping. Accurate crop type maps are critical for monitoring water use, estimating harvests and in precision agriculture. The traditional approach to obtaining maps of cultivated fields is by manually digitizing the fields from satellite or aerial imagery and then assigning crop type labels to each field - often informed by data collected during ground and aerial surveys. However, manual digitizing and labeling is time-consuming, expensive and subject to human error. Automated remote sensing methods is a cost-effective alternative, with machine learning gaining popularity for classifying crop types. This study evaluated the use of LiDAR data, Sentinel-2 imagery, aerial imagery and machine learning for differentiating five crop types in an intensively cultivated area. Different combinations of the three datasets were evaluated along with ten machine learning. The classification results were interpreted by comparing overall accuracies, kappa, standard deviation and f-score. It was found that LiDAR data successfully differentiated between different crop types, with XGBoost providing the highest overall accuracy of 87.8%. Furthermore, the crop type maps produced using the LiDAR data were in general agreement with those obtained by using Sentinel-2 data, with LiDAR obtaining a mean overall accuracy of 84.3% and Sentinel-2 a mean overall accuracy of 83.6%. However, the combination of all three datasets proved to be the most effective at differentiating between the crop types, with RF providing the highest overall accuracy of 94.4%. These findings provide a foundation for selecting the appropriate combination of remotely sensed data sources and machine learning algorithms for operational crop type mapping.
AbstractList LiDAR data are becoming increasingly available, which has opened up many new applications. One such application is crop type mapping. Accurate crop type maps are critical for monitoring water use, estimating harvests and in precision agriculture. The traditional approach to obtaining maps of cultivated fields is by manually digitizing the fields from satellite or aerial imagery and then assigning crop type labels to each field - often informed by data collected during ground and aerial surveys. However, manual digitizing and labeling is time-consuming, expensive and subject to human error. Automated remote sensing methods is a cost-effective alternative, with machine learning gaining popularity for classifying crop types. This study evaluated the use of LiDAR data, Sentinel-2 imagery, aerial imagery and machine learning for differentiating five crop types in an intensively cultivated area. Different combinations of the three datasets were evaluated along with ten machine learning. The classification results were interpreted by comparing overall accuracies, kappa, standard deviation and f-score. It was found that LiDAR data successfully differentiated between different crop types, with XGBoost providing the highest overall accuracy of 87.8%. Furthermore, the crop type maps produced using the LiDAR data were in general agreement with those obtained by using Sentinel-2 data, with LiDAR obtaining a mean overall accuracy of 84.3% and Sentinel-2 a mean overall accuracy of 83.6%. However, the combination of all three datasets proved to be the most effective at differentiating between the crop types, with RF providing the highest overall accuracy of 94.4%. These findings provide a foundation for selecting the appropriate combination of remotely sensed data sources and machine learning algorithms for operational crop type mapping.
Author Van Niekerk, Adriaan
Prins, Adriaan Jacobus
Author_xml – sequence: 1
  givenname: Adriaan Jacobus
  orcidid: 0000-0002-7993-6332
  surname: Prins
  fullname: Prins, Adriaan Jacobus
  email: atman@sun.ac.za, atmanp@gmail.com
  organization: Stellenbosch University
– sequence: 2
  givenname: Adriaan
  orcidid: 0000-0002-5631-0206
  surname: Van Niekerk
  fullname: Van Niekerk, Adriaan
  organization: Stellenbosch University
BookMark eNqFkd1rFDEUxQepYFv9E4QBX5325mtmgi-WVWthQfDjUcLdfGyzZJMxk6Xsf2_GbV980JebcHN-h0PORXMWU7RN85rAFYERrgmAFEDhii6DDCMdhv5Zc06kZJ0ggp3Ve9V0i-hFczHPOwAmORPnzc9VTlNbjpNt9zhNPm7bw7zMtf9w8_Vt-83G4qMNHW0xmhZt9hhav8etzcf2wZf7yun7KmmDxRwXFMM25fqyn182zx2G2b56PC-bH58-fl997tZfbu9WN-tOc0FKZ-gGneaOOwDU4yD1OJpejwI0asGclL3lrCegGQcCEgdmwGopjaG9Hhy7bO5OvibhTk255stHldCrP4uUtwpz8TpY1Y-ufklvNxwsd6PcUG4ABxSiZ5RzWb3enLymnH4d7FzULh1yrPEVFTUE5wRIVb07qXRO85ytU9oXLD7FktEHRUAt3ainbtTSjXrsptLiL_op8_-49yfOR5fyHh9SDkYVPIaUXcao_azYvy1-A1AOpgg
CitedBy_id crossref_primary_10_3390_earth5020013
crossref_primary_10_3390_rs16234548
crossref_primary_10_1016_j_isprsjprs_2023_04_002
crossref_primary_10_3390_rs14102404
crossref_primary_10_1080_10095020_2021_1960779
crossref_primary_10_1016_j_jag_2024_103860
crossref_primary_10_1080_0035919X_2024_2409629
crossref_primary_10_26634_jip_10_2_19800
crossref_primary_10_1002_agg2_20553
crossref_primary_10_1080_10095020_2023_2270641
crossref_primary_10_3390_s24165409
crossref_primary_10_1117_1_JRS_18_016511
crossref_primary_10_35633_inmateh_72_12
crossref_primary_10_2139_ssrn_4162666
crossref_primary_10_3390_rs14071720
crossref_primary_10_3390_s22166106
crossref_primary_10_1080_01431161_2022_2107882
crossref_primary_10_1080_10095020_2022_2068384
crossref_primary_10_3390_rs17030378
crossref_primary_10_1016_j_envres_2024_119790
crossref_primary_10_1080_10095020_2023_2208611
crossref_primary_10_3390_rs14020273
crossref_primary_10_1080_10095020_2021_2017237
crossref_primary_10_3390_rs14133153
crossref_primary_10_1080_01431161_2023_2205984
crossref_primary_10_3390_rs16112007
crossref_primary_10_1080_10095020_2022_2035656
crossref_primary_10_1155_2022_2887502
crossref_primary_10_3390_rs13173523
crossref_primary_10_1007_s11356_022_23172_9
crossref_primary_10_1007_s12524_023_01764_3
crossref_primary_10_1007_s12524_024_01839_9
crossref_primary_10_3390_ijgi12070263
crossref_primary_10_1016_j_geogeo_2024_100253
crossref_primary_10_3390_rs14040934
crossref_primary_10_1186_s43170_023_00193_z
crossref_primary_10_3390_rs14112621
crossref_primary_10_1080_10095020_2021_1957723
crossref_primary_10_1016_j_procs_2024_04_322
crossref_primary_10_1080_01431161_2025_2452319
crossref_primary_10_1007_s10661_025_13880_3
crossref_primary_10_3390_rs14030566
crossref_primary_10_3390_rs14164028
crossref_primary_10_1080_10095020_2023_2275622
crossref_primary_10_3390_rs15133417
crossref_primary_10_1016_j_compag_2022_107504
crossref_primary_10_3390_s23167132
Cites_doi 10.1016/S0098-3004(99)00118-1
10.1016/j.rse.2011.01.009
10.3390/rs8030166
10.3390/rs71013208
10.1016/j.rse.2014.11.001
10.1016/j.compag.2017.04.006
10.1109/JPROC.2012.2196249
10.1016/j.asr.2008.11.008
10.1007/s11119-009-9116-2
10.1109/LGRS.2013.2251453
10.3390/rs10060917
10.5589/m06-015
10.1016/j.rse.2008.02.004
10.1080/00220973.1993.9943832
10.3390/rs70302971
10.1016/j.compag.2016.12.006
10.3390/rs8010055
10.1016/j.isprsjprs.2013.02.009
10.1080/01431161.2012.663114
10.1080/01431161.2011.576710
10.1016/j.rse.2017.04.007
10.1016/j.procs.2017.11.055
10.14358/PERS.71.2.179
10.5194/isprs-archives-XLII-2-W7-711-2017
10.3390/ijgi6080255
10.3390/rs70100922
10.5194/isprs-archives-XLII-4-W1-141-2016
10.1016/j.jag.2016.02.005
10.3390/rs9030239
10.1016/j.rse.2017.10.005
10.3390/s18020591
10.3390/rs70403633
10.1016/S0262-8856(02)00009-4
10.1109/CVPR.2004.446
10.1016/j.eswa.2010.09.019
10.1016/j.isprsjprs.2017.04.005
10.1016/j.biosystemseng.2015.01.008
10.3390/rs70912356
10.1016/j.gsf.2015.07.003
10.1109/LGRS.2016.2530724
10.1002/pri.66
10.1016/j.jag.2018.06.007
10.1080/02571862.2011.10640023
ContentType Journal Article
Copyright 2020 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. 2020
2020 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. 2020
– notice: 2020 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
3V.
7SC
7XB
8FD
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
JQ2
KR7
L7M
L~C
L~D
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1080/10095020.2020.1782776
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Sustainability
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1993-5153
EndPage 227
ExternalDocumentID oai_doaj_org_article_68f5156eb40e4f89b24d0a7a55632449
10_1080_10095020_2020_1782776
1782776
Genre Research Article
GroupedDBID -5A
-5G
-BR
.86
.QJ
0YH
188
29H
4.4
5GY
5VR
6NX
8G5
8TC
AAFWJ
AAXDM
ABFIM
ABPEM
ABTAI
ABUWG
ACGFS
ADCVX
ADINQ
AEUYN
AFBBN
AFKRA
AFPKN
AGMYJ
AHBYD
ALMA_UNASSIGNED_HOLDINGS
AVBZW
AZQEC
BA0
BENPR
BPHCQ
CCEZO
CCPQU
CCVFK
CHBEP
CS3
CUBFJ
CW9
DWQXO
EBS
E~A
E~B
FA0
FIJ
GNUQQ
GROUPED_DOAJ
GTTXZ
GUQSH
H13
HF~
HG6
HLICF
HZ~
H~P
IPNFZ
I~X
J.P
M2O
M4Z
O9-
OK1
PIMPY
PQQKQ
PROAC
QOS
R9I
RDKPK
RIG
RPX
RSV
S-T
S27
SDH
SEV
SOJ
T13
TCJ
TDBHL
TEI
TFL
TFW
TGP
U2A
UT5
VC2
WK8
~S~
AAYXX
ADMLS
CITATION
PHGZM
PHGZT
3V.
7SC
7XB
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c451t-d2bafc4f4f00ac879c88d6c850cac53f996e43610c340109a73d0ec99dd26c7f3
IEDL.DBID DOA
ISSN 1009-5020
IngestDate Wed Aug 27 01:31:51 EDT 2025
Fri Jul 25 22:11:10 EDT 2025
Thu Apr 24 22:53:37 EDT 2025
Tue Jul 01 02:28:26 EDT 2025
Wed Dec 25 09:07:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-d2bafc4f4f00ac879c88d6c850cac53f996e43610c340109a73d0ec99dd26c7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7993-6332
0000-0002-5631-0206
OpenAccessLink https://doaj.org/article/68f5156eb40e4f89b24d0a7a55632449
PQID 2536144101
PQPubID 3933171
PageCount 13
ParticipantIDs informaworld_taylorfrancis_310_1080_10095020_2020_1782776
crossref_citationtrail_10_1080_10095020_2020_1782776
crossref_primary_10_1080_10095020_2020_1782776
proquest_journals_2536144101
doaj_primary_oai_doaj_org_article_68f5156eb40e4f89b24d0a7a55632449
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-03
PublicationDateYYYYMMDD 2021-04-03
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-03
  day: 03
PublicationDecade 2020
PublicationPlace Wuhan
PublicationPlace_xml – name: Wuhan
PublicationTitle Geo-spatial information science
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References cit0033
cit0034
cit0032
cit0030
Abadi M. (cit0001) 2016
cit0039
cit0037
cit0038
cit0035
cit0036
cit0022
cit0023
cit0020
cit0021
cit0028
Vuuren L. V. (cit0045) 2010; 9
cit0029
cit0026
cit0027
cit0024
cit0025
cit0011
cit0012
cit0010
cit0051
cit0052
cit0050
Campbell J. B. (cit0006) 2011
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0014
cit0044
cit0042
cit0043
cit0040
cit0041
Al-doski J. (cit0002) 2013; 3
Pedregosa F (cit0031) 2012; 12
cit0008
cit0009
cit0007
cit0004
cit0048
cit0005
cit0049
cit0046
cit0003
cit0047
References_xml – ident: cit0010
  doi: 10.1016/S0098-3004(99)00118-1
– ident: cit0032
  doi: 10.1016/j.rse.2011.01.009
– ident: cit0015
  doi: 10.3390/rs8030166
– ident: cit0026
  doi: 10.3390/rs71013208
– ident: cit0048
  doi: 10.1016/j.rse.2014.11.001
– ident: cit0021
  doi: 10.1016/j.compag.2017.04.006
– ident: cit0049
  doi: 10.1109/JPROC.2012.2196249
– ident: cit0009
  doi: 10.1016/j.asr.2008.11.008
– ident: cit0034
  doi: 10.1007/s11119-009-9116-2
– ident: cit0051
  doi: 10.1109/LGRS.2013.2251453
– ident: cit0027
  doi: 10.3390/rs10060917
– volume-title: Introduction to Remote Sensing. Uma Ética Para Quantos? Fifth Edit. Vol. XXXIII
  year: 2011
  ident: cit0006
– ident: cit0005
  doi: 10.5589/m06-015
– volume: 9
  start-page: 20
  issue: 1
  year: 2010
  ident: cit0045
  publication-title: Water Wheel
– ident: cit0003
  doi: 10.1016/j.rse.2008.02.004
– ident: cit0052
  doi: 10.1080/00220973.1993.9943832
– ident: cit0023
  doi: 10.3390/rs70302971
– ident: cit0014
  doi: 10.1016/j.compag.2016.12.006
– volume: 12
  start-page: 2825
  year: 2012
  ident: cit0031
  publication-title: Journal of Machine Learning Research
– ident: cit0042
  doi: 10.3390/rs8010055
– ident: cit0041
  doi: 10.1016/j.isprsjprs.2013.02.009
– ident: cit0024
  doi: 10.1080/01431161.2012.663114
– ident: cit0040
  doi: 10.1080/01431161.2011.576710
– ident: cit0036
– ident: cit0035
  doi: 10.1016/j.rse.2017.04.007
– ident: cit0030
  doi: 10.1016/j.procs.2017.11.055
– ident: cit0046
  doi: 10.14358/PERS.71.2.179
– ident: cit0018
  doi: 10.5194/isprs-archives-XLII-2-W7-711-2017
– ident: cit0013
  doi: 10.3390/ijgi6080255
– ident: cit0022
  doi: 10.3390/rs70100922
– ident: cit0017
  doi: 10.5194/isprs-archives-XLII-4-W1-141-2016
– start-page: 265
  volume-title: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16)
  year: 2016
  ident: cit0001
– ident: cit0028
  doi: 10.1016/j.jag.2016.02.005
– ident: cit0047
  doi: 10.3390/rs9030239
– ident: cit0004
  doi: 10.1016/j.rse.2017.10.005
– ident: cit0011
  doi: 10.3390/s18020591
– ident: cit0039
  doi: 10.3390/rs70403633
– ident: cit0019
  doi: 10.1016/S0262-8856(02)00009-4
– ident: cit0012
– ident: cit0008
– ident: cit0033
– ident: cit0007
  doi: 10.1109/CVPR.2004.446
– ident: cit0050
  doi: 10.1016/j.eswa.2010.09.019
– ident: cit0025
  doi: 10.1016/j.isprsjprs.2017.04.005
– ident: cit0043
  doi: 10.1016/j.biosystemseng.2015.01.008
– ident: cit0016
  doi: 10.3390/rs70912356
– ident: cit0020
  doi: 10.1016/j.gsf.2015.07.003
– ident: cit0037
  doi: 10.1109/LGRS.2016.2530724
– ident: cit0038
  doi: 10.1002/pri.66
– volume: 3
  start-page: 141
  issue: 10
  year: 2013
  ident: cit0002
  publication-title: Journal of Environment and Earth Science
– ident: cit0044
  doi: 10.1016/j.jag.2018.06.007
– ident: cit0029
  doi: 10.1080/02571862.2011.10640023
SSID ssj0039435
Score 2.414816
Snippet LiDAR data are becoming increasingly available, which has opened up many new applications. One such application is crop type mapping. Accurate crop type maps...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 215
SubjectTerms Accuracy
Aerial photography
Aerial surveys
Algorithms
Classification
crop type classification
Crops
Datasets
Digitization
Digitizing
Evaluation
Human error
Labels
LiDAR
Machine learning
Mapping
multispectral imagery
per-pixel classification
Precision agriculture
Remote sensing
Satellite imagery
sentinel-2
Water monitoring
Water use
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagPcAF8RRbCvKBI6GO7cT2qepTFYIKFSr1gizHj7TSbnbZDYf--85knbYCiV5ycGIpGo_n5fH3EfLRu4AM5pCpxgAJSix9ocGxFIrXoi4hBHYD8Py30_rkXH65qC5ywW2V2ypHmzgY6jD3WCPf4ZXA3AU0aHfxu0DWKDxdzRQaj8kmmGANydfm_tHp97PRFgsjB4rNEo8AKoiMxjs8mu3gGA5BjgiPEjylQuCRe95pAPH_C8L0H5M9-KHj5-RZDiDp3nrFX5BHsXtJnmQu88vrV-TXwXK-oFhapTOH6Astxeb2ln69Otw7-0R_YH9QF6cFp64L1A0qSK9mCGZxTbEuC_OwwzLSTCnRUjdtQRb95Wz1mpwfH_08OCkyiULhZVX2ReCNS14mmRhzXivjtQ611xXzzlciQb4TJYiWeSHxmMwpEVj0xoTAa6-SeEM2unkX3xLKpZC6Ts6o0iDMvPNCy5IzFfFqdKMmRI7Csz4jjCPRxdSWGYh0lLlFmdss8wn5fDttsYbYeGjCPq7M7ceIkD0MzJetzRvO1jpBqFbHRrIokzYNl4E55RAQDUIaMyHm_rrafiiQpDWbiRUP_MD2qAQ2b_mVvVPQrf-_fkeecmyMwfYfsU02-uWf-B4im775kNX3Bh2t7dA
  priority: 102
  providerName: ProQuest
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbocqAXxFNd2iIfODbIsR0_ju3SaoWAA7QSHJDlOHZYaR_V7nLov2fG61Q8hHroJZGSTBTNjMczzudvCHkTfIcdzKFSjR0UKLEOlYGJpdJcCVVDCuwz8fzHT2p6Jd9_bQY04abAKrGGTjuiiByrcXD7djMg4uAMeQGkOVDdwaGGOU5rtUcecvRWcGn2bToEY2Fl7rGJIhXKDJt4_veaP6anzOL_F4fpPzE7T0QXT8jjkkHS053Jn5IHcfmMPCrNzH_cPCffJ-vVNcW1VbrwSL_QU0S39_TD7N3p5xP6BQFCyzivOAUVUJ99kM4WyGZxQ3FhFuQQYhlp6SnRUz_vV2u4s9i8IFcX55eTaVW6KFRBNvW26njrU5BJJsZ8MNoGYzoVTMOCD41IUPBECXZhQUj8T-a16FgM1nYdV0En8ZKMlqtlPCCUSyGNSt7q2iLPvA_CyJozHXFvdKvHRA7Kc6FQjGOni7mrCxPpoHOHOndF52Py9lbsesexcZfAGVrm9mGkyM4XVuvelRHnlEmQq6nYShZlMrblsmNee2REg5zGjon93a5um1dI0q6diRN3fMDR4ASujPmN443A6hpi3Kt7vPqQ7HOEzSA4SByR0Xb9Mx5D3rNtX2fP_gUYh_HJ
  priority: 102
  providerName: Taylor & Francis
Title Crop type mapping using LiDAR, Sentinel-2 and aerial imagery with machine learning algorithms
URI https://www.tandfonline.com/doi/abs/10.1080/10095020.2020.1782776
https://www.proquest.com/docview/2536144101
https://doaj.org/article/68f5156eb40e4f89b24d0a7a55632449
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHOCCeIqlZeUDR0Id24md4_alFWor1FKpHJDl-LFU2s1W2-XQf98Zx6lWcNgLl0RyYsmamXgeGX8fIZ-d9chgDplq8JCghNIVGhxLoXgt6hJCYJuA58_O6-mV_HZdXW9QfWFPWA8P3Atuv9YRXG4dWsmCjLppufTMKovAVuCa0tE98HlDMtXvwaKRiVqzxNJ_BRHRcHZHs30cwyHIDeFSgodUCDiy4ZUSeP9f0KX_bNXJ_5y8Ii9z4Egn_YJfkyehe0OeZw7z3_dvya_D1fKWYkmVLiyiLswoNrXP6OnN0eTiC73EvqAuzAtObeepTaZHbxYIYnFPsR4L87CzMtBMJTGjdj5bruDJ4u4duTo5_nE4LTJ5QuFkVa4Lz1sbnYwyMmadVo3T2tdOV8xZV4kIeU6QoA7mhMTfY1YJz4JrGu957VQU78lOt-zCB0K5FFLX0TaqbBBe3jqhZcmZCngkulUjIgfhGZeRxZHgYm7KDEA6yNygzE2W-Yh8fZx220NrbJtwgJp5fBmRsdMA2IvJ9mK22cuINJt6NetUGIk9i4kRWxawNxiByZ_6neGVwKQatraP_2N9u-QFx7YZbA4Se2RnvfoTPkHcs27H5Cn7OR2TZ5Ojs9NLuB8cn3-_GCfDfwCSC_gz
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygXVF5iSwEf4EaoYzuJc0CoT23pdoVKK_WCjGM7aaXd7HY3CO2f4jcyk3VKBRI99ZKDEyfReDwPe_x9hLy1xiGDOWSq3kGC4mMbKXAsUcZTkcYQApsWeP5kmPbP5eeL5GKF_OrOwmBZZWcTW0PtJhbXyLd5IjB3AQ36NL2OkDUKd1c7Co2lWhz7xU9I2eYfj_ZhfN9xfnhwttePAqtAZGUSN5HjhSmtLGXJmLEqy61SLrUqYdbYRJSQAHgJ32JWSNw3MplwzNs8d46nNisFvPcBWYNHGBiCtd2D4ZfTzvaLXLaUnjFuOSQQiXVnhhTbxjZsgpwULjF45gyBTm55w5Y04C_I1H9cROv3DjfIoxCw0p2lhj0mK75-QtYDd_rl4in5tjebTCku5dKxQbSHimIxfUUHV_s7p-_pV6xHqv0o4tTUjppW5enVGMEzFhTXgaEfVnR6GigsKmpGFci-uRzPn5HzexHvc7JaT2r_glAuhVRpafIszhHW3lihZMxZ5vEodpH1iOyEp21ANEdijZGOA_BpJ3ONMtdB5j3y4abbdAnpcVeHXRyZm4cRkbttmMwqHSa4TlUJoWHqC8m8LFVecOmYyQwCsEEIlfdIfntcddMuyJRL9hQt7viBrU4JdDAxc_1nQmz-__Ybst4_OxnowdHw-CV5yLEoB0uPxBZZbWY__CuIqpridVBlSr7f9-z5DenmK0w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNBLxVNsKeADR4Kc2PHjWFpWC5QKAZXggCzHj1BpX9pdDv33nfE6FQ-hHrgkUpKJopmxZ8b5_A0hL7wL2MEcKtUYoECJta80BJZKNZLLGlJgl4nnP5zKyZl497Ud0ITrAqvEGjptiSLyXI2DexnSgIiDM-QFkOZAdQeHGmKcUvImudVqiPXg0uzbZJiMuRG5xyaKVCgzbOL512t-C0-Zxf8PDtO_5uwciMZ3yV7JIOnh1uT3yI04v0_ulGbmPy4ekO9Hq8WS4toqnTmkX-gpott7enJ-fPjpJf2MAKF5nFYNBRVQl32Qns-QzeKC4sIsyCHEMtLSU6KnbtovVnBntn5IzsZvvhxNqtJFofKirTdVaDqXvEgiMea8VsZrHaTXLfPOtzxBwRMF2IV5LvA_mVM8sOiNCaGRXiX-iOzMF_P4mNBGcKFlckbVBnnmneda1A1TEfdGd2pExKA86wvFOHa6mNq6MJEOOreoc1t0PiKvrsSWW46N6wReo2WuHkaK7HxhseptGXFW6gS5moydYFEkbbpGBOaUQ0Y0yGnMiJhf7Wo3eYUkbduZWH7NBxwMTmDLmF_bpuVYXcMct_8fr35Obn88HtuTt6fvn5DdBhE0iBPiB2Rns_oZn0IKtOmeZSe_BNzH9G8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+type+mapping+using+LiDAR%2C+Sentinel-2+and+aerial+imagery+with+machine+learning+algorithms&rft.jtitle=Geo-spatial+information+science&rft.au=Adriaan+Jacobus+Prins&rft.au=Adriaan+Van+Niekerk&rft.date=2021-04-03&rft.pub=Taylor+%26+Francis+Group&rft.issn=1009-5020&rft.eissn=1993-5153&rft.volume=24&rft.issue=2&rft.spage=215&rft.epage=227&rft_id=info:doi/10.1080%2F10095020.2020.1782776&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_68f5156eb40e4f89b24d0a7a55632449
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-5020&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-5020&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-5020&client=summon