Crop type mapping using LiDAR, Sentinel-2 and aerial imagery with machine learning algorithms
LiDAR data are becoming increasingly available, which has opened up many new applications. One such application is crop type mapping. Accurate crop type maps are critical for monitoring water use, estimating harvests and in precision agriculture. The traditional approach to obtaining maps of cultiva...
Saved in:
Published in | Geo-spatial information science Vol. 24; no. 2; pp. 215 - 227 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Wuhan
Taylor & Francis
03.04.2021
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | LiDAR data are becoming increasingly available, which has opened up many new applications. One such application is crop type mapping. Accurate crop type maps are critical for monitoring water use, estimating harvests and in precision agriculture. The traditional approach to obtaining maps of cultivated fields is by manually digitizing the fields from satellite or aerial imagery and then assigning crop type labels to each field - often informed by data collected during ground and aerial surveys. However, manual digitizing and labeling is time-consuming, expensive and subject to human error. Automated remote sensing methods is a cost-effective alternative, with machine learning gaining popularity for classifying crop types. This study evaluated the use of LiDAR data, Sentinel-2 imagery, aerial imagery and machine learning for differentiating five crop types in an intensively cultivated area. Different combinations of the three datasets were evaluated along with ten machine learning. The classification results were interpreted by comparing overall accuracies, kappa, standard deviation and f-score. It was found that LiDAR data successfully differentiated between different crop types, with XGBoost providing the highest overall accuracy of 87.8%. Furthermore, the crop type maps produced using the LiDAR data were in general agreement with those obtained by using Sentinel-2 data, with LiDAR obtaining a mean overall accuracy of 84.3% and Sentinel-2 a mean overall accuracy of 83.6%. However, the combination of all three datasets proved to be the most effective at differentiating between the crop types, with RF providing the highest overall accuracy of 94.4%. These findings provide a foundation for selecting the appropriate combination of remotely sensed data sources and machine learning algorithms for operational crop type mapping. |
---|---|
AbstractList | LiDAR data are becoming increasingly available, which has opened up many new applications. One such application is crop type mapping. Accurate crop type maps are critical for monitoring water use, estimating harvests and in precision agriculture. The traditional approach to obtaining maps of cultivated fields is by manually digitizing the fields from satellite or aerial imagery and then assigning crop type labels to each field - often informed by data collected during ground and aerial surveys. However, manual digitizing and labeling is time-consuming, expensive and subject to human error. Automated remote sensing methods is a cost-effective alternative, with machine learning gaining popularity for classifying crop types. This study evaluated the use of LiDAR data, Sentinel-2 imagery, aerial imagery and machine learning for differentiating five crop types in an intensively cultivated area. Different combinations of the three datasets were evaluated along with ten machine learning. The classification results were interpreted by comparing overall accuracies, kappa, standard deviation and f-score. It was found that LiDAR data successfully differentiated between different crop types, with XGBoost providing the highest overall accuracy of 87.8%. Furthermore, the crop type maps produced using the LiDAR data were in general agreement with those obtained by using Sentinel-2 data, with LiDAR obtaining a mean overall accuracy of 84.3% and Sentinel-2 a mean overall accuracy of 83.6%. However, the combination of all three datasets proved to be the most effective at differentiating between the crop types, with RF providing the highest overall accuracy of 94.4%. These findings provide a foundation for selecting the appropriate combination of remotely sensed data sources and machine learning algorithms for operational crop type mapping. |
Author | Van Niekerk, Adriaan Prins, Adriaan Jacobus |
Author_xml | – sequence: 1 givenname: Adriaan Jacobus orcidid: 0000-0002-7993-6332 surname: Prins fullname: Prins, Adriaan Jacobus email: atman@sun.ac.za, atmanp@gmail.com organization: Stellenbosch University – sequence: 2 givenname: Adriaan orcidid: 0000-0002-5631-0206 surname: Van Niekerk fullname: Van Niekerk, Adriaan organization: Stellenbosch University |
BookMark | eNqFkd1rFDEUxQepYFv9E4QBX5325mtmgi-WVWthQfDjUcLdfGyzZJMxk6Xsf2_GbV980JebcHN-h0PORXMWU7RN85rAFYERrgmAFEDhii6DDCMdhv5Zc06kZJ0ggp3Ve9V0i-hFczHPOwAmORPnzc9VTlNbjpNt9zhNPm7bw7zMtf9w8_Vt-83G4qMNHW0xmhZt9hhav8etzcf2wZf7yun7KmmDxRwXFMM25fqyn182zx2G2b56PC-bH58-fl997tZfbu9WN-tOc0FKZ-gGneaOOwDU4yD1OJpejwI0asGclL3lrCegGQcCEgdmwGopjaG9Hhy7bO5OvibhTk255stHldCrP4uUtwpz8TpY1Y-ufklvNxwsd6PcUG4ABxSiZ5RzWb3enLymnH4d7FzULh1yrPEVFTUE5wRIVb07qXRO85ytU9oXLD7FktEHRUAt3ainbtTSjXrsptLiL_op8_-49yfOR5fyHh9SDkYVPIaUXcao_azYvy1-A1AOpgg |
CitedBy_id | crossref_primary_10_3390_earth5020013 crossref_primary_10_3390_rs16234548 crossref_primary_10_1016_j_isprsjprs_2023_04_002 crossref_primary_10_3390_rs14102404 crossref_primary_10_1080_10095020_2021_1960779 crossref_primary_10_1016_j_jag_2024_103860 crossref_primary_10_1080_0035919X_2024_2409629 crossref_primary_10_26634_jip_10_2_19800 crossref_primary_10_1002_agg2_20553 crossref_primary_10_1080_10095020_2023_2270641 crossref_primary_10_3390_s24165409 crossref_primary_10_1117_1_JRS_18_016511 crossref_primary_10_35633_inmateh_72_12 crossref_primary_10_2139_ssrn_4162666 crossref_primary_10_3390_rs14071720 crossref_primary_10_3390_s22166106 crossref_primary_10_1080_01431161_2022_2107882 crossref_primary_10_1080_10095020_2022_2068384 crossref_primary_10_3390_rs17030378 crossref_primary_10_1016_j_envres_2024_119790 crossref_primary_10_1080_10095020_2023_2208611 crossref_primary_10_3390_rs14020273 crossref_primary_10_1080_10095020_2021_2017237 crossref_primary_10_3390_rs14133153 crossref_primary_10_1080_01431161_2023_2205984 crossref_primary_10_3390_rs16112007 crossref_primary_10_1080_10095020_2022_2035656 crossref_primary_10_1155_2022_2887502 crossref_primary_10_3390_rs13173523 crossref_primary_10_1007_s11356_022_23172_9 crossref_primary_10_1007_s12524_023_01764_3 crossref_primary_10_1007_s12524_024_01839_9 crossref_primary_10_3390_ijgi12070263 crossref_primary_10_1016_j_geogeo_2024_100253 crossref_primary_10_3390_rs14040934 crossref_primary_10_1186_s43170_023_00193_z crossref_primary_10_3390_rs14112621 crossref_primary_10_1080_10095020_2021_1957723 crossref_primary_10_1016_j_procs_2024_04_322 crossref_primary_10_1080_01431161_2025_2452319 crossref_primary_10_1007_s10661_025_13880_3 crossref_primary_10_3390_rs14030566 crossref_primary_10_3390_rs14164028 crossref_primary_10_1080_10095020_2023_2275622 crossref_primary_10_3390_rs15133417 crossref_primary_10_1016_j_compag_2022_107504 crossref_primary_10_3390_s23167132 |
Cites_doi | 10.1016/S0098-3004(99)00118-1 10.1016/j.rse.2011.01.009 10.3390/rs8030166 10.3390/rs71013208 10.1016/j.rse.2014.11.001 10.1016/j.compag.2017.04.006 10.1109/JPROC.2012.2196249 10.1016/j.asr.2008.11.008 10.1007/s11119-009-9116-2 10.1109/LGRS.2013.2251453 10.3390/rs10060917 10.5589/m06-015 10.1016/j.rse.2008.02.004 10.1080/00220973.1993.9943832 10.3390/rs70302971 10.1016/j.compag.2016.12.006 10.3390/rs8010055 10.1016/j.isprsjprs.2013.02.009 10.1080/01431161.2012.663114 10.1080/01431161.2011.576710 10.1016/j.rse.2017.04.007 10.1016/j.procs.2017.11.055 10.14358/PERS.71.2.179 10.5194/isprs-archives-XLII-2-W7-711-2017 10.3390/ijgi6080255 10.3390/rs70100922 10.5194/isprs-archives-XLII-4-W1-141-2016 10.1016/j.jag.2016.02.005 10.3390/rs9030239 10.1016/j.rse.2017.10.005 10.3390/s18020591 10.3390/rs70403633 10.1016/S0262-8856(02)00009-4 10.1109/CVPR.2004.446 10.1016/j.eswa.2010.09.019 10.1016/j.isprsjprs.2017.04.005 10.1016/j.biosystemseng.2015.01.008 10.3390/rs70912356 10.1016/j.gsf.2015.07.003 10.1109/LGRS.2016.2530724 10.1002/pri.66 10.1016/j.jag.2018.06.007 10.1080/02571862.2011.10640023 |
ContentType | Journal Article |
Copyright | 2020 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. 2020 2020 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. 2020 – notice: 2020 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 3V. 7SC 7XB 8FD 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BENPR CCPQU DWQXO FR3 GNUQQ GUQSH JQ2 KR7 L7M L~C L~D M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1080/10095020.2020.1782776 |
DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student ProQuest Research Library ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Sustainability ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest One Academic Eastern Edition Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1993-5153 |
EndPage | 227 |
ExternalDocumentID | oai_doaj_org_article_68f5156eb40e4f89b24d0a7a55632449 10_1080_10095020_2020_1782776 1782776 |
Genre | Research Article |
GroupedDBID | -5A -5G -BR .86 .QJ 0YH 188 29H 4.4 5GY 5VR 6NX 8G5 8TC AAFWJ AAXDM ABFIM ABPEM ABTAI ABUWG ACGFS ADCVX ADINQ AEUYN AFBBN AFKRA AFPKN AGMYJ AHBYD ALMA_UNASSIGNED_HOLDINGS AVBZW AZQEC BA0 BENPR BPHCQ CCEZO CCPQU CCVFK CHBEP CS3 CUBFJ CW9 DWQXO EBS E~A E~B FA0 FIJ GNUQQ GROUPED_DOAJ GTTXZ GUQSH H13 HF~ HG6 HLICF HZ~ H~P IPNFZ I~X J.P M2O M4Z O9- OK1 PIMPY PQQKQ PROAC QOS R9I RDKPK RIG RPX RSV S-T S27 SDH SEV SOJ T13 TCJ TDBHL TEI TFL TFW TGP U2A UT5 VC2 WK8 ~S~ AAYXX ADMLS CITATION PHGZM PHGZT 3V. 7SC 7XB 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c451t-d2bafc4f4f00ac879c88d6c850cac53f996e43610c340109a73d0ec99dd26c7f3 |
IEDL.DBID | DOA |
ISSN | 1009-5020 |
IngestDate | Wed Aug 27 01:31:51 EDT 2025 Fri Jul 25 22:11:10 EDT 2025 Thu Apr 24 22:53:37 EDT 2025 Tue Jul 01 02:28:26 EDT 2025 Wed Dec 25 09:07:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-d2bafc4f4f00ac879c88d6c850cac53f996e43610c340109a73d0ec99dd26c7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7993-6332 0000-0002-5631-0206 |
OpenAccessLink | https://doaj.org/article/68f5156eb40e4f89b24d0a7a55632449 |
PQID | 2536144101 |
PQPubID | 3933171 |
PageCount | 13 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_10095020_2020_1782776 crossref_citationtrail_10_1080_10095020_2020_1782776 crossref_primary_10_1080_10095020_2020_1782776 proquest_journals_2536144101 doaj_primary_oai_doaj_org_article_68f5156eb40e4f89b24d0a7a55632449 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-03 |
PublicationDateYYYYMMDD | 2021-04-03 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Wuhan |
PublicationPlace_xml | – name: Wuhan |
PublicationTitle | Geo-spatial information science |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | cit0033 cit0034 cit0032 cit0030 Abadi M. (cit0001) 2016 cit0039 cit0037 cit0038 cit0035 cit0036 cit0022 cit0023 cit0020 cit0021 cit0028 Vuuren L. V. (cit0045) 2010; 9 cit0029 cit0026 cit0027 cit0024 cit0025 cit0011 cit0012 cit0010 cit0051 cit0052 cit0050 Campbell J. B. (cit0006) 2011 cit0019 cit0017 cit0018 cit0015 cit0016 cit0013 cit0014 cit0044 cit0042 cit0043 cit0040 cit0041 Al-doski J. (cit0002) 2013; 3 Pedregosa F (cit0031) 2012; 12 cit0008 cit0009 cit0007 cit0004 cit0048 cit0005 cit0049 cit0046 cit0003 cit0047 |
References_xml | – ident: cit0010 doi: 10.1016/S0098-3004(99)00118-1 – ident: cit0032 doi: 10.1016/j.rse.2011.01.009 – ident: cit0015 doi: 10.3390/rs8030166 – ident: cit0026 doi: 10.3390/rs71013208 – ident: cit0048 doi: 10.1016/j.rse.2014.11.001 – ident: cit0021 doi: 10.1016/j.compag.2017.04.006 – ident: cit0049 doi: 10.1109/JPROC.2012.2196249 – ident: cit0009 doi: 10.1016/j.asr.2008.11.008 – ident: cit0034 doi: 10.1007/s11119-009-9116-2 – ident: cit0051 doi: 10.1109/LGRS.2013.2251453 – ident: cit0027 doi: 10.3390/rs10060917 – volume-title: Introduction to Remote Sensing. Uma Ética Para Quantos? Fifth Edit. Vol. XXXIII year: 2011 ident: cit0006 – ident: cit0005 doi: 10.5589/m06-015 – volume: 9 start-page: 20 issue: 1 year: 2010 ident: cit0045 publication-title: Water Wheel – ident: cit0003 doi: 10.1016/j.rse.2008.02.004 – ident: cit0052 doi: 10.1080/00220973.1993.9943832 – ident: cit0023 doi: 10.3390/rs70302971 – ident: cit0014 doi: 10.1016/j.compag.2016.12.006 – volume: 12 start-page: 2825 year: 2012 ident: cit0031 publication-title: Journal of Machine Learning Research – ident: cit0042 doi: 10.3390/rs8010055 – ident: cit0041 doi: 10.1016/j.isprsjprs.2013.02.009 – ident: cit0024 doi: 10.1080/01431161.2012.663114 – ident: cit0040 doi: 10.1080/01431161.2011.576710 – ident: cit0036 – ident: cit0035 doi: 10.1016/j.rse.2017.04.007 – ident: cit0030 doi: 10.1016/j.procs.2017.11.055 – ident: cit0046 doi: 10.14358/PERS.71.2.179 – ident: cit0018 doi: 10.5194/isprs-archives-XLII-2-W7-711-2017 – ident: cit0013 doi: 10.3390/ijgi6080255 – ident: cit0022 doi: 10.3390/rs70100922 – ident: cit0017 doi: 10.5194/isprs-archives-XLII-4-W1-141-2016 – start-page: 265 volume-title: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16) year: 2016 ident: cit0001 – ident: cit0028 doi: 10.1016/j.jag.2016.02.005 – ident: cit0047 doi: 10.3390/rs9030239 – ident: cit0004 doi: 10.1016/j.rse.2017.10.005 – ident: cit0011 doi: 10.3390/s18020591 – ident: cit0039 doi: 10.3390/rs70403633 – ident: cit0019 doi: 10.1016/S0262-8856(02)00009-4 – ident: cit0012 – ident: cit0008 – ident: cit0033 – ident: cit0007 doi: 10.1109/CVPR.2004.446 – ident: cit0050 doi: 10.1016/j.eswa.2010.09.019 – ident: cit0025 doi: 10.1016/j.isprsjprs.2017.04.005 – ident: cit0043 doi: 10.1016/j.biosystemseng.2015.01.008 – ident: cit0016 doi: 10.3390/rs70912356 – ident: cit0020 doi: 10.1016/j.gsf.2015.07.003 – ident: cit0037 doi: 10.1109/LGRS.2016.2530724 – ident: cit0038 doi: 10.1002/pri.66 – volume: 3 start-page: 141 issue: 10 year: 2013 ident: cit0002 publication-title: Journal of Environment and Earth Science – ident: cit0044 doi: 10.1016/j.jag.2018.06.007 – ident: cit0029 doi: 10.1080/02571862.2011.10640023 |
SSID | ssj0039435 |
Score | 2.414816 |
Snippet | LiDAR data are becoming increasingly available, which has opened up many new applications. One such application is crop type mapping. Accurate crop type maps... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 215 |
SubjectTerms | Accuracy Aerial photography Aerial surveys Algorithms Classification crop type classification Crops Datasets Digitization Digitizing Evaluation Human error Labels LiDAR Machine learning Mapping multispectral imagery per-pixel classification Precision agriculture Remote sensing Satellite imagery sentinel-2 Water monitoring Water use |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagPcAF8RRbCvKBI6GO7cT2qepTFYIKFSr1gizHj7TSbnbZDYf--85knbYCiV5ycGIpGo_n5fH3EfLRu4AM5pCpxgAJSix9ocGxFIrXoi4hBHYD8Py30_rkXH65qC5ywW2V2ypHmzgY6jD3WCPf4ZXA3AU0aHfxu0DWKDxdzRQaj8kmmGANydfm_tHp97PRFgsjB4rNEo8AKoiMxjs8mu3gGA5BjgiPEjylQuCRe95pAPH_C8L0H5M9-KHj5-RZDiDp3nrFX5BHsXtJnmQu88vrV-TXwXK-oFhapTOH6Astxeb2ln69Otw7-0R_YH9QF6cFp64L1A0qSK9mCGZxTbEuC_OwwzLSTCnRUjdtQRb95Wz1mpwfH_08OCkyiULhZVX2ReCNS14mmRhzXivjtQ611xXzzlciQb4TJYiWeSHxmMwpEVj0xoTAa6-SeEM2unkX3xLKpZC6Ts6o0iDMvPNCy5IzFfFqdKMmRI7Csz4jjCPRxdSWGYh0lLlFmdss8wn5fDttsYbYeGjCPq7M7ceIkD0MzJetzRvO1jpBqFbHRrIokzYNl4E55RAQDUIaMyHm_rrafiiQpDWbiRUP_MD2qAQ2b_mVvVPQrf-_fkeecmyMwfYfsU02-uWf-B4im775kNX3Bh2t7dA priority: 102 providerName: ProQuest – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbocqAXxFNd2iIfODbIsR0_ju3SaoWAA7QSHJDlOHZYaR_V7nLov2fG61Q8hHroJZGSTBTNjMczzudvCHkTfIcdzKFSjR0UKLEOlYGJpdJcCVVDCuwz8fzHT2p6Jd9_bQY04abAKrGGTjuiiByrcXD7djMg4uAMeQGkOVDdwaGGOU5rtUcecvRWcGn2bToEY2Fl7rGJIhXKDJt4_veaP6anzOL_F4fpPzE7T0QXT8jjkkHS053Jn5IHcfmMPCrNzH_cPCffJ-vVNcW1VbrwSL_QU0S39_TD7N3p5xP6BQFCyzivOAUVUJ99kM4WyGZxQ3FhFuQQYhlp6SnRUz_vV2u4s9i8IFcX55eTaVW6KFRBNvW26njrU5BJJsZ8MNoGYzoVTMOCD41IUPBECXZhQUj8T-a16FgM1nYdV0En8ZKMlqtlPCCUSyGNSt7q2iLPvA_CyJozHXFvdKvHRA7Kc6FQjGOni7mrCxPpoHOHOndF52Py9lbsesexcZfAGVrm9mGkyM4XVuvelRHnlEmQq6nYShZlMrblsmNee2REg5zGjon93a5um1dI0q6diRN3fMDR4ASujPmN443A6hpi3Kt7vPqQ7HOEzSA4SByR0Xb9Mx5D3rNtX2fP_gUYh_HJ priority: 102 providerName: Taylor & Francis |
Title | Crop type mapping using LiDAR, Sentinel-2 and aerial imagery with machine learning algorithms |
URI | https://www.tandfonline.com/doi/abs/10.1080/10095020.2020.1782776 https://www.proquest.com/docview/2536144101 https://doaj.org/article/68f5156eb40e4f89b24d0a7a55632449 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHOCCeIqlZeUDR0Id24md4_alFWor1FKpHJDl-LFU2s1W2-XQf98Zx6lWcNgLl0RyYsmamXgeGX8fIZ-d9chgDplq8JCghNIVGhxLoXgt6hJCYJuA58_O6-mV_HZdXW9QfWFPWA8P3Atuv9YRXG4dWsmCjLppufTMKovAVuCa0tE98HlDMtXvwaKRiVqzxNJ_BRHRcHZHs30cwyHIDeFSgodUCDiy4ZUSeP9f0KX_bNXJ_5y8Ii9z4Egn_YJfkyehe0OeZw7z3_dvya_D1fKWYkmVLiyiLswoNrXP6OnN0eTiC73EvqAuzAtObeepTaZHbxYIYnFPsR4L87CzMtBMJTGjdj5bruDJ4u4duTo5_nE4LTJ5QuFkVa4Lz1sbnYwyMmadVo3T2tdOV8xZV4kIeU6QoA7mhMTfY1YJz4JrGu957VQU78lOt-zCB0K5FFLX0TaqbBBe3jqhZcmZCngkulUjIgfhGZeRxZHgYm7KDEA6yNygzE2W-Yh8fZx220NrbJtwgJp5fBmRsdMA2IvJ9mK22cuINJt6NetUGIk9i4kRWxawNxiByZ_6neGVwKQatraP_2N9u-QFx7YZbA4Se2RnvfoTPkHcs27H5Cn7OR2TZ5Ojs9NLuB8cn3-_GCfDfwCSC_gz |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygXVF5iSwEf4EaoYzuJc0CoT23pdoVKK_WCjGM7aaXd7HY3CO2f4jcyk3VKBRI99ZKDEyfReDwPe_x9hLy1xiGDOWSq3kGC4mMbKXAsUcZTkcYQApsWeP5kmPbP5eeL5GKF_OrOwmBZZWcTW0PtJhbXyLd5IjB3AQ36NL2OkDUKd1c7Co2lWhz7xU9I2eYfj_ZhfN9xfnhwttePAqtAZGUSN5HjhSmtLGXJmLEqy61SLrUqYdbYRJSQAHgJ32JWSNw3MplwzNs8d46nNisFvPcBWYNHGBiCtd2D4ZfTzvaLXLaUnjFuOSQQiXVnhhTbxjZsgpwULjF45gyBTm55w5Y04C_I1H9cROv3DjfIoxCw0p2lhj0mK75-QtYDd_rl4in5tjebTCku5dKxQbSHimIxfUUHV_s7p-_pV6xHqv0o4tTUjppW5enVGMEzFhTXgaEfVnR6GigsKmpGFci-uRzPn5HzexHvc7JaT2r_glAuhVRpafIszhHW3lihZMxZ5vEodpH1iOyEp21ANEdijZGOA_BpJ3ONMtdB5j3y4abbdAnpcVeHXRyZm4cRkbttmMwqHSa4TlUJoWHqC8m8LFVecOmYyQwCsEEIlfdIfntcddMuyJRL9hQt7viBrU4JdDAxc_1nQmz-__Ybst4_OxnowdHw-CV5yLEoB0uPxBZZbWY__CuIqpridVBlSr7f9-z5DenmK0w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNBLxVNsKeADR4Kc2PHjWFpWC5QKAZXggCzHj1BpX9pdDv33nfE6FQ-hHrgkUpKJopmxZ8b5_A0hL7wL2MEcKtUYoECJta80BJZKNZLLGlJgl4nnP5zKyZl497Ud0ITrAqvEGjptiSLyXI2DexnSgIiDM-QFkOZAdQeHGmKcUvImudVqiPXg0uzbZJiMuRG5xyaKVCgzbOL512t-C0-Zxf8PDtO_5uwciMZ3yV7JIOnh1uT3yI04v0_ulGbmPy4ekO9Hq8WS4toqnTmkX-gpott7enJ-fPjpJf2MAKF5nFYNBRVQl32Qns-QzeKC4sIsyCHEMtLSU6KnbtovVnBntn5IzsZvvhxNqtJFofKirTdVaDqXvEgiMea8VsZrHaTXLfPOtzxBwRMF2IV5LvA_mVM8sOiNCaGRXiX-iOzMF_P4mNBGcKFlckbVBnnmneda1A1TEfdGd2pExKA86wvFOHa6mNq6MJEOOreoc1t0PiKvrsSWW46N6wReo2WuHkaK7HxhseptGXFW6gS5moydYFEkbbpGBOaUQ0Y0yGnMiJhf7Wo3eYUkbduZWH7NBxwMTmDLmF_bpuVYXcMct_8fr35Obn88HtuTt6fvn5DdBhE0iBPiB2Rns_oZn0IKtOmeZSe_BNzH9G8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+type+mapping+using+LiDAR%2C+Sentinel-2+and+aerial+imagery+with+machine+learning+algorithms&rft.jtitle=Geo-spatial+information+science&rft.au=Adriaan+Jacobus+Prins&rft.au=Adriaan+Van+Niekerk&rft.date=2021-04-03&rft.pub=Taylor+%26+Francis+Group&rft.issn=1009-5020&rft.eissn=1993-5153&rft.volume=24&rft.issue=2&rft.spage=215&rft.epage=227&rft_id=info:doi/10.1080%2F10095020.2020.1782776&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_68f5156eb40e4f89b24d0a7a55632449 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-5020&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-5020&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-5020&client=summon |