Innovative Development Measures of the Chinese Medicine Industry in Industrial Big Data with the Aid of AI in the Context of an Imperfectly Competitive Market Economy
The use of traditional Chinese medicine for healthcare has been on the rise in recent years, leading to the rapid development of the industry in China. However, the industry still faces several challenges, including the supply of raw materials, changing market demands, and competition from foreign c...
Saved in:
Published in | Applied artificial intelligence Vol. 37; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
31.12.2023
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of traditional Chinese medicine for healthcare has been on the rise in recent years, leading to the rapid development of the industry in China. However, the industry still faces several challenges, including the supply of raw materials, changing market demands, and competition from foreign competitors, especially during the current era of rampant epidemics. To address these challenges, advanced technologies such as artificial intelligence (AI) can play a significant role in enhancing the innovation and competitiveness of the Chinese medicine industry. One such technology is the Long Short-Term Memory (LSTM) algorithm, a recurrent neural network that has proven effective in processing and analyzing sequential data. By utilizing this algorithm, the Chinese medicine industry can harness the vast amounts of data generated during various stages of production, from raw material selection to clinical practice. This can optimize processes, improve product quality, and enhance treatment outcomes. |
---|---|
AbstractList | The use of traditional Chinese medicine for healthcare has been on the rise in recent years, leading to the rapid development of the industry in China. However, the industry still faces several challenges, including the supply of raw materials, changing market demands, and competition from foreign competitors, especially during the current era of rampant epidemics. To address these challenges, advanced technologies such as artificial intelligence (AI) can play a significant role in enhancing the innovation and competitiveness of the Chinese medicine industry. One such technology is the Long Short-Term Memory (LSTM) algorithm, a recurrent neural network that has proven effective in processing and analyzing sequential data. By utilizing this algorithm, the Chinese medicine industry can harness the vast amounts of data generated during various stages of production, from raw material selection to clinical practice. This can optimize processes, improve product quality, and enhance treatment outcomes. |
Author | Wang, Li |
Author_xml | – sequence: 1 givenname: Li surname: Wang fullname: Wang, Li email: 20030007@xijing.edu.cn organization: Xijing University |
BookMark | eNqFkc1uEzEUhUeoSKSFR0CyxHpSe_wzM2JDSAtEasUG1pbHvm4cZuzgcdLmhfqceJJmwwJWtu8959ORz2Vx4YOHonhP8JzgBl_jpqEtJ2xe4YrOq4pw3PJXxSwv61Jwxi-K2aQpJ9Gb4nIcNxhjUtdkVjyvvA97ldwe0A3soQ_bAXxC96DGXYQRBYvSGtBy7TyMkOfG6XxFK292Y4oH5Pz57lSPPrsHdKOSQo8urY_OhTMTZLGalEdU8Ame0jRU2TtsIVrQqT_kTX4kdwxzr-IvSOhWBx-Gw9vitVX9CO9ezqvi55fbH8tv5d33r6vl4q7UjJNUalBGmA4Ms6Rtba2butJKqA5TI1ogldai052uG22Z4IIawkxHsMCtoURQelWsTlwT1EZuoxtUPMignDwOQnyQKiane5A1y3jLhaGcsY4rpUHXtTCkAUsJ5Zn14cTaxvB7B2OSm7CLPseXFFPGW8aaKqs-nlQ6hnGMYKV2KfeRPykq10uC5VSyPJcsp5LlS8nZzf9ynzP_z_fp5HPehjioxxB7I5M69CHaqLx2OeS_EX8As1LB-g |
CitedBy_id | crossref_primary_10_1080_10255842_2024_2417203 |
Cites_doi | 10.3390/su141811588 10.17269/s41997-022-00662-4 10.2196/12869 10.1186/s40545-022-00444-w 10.1016/j.nano.2017.05.014 10.1108/JBIM-07-2020-0373 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023 – notice: 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D DOA |
DOI | 10.1080/08839514.2023.2215095 |
DatabaseName | Taylor & Francis Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1087-6545 |
ExternalDocumentID | oai_doaj_org_article_747c8f56d3544b5aacec776d18ef3135 10_1080_08839514_2023_2215095 2215095 |
Genre | Research Article |
GroupedDBID | .4S .7F .DC .QJ 0YH 23M 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT ABCCY ABDBF ABFIM ABHAV ABIVO ABPEM ABTAI ACGEJ ACGFS ACGOD ACNCT ACTIO ACUHS ADCVX ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGMYJ AHQJS AIJEM AJWEG AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW BLEHA CCCUG CE4 CS3 DGEBU DKSSO EAP EBR EBS EBU ECS EDO EMK EPL EST ESX E~A E~B F5P GROUPED_DOAJ GTTXZ H13 HF~ HZ~ H~9 H~P I-F J.P KYCEM LJTGL M4Z MK~ NA5 NX~ O9- P2P PQQKQ QWB RIG S-T SNACF TFL TFT TFW TH9 TNC TTHFI TUS TWF UT5 UU3 ZL0 ~S~ AAFWJ AAYXX ADMLS AEMOZ AIYEW CITATION TDBHL 7SC 8FD JQ2 K1G L7M L~C L~D |
ID | FETCH-LOGICAL-c451t-cead6dbed4f199f7c872ca6ab03d69e12cc6bcbc78cf46563d14db10609d31633 |
IEDL.DBID | DOA |
ISSN | 0883-9514 |
IngestDate | Wed Aug 27 01:26:54 EDT 2025 Mon Jun 30 14:19:42 EDT 2025 Tue Jul 01 02:04:02 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 Wed Dec 25 09:06:38 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-cead6dbed4f199f7c872ca6ab03d69e12cc6bcbc78cf46563d14db10609d31633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/747c8f56d3544b5aacec776d18ef3135 |
PQID | 3034594482 |
PQPubID | 53050 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_08839514_2023_2215095 doaj_primary_oai_doaj_org_article_747c8f56d3544b5aacec776d18ef3135 proquest_journals_3034594482 crossref_citationtrail_10_1080_08839514_2023_2215095 crossref_primary_10_1080_08839514_2023_2215095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-31 |
PublicationDateYYYYMMDD | 2023-12-31 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Applied artificial intelligence |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | Jing M. X. (e_1_3_3_6_1) 2021; 1881 e_1_3_3_8_1 Shaonan S. (e_1_3_3_9_1) 2021 Yang (e_1_3_3_11_1) 2021; 4 Yamin H. J. (e_1_3_3_10_1) 2021; 1884 e_1_3_3_3_1 e_1_3_3_2_1 Jurong Z. Y. (e_1_3_3_7_1) 2021; 1852 e_1_3_3_5_1 e_1_3_3_12_1 e_1_3_3_4_1 |
References_xml | – volume: 4 start-page: 85 issue: 1 year: 2021 ident: e_1_3_3_11_1 article-title: Strategies on the development of Tibetan medicine industry publication-title: Agricultural Amp; Forestry Economics and Management – ident: e_1_3_3_12_1 doi: 10.3390/su141811588 – ident: e_1_3_3_2_1 doi: 10.17269/s41997-022-00662-4 – ident: e_1_3_3_8_1 doi: 10.2196/12869 – ident: e_1_3_3_5_1 doi: 10.1186/s40545-022-00444-w – volume: 1881 start-page: 042050 issue: 4 year: 2021 ident: e_1_3_3_6_1 article-title: Application of big data technology in extracting information analysis of traditional Chinese medicine publication-title: Journal of Physics – year: 2021 ident: e_1_3_3_9_1 article-title: The path study of supply-side reform of Chinese medicine health industry based on computer technology publication-title: Journal of Physics – ident: e_1_3_3_3_1 doi: 10.1016/j.nano.2017.05.014 – volume: 1884 start-page: 012019 issue: 1 year: 2021 ident: e_1_3_3_10_1 article-title: Quality by Design (QbD): Application of comprehensive risk analysis in blending process for XLGB capsule in medicineindustry publication-title: Journal of Physics – ident: e_1_3_3_4_1 doi: 10.1108/JBIM-07-2020-0373 – volume: 1852 start-page: 032032 issue: 3 year: 2021 ident: e_1_3_3_7_1 article-title: International trade barriers and countermeasures of Chinese medicinal materials based on big data publication-title: Journal of Physics |
SSID | ssj0001771 |
Score | 2.3500848 |
Snippet | The use of traditional Chinese medicine for healthcare has been on the rise in recent years, leading to the rapid development of the industry in China.... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Artificial intelligence Big Data Industrial development Market economies Materials selection Raw materials Recurrent neural networks Traditional Chinese medicine |
SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagXLjwRhQKmgPXlNiOneS4LVRbpOVEJThZflYrVbtoNyD2D_E7mXGcpYBQDxwTZUZRxjOemYy_j7HXSck6qV5VrtbUuulU1deuqVLimDy3KShB550XH_T8onn_SU3ThNsyVkk1dBqBInKsJue2bjtNxL1Bx5CYGFBHRMhjgZsW5gm32R3ciWsiMag_z_fBmLe55iKRimSmQzz_UvPb9pRR_P_AMP0rZueN6OwBu1cySJiNJn_IbsXVI3Z_YmeA4qyP2Y_zQnj6LcK10SBYjF3BLawTYPYHxKAdtxEW5S87FDaPHSxX8IvZA06Wl_DWDhaodZslZ8tASmbn9GRWRVBX3we6aVEWM_INTYtc7eA0p-d5TgkW-aA1jEeid0_Yxdm7j6fzqrAyVL5RfKg8rj0dXAxN4n2fWt-1wlttXS2D7iMX3mvnnW87nwiMTQbeBIeVZ90HidmffMoOVutVfMZACkK15ApDLFaJPHQ8WiF8m5yQPmh9yJrJGMYXyHJizrgyfEI2LTY0ZENTbHjIjvdiX0bMjpsETsjS-4cJcjvfWG8uTfFgg3WX75LSQaqmccpaH33b6sC7mCSXqKS_vk7MkDsuaaRHMfKGFziaFpUpMQRFatmoHj-MeP4fql-wu3Q5YlMesYNh8zW-xDxqcK-yp_wE7GQRpQ priority: 102 providerName: Taylor & Francis |
Title | Innovative Development Measures of the Chinese Medicine Industry in Industrial Big Data with the Aid of AI in the Context of an Imperfectly Competitive Market Economy |
URI | https://www.tandfonline.com/doi/abs/10.1080/08839514.2023.2215095 https://www.proquest.com/docview/3034594482 https://doaj.org/article/747c8f56d3544b5aacec776d18ef3135 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy68EUtLNQeuWeJnkuO2UG2RlhOVysmKX2ilaovagNg_1N_JjOOUFRz2wnXkcSzP2P7s2N_H2LukZZ10pytXGzq6aXXV1U5VKXEEz00KWtB759Vns7xQny715Y7UF90JG-mBx457j3DXt0mbILVSTve9j75pTOBtTJLLzF6Ka960mSpzMG_yVguHkKwQQ6jp7Q6xaqONTHMSDp8LXPJqEpfYWZUyef9f1KX_TNV5_Tl7yh4X4AiLscHP2IO4ec6eTKIMUMboC3Z3XnROf0bYuREEq_Ew8BauEyDoAxLOjrcRVuXnOhQRjy2sN_BH0ANO1t_gQz_0QCe22XOxDlTJ4pxK5qqI4erXQMYefRGI39AlkastnGZUnq8nwSq_r4bxJfT2Jbs4-_jldFkVMYbKK82HymPKmeBiUIl3XcKgNML3pne1DKaLXHhvnHe-aX0iDjYZuAoON5x1FySCPvmKHWyuN_E1AymIzJJrnFlxc8hDy2MvhG-SE9IHY2ZMTcGwvjCVk2DGleUToWmJoaUY2hLDGZvfu30fqTr2OZxQpO8LE9N2NmD-2ZJ_dl_-zVi3myd2yActaVRFsXJPA46mpLJl6kCXWirdYceIN_-jfYfsEX1y5KY8YgfDzY_4FnHU4I7Zw_rr8jgPnN8VSBXy |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKOcCF8itaCvgAxyyxHTvJgcO2pdql3T21Um8h_qtWVLtoNy0sD8QD8Cq8EDOOs5Qi1APqgauTGVm251cz3xDyykuRelnKRKcKUzeFTMpUZ4n3DJzn3FvJsd95NFaD4-z9iTxZI9-7Xhgsq8QY2rdAEUFXo3BjMroriXsDkiHAM8CUCBc9DlYLHIVYWHnglp8hbFu8He7BHb_mfP_d0e4giZMFEpNJ1iQGzk9Z7WzmWVn63BQ5N7WqdSqsKh3jxihttMkL4xFQTFiWWQ3RU1paAR6MAL63yG1ZqhxlS6TjlfZneQjycIsJ7rHrGvrbtn-zh2FswBXQ1D-MRLB8-xvkR3dmbcHLx955o3vm6xU4yf_rUO-Te9ERp_1Wch6QNTd9SDa6IRc06rxH5Nswzo29cPRShRUdtcnVBZ15Ck40xUHkbuHoKBYr0DgUZUknU_prQArdmZzSvbqpKWbAA2V_YpFJf4h_BlaIGPalwcUaaCGwmWPRzdmS7oYoJ5R70VHoV6dtZ_nyMTm-kdN6Qtans6l7SqjgCA7KJFgqCLaZLZirOTe511wYq9QmybonVpmI_I4DSM4q1gHExruv8O6rePebpLci-9RCn1xHsIPvd_UzIpeHhdn8tIqKsILw1RReKitklmlZ18aZPFeWFc4LJoBJefn1V01IXPl2ykwlrtnAdicqVVTFQJKKTJZwMHzrH1i_JHcGR6PD6nA4PnhG7uKnFu5zm6w383P3HFzTRr8IuoCSDzctJz8BvWuRwQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKkRAXylMUCvgAxw1re-3dPXBIG6KGkogDlXpb1q8qokqqZAuEH8Sdv8IvYsbrDaUI9YB64OrdGVm256mZbwh57qVIvSxlolOFqZtCJmWqs8R7Bs5z7q3k2O88nqj9w-zNkTzaIN-7Xhgsq8QY2rdAEUFXo3CfWt9VxL0EwRDgGGBGhIseB6MFfkKsqzxwq88QtS1fjQZwxS84H75-v7efxMECickkaxIDx6esdjbzrCx9boqcm1rVOhVWlY5xY5Q22uSF8YgnJizLrIbgKS2tAAdGAN9r5LrCxk7sGkkna-XP8hDj4RYT3GPXNPS3bf9mDsPUgAuYqX_YiGD4hlvkR3dkbb3Lx95Zo3vm6wU0yf_qTG-TW9ENp_1Wbu6QDTe7S7a6ERc0arx75NsoTo395Oi5-io6blOrSzr3FFxoimPI3dLRcSxVoHEkyopOZ_TXeBS6Oz2mg7qpKea_A2V_apFJf4R_BlaIF_alwcUaaCGsWWDJzcmK7oUYJxR70XHoVqdtX_nqPjm8ktN6QDZn85l7SKjgCA3KJNgpCLWZLZirOTe511wYq9Q2yboXVpmI-47jR04q1sHDxruv8O6rePfbpLcmO22BTy4j2MXnu_4ZccvDwnxxXEU1WEHwagovlRUyy7Ssa-NMnivLCucFE8CkPP_4qyakrXw7Y6YSl2xgp5OUKipiIElFJks4GP7oH1g_IzfeDYbV29Hk4DG5iV9arM8dstksztwT8Esb_TRoAko-XLWY_AQrXpBl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+Development+Measures+of+the+Chinese+Medicine+Industry+in+Industrial+Big+Data+with+the+Aid+of+AI+in+the+Context+of+an+Imperfectly+Competitive+Market+Economy&rft.jtitle=Applied+artificial+intelligence&rft.au=Li+Wang&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis+Group&rft.issn=0883-9514&rft.eissn=1087-6545&rft.volume=37&rft.issue=1&rft_id=info:doi/10.1080%2F08839514.2023.2215095&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_747c8f56d3544b5aacec776d18ef3135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-9514&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-9514&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-9514&client=summon |