MAP4K4 Gene Silencing in Human Skeletal Muscle Prevents Tumor Necrosis Factor-α-induced Insulin Resistance

Tumor necrosis factor-α (TNF-α) induces skeletal muscle insulin resistance by impairing insulin signaling events involved in GLUT4 translocation. We tested whether mitogenic-activated protein kinase kinase kinase kinase isoform 4 (MAP4K4) causes the TNF-α-induced negative regulation of extracellular...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 282; no. 11; pp. 7783 - 7789
Main Authors Bouzakri, Karim, Zierath, Juleen R.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 16.03.2007
Subjects
Online AccessGet full text
ISSN0021-9258
1083-351X
DOI10.1074/jbc.M608602200

Cover

Loading…
Abstract Tumor necrosis factor-α (TNF-α) induces skeletal muscle insulin resistance by impairing insulin signaling events involved in GLUT4 translocation. We tested whether mitogenic-activated protein kinase kinase kinase kinase isoform 4 (MAP4K4) causes the TNF-α-induced negative regulation of extracellular signal-regulated kinase-1/2 (ERK-1/2), c-Jun NH2-terminal kinase (JNK), and the insulin receptor substrate-1 (IRS-1) on the insulin signaling pathway governing glucose metabolism. Using small interfering RNA (siRNA) to suppress the expression of MAP4K4 protein 85% in primary human skeletal muscle cells, we provide evidence that TNF-α-induced insulin resistance on glucose uptake was completely prevented. MAP4K4 silencing inhibited TNF-α-induced negative signaling inputs by preventing excessive JNK and ERK-1/2 phosphorylation, as well as IRS-1 serine phosphorylation. These results highlight the MAPK4K4/JNK/ERK/IRS module in the negative regulation of insulin signaling to glucose transport in response to TNF-α. Depletion of MAP4K4 also prevented TNF-α-induced insulin resistance on Akt and the Akt substrate 160 (AS160), providing evidence that appropriate insulin signaling inputs for glucose metabolism were rescued. Silencing of MAP2K1 and MAP2K4, signaling proteins downstream of MAP4K4, recapitulated the effect of MAP4K4 siRNA in TNF-α-treated cells. Thus, strategies to inhibit MAP4K4 may be efficacious in the prevention of TNF-α-induced inhibitory signals that cause skeletal muscle insulin resistance on glucose metabolism in humans. Moreover, in myotubes from insulin-resistant type II diabetic patients, siRNA against MAP4K4, MAP2K4, or MAP2K1 restored insulin action on glucose uptake to levels observed in healthy subjects. Collectively, our results demonstrate that MAP4K4 silencing prevents insulin resistance in human skeletal muscle and restores appropriate signaling inputs to enhance glucose uptake.
AbstractList Tumor necrosis factor-alpha (TNF-alpha) induces skeletal muscle insulin resistance by impairing insulin signaling events involved in GLUT4 translocation. We tested whether mitogenic-activated protein kinase kinase kinase kinase isoform 4 (MAP4K4) causes the TNF-alpha-induced negative regulation of extracellular signal-regulated kinase-1/2 (ERK-1/2), c-Jun NH2-terminal kinase (JNK), and the insulin receptor substrate-1 (IRS-1) on the insulin signaling pathway governing glucose metabolism. Using small interfering RNA (siRNA) to suppress the expression of MAP4K4 protein 85% in primary human skeletal muscle cells, we provide evidence that TNF-alpha-induced insulin resistance on glucose uptake was completely prevented. MAP4K4 silencing inhibited TNF-alpha-induced negative signaling inputs by preventing excessive JNK and ERK-1/2 phosphorylation, as well as IRS-1 serine phosphorylation. These results highlight the MAPK4K4/JNK/ERK/IRS module in the negative regulation of insulin signaling to glucose transport in response to TNF-alpha. Depletion of MAP4K4 also prevented TNF-alpha-induced insulin resistance on Akt and the Akt substrate 160 (AS160), providing evidence that appropriate insulin signaling inputs for glucose metabolism were rescued. Silencing of MAP2K1 and MAP2K4, signaling proteins downstream of MAP4K4, recapitulated the effect of MAP4K4 siRNA in TNF-alpha-treated cells. Thus, strategies to inhibit MAP4K4 may be efficacious in the prevention of TNF-alpha-induced inhibitory signals that cause skeletal muscle insulin resistance on glucose metabolism in humans. Moreover, in myotubes from insulin-resistant type II diabetic patients, siRNA against MAP4K4, MAP2K4, or MAP2K1 restored insulin action on glucose uptake to levels observed in healthy subjects. Collectively, our results demonstrate that MAP4K4 silencing prevents insulin resistance in human skeletal muscle and restores appropriate signaling inputs to enhance glucose uptake.Tumor necrosis factor-alpha (TNF-alpha) induces skeletal muscle insulin resistance by impairing insulin signaling events involved in GLUT4 translocation. We tested whether mitogenic-activated protein kinase kinase kinase kinase isoform 4 (MAP4K4) causes the TNF-alpha-induced negative regulation of extracellular signal-regulated kinase-1/2 (ERK-1/2), c-Jun NH2-terminal kinase (JNK), and the insulin receptor substrate-1 (IRS-1) on the insulin signaling pathway governing glucose metabolism. Using small interfering RNA (siRNA) to suppress the expression of MAP4K4 protein 85% in primary human skeletal muscle cells, we provide evidence that TNF-alpha-induced insulin resistance on glucose uptake was completely prevented. MAP4K4 silencing inhibited TNF-alpha-induced negative signaling inputs by preventing excessive JNK and ERK-1/2 phosphorylation, as well as IRS-1 serine phosphorylation. These results highlight the MAPK4K4/JNK/ERK/IRS module in the negative regulation of insulin signaling to glucose transport in response to TNF-alpha. Depletion of MAP4K4 also prevented TNF-alpha-induced insulin resistance on Akt and the Akt substrate 160 (AS160), providing evidence that appropriate insulin signaling inputs for glucose metabolism were rescued. Silencing of MAP2K1 and MAP2K4, signaling proteins downstream of MAP4K4, recapitulated the effect of MAP4K4 siRNA in TNF-alpha-treated cells. Thus, strategies to inhibit MAP4K4 may be efficacious in the prevention of TNF-alpha-induced inhibitory signals that cause skeletal muscle insulin resistance on glucose metabolism in humans. Moreover, in myotubes from insulin-resistant type II diabetic patients, siRNA against MAP4K4, MAP2K4, or MAP2K1 restored insulin action on glucose uptake to levels observed in healthy subjects. Collectively, our results demonstrate that MAP4K4 silencing prevents insulin resistance in human skeletal muscle and restores appropriate signaling inputs to enhance glucose uptake.
Tumor necrosis factor-alpha (TNF-alpha) induces skeletal muscle insulin resistance by impairing insulin signaling events involved in GLUT4 translocation. We tested whether mitogenic-activated protein kinase kinase kinase kinase isoform 4 (MAP4K4) causes the TNF-alpha-induced negative regulation of extracellular signal-regulated kinase-1/2 (ERK-1/2), c-Jun NH2-terminal kinase (JNK), and the insulin receptor substrate-1 (IRS-1) on the insulin signaling pathway governing glucose metabolism. Using small interfering RNA (siRNA) to suppress the expression of MAP4K4 protein 85% in primary human skeletal muscle cells, we provide evidence that TNF-alpha-induced insulin resistance on glucose uptake was completely prevented. MAP4K4 silencing inhibited TNF-alpha-induced negative signaling inputs by preventing excessive JNK and ERK-1/2 phosphorylation, as well as IRS-1 serine phosphorylation. These results highlight the MAPK4K4/JNK/ERK/IRS module in the negative regulation of insulin signaling to glucose transport in response to TNF-alpha. Depletion of MAP4K4 also prevented TNF-alpha-induced insulin resistance on Akt and the Akt substrate 160 (AS160), providing evidence that appropriate insulin signaling inputs for glucose metabolism were rescued. Silencing of MAP2K1 and MAP2K4, signaling proteins downstream of MAP4K4, recapitulated the effect of MAP4K4 siRNA in TNF-alpha-treated cells. Thus, strategies to inhibit MAP4K4 may be efficacious in the prevention of TNF-alpha-induced inhibitory signals that cause skeletal muscle insulin resistance on glucose metabolism in humans. Moreover, in myotubes from insulin-resistant type II diabetic patients, siRNA against MAP4K4, MAP2K4, or MAP2K1 restored insulin action on glucose uptake to levels observed in healthy subjects. Collectively, our results demonstrate that MAP4K4 silencing prevents insulin resistance in human skeletal muscle and restores appropriate signaling inputs to enhance glucose uptake.
Tumor necrosis factor- alpha (TNF- alpha ) induces skeletal muscle insulin resistance by impairing insulin signaling events involved in GLUT4 translocation. We tested whether mitogenic-activated protein kinase kinase kinase kinase isoform 4 (MAP4K4) causes the TNF- alpha -induced negative regulation of extracellular signal-regulated kinase-1/2 (ERK-1/2), c-Jun NH sub(2)-terminal kinase (JNK), and the insulin receptor substrate-1 (IRS-1) on the insulin signaling pathway governing glucose metabolism. Using small interfering RNA (siRNA) to suppress the expression of MAP4K4 protein 85% in primary human skeletal muscle cells, we provide evidence that TNF- alpha -induced insulin resistance on glucose uptake was completely prevented. MAP4K4 silencing inhibited TNF- alpha -induced negative signaling inputs by preventing excessive JNK and ERK-1/2 phosphorylation, as well as IRS-1 serine phosphorylation. These results highlight the MAPK4K4/JNK/ERK/IRS module in the negative regulation of insulin signaling to glucose transport in response to TNF- alpha . Depletion of MAP4K4 also prevented TNF- alpha -induced insulin resistance on Akt and the Akt substrate 160 (AS160), providing evidence that appropriate insulin signaling inputs for glucose metabolism were rescued. Silencing of MAP2K1 and MAP2K4, signaling proteins downstream of MAP4K4, recapitulated the effect of MAP4K4 siRNA in TNF- alpha -treated cells. Thus, strategies to inhibit MAP4K4 may be efficacious in the prevention of TNF- alpha -induced inhibitory signals that cause skeletal muscle insulin resistance on glucose metabolism in humans. Moreover, in myotubes from insulin-resistant type II diabetic patients, siRNA against MAP4K4, MAP2K4, or MAP2K1 restored insulin action on glucose uptake to levels observed in healthy subjects. Collectively, our results demonstrate that MAP4K4 silencing prevents insulin resistance in human skeletal muscle and restores appropriate signaling inputs to enhance glucose uptake.
Tumor necrosis factor-α (TNF-α) induces skeletal muscle insulin resistance by impairing insulin signaling events involved in GLUT4 translocation. We tested whether mitogenic-activated protein kinase kinase kinase kinase isoform 4 (MAP4K4) causes the TNF-α-induced negative regulation of extracellular signal-regulated kinase-1/2 (ERK-1/2), c-Jun NH2-terminal kinase (JNK), and the insulin receptor substrate-1 (IRS-1) on the insulin signaling pathway governing glucose metabolism. Using small interfering RNA (siRNA) to suppress the expression of MAP4K4 protein 85% in primary human skeletal muscle cells, we provide evidence that TNF-α-induced insulin resistance on glucose uptake was completely prevented. MAP4K4 silencing inhibited TNF-α-induced negative signaling inputs by preventing excessive JNK and ERK-1/2 phosphorylation, as well as IRS-1 serine phosphorylation. These results highlight the MAPK4K4/JNK/ERK/IRS module in the negative regulation of insulin signaling to glucose transport in response to TNF-α. Depletion of MAP4K4 also prevented TNF-α-induced insulin resistance on Akt and the Akt substrate 160 (AS160), providing evidence that appropriate insulin signaling inputs for glucose metabolism were rescued. Silencing of MAP2K1 and MAP2K4, signaling proteins downstream of MAP4K4, recapitulated the effect of MAP4K4 siRNA in TNF-α-treated cells. Thus, strategies to inhibit MAP4K4 may be efficacious in the prevention of TNF-α-induced inhibitory signals that cause skeletal muscle insulin resistance on glucose metabolism in humans. Moreover, in myotubes from insulin-resistant type II diabetic patients, siRNA against MAP4K4, MAP2K4, or MAP2K1 restored insulin action on glucose uptake to levels observed in healthy subjects. Collectively, our results demonstrate that MAP4K4 silencing prevents insulin resistance in human skeletal muscle and restores appropriate signaling inputs to enhance glucose uptake.
Author Bouzakri, Karim
Zierath, Juleen R.
Author_xml – sequence: 1
  givenname: Karim
  surname: Bouzakri
  fullname: Bouzakri, Karim
– sequence: 2
  givenname: Juleen R.
  surname: Zierath
  fullname: Zierath, Juleen R.
  email: Juleen.Zierath@ki.se
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17227768$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:12133354$$DView record from Swedish Publication Index
BookMark eNqFkU1LXDEYhUOx1NG67bJk1d2dJrkfyV2K1A_qtKIW3IXc5J0S595kmg-lP6t_xN9kZKYWCmI2b8j7nEM4Zw_tOO8AoQ-UzCnhzefbQc8XHREdYYyQN2hGiairuqU3O2hGCKNVz1qxi_ZivCXlND19h3YpZ4zzTszQanF40Xxt8Ak4wFd2BKet-4mtw6d5Ug5frWCEpEa8yFGPgC8C3IFLEV_nyQf8DXTw0UZ8rHTyoXr4U1lnsgaDz1zMY_G5hLJPyml4j94u1RjhYDv30Y_jL9dHp9X595Ozo8PzSjctTZXWqhVs0B1ZDsKAqDtOhBn6XmjGGR9EJ4wgPaF8ORjQLde07etadarmojFdvY-qjW-8h3Ue5DrYSYXf0isrt0-rcgPZckYJLfynDb8O_leGmORko4ZxVA58jpIT1rIS3Ksg7UXTc1YX8OMWzMME5vkHf3MvQLMBnuKLAZZS26SS9S4FZUdJiXyqV5Z65b96i2z-n-zZ-SWB2Aig5H1nIciobekYjA2gkzTeviR9BIaZuhE
CitedBy_id crossref_primary_10_1016_j_jlr_2022_100238
crossref_primary_10_1186_s40246_020_00285_1
crossref_primary_10_1016_j_bbi_2008_08_006
crossref_primary_10_1124_jpet_124_002065
crossref_primary_10_1002_advs_202206814
crossref_primary_10_1021_acs_jmedchem_8b00152
crossref_primary_10_7570_kjo_2014_23_3_203
crossref_primary_10_3390_ani2020243
crossref_primary_10_1080_13813450903164330
crossref_primary_10_1016_j_tem_2008_11_004
crossref_primary_10_1126_sciadv_abi9654
crossref_primary_10_1016_j_ejcb_2011_06_004
crossref_primary_10_1002_1878_0261_12055
crossref_primary_10_1186_1471_2164_9_367
crossref_primary_10_1111_j_1748_1716_2010_02201_x
crossref_primary_10_1194_jlr_M800402_JLR200
crossref_primary_10_1038_ncomms9995
crossref_primary_10_2337_db10_1178
crossref_primary_10_1007_s00125_011_2183_8
crossref_primary_10_1038_s41598_024_67648_9
crossref_primary_10_2337_db07_0763
crossref_primary_10_3390_antiox11112090
crossref_primary_10_1038_srep15197
crossref_primary_10_1152_ajpregu_00310_2010
crossref_primary_10_1590_1414_431x20165826
crossref_primary_10_1371_journal_pntd_0001740
crossref_primary_10_1615_CritRevImmunol_2024051277
crossref_primary_10_3389_fphys_2023_1148146
crossref_primary_10_1111_j_1467_789X_2011_00900_x
crossref_primary_10_1152_ajpendo_90714_2008
crossref_primary_10_1038_nature07774
crossref_primary_10_1152_ajpendo_90667_2008
crossref_primary_10_1242_jeb_089920
crossref_primary_10_1007_s11695_019_03755_1
crossref_primary_10_1517_17460441_2010_504203
crossref_primary_10_2337_db16_0882
crossref_primary_10_28957_rcmfr_v27n2a2
crossref_primary_10_1021_acsmedchemlett_5b00215
crossref_primary_10_1021_jm500155b
crossref_primary_10_1210_me_2014_1147
crossref_primary_10_1016_j_cellimm_2014_02_006
crossref_primary_10_1080_13813450802181047
crossref_primary_10_2337_db07_0583
crossref_primary_10_1016_j_tiv_2018_09_014
crossref_primary_10_31590_ejosat_746132
crossref_primary_10_1016_j_jep_2022_116091
crossref_primary_10_1021_cr5002832
crossref_primary_10_15407_fz60_02_045
crossref_primary_10_1016_j_celrep_2020_107860
crossref_primary_10_1016_j_numecd_2014_10_005
crossref_primary_10_1371_journal_ppat_1003737
crossref_primary_10_1152_ajpcell_00056_2021
crossref_primary_10_1016_j_celrep_2019_01_019
crossref_primary_10_1371_journal_pone_0083471
crossref_primary_10_1016_j_biopha_2018_02_012
crossref_primary_10_1038_nrm2391
crossref_primary_10_1186_1476_511X_9_42
crossref_primary_10_1074_jbc_M700665200
crossref_primary_10_1038_s42255_021_00470_z
crossref_primary_10_1007_s00125_009_1330_y
crossref_primary_10_1016_j_bbrep_2016_12_013
crossref_primary_10_1128_MCB_00618_12
crossref_primary_10_1016_j_bbi_2009_09_009
crossref_primary_10_1111_j_1748_1716_2007_01786_x
crossref_primary_10_4093_kdj_2010_34_3_191
crossref_primary_10_1152_physiolgenomics_00024_2014
crossref_primary_10_1038_s41598_024_57000_6
crossref_primary_10_1152_physrev_90100_2007
crossref_primary_10_1016_j_diff_2024_100832
crossref_primary_10_1007_s00125_007_0834_6
crossref_primary_10_1016_j_jbiotec_2008_07_206
crossref_primary_10_1371_journal_pone_0020489
crossref_primary_10_1038_s41467_019_08287_x
crossref_primary_10_1074_jbc_M112_362632
crossref_primary_10_2337_db11_1790
crossref_primary_10_1021_ci200153c
crossref_primary_10_1152_ajpregu_00561_2007
crossref_primary_10_1016_j_celrep_2013_03_018
crossref_primary_10_1016_j_jfluchem_2011_12_006
crossref_primary_10_1016_S0895_3988_09_60019_2
crossref_primary_10_1016_j_intimp_2023_110841
crossref_primary_10_1038_cddis_2015_381
crossref_primary_10_1371_journal_pone_0093856
crossref_primary_10_1007_s00125_009_1465_x
crossref_primary_10_1016_j_tem_2016_04_006
crossref_primary_10_1016_j_biomaterials_2013_01_079
crossref_primary_10_1113_EP091712
crossref_primary_10_1074_jbc_M109_048058
crossref_primary_10_1371_journal_ppat_1004003
crossref_primary_10_3389_fonc_2022_1059513
crossref_primary_10_1038_s41598_018_28117_2
crossref_primary_10_1111_j_1749_6632_2009_04984_x
crossref_primary_10_1186_s13578_016_0121_7
crossref_primary_10_1097_MCO_0b013e32833aabd9
crossref_primary_10_1371_journal_pone_0077788
crossref_primary_10_1016_j_chembiol_2019_10_005
crossref_primary_10_1016_j_etap_2016_08_006
crossref_primary_10_1126_sciadv_ade0631
crossref_primary_10_1002_path_6248
crossref_primary_10_1016_j_phymed_2024_155382
crossref_primary_10_1016_j_molmet_2014_07_007
crossref_primary_10_1038_ncomms5602
crossref_primary_10_1158_1535_7163_MCT_13_0296
crossref_primary_10_3390_ijms231911086
crossref_primary_10_1016_j_patbio_2014_07_010
crossref_primary_10_1093_carcin_bgt371
crossref_primary_10_1210_en_2007_1045
crossref_primary_10_1007_s00394_018_1753_7
Cites_doi 10.1172/JCI117936
10.1016/S0168-8227(00)00247-3
10.1016/S1369-5274(00)00143-0
10.1074/jbc.274.4.2118
10.1074/jbc.273.29.18623
10.1074/jbc.M414204200
10.1001/jama.286.3.327
10.1172/JCI118504
10.2337/diabetes.52.6.1319
10.1128/MCB.23.6.2068-2082.2003
10.1038/35078107
10.1007/BF00400597
10.1073/pnas.0507660103
10.1007/s00125-004-1428-1
10.1016/j.cell.2006.03.048
10.2337/diabetes.52.7.1799
10.1074/jbc.C300542200
10.1007/BF00401208
10.1016/j.cmet.2005.09.005
10.2337/diabetes.54.10.2939
10.1016/j.cmet.2006.04.008
10.2337/diabetes.51.5.1596
10.2337/diab.41.2.S97
10.1016/j.imlet.2004.08.004
10.1073/pnas.0600040103
ContentType Journal Article
Copyright 2007 © 2007 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
Copyright_xml – notice: 2007 © 2007 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1074/jbc.M608602200
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
EndPage 7789
ExternalDocumentID oai_swepub_ki_se_572101
17227768
10_1074_jbc_M608602200
S0021925820637838
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.55
0SF
186
18M
2WC
34G
39C
4.4
53G
5BI
5GY
5RE
5VS
6I.
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFFNX
AFMIJ
AFOSN
AFPKN
AI.
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BTFSW
C1A
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F20
F5P
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
KQ8
L7B
MVM
N9A
OHT
OK1
P-O
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XSW
Y6R
YQT
YSK
YWH
YZZ
ZA5
ZE2
~02
~KM
.7T
.GJ
0R~
29J
3O-
41~
6TJ
AALRI
AAYJJ
AAYOK
AAYWO
AAYXX
ABFSI
ACSFO
ACVFH
ACYGS
ADCNI
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
BAWUL
CITATION
E.L
FA8
H13
J5H
NHB
QZG
XJT
YYP
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7TM
8FD
FR3
P64
RC3
7X8
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c451t-cca582bc60fb8de836708db998c2727b868d809017fbdec57c15933a6a3784d63
ISSN 0021-9258
IngestDate Mon Sep 01 03:34:39 EDT 2025
Thu Sep 04 19:09:14 EDT 2025
Fri Sep 05 03:00:37 EDT 2025
Wed Feb 19 02:29:11 EST 2025
Tue Jul 01 02:13:13 EDT 2025
Thu Apr 24 23:02:53 EDT 2025
Fri Feb 23 02:47:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c451t-cca582bc60fb8de836708db998c2727b868d809017fbdec57c15933a6a3784d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id:12133354
PMID 17227768
PQID 19849723
PQPubID 23462
PageCount 7
ParticipantIDs swepub_primary_oai_swepub_ki_se_572101
proquest_miscellaneous_70252491
proquest_miscellaneous_19849723
pubmed_primary_17227768
crossref_citationtrail_10_1074_jbc_M608602200
crossref_primary_10_1074_jbc_M608602200
elsevier_sciencedirect_doi_10_1074_jbc_M608602200
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-03-16
PublicationDateYYYYMMDD 2007-03-16
PublicationDate_xml – month: 03
  year: 2007
  text: 2007-03-16
  day: 16
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2007
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Duncan, Schmidt, Pankow, Ballantyne, Couper, Vigo, Hoogeveen, Folsom, Heiss (bib5) 2003; 52
Hotamisligil, Arner, Caro, Atkinson, Spiegelman (bib6) 1995; 95
Freeman, Norrie, Caslake, Gaw, Ford, Lowe, O'Reilly, Packard, Sattar (bib4) 2002; 51
Plomgaard, Bouzakri, Krogh-Madsen, Mittendorfer, Zierath, Pedersen (bib11) 2005; 54
Bouzakri, Roques, Gual, Espinosa, Guebre-Egziabher, Riou, Laville, March, Brustel, Tanti, Vidal (bib20) 2003; 52
Pradhan, Manson, Rifai, Buring, Ridker (bib3) 2001; 286
Machida, Umikawa, Takei, Sakima, Myagmar, Taira, Uezato, Ogawa, Kariya (bib19) 2004; 279
Eguez, Lee, Chavez, Miinea, Kane, Lienhard, McGraw (bib25) 2005; 2
Mishima, Kuyama, Tada, Takahashi, Ishioka, Kibata (bib9) 2001; 52
Bouzakri, Zachrisson, Al-Khalili, Zhang, Koistinen, Krook, Zierath (bib26) 2006; 4
Favata, Horiuchi, Manos, Daulerio, Stradley, Feeser, Van Dyk, Pitts, Earl, Hobbs, Copeland, Magolda, Scherle, Trzaskos (bib23) 1998; 273
Bouzakri, Roques, Debard, Berbe, Rieusset, Laville, Vidal (bib22) 2004; 47
DeFronzo (bib2) 1992; 35
Mack, Von Goetz, Lin, Venegas, Barnhart, Lu, Lamar, Stull, Silvin, Owings, Bih, Abo (bib14) 2005; 96
Yki-Jarvinen (bib1) 1995; 38
Rangaswami, Bulbule, Kundu (bib16) 2005; 280
Yao, Zhou, Wang, Brown, Diener, Gan, Tan (bib12) 1999; 274
Feingold, Grunfeld (bib10) 1992; 41
Tang, Guilherme, Chakladar, Powelka, Konda, Virbasius, Nicoloro, Straubhaar, Czech (bib13) 2006; 103
Elbashir, Harborth, Lendeckel, Yalcin, Weber, Tuschl (bib21) 2001; 411
Wright, Wang, Manning, LaMere, Le, Zhu, Khatry, Flanagan, Buckley, Whyte, Howlett, Bischoff, Lipson, Jallal (bib24) 2003; 23
Collins, Hong, Sapinoso, Zhou, Liu, Micklash, Schultz, Hampton (bib15) 2006; 103
Elion (bib18) 2000; 3
Winkler, Lakatos, Nagy, Speer, Salamon, Szekeres, Kovacs, Cseh (bib8) 1998; 21
Saghizadeh, Ong, Garvey, Henry, Kern (bib7) 1996; 97
Zohn, Li, Skolnik, Anderson, Han, Niswander (bib17) 2006; 125
Tang (10.1074/jbc.M608602200_bib13) 2006; 103
Rangaswami (10.1074/jbc.M608602200_bib16) 2005; 280
Yki-Jarvinen (10.1074/jbc.M608602200_bib1) 1995; 38
Bouzakri (10.1074/jbc.M608602200_bib20) 2003; 52
Mack (10.1074/jbc.M608602200_bib14) 2005; 96
Plomgaard (10.1074/jbc.M608602200_bib11) 2005; 54
Freeman (10.1074/jbc.M608602200_bib4) 2002; 51
Eguez (10.1074/jbc.M608602200_bib25) 2005; 2
Bouzakri (10.1074/jbc.M608602200_bib26) 2006; 4
Zohn (10.1074/jbc.M608602200_bib17) 2006; 125
Yao (10.1074/jbc.M608602200_bib12) 1999; 274
Hotamisligil (10.1074/jbc.M608602200_bib6) 1995; 95
Feingold (10.1074/jbc.M608602200_bib10) 1992; 41
Elion (10.1074/jbc.M608602200_bib18) 2000; 3
Collins (10.1074/jbc.M608602200_bib15) 2006; 103
Saghizadeh (10.1074/jbc.M608602200_bib7) 1996; 97
Elbashir (10.1074/jbc.M608602200_bib21) 2001; 411
Duncan (10.1074/jbc.M608602200_bib5) 2003; 52
Wright (10.1074/jbc.M608602200_bib24) 2003; 23
Bouzakri (10.1074/jbc.M608602200_bib22) 2004; 47
Mishima (10.1074/jbc.M608602200_bib9) 2001; 52
Favata (10.1074/jbc.M608602200_bib23) 1998; 273
DeFronzo (10.1074/jbc.M608602200_bib2) 1992; 35
Pradhan (10.1074/jbc.M608602200_bib3) 2001; 286
Machida (10.1074/jbc.M608602200_bib19) 2004; 279
Winkler (10.1074/jbc.M608602200_bib8) 1998; 21
References_xml – volume: 274
  start-page: 2118
  year: 1999
  end-page: 2125
  ident: bib12
  publication-title: J. Biol. Chem.
– volume: 125
  start-page: 957
  year: 2006
  end-page: 969
  ident: bib17
  publication-title: Cell
– volume: 21
  start-page: 1778
  year: 1998
  end-page: 1779
  ident: bib8
  publication-title: Diabetes Care
– volume: 280
  start-page: 19381
  year: 2005
  end-page: 19392
  ident: bib16
  publication-title: J. Biol. Chem.
– volume: 52
  start-page: 119
  year: 2001
  end-page: 123
  ident: bib9
  publication-title: Diabetes Res. Clin. Pract.
– volume: 279
  start-page: 15711
  year: 2004
  end-page: 15714
  ident: bib19
  publication-title: J. Biol. Chem.
– volume: 51
  start-page: 1596
  year: 2002
  end-page: 1600
  ident: bib4
  publication-title: Diabetes
– volume: 3
  start-page: 573
  year: 2000
  end-page: 581
  ident: bib18
  publication-title: Curr. Opin. Microbiol.
– volume: 41
  start-page: 97
  year: 1992
  end-page: 101
  ident: bib10
  publication-title: Diabetes
– volume: 38
  start-page: 1378
  year: 1995
  end-page: 1388
  ident: bib1
  publication-title: Diabetologia
– volume: 96
  start-page: 129
  year: 2005
  end-page: 145
  ident: bib14
  publication-title: Immunol. Lett.
– volume: 47
  start-page: 1314
  year: 2004
  end-page: 1323
  ident: bib22
  publication-title: Diabetologia
– volume: 273
  start-page: 18623
  year: 1998
  end-page: 18632
  ident: bib23
  publication-title: J. Biol. Chem.
– volume: 103
  start-page: 2087
  year: 2006
  end-page: 2092
  ident: bib13
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 35
  start-page: 389
  year: 1992
  end-page: 397
  ident: bib2
  publication-title: Diabetologia
– volume: 52
  start-page: 1319
  year: 2003
  end-page: 1325
  ident: bib20
  publication-title: Diabetes
– volume: 52
  start-page: 1799
  year: 2003
  end-page: 1805
  ident: bib5
  publication-title: Diabetes
– volume: 23
  start-page: 2068
  year: 2003
  end-page: 2082
  ident: bib24
  publication-title: Mol. Cell Biol.
– volume: 97
  start-page: 1111
  year: 1996
  end-page: 1116
  ident: bib7
  publication-title: J. Clin. Investig.
– volume: 103
  start-page: 3775
  year: 2006
  end-page: 3780
  ident: bib15
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 286
  start-page: 327
  year: 2001
  end-page: 334
  ident: bib3
  publication-title: J. Am. Med. Assoc.
– volume: 95
  start-page: 2409
  year: 1995
  end-page: 2415
  ident: bib6
  publication-title: J. Clin. Investig.
– volume: 411
  start-page: 494
  year: 2001
  end-page: 498
  ident: bib21
  publication-title: Nature
– volume: 4
  start-page: 89
  year: 2006
  end-page: 96
  ident: bib26
  publication-title: Cell Metab.
– volume: 54
  start-page: 2939
  year: 2005
  end-page: 2945
  ident: bib11
  publication-title: Diabetes
– volume: 2
  start-page: 263
  year: 2005
  end-page: 272
  ident: bib25
  publication-title: Cell Metab.
– volume: 95
  start-page: 2409
  year: 1995
  ident: 10.1074/jbc.M608602200_bib6
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI117936
– volume: 52
  start-page: 119
  year: 2001
  ident: 10.1074/jbc.M608602200_bib9
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/S0168-8227(00)00247-3
– volume: 3
  start-page: 573
  year: 2000
  ident: 10.1074/jbc.M608602200_bib18
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/S1369-5274(00)00143-0
– volume: 274
  start-page: 2118
  year: 1999
  ident: 10.1074/jbc.M608602200_bib12
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.4.2118
– volume: 273
  start-page: 18623
  year: 1998
  ident: 10.1074/jbc.M608602200_bib23
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.29.18623
– volume: 21
  start-page: 1778
  year: 1998
  ident: 10.1074/jbc.M608602200_bib8
  publication-title: Diabetes Care
– volume: 280
  start-page: 19381
  year: 2005
  ident: 10.1074/jbc.M608602200_bib16
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M414204200
– volume: 286
  start-page: 327
  year: 2001
  ident: 10.1074/jbc.M608602200_bib3
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.286.3.327
– volume: 97
  start-page: 1111
  year: 1996
  ident: 10.1074/jbc.M608602200_bib7
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI118504
– volume: 52
  start-page: 1319
  year: 2003
  ident: 10.1074/jbc.M608602200_bib20
  publication-title: Diabetes
  doi: 10.2337/diabetes.52.6.1319
– volume: 23
  start-page: 2068
  year: 2003
  ident: 10.1074/jbc.M608602200_bib24
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.23.6.2068-2082.2003
– volume: 411
  start-page: 494
  year: 2001
  ident: 10.1074/jbc.M608602200_bib21
  publication-title: Nature
  doi: 10.1038/35078107
– volume: 38
  start-page: 1378
  year: 1995
  ident: 10.1074/jbc.M608602200_bib1
  publication-title: Diabetologia
  doi: 10.1007/BF00400597
– volume: 103
  start-page: 2087
  year: 2006
  ident: 10.1074/jbc.M608602200_bib13
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0507660103
– volume: 47
  start-page: 1314
  year: 2004
  ident: 10.1074/jbc.M608602200_bib22
  publication-title: Diabetologia
  doi: 10.1007/s00125-004-1428-1
– volume: 125
  start-page: 957
  year: 2006
  ident: 10.1074/jbc.M608602200_bib17
  publication-title: Cell
  doi: 10.1016/j.cell.2006.03.048
– volume: 52
  start-page: 1799
  year: 2003
  ident: 10.1074/jbc.M608602200_bib5
  publication-title: Diabetes
  doi: 10.2337/diabetes.52.7.1799
– volume: 279
  start-page: 15711
  year: 2004
  ident: 10.1074/jbc.M608602200_bib19
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C300542200
– volume: 35
  start-page: 389
  year: 1992
  ident: 10.1074/jbc.M608602200_bib2
  publication-title: Diabetologia
  doi: 10.1007/BF00401208
– volume: 2
  start-page: 263
  year: 2005
  ident: 10.1074/jbc.M608602200_bib25
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.09.005
– volume: 54
  start-page: 2939
  year: 2005
  ident: 10.1074/jbc.M608602200_bib11
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.10.2939
– volume: 4
  start-page: 89
  year: 2006
  ident: 10.1074/jbc.M608602200_bib26
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.04.008
– volume: 51
  start-page: 1596
  year: 2002
  ident: 10.1074/jbc.M608602200_bib4
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.5.1596
– volume: 41
  start-page: 97
  year: 1992
  ident: 10.1074/jbc.M608602200_bib10
  publication-title: Diabetes
  doi: 10.2337/diab.41.2.S97
– volume: 96
  start-page: 129
  year: 2005
  ident: 10.1074/jbc.M608602200_bib14
  publication-title: Immunol. Lett.
  doi: 10.1016/j.imlet.2004.08.004
– volume: 103
  start-page: 3775
  year: 2006
  ident: 10.1074/jbc.M608602200_bib15
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0600040103
SSID ssj0000491
Score 2.245221
Snippet Tumor necrosis factor-α (TNF-α) induces skeletal muscle insulin resistance by impairing insulin signaling events involved in GLUT4 translocation. We tested...
Tumor necrosis factor-alpha (TNF-alpha) induces skeletal muscle insulin resistance by impairing insulin signaling events involved in GLUT4 translocation. We...
Tumor necrosis factor- alpha (TNF- alpha ) induces skeletal muscle insulin resistance by impairing insulin signaling events involved in GLUT4 translocation. We...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7783
SubjectTerms Cell Differentiation
Deoxyglucose - metabolism
Gene Silencing
Humans
Insulin Resistance
Interleukin-6 - metabolism
Intracellular Signaling Peptides and Proteins
Mitogen-Activated Protein Kinase 1 - metabolism
Mitogen-Activated Protein Kinase 3 - metabolism
Muscle Fibers, Skeletal - metabolism
Muscle, Skeletal - metabolism
Phosphorylation
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Signal Transduction
Tumor Necrosis Factor-alpha - metabolism
Title MAP4K4 Gene Silencing in Human Skeletal Muscle Prevents Tumor Necrosis Factor-α-induced Insulin Resistance
URI https://dx.doi.org/10.1074/jbc.M608602200
https://www.ncbi.nlm.nih.gov/pubmed/17227768
https://www.proquest.com/docview/19849723
https://www.proquest.com/docview/70252491
http://kipublications.ki.se/Default.aspx?queryparsed=id:12133354
Volume 282
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXa9NBeijbp4nTjoUgPgVKLpkTqaAQJgjpOF9iAb4Qo0YjrWgoiqUDz9R1ukrMYXS6CTGuD5ol8Q868Qeh9BmOmHCRzcHJSHtBYJkEaSRJoKRRGo0iFZkJ_fBafTOmnWTTrCl2a7JJaHmRXd-aV_I9VoQ3sqrNk_8Gy7UWhAfbBvrAFC8P2r2w8Hn6hI6qrIKv9aqHTh1yGiq28Vy1hTNHJjqumgjO1HsBPk9BWN6vycr9QeohcVK7mTmDSbgPw0RsdE-CD1MEd1xTTY-N7h641LmulnKzYiK8g1zr6ZXOVLm1C-wg881U7V73Qgs7nLktbB4t9uzYHwXQQlk2RbHMCwiAhVoTd96uEk3UAhWvdJGO2es2t_hsIje6_ZXYwjvu6PJbVMb0hlH32WRxPT0_F5Gg2uY8eEMbMCv3oaycUD46PLZboHszrdTL68frVN_GR2_7GDTFZQ0AmT9Bj97bx0MLgKbqnim20MyzSulz9wnvYxPKaRZJt9PDQW2EHFRYlWKMEtyjBiwIblGCPEmxRgj1KsEEJ9ijBd6EEO5TgDiXP0PT4aHJ4ErgqG0FGo7AO4BOOOJFZ3J9LniuuFf14LsENzwiQW8ljnvM-0EY2l7nKIpYBAx4M0jgdME7zePAcbRVloV4inLAkzCX08gkPaaqyZA4_SEgVkFgJRLuHAv-uReYk6HUllB_ChEIwKsA2orNND31oj7-w4isbjwy96YSjjpYSCkDWxnPeeRsLMIleKEsLVTaVCBNOdTW-zUcwcBUIQKyHXlhwdM_HCOAx5j20Z9HS_qOF3F3TEvaUiBiBAXH3jzd5hR51H91rtFVfNuoNUOFavjWg_w1LoLee
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MAP4K4+gene+silencing+in+human+skeletal+muscle+prevents+tumor+necrosis+factor-alpha-induced+insulin+resistance&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Bouzakri%2C+Karim&rft.au=Zierath%2C+Juleen+R&rft.date=2007-03-16&rft.issn=0021-9258&rft.volume=282&rft.issue=11&rft.spage=7783&rft_id=info:doi/10.1074%2Fjbc.M608602200&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon